含有圆的组合图形教学设计及反思 Word 文档

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

含有圆的组合图形教学设计说明

北屯镇中学朱慧敏

教学内容:人教版小学数学教材六年级上册第69~70页例3及相关练习。

教学目标:

1.结合具体情境认识与圆相关的组合图形的特征,掌握计算此类图形面积的方法,并能准确计算。

2.在解决实际问题的过程中,通过独立思考、合作探究、讨论交流等活动,培养学生分析问题和解决问题的能力。

3.结合例题渗透传统文化的教育,通过体验图形和生活的联系感受数学的价值,提升学习的兴趣。

教学重点:使学生了解在任何正方形都有一个外接圆和一个内切圆,这两个圆是同心圆,掌握计算组合图形面积的方法,并能准确计算。

教学难点:通过正方形性质的教学培养学生的探索、推理、归纳、迁移等能力;对组合图形进行分析。

教学准备:课件、学具、作业纸。

教学过程:

一、创设情景,谈话引入

1.师:古时候,由于人们的活动范围狭小,往往凭自己的直觉认识世界,看到眼前的地面是平的,以为整个大地是平的,并且把天空看作是倒扣着的一口巨大的锅。我国古代有“天圆如张盖,地方如棋局”的说法。(结合课件出示)虽然这种说法是错误的,却产生了深远的影响,尤其体现在建筑设计上。

2.课件展示:生活中关于方与圆的精美图片,精美的雕窗。

【设计意图】由传统文化对建筑设计产生的影响导入课堂,自然地引出例题的教学,极大地激发了学生学习的兴趣和探索的热情。

二、探究新知,解决问题

1.实践操作(课件出示教材例3中的雕窗插图)

中国建筑中经常能见到“外方内圆”和“外圆内方”的设计。上图中的两个圆半径都是1m,你能求出正方形和圆之间部分的面积吗?

上图中两个圆的半径都是1m,怎样求正方形和圆之间部分的面积呢?题目中都告诉了我们什么?师:谁能说说这两种设计有什么联系和区别?

预设1:左边的雕窗外面是方的里面是圆的;右边的雕窗外面是圆的里面是方的。

师:我们可以将上述特征分别概括地称为外方内圆、外圆内方。

预设2:都是由圆和正方形这两个图形组成的。

师:也就是我们以前学过的什么图形?(组合图形)你能用学具组合出这两个图形吗?

【设计意图】动手操作的过程是从实物中抽象出图形的过程,使学生充分体会图形的组合与位置关系,理解组合图形面积的产生。与此同时,激活了原有的关于组合图形的认识,找到了新知的生长点。

2.解决问题

(1)阅读与理解

师:怎样计算正方形和圆之间部分的面积?需要什么条件?先想一想,再同桌交流。

预设1:正方形的面积减去圆的面积;圆的面积减去正方形的面积。

预设2:需要知道正方形的边长和圆的半径。

师:只告诉你这两个圆的半径都是1米,你能计算出这两部分的面积吗?

学生思考,尝试练习。

(2)分析与解答

师:谁来说说你是怎么计算左图中正方形和圆之间部分的面积的?

预设:正方形的面积是2×2=4(m2),减去圆的面积(3.14 m2),等于0.86 m2。

师:你是怎么知道正方形的边长的?

根据学生回答课件展示:正方形的边长=圆的直径。

师:在右图中你能得出正方形的边长吗?(不能)该如何计算正方形的面积呢?

预设1:可以把右图中的正方形看成两个三角形。

追问:三角形的底和高分别是多少?相当于什么?(底是2 m,高是1 m,相当于圆的直径和半径。)

2、你能解决这个问题吗?

3、那么我们解答得对不对呢?有什么方法验证吗?

如果两个圆的半径都是r,结果又是怎样的?当r=1 m时,和前面的结果完全一致。

结合学生回答课件展示。

预设2:也可以看成四个三角形。

师:这样一来,每个三角形的底和高各是多少呢?相当于什么?(底和高都是1 m,相当于圆的半径。)

师:那么,圆与正方形之间部分的面积可以怎样计算?(学生练习,分析订

正。)

【设计意图】让学生经历观察思考、分析推理等学习活动,得出公共边以及

图形各要素之间的关系,自主地运用已有的知识达成问题的解决。教学过程中,

注重把时间和空间还给学生,教师只用几个简单的设问,引出的却是学生自主学

习的过程展示。

三、回顾反思,理解算法

师:如果两个圆的半径都是,结果又是怎样的?结合左图我们一起来算一

算。

左图:。

师:像这样,你能计算出右图中正方形和圆之间部分的面积吗?

学生练习,反馈讲评。

右图:。

师:我们可以把题目中的条件=1 m代入上述的两个结果算一算,有什么

发现?

预设:和之前计算的结果完全一致。

【设计意图】“授人以鱼,不如授人以渔”,在解决具体问题的基础上发现

一般的数学规律是本堂课教学的重要内容。在层层深入的学习过程中,始终坚持

为学生创设探索的情境,利用知识内在的魅力吸引学生主动投入到知识的发展过

程中。

四、知识应用解决问题。

右图是一面我国唐代外圆内方的铜镜。铜镜的直径是24.8 cm。外面的圆与内部的正方形之间的面积是多少?

五、课堂练习,强化认识

六、全课总结,畅谈收获

通过本节课的学习,你有什么收获?谁来说一说。

布置作业:第72页练习十五,第9题。

第73页练习十五,第10题~第14题。

板书设计

含有圆的组合图形(圆与正方形的关系)

例3、从图一可看出:2×2=4(m ²)

3.14×1²=3.14(m ²)

4-3.14=0.86(m ²)

从图二看出:(2

1×2×1)×2=2(m ²) 3.14-2=1.14(m ²)

相关文档
最新文档