2020年高考数学复习:定积分问题
(部编版)2020届高考数学大一轮复习第二章第十二节定积分与微积分基本定理教师用书理22
![(部编版)2020届高考数学大一轮复习第二章第十二节定积分与微积分基本定理教师用书理22](https://img.taocdn.com/s3/m/2ec300bd84868762caaed5ea.png)
第十二节 定积分与微积分基本定理☆☆☆2017考纲考题考情☆☆☆自|主|排|查1.定积分的定义一般地,如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b ,将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式∑i =1nf (ξi )Δx =∑i =1nb -anf (ξi ),当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作⎠⎛ab f (x )d x 。
2.定积分的相关概念在⎠⎛ab f (x )d x 中,a 与b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x叫做积分变量,f (x )d x 叫做被积式。
3.定积分的性质(1)⎠⎛a b kf (x )d x =k ⎠⎛ab f (x )d x (k 为常数);(2)⎠⎛a b [f 1(x )±f 2(x )]d x =⎠⎛a b f 1(x )d x ±⎠⎛ab f 2(x )d x ;(3)⎠⎛ab f (x )d x =⎠⎛ac f (x )d x +⎠⎛cb f (x )d x (其中a <c <b )。
4.定积分的几何意义 如图:设阴影部分面积为S 。
(1)S =⎠⎛ab f (x )d x ;(2)S =-⎠⎛ab f (x )d x ;(3)S =⎠⎛a c f (x )d x -⎠⎛c b f (x )d x ;(4)S =⎠⎛ab f (x )d x -⎠⎛ab g (x )d x =⎠⎛ab [f (x )-g (x )]d x 。
5.微积分基本定理如果F ′(x )=f (x ),且f (x )在[a ,b ]上可积,则⎠⎛ab f(x)d x =F (b )-F (a )。
【高考数学】定积分的概念、基本定理及其简单应
![【高考数学】定积分的概念、基本定理及其简单应](https://img.taocdn.com/s3/m/8d5504694afe04a1b071de9a.png)
①设函数
可导,则
;
试卷第 8 页,总 60 页
②过曲线
外一定点做该曲线的切线有且只有一条;
③已知做匀加速运动的物体的运动方程是 的瞬时速度是 米 秒;
米,则该物体在时刻
秒
④一物体以速度 的位移为 米;
(米 /秒)做直线运动,则它在
到
秒时间段内
⑤已知可导函数
,对于任意
时,
是函数
在
上单调递增的充要条件.
涉及微积分定理的应用, 属于中
档题;在利用几何概型的概率公式来求其概率时, 几何 “测度 ”可以是长度、 面积、体积、
角度等,其中对于几何度量为长度,面积、体积时的等可能性主要体现在点落在区域
Ω
上任置都是等可能的, 而对于角度而言, 则是过角的顶点的一条射线落在 Ω的区域 (事
实也是角)任一位置是等可能的.
1
x3 1 1
2 ,所以 m
log 5 2 log 5 5
1 , n log 2 3 1 , 2
1 p.
2 所以 m p
n ,选 B.
【点睛】
本题考查定积分以及对数函数单调性,考查基本分析判断能力,属中档题
.
15. 2 (sin x | sin x |)dx ( )
2
A.0 【答案】 C
B. 1
【解析】
的
几何意义是介于 轴、曲线
以及直线
之间的曲边梯形面积的代
试卷第 2 页,总 60 页
数和 ,其中在 轴上方的面积等于该区间上的积分值, 在 轴下方的面积等于该区间上
积分值的相反数 ,所以在用定积分求曲边形面积时,一定要分清面积与定积分是相等还
是互为相反数;两条曲线之间的面积可以用两曲线差的定积分来求解
2019-2020年高三数学 黄金考点汇编11 定积分的概念与微积分基本定理 理(含解析)
![2019-2020年高三数学 黄金考点汇编11 定积分的概念与微积分基本定理 理(含解析)](https://img.taocdn.com/s3/m/c6a2d869ec3a87c24128c499.png)
2019-2020年高三数学 黄金考点汇编11 定积分的概念与微积分基本定理 理(含解析)【考点分类】热点1 定积分的基本计算1.【xx 江西高考理第8题】若则 ( ) A . B . C . D .12.【xx 陕西高考理第3题】定积分的值为 ( )3.【xx 年普通高等学校招生全国统一考试(江西卷)理】若 ,则s 1,s 2,s 3的大小关系为 ( ) A . s 1<s 2<s 3B . s 2<s 1<s 3C . s 2<s 3<s 1D . s 3<s 2<s 14.【xx 年普通高等学校招生全国统一考试(湖南卷)】若 . 【答案】3.【解析】∵⎠⎛0T x 2dx =13x 3⎪⎪⎪T0=T 33=9,∴T =3.5.【xx 福建理15】当时,有如下表达式: 两边同时积分得:1111122222200011.......1ndx xdx x dx x dx dx x+++++=-⎰⎰⎰⎰⎰从而得到如下等式: 23111111111()()...()...ln 2.2223212n n +⨯+⨯+⨯++⨯+=+请根据以下材料所蕴含的数学思想方法,计算: 0122311111111()()...()_____2223212n n n n n nn C C C C +⨯+⨯+⨯++⨯=+【方法规律】计算简单定积分的步骤:(1)把被积函数变为幂函数、正弦函数、余弦函数、指数函数与常数的和或差; (2)利用定积分的性质把所求的定积分化为若干个定积分的和或差; (3)分别用求导公式求出F(x),使得F ′(x)=f(x); (4)利用牛顿-莱布尼兹公式求出各个定积分的值; (5)计算所求定积分的值. 【解题技巧】 求定积分的常用技巧:(1)求被积函数,要先化简,再求积分;(2)求被积函数为分段函数的定积分,依据定积分“对区间的可加性”,分段积分再求和; (3)对于含有绝对值符号的被积函数,要先去掉绝对值号才能积分;(4)若f (x )是偶函数,则⎠⎛-a a f (x )d x =2⎠⎛0a f (x )d x ;若f (x )是奇函数,则⎠⎛-aa f (x )d x =0热点2 定积分几何意义的应用1.【xx 山东高考理第6题】直线在第一象限内围成的封闭图形的面积为 ( ) A. B . C . D .4 【答案】【解析】由已知得,,故选. 考点:定积分的应用.2.【xx 年普通高等学校招生全国统一考试北京卷理】直线l 过抛物线C : x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于 ( ) A . B .2 C . D .【方法规律】1.定积分的几何意义:定积分表示在区间上的曲线与直线、以及轴所围成的平面图形(曲边梯形)的面积的代数和,即.(在轴上方的面积取正号,在轴下方的面积取负号). 2.求由两条曲线围成的图形的面积的解题步骤:(1)画出图形,确定图形的范围,通过解方程组求出交点的横坐标.定出积分的下、下限; (2)确定被积函数,特别要注意分清被积函数的下、下位置; (3)写出平面图形面积的定积分的表达式;(4)运用微积分基本定理计算定积分,求出平面图形的面积.利用定积分求曲边图形面积时,一定要找准积分上限、下限及被积函数.当图形的边界不同时,要分不同情况讨论. 【易错点睛】 概念理解错误例.【xx 北京西城】求曲线f (x )=sin x ,x ∈[0,54π]与x 轴围成的图形的面积.热点3 定积分物理意义的应用1.【xx年普通高等学校招生全国统一考试湖北卷理7】一辆汽车在高速公路下行驶,由于遇到紧急情况而刹车,以速度(t的单位:s,v的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是()B.C. D.【答案】C.【解析】令,则,汽车刹车的距离是,故选C.【方法规律】利用定积分解决变速直线运动问题和变力做功问题时,关键是求出物体做变速直线运动的速度函数和变力与位移之间的函数关系,确定好积分区间,得到积分表达式,再利用微积分基本定理计算即得所求.①变速直线运动的路程:作变速直线运动的物体所经过的路程,等于其速度函数在时间区间上的定积分,即.②变力作功:物体在变力的作用下做直线运动,并且物体沿着与相同的方向从移动到,那么变力所作的功.【易错点睛】如xx湖北卷理7试题可能出现以下错误:(1)未形成应用定积分解题的意识,造成思维受阻.(2)不知如何确定刹车后汽车继续行驶的时间,从而不能正确确定积分区间.(3)求错被积函数的原函数致误.防范措施:(1)学习数学,要知道知识方法形成的背景以及应用的方面,不能孤立地看待一个知识方法,要用联系的观点去认识;(2)分析刹车的过程,可以发现,由速度为零可以得到汽车继续行驶的时间.由此可见,分析过程可以发现规律.【考点剖析】1.最新考试说明:(1)考查定积分的概念,定积分的几何意义,微积分基本定理.(2)利用定积分求曲边形面积、变力做功、变速运动的质点的运动路程.2.命题方向预测:从近两年的高考试题看,本节内容要求较低,定积分的简单计算与利用定积分求平面图形的面积是考查的重点,与几何概型概率的计算相结合是近几年高考的亮点,题型为选择题或填空题,难度中等偏下.预测xx 年利用定积分求曲边图形的面积和解决一些简单的物理问题等是定积分命题的主要方向,一般以客观题形式出现. 3.课本结论总结:(1)用定义求定积分的一般方法是:①分割:n 等分区间[a ,b ];②近似代替:取点ξi ∈[x i -1,x i ];③求和:∑n i =1f (ξi )·b -an;④取极值:⎠⎛ab f (x )d x =limn →∞∑n i =1f (ξi )·b -a n.(2)定积分的性质 性质1:;性质2:(为常数)(定积分的线性性质); 性质3:1212b b b aaaf x f x dx f x dxf x dx (定积分的线性性质); 推广:1212b b b b m m aaaaf x f xf x dx f x dx f x dxf x dx性质4:(其中)(定积分对积分区间的可加性) 推广:121kb c c b aac c f x dxf x dxf x dxf x dx说明:定积分的定义中,限定下限小于上限,即a <b ,为了方便计算,人们把定积分的概念扩大,使下限不一定小于上限,并规定:,0b a a abaf x dxf x dx f x dx .(3)微积分基本定理一般地,如果f (x )在区间[a ,b ]上连续,且F ′(x )=f (x ),那么⎠⎛ab f (x )d x =F (x )| b a =F (b )-F (a ).这个结论叫做微积分基本定理,又叫做牛顿-莱布尼兹公式. (4)常用定积分公式: ①(为常数);②;③;④; ⑤;⑥;⑦;⑧; ⑨;⑩.4.名师二级结论: 一种思想定积分基本思想的核心是“以直代曲”,用“有限”的步骤解决“无限”过程的问题,其方法是“分割求近似,求和取极限”,利用这种方法可推导球的表面积和体积公式等.恩格斯曾经把对数的发明、解析几何的创始以及微积分的建立并称为17世纪数学的三大成就.一种关系由微积分基本定理可知求定积分的关键是求导函数的原函数,由此可知,求导与积分是互为逆运算. 三条性质(1)常数可提到积分号外;(2)和差的积分等于积分的和差;(3)积分可分段进行. 四种求定积分的方法①利用定义求定积分;②利用微积分基本定理求定积分;③利用定积分的几何意义求定积分.如:定积分⎠⎛011-x 2d x 的几何意义是求单位圆面积的14,所以⎠⎛011-x 2d x =π4;④利用积分的性质.两类典型的计算曲边梯形面积的方法 (1)型区域:①由一条曲线与直线以及轴所围成的曲边梯形的面积:(如图(1));②由一条曲线与直线以及轴所围成的曲边梯形的面积:(如图(2)); ③由一条曲线,当时,;当时,与直线以及轴所围成的曲边梯形的面积: (如图(3));④由两条曲线(与直线所围成的曲边梯形的面积:[]()()()().bb baaaS f x dx g x dx f x g x dx =-=-⎰⎰⎰(如图(4)) (2)型区域:①由一条曲线与直线以及轴所围成的曲边梯形的面积,可由得,然后利用求出(如图(5)); ②由一条曲线与直线以及轴所围成的曲边梯形的面积,可由先求出,然后利用求出(如图(6)); ③由两条曲线与直线所围成的曲边梯形的面积,可由先分别求出,,然后利用求出(如图(7));5.课本经典习题:(1)【人教新课标A 版2-2第47页例1】利用定积分的定义,计算的值.【经典理由】典型的应用定义计算定积分(2)【人教新课标A 版2-2第56页,例1】计算由曲线所围成图形的面积. 【变式】由曲线所围成图形的面积为____________.分,∴2211,143443x dx s πππ-=∴=-+=-⎰.6.考点交汇展示:(1) 定积分计算与几何概型交汇例1【广东省梅州市xx 届高三3月质检】.如图,设D 是图中边长为2的正方形区域.,E 是函数的图像与x 轴及围成的阴影区域,项D 中随机投一点,则该点落入E 中的概率为 ( )A .B .C .D .(2) 定积分的计算与函数的性质交汇例2【xx 年高考原创预测卷(浙江理科)】.若,则等于 . 【答案】【解析】,2ln 12ln )0()0504()2016(0+=+==+=∴e f f f . (3) 定积分的计算与二项式定理的应用交汇例3【xx 届安徽六校教育研究会高三2月联考数学理】.已知则二项式的展开式中的系数为 .xyO【考点特训】1.【河南省安阳一中xx 届高三第一次月考8】如图是函数在一个周期内的图象,则阴影部分的面积是( ) A . B . C . D . 【答案】B2.【河北省“五个一名校联盟” xx 届高三教学质量监测(一)13】直线与抛物线所围图形的面积等于_____________ 【答案】 【解析】3.【xx 届高三原创预测卷理科数学试卷4(安徽版)】设235111111,,a dx b dx c dx xxx===⎰⎰⎰,则下列关系式成立的是 ( ) A . B . C . D .4.【高考冲刺关门卷新课标全国卷(理)】由直线,曲线以及轴围成的封闭图形的面积为________.5.【广州市珠海区xx年高三8月摸底考试12】图中阴影部分的面积等于.【答案】1.【解析】由定积分的几何意义得:.考点:定积分的几何意义.6.【xx年哈尔滨师大附中东北师大附中辽宁省实验中学高三第一次联合模拟考试】( )A.0 B.C.D.7.【唐山一中xx下学期调研考试试卷】直线的方向向量为且过抛物线的焦点,则直线与抛物线围成的封闭图形面积为( )A.B.C.D.8.【稳派xx年普通高等学校招生全国统一考试模拟信息卷(五)】设,若曲线与直线,,所围成封闭图形的面积为2,则()A.2 B.e C.2e D.9.【xx黑龙江哈尔滨】下列值等于的定积分是()10.【xx 辽宁】如图,阴影部分的面积是 ( )A .2 3B .2- 3C .323D .353【答案】C .【解析】直线y=2x 与抛物线y=3﹣x 2,解得交点为(﹣3,﹣6)和(1,2),抛物线y=3﹣x 2与x 轴负半轴交点(﹣,0).设阴影部分面积为s ,则==,所以阴影部分的面积为 ,故答案选:C .【思路点拨】求阴影部分的面积,先要对阴影部分进行分割到三个象限内,分别对三部分进行积分求和即可.11.【xx 山西山大附中高三5月月考理科】 ( ) A . B . C .D .12.【xx 湖南雅礼中学模拟】曲线和曲线围成一个叶形图(如图所示阴影部分),其面积是 ( )A .1B .12C .22 D .1313.【xx 江西师大附中高三三模理科】已知等差数列的前n 项和为,又知,且,,则为 ( ) A .33B .46C .48D .5014.【xx 南京调研】给出如下命题:①⎠⎛b a d x =⎠⎛ab d t =b -a (a ,b 为常数且a <b );②;③曲线y =sin x ,x ∈[0,2π]与直线y =0围成的两个封闭区域的面积之和为2. 其中正确命题的个数为( )A .0B .1C .2D .3 【答案】B【解析】由定积分的性质知①错;对于②,两个积分都表示14个单位圆的面积,15.【xx 浙江五校联考】已知函数y =x 2与y =kx (k >0)的图象所围成的阴影部分的面积为92,则( )A .2B .1C .3D .416.【xx 广州综合测试】函数F (x )=⎠⎛0x t (t -4)d t 在[-1,5]上 ( )A .有最大值0,无最小值B .有最大值0,最小值-323C .有最大值-323,无最大值 D .既无最大值也无最小值【答案】B .17.【xx 福建莆田高三质检】如图,由函数f (x )=e x -e 的图象,直线x =2及x 轴所围成的阴影部分面积等于 ( ) A .e 2-2e -1 B .e 2-2e C .e 2-e2D .e 2-2e +1 【答案】B【解析】面积S =⎠⎛12f (x )d x =⎠⎛12(e x -e)d x =(e x -e x )|21=(e 2-2e)-(e 1-e)=e 2-2e .18.【xx 山东淄博模拟】已知等差数列{a n }的前n 项和为S n ,且S 10=⎠⎛03(1+2x )d x ,S 20=17,则S 30为( )A .15B .20C .25D .3019.【xx 湖北孝感高中高三5月摸底理科】若在R 上可导,,则____________.20.【xx 中山一模】设f (x )=⎩⎪⎨⎪⎧lg x ,x >0,x +⎠⎛0a 3t 2d t ,x ≤0,若f [f (1)]=1,则a =________.【答案】1.【解析】∵f (1)=lg 1=0,∴f [f (1)]=f (0)=0+⎠⎛0a 3t 2d t =t 3| a 0=a 3,∴a 3=1得a =1.21.【xx 上海模拟】已知函数y =f (x )的图像是折线段ABC ,其中A (0,0)、B (12,5)、C (1,0).函数y =xf (x )(0≤x ≤1)的图像与x 轴围成的图形的面积为________.22.【xx 湖北孝感高中高三5月摸底理科】如图, 甲、乙、丙中的四边形ABCD 都是边长为2的正方形, 其中甲、乙两图中阴影部分分别以AB 的中点、B 点为顶点且开口向上的抛物线(皆过D 点)下方的部分, 丙图中阴影部分是以C 为圆心、半径为2的圆弧下方的部分. 三只麻雀分别落在这三块正方形木板上休息, 且它们落在所在木板的任何地方是等可能的, 若麻雀落在甲、乙、丙三块木板上阴影部分的概率分别是, 则的大小关系是 .23.【海淀区高三年纪第二学期其中练习理】函数的图象与轴所围成的封闭图形的面积等于_______.24.【河北省邯郸市xx届高三上学期第二次模拟考试】= _______.25.【xx年辽宁省大连市高三双基考试】_______.26.【xx江西鹰潭】设,若曲线与直线,所围成封闭图形的面积为2,则.【知识点】定积分在求面积中的应用.【答案解析】解析:解:如图,27.【xx吉林一中】设,则二项式展开式中的项的系数为【考点预测】1.【热点1预测】若则等于()A.B.C.D.【答案】D.【解析】.2.【热点2预测】曲线与直线y=围成的封闭图形的面积为()A.B.C.D.3.【热点3预测】一辆汽车在笔直的公路上变速行驶,设汽车在时刻t的速度为v(t)=-t2+4,(t)(t的单位:h,v的单位:km/h)则这辆车行驶的最大位移是______km。
高考数学第1轮总复习 第17讲 定积分及简单应用课件 理 (广东专版)
![高考数学第1轮总复习 第17讲 定积分及简单应用课件 理 (广东专版)](https://img.taocdn.com/s3/m/dca51b2c964bcf84b8d57b18.png)
=[(13x3-21x2)-(t2-t)x]|t0+2[(t2-t)x-(13x3-21x2)]|21t =31t3-12t2-t3+t2+2[(t2-t)12-(31×18-21×14)-(t2-t)t+13 t3-21t2] =-2t3+52t2-t+61. 故 g′(t)=-6t2+5t-1=-(3t-1)(2t-1). 令 g′(t)=0,解得 t=31或 t=12(舍去).
是( )
A.2
B.3
5 C.2
D.4
(2)作变速直线运动的质点,其速度(单位:m/s)与时间(单
位:s)的关系式为 v(t)=t2-4t+3,则该质点在时间段[0,4]上
的位移是
4 3m
,运动的路程是
4m
.
【解析】 (1)由曲线 y=cosx(0≤x≤32π)与坐标轴围成的 图形的面积
S=∫32π0|cosx|dx =3∫π20cosxdx=3sinxπ20=3.
和式i x ① ____________________________ .
当n 时,上述和无限接近某个常数,这个常数叫做
函数f
x 在区间[a,b]上的定积分,记作:b a
f
x dx,
即
b a
f
x dx
lim
n
n i 1
ba n
f
i .a与b分别叫做积分下限
0
0
1
(3)设 f(x)=x22x
x≥0 x<0
,则1-1f(x)dx=
2020年高考数学考点突破—函数与导数、定积分7:对数函数
![2020年高考数学考点突破—函数与导数、定积分7:对数函数](https://img.taocdn.com/s3/m/0122c71458fafab069dc02b3.png)
2020年高考数学考点突破函数与导数、定积分(7)第7讲对数函数【考点梳理】1.对数的概念如果a x=N(a>0且a≠1),那么x叫做以a为底N的对数,记作x=log a N,其中a叫做对数的底数,N叫做真数.2.对数的性质、换底公式与运算性质(1)对数的性质:①a log a N=N;②log a a b=b(a>0,且a≠1).(2)换底公式:log a b=log c blog c a(a,c均大于0且不等于1,b>0).(3)对数的运算性质:如果a>0,且a≠1,M>0,N>0,那么:①log a(M·N)=log a M+log a N;②log a MN=log a M-log a N,③log a Mn=n logaM(n∈R).3.对数函数的定义、图象与性质定义域:(0,+∞)4.指数函数y =a x (a >0且a ≠1)与对数函数y =log a x (a >0且a ≠1)互为反函数,它们的图象关于直线y =x 对称. 【考点突破】考点一、对数的运算【例1】(1)设2a =5b =m ,且1a +1b =2,则m 等于( )A.10B .10C .20D .100(2)计算:⎝ ⎛⎭⎪⎫lg 14-lg 25÷100-12=________. [答案] (1)A (2)-20[解析] (1)∵2a =5b =m ,∴a =log 2m ,b =log 5m ,∴1a +1b =1log 2m +1log 5m =log m 2+log m 5=log m 10=2, ∴m =10.(2)原式=(lg 2-2-lg 52)×10012=⎝ ⎛⎭⎪⎫lg 122·52×10=(lg 10-2)×10=-2×10=-20.【类题通法】1.在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算法则化简合并.2.先将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、商、幂再运算.3.a b =N ⇔b =log a N (a >0,且a ≠1)是解决有关指数、对数问题的有效方法,在运算中应注意互化.【对点训练】1.已知函数f (x )=⎩⎨⎧2x ,x ≥4,f (x +1),x <4,则f (2+log 23)的值为( ) A .24B .16C .12D .8[答案] A [解析] ∵3<2+log 23<4,∴f (2+log 23)=f (3+log 23)=23+log 23=8×3=24,故选A.2.计算:log 222=________,2log 23+log 43=________.[答案] -12 3 3[解析] log 222=log 22-log 22=12-1=-12;2log 23+log 43=2log 23·2log 43=3×2log 43=3×2log 23=3 3.考点二、对数函数的图象及应用【例2】(1)若函数y =a |x |(a >0,且a ≠1)的值域为{y |y ≥1},则函数y =log a |x |的图象大致是( )A B C D(2)已知函数f (x )=⎩⎨⎧log 2x ,x >0,3x ,x ≤0,且关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是________.[答案] (1)B (2)(1,+∞)[解析] (1)若函数y =a |x |(a >0,且a ≠1)的值域为{y |y ≥1},则a >1,故函数y =log a |x |的大致图象如图所示.故选B.(2)如图,在同一坐标系中分别作出y =f (x )与y =-x +a 的图象,其中a 表示直线在y 轴上截距,由图可知,当a >1时,直线y =-x +a 与y =log 2x 只有一个交点.【类题通法】1.在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.2.一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.【对点训练】1.如图,点A ,B 在函数y =log 2x +2的图象上,点C 在函数y =log 2x 的图象上,若△ABC 为等边三角形,且直线BC ∥y 轴,设点A 的坐标为(m ,n ),则m =( )A .2B .3 C. 2 D. 3 [答案] D[解析] 由题意知等边△ABC 的边长为2,则由点A 的坐标(m ,n )可得点B 的坐标为(m +3,n +1).又A ,B 两点均在函数y =log 2x +2的图象上,故有⎩⎨⎧log 2m +2=n ,log 2(m +3)+2=n +1,解得m =3,故选D. 2.若函数y =log a x (a >0,且a ≠1)的图象如图所示,则下列函数图象正确的是( )A B C D[答案] B[解析] 由题图可知y =log a x 的图象过点(3,1),∴log a 3=1,即a =3.A 项,y =3-x =⎝ ⎛⎭⎪⎫13x 在R 上为减函数,错误; B 项,y =x 3符合;C 项,y =(-x )3=-x 3在R 上为减函数,错误;D 项,y =log 3(-x )在(-∞,0)上为减函数,错误.考点三、对数函数的性质及应用【例3】若a >b >0,0<c <1,则( )A .log a c <log b cB .log c a <log c bC .a c <b cD .c a >c b[答案] B[解析] ∵0<c <1,∴当a >b >1时,log a c >log b c ,A 项错误;∵0<c <1,∴y =log c x 在(0,+∞)上单调递减,又a >b >0,∴log c a <log c b ,B 项正确;∵0<c <1,∴函数y =x c 在(0,+∞)上单调递增,又∵a >b >0,∴a c >b c ,C 项错误;∵0<c <1,∴y =c x 在(0,+∞)上单调递减,又∵a >b >0,∴c a <c b ,D 项错误.【例4】已知a ,b >0且a ≠1,b ≠1,若log a b >1,则( )A .(a -1)(b -1)<0B .(a -1)(a -b )>0C .(b -1)(b -a )<0D .(b -1)(b -a )>0[答案] D[解析] 法一:log a b >1=log a a ,当a >1时,b >a >1; 当0<a <1时,0<b <a <1.只有D 正确.法二:取a =2,b =3,排除A ,B ,C ,故选D.【例5】已知函数f (x )=log a (3-ax ),是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.[解析] 假设存在满足条件的实数a .∵a >0,且a ≠1,∴u =3-ax 在[1,2]上是关于x 的减函数.又f (x )=log a (3-ax )在[1,2]上是关于x 的减函数,∴函数y =log a u 是关于u 的增函数,∴a >1,x ∈[1,2]时,u 最小值为3-2a ,f (x )最大值为f (1)=log a (3-a ),∴⎩⎨⎧3-2a >0,log a(3-a )=1, 即⎩⎪⎨⎪⎧ a <32,a =32,故不存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1.【类题通法】利用对数函数的性质研究对数型函数性质,要注意以下四点:一是定义域;二是底数与1的大小关系;三是如果需将函数解析式变形,一定确保其等价性;四是复合函数的构成,即它是由哪些基本初等函数复合而成的.【对点训练】1.已知a =log 23+log 23,b =log 29-log 23,c =log 32,则a ,b ,c 的大小关系是( )A .a =b <cB .a =b >cC .a <b <cD .a >b >c [答案] B[解析] 因为a =log 23+log 23=log 233=32log 23>1,b =log 29-log 23=log 233=a ,c =log 32<log 33=1,所以a =b >c .2.若log a 34<1(a >0,且a ≠1),则实数a 的取值范围是( ) A .⎝ ⎛⎭⎪⎫0,34 B .(1,+∞) C .⎝ ⎛⎭⎪⎫0,34∪(1,+∞) D .⎝ ⎛⎭⎪⎫34,1 [答案] C[解析] 当0<a <1时,log a 34<log a a =1,∴0<a <34;当a >1时,log a 34<log a a =1,∴a >1.即实数a 的取值范围是⎝ ⎛⎭⎪⎫0,34∪(1,+∞). 3.已知y =log a (2-ax )在区间[0,1]上是减函数,则a 的取值范围是( )A .(0,1)B .(0,2)C .(1,2)D .[2,+∞) [答案] C[解析] 因为y =log a (2-ax )在[0,1]上单调递减,u =2-ax (a >0)在[0,1]上是减函数,所以y =log a u 是增函数,所以a >1.又2-a >0,所以1<a <2.。
2020年高考数学(理)总复习:导数的简单应用与定积分(解析版)
![2020年高考数学(理)总复习:导数的简单应用与定积分(解析版)](https://img.taocdn.com/s3/m/267e6d53b4daa58da0114adc.png)
2020年高考数学(理)总复习:导数的简单应用与定积分题型一 导数的几何意义及导数的运算 【题型要点解析】(1)曲线y =f (x )在点x =x 0处导数f ′(x 0)的几何意义是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,即k =f ′(x 0),由此当f ′(x 0)存在时,曲线y =f (x )在点P (x 0,f (x 0))处的切线方程为y -f (x 0)=f ′(x 0)(x -x 0).(2)过P 点的切线方程的切点坐标的求解步骤:①设出切点坐标;①表示出切线方程;①已知点P 在切线上,代入求得切点坐标的横坐标,从而求得切点坐标.(3)①分式函数的求导,要先观察函数的结构特征,可化为整式函数或较为简单的分式函数;①对数函数的求导,可先化为和、差的形式;①三角函数的求导,先利用三角函数的公式转化为和或差的形式;①复合函数的求导过程就是对复合函数由外层逐层向里求导.所谓最里层是指此函数已经可以直接引用基本初等函数导数公式进行求导.例1.函数f (x )=14 ln x +x 2-bx +a (b >0,a ①R )的图象在点(b ,f (b ))处的切线的倾斜角为α,则倾斜角α 的取值范围是( )A.⎪⎭⎫⎝⎛2,4ππ B.⎪⎭⎫⎢⎣⎡2,4ππ C.⎪⎭⎫⎢⎣⎡ππ,43 D.⎪⎭⎫⎝⎛ππ,43 【解析】】 依题意得f ′(x )=14x +2x -b ,f ′(b )=14b+b ≥214b ·b =1(b >0),当且仅当14b =b >0,即b =12时取等号,因此有tan α≥1,即π4≤α<π2,即倾斜角α 的取值范围是⎪⎭⎫⎢⎣⎡2,4ππ,选B.【答案】 B例2.若实数a ,b ,c ,d 满足(b +a 2-3ln a )2+(c -d +2)2=0,则(a -c )2+(b -d )2的最小值为( ) A. 2 B .2 C .2 2D .8【解析】 因为实数a ,b ,c ,d 满足(b +a 2-3ln a )2+(c -d +2)2=0,所以b +a 2-3ln a =0,设b =y ,a =x ,则有y =3ln x -x 2,由c -d +2=0,设d =y ,c =x ,则有y =x +2,所以(a -c )2+(b -d )2就是曲线y =3lnx -x 2与直线y =x +2之间的最小距离的平方值,对曲线y =3ln x -x 2求导:y ′=3x -2x 与平行y =x +2平行的切线斜率k =1=3x -2x ,解得x =1或x =-32(舍去),把x =1代入y =3ln x -x 2,解得y =-1,即切点(1,-1),则切点到直线y =x +2的距离为L =|1+1+2|2=22,所以L 2=8,即(a -c )2+(b -d )2的最小值为8,故选D.【答案】 D题组训练一 导数的几何意义及导数的运算1.若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln (x +1)的切线,则b =( ) A .1 B.12C .1-ln 2D .1-2ln 2【解析】 对于函数y =ln x +2,切点为(r ,s ),y ′=1x ,k =1r ,对于函数y =ln (x +1),切点为(p ,q ),y ′=1x +1,k =1p +1,1r =1p +1①r =p +1, 斜率k =1r =1p +1=q -s p -r =(ln r +2)-ln (p +1)r -p ,解得:⎩⎪⎨⎪⎧k =2r =12,p =-12,s =ln r +2=ln 12+2=2-ln 2,s =q +2代入y =2x +b,2-ln 2=2×(12)+b ,得:b =1-ln 2.【答案】 C2.在直角坐标系xOy 中,设P 是双曲线C :xy =1(x >0)上任意一点,l 是曲线C 在点P 处的切线,且l 交坐标轴于A 、B 两点,则以下结论正确的是( )A .①OAB 的面积为定值2 B .①OAB 的面积有最小值为3C .①OAB 的面积有最大值为4D .①OAB 的面积的取值范围是[3,4]【解析】 设P 是双曲线xy =1上任意一点,其坐标为P (x 0,y 0),经过P 点的切线方程为y =kx +b .双曲线化为y =1x 形式,y 对x 的导数为y ′=-1x2,在P 点处导数为-1x 20,切线方程为(y -y 0)=-1x 20(x -x 0),令x =0,y =y 0+1x 0=x 0·y 0+1x 0=2x 0=2y 0,(其中x 0·y 0=1),则切线在y 轴截距为2y 0,令y =0,x =2x 0,则切线在x 轴截距为2x 0,设切线与两坐标轴相交于A 、B 两点构成的三角形为OAB .S ①OAB =12|OA |·|OB |=12|2x 0|·|2y 0|=2|x 0·y 0|=2,故切线与两坐标轴构成的三角形面积定值为2.【答案】 A题型二 利用导数研究函数的单调性 【题型要点解析】求解或讨论函数单调性有关问题的解题策略讨论函数的单调性其实就是讨论不等式的解集的情况.大多数情况下,这类问题可以归结为一个含有参数的一元二次不等式的解集的讨论:(1)在能够通过因式分解求出不等式对应方程的根时依据根的大小进行分类讨论. (2)在不能通过因式分解求出根的情况时根据不等式对应方程的判别式进行分类讨论. 【提醒】 讨论函数的单调性是在函数的定义域内进行的,千万不要忽视了定义域的限制. 例1.已知函数f (x )=x 2+a ln x .(1)当a =-2时,求函数f (x )的单调区间;(2)若g (x )=f (x )+2x ,在[1,+∞)上是单调函数,求实数a 的取值范围.【解】 (1)f ′(x )=2x -2x,令f ′(x )>0,得x >1;令f ′(x )<0,得0<x <1,所以f (x )的单调递增区间是(1,+∞), 单调递减区间是(0,1).(2)由题意g (x )=x 2+a ln x +2x ,g ′(x )=2x +a x -2x2,若函数g (x )为[1,+∞)上的单调增函数,则g ′(x )≥0在[1,+∞)上恒成立, 即a ≥2x -2x 2在[1,+∞)上恒成立,设φ(x )=2x -2x 2.①φ(x )在[1,+∞)上单调递减,①φ(x )max =φ(1)=0, ①a ≥0;若函数g (x )为[1,+∞)上的单调减函数,则g ′(x )≤0在[1,+∞)上恒成立,不可能. ①实数a 的取值范围为[0,+∞).题组训练二 利用导数研究函数的单调性 设函数f (x )=3x 2+ax e x(a ①R ).(1)若f (x )在x =0处取得极值,确定a 的值,并求此时曲线y =f (x )在点(1,f (1))处的切线方程; (2)若f (x )在[3,+∞)上为减函数,求a 的取值范围. 【解析】 (1)对f (x )求导得f ′(x )=(6x +a )e x -(3x 2+ax )e x(e x )2=-3x 2+(6-a )x +a e x因为f (x )在x =0处取得极值,所以f ′(0)=0,即a =0.当a =0时,f (x )=3x 2e x ,f ′(x )=-3x 2+6x e x,故f (1)=3e ,f ′(1)=3e ,从而f (x )在点(1,f (1))处的切线方程为y -3e =3e(x -1),化简得3x -e y =0. (2)由(1)知f ′(x )=-3x 2+(6-a )x +ae x .令g (x )=-3x 2+(6-a )x +a ,由g (x )=0,解得x 1=6-a -a 2+366,x 2=6-a +a 2+366当x <x 1时,g (x )<0,即f ′(x )<0,故f (x )为减函数; 当x 1<x <x 2时,g (x )>0,即f ′(x )>0, 故f (x )为增函数;当x >x 2时,g (x )<0,即f ′(x )<0,故f (x )为减函数.由f (x )在[3,+∞)上为减函数,知x 2=6-a +a 2+366≤3,解得a ≥-92,故a 的取值范围为⎪⎭⎫⎢⎣⎡+∞-,29题型三 利用导数研究函数的极值(最值)问题 【题型要点解析】(1)利用导数研究函数的极值的一般思想:①求定义域;①求导数f ′(x );①解方程f ′(x )=0,研究极值情况;①确定f ′(x 0)=0时x 0左右的符号,定极值.(2)求函数y =f (x )在[a ,b ]上最大值与最小值的步骤:①求函数y =f (x )在(a ,b )内的极值;①将函数y =f (x )的极值与端点处的函数值f (a ),f (b )比较,其中最大的一个是最大值,最小的一个是最小值.(3)当极值点和给定的自变量范围关系不明确时,需要分类求解,在求最值时,若极值点的函数值与区间端点的函数值大小不确定时需分类求解.例1.设函数G (x )=x ln x +(1-x )·ln (1-x ). (1)求G (x )的最小值;(2)记G (x )的最小值为c ,已知函数f (x )=2a ·e x +c +a +1x -2(a +1)(a >0),若对于任意的x ①(0,+∞),恒有f (x )≥0成立,求实数a 的取值范围.【解】 (1)由已知得0<x <1,G ′(x )=ln x -ln (1-x )=lnx 1-x.令G ′(x )<0,得0<x <12;令G ′(x )>0,得12<x <1,所以G (x )的单调减区间为⎪⎭⎫ ⎝⎛21,0,单调增区间为⎪⎭⎫⎝⎛1,21.从而G (x )min =G ⎪⎭⎫⎝⎛21=ln 12=-ln 2.(2)由(1)中c =-ln 2,得f (x )=a ·e x+a +1x -2(a +1).所以f ′(x )=ax 2·e x -(a +1)x 2.令g (x )=ax 2·e x -(a +1),则g ′(x )=ax (2+x )e x >0,所以g (x )在(0,+∞)上单调递增, 因为g (0)=-(a +1),且当x →+∞时,g (x )>0,所以存在x 0①(0,+∞),使g (x 0)=0,且f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增.因为g (x 0)=ax 20·e x 0-(a +1)=0,所以ax 20·e x 0=a +1,即a ·e x 0=a +1x 20,因为对于任意的x ①(0,+∞),恒有f (x )≥0成立,所以f (x )min =f (x 0)=a ·e x 0+a +1x 0-2(a +1)≥0,所以a +1x 20+a +1x 0-2(a +1)≥0,即1x 20+1x 0-2≥0,即2x 20-x 0-1≤0,所以-12≤x 0≤1.因为ax 20·e x 0=a +1,所以x 20·e x 0=a +1a >1.又x 0>0,所以0<x 0≤1,从而x 20·e x 0≤e ,所以1<a +1a ≤e ,故a ≥1e -1.题组训练三 利用导数研究函数的极值(最值)问题已知函数f (x )=ax 2+bx +ce x (a >0)的导函数y =f ′(x )的两个零点为-3和0.(1)求f (x )的单调区间;(2)若f (x )的极小值为-e 3,求f (x )在区间[-5,+∞)上的最大值. 【解】 (1)f ′(x )=(2ax +b )e x -(ax 2+bx +c )e x (e x )2=-ax 2+(2a -b )x +b -ce x .令g (x )=-ax 2+(2a -b )x +b -c ,因为e x >0,所以y =f ′(x )的零点就是g (x )=-ax 2+(2a -b )x +b -c 的零点且f ′(x )与g (x )符号相同. 又因为a >0,所以当-3<x <0时,g (x )>0,即f ′(x )>0,当x <-3或x >0时,g (x )<0,即f ′(x )<0, 所以f (x )的单调递增区间是(-3,0), 单调递减区间是(-∞,-3),(0,+∞). (2)由(1)知,x =-3是f (x )的极小值点,所以有⎩⎪⎨⎪⎧9a -3b +c e -3=-e 3,g (0)=b -c =0,g (-3)=-9a -3(2a -b )+b -c =0,解得a =1,b =5,c =5,所以f (x )=x 2+5x +5e x .因为f (x )的单调递增区间是(-3,0), 单调递减区间是(-∞,-3),(0,+∞), 所以f (0)=5为函数f (x )的极大值,故f (x )在区间[-5,+∞)上的最大值取f (-5)和f (0)中的最大者,而f (-5)=5e -5=5e 5>5=f (0),所以函数f (x )在区间[-5,+∞)上的最大值是5e 5.题型四 定积分 【题型要点解析】(1)求简单定积分最根本的方法就是根据微积分定理找到被积函数的原函数,其一般步骤:①把被积函数变为幂函数、正弦函数、余弦函数、指数函数与常数的和或差;①利用定积分的性质把所求定积分化为若干个定积分的和或差;①分别用求导公式找到F (x ),使得F ′(x )=f (x );①利用牛顿——莱布尼兹公式求出各个定积分的值;①计算所求定积分的值.有些特殊函数可根据其几何意义,求其围成的几何图形的面积,即其对应的定积分.(2)求由函数图象或解析几何中曲线围成的曲边图形的面积,一般转化为定积分的计算与应用,但一定找准积分上限、积分下限及被积函数,且当图形的边界不同时,要讨论解决,其一般步骤:①画出图形,确定图形范围;①解方程组求出图形交点范围,确定积分上、下限;①确定被积函数,注意分清函数图象的上、下位置;①计算下积分,求出平面图形的面积.例1.设f (x )=⎩⎨⎧1-x 2,x ①[-1,1)x 2-1,x ①[1,2],则⎰-21f (x )d x 的值为( )A.π2+43 B.π2+3 C.π4+43D.π4+3【解析】⎰-21f (x )d x =⎰-211-x 2d x +⎰-21(x 2-1)d x =12π×12+⎪⎭⎫ ⎝⎛-x x 331⎪⎪⎪21=π2+43,故选A.【答案】 A例2.⎰1⎪⎭⎫ ⎝⎛+-212x x d x =________.【解析】⎰1⎪⎭⎫ ⎝⎛+-212x x d x =⎰101-x 2d x +⎰112x d x ,⎰112x d x =14,⎰11-x 2d x 表示四分之一单位圆的面积,为π4,所以结果是π+14.【答案】π+14例3.由曲线y =x 2+1,直线y =-x +3,x 轴正半轴与y 轴正半轴所围成图形的面积为( ) A .3 B.103 C.73D.83【解析】 由题可知题中所围成的图形如图中阴影部分所示,由⎩⎪⎨⎪⎧ y =x 2+1y =-x +3,解得⎩⎪⎨⎪⎧ x =-2y =5(舍去)或⎩⎪⎨⎪⎧x =1,y =2,即A (1,2),结合图形可知,所求的面积为⎰1(x 2+1)d x +12×22=⎪⎭⎫⎝⎛+x x 331|10+2=103,选B. 【答案】 B 题组训练四 定积分1.已知1sin φ+1cos φ=22,若φ①⎪⎭⎫⎝⎛2,0π,则⎰-ϕtan 1(x 2-2x )d x =( )A.13 B .-13C.23D .-23【解析】 依题意,1sin φ+1cos φ=22①sin φ+cos φ=22sin φcos φ①2sin(φ+π4)=2sin2φ,因为φ①(0,π2),所以φ=π4,故⎰-ϕtan 1(x 2-2x )d x =⎰-ϕtan 1-1(x 2-2x )d x =(x 33-x 2)|1-1=23.选C.【答案】 C 2.函数y =⎰t(sin x +cos x sin x )d x 的最大值是________.【解析】 y =⎰t(sin x +cos x sin x )d x=⎰t⎪⎭⎫⎝⎛+x x 2sin 21sin d x =⎪⎭⎫ ⎝⎛--x x 2cos 41cos ⎪⎪⎪t 0=-cos t -14cos 2t +54=-cos t -14(2cos 2 t -1)+54=-12(cos t +1)2+2,当cos t =-1时,y max =2. 【答案】 2 【专题训练】 一、选择题1.已知变量a ,b 满足b =-12a 2+3ln a (a >0),若点Q (m ,n )在直线y =2x +12上,则(a -m )2+(b -n )2的最小值为( )A .9 B.353C.95D .3【解析】令y =3ln x -12x 2及y =2x +12,则(a -m )2+(b -n )2的最小值就是曲线y =3ln x -12x 2上一点与直线y =2x +12的距离的最小值,对函数y =3ln x -12x 2求导得:y ′=3x -x ,与直线y =2x +12平行的直线斜率为2,令2=3x -x 得x =1或x =-3(舍),则x =1,得到点(1,-12)到直线y =2x +12的距离为355,则(a -m )2+(b -n )2的最小值为(355)=95.【答案】C2.设a ①R ,若函数y =e ax +3x ,x ①R 有大于零的极值点,则( ) A .a >-3 B .a <-3 C .a >-13D .a <-13【解析】 y ′=a e ax +3=0在(0,+∞)上有解,即a e ax =-3,①e ax >0,①a <0.又当a <0时,0<e ax <1,要使a e ax =-3,则a <-3,故选B.【答案】 B3.已知函数f (x )=x 3-tx 2+3x ,若对于任意的a ①[1,2],b ①(2,3],函数f (x )在区间[a ,b ]上单调递减,则实数t 的取值范围是( )A .(-∞,3]B .(-∞,5]C .[3,+∞)D .[5,+∞)【解析】 ①f (x )=x 3-tx 2+3x ,①f ′(x )=3x 2-2tx +3,由于函数f (x )在[a ,b ]上单调递减,则有f ′(x )≤0在[a ,b ]上恒成立,即不等式3x 2-2tx +3≤0在[a ,b ]上恒成立,即有t ≥32⎪⎭⎫ ⎝⎛+x x 1在[a ,b ]上恒成立,而函数y =32⎪⎭⎫ ⎝⎛+x x 1在[1,3]上单调递增,由于a ①[1,2],b ①(2,3],当b =3时,函数y =32⎪⎭⎫ ⎝⎛+x x 1取得最大值,即y max =32⎪⎭⎫ ⎝⎛+313=5,所以t ≥5,故选D.【答案】 D4.已知函数f (x )=e x -ln(x +a )(a ①R )有唯一的零点x 0,(e =2.718…)则( ) A .-1<x 0<-12B .-12<x 0<-14C .-14<x 0<0D .0<x 0<12【解析】 函数f (x )=e x -ln(x +a )(a ①R ),则x >-a ,可得f ′(x )=e x -1x +a ,f ″(x )=e x +1(x +a )2恒大于0,f ′(x )是增函数,令f ′(x 0)=0,则e x 0=1x 0+a,有唯一解时,a =1e x 0-x 0,代入f (x )可得:f (x 0)=e x 0-ln(x 0+a )=e x 0-ln(1e x 0)=e x 0+x 0,由于f (x 0)是增函数,f (-1)≈-0.63,f (-12)≈0.11,所以f (x 0)=0时,-1<x 0<-12.故选A.【答案】 A5.定义在(0,+∞)上的函数f (x )满足f (x )>2(x +x )f ′(x ),其中f ′(x )为f (x )的导函数,则下列不等式中,一定成立的是( )A .f (1)>f (2)2>f (3)3B.f (1)2>f (4)3>f (9)4 C .f (1)<f (2)2<f (3)3D.f (1)2<f (4)3<f (9)4【解析】 ①f (x )>2(x +x )f ′(x ), ①f (x )>2x (x +1)f ′(x ), ①f (x )12x>(x +1)f ′(x ).①f ′(x )(x +1)-f (x )12x <0,①(f (x )x +1)′<0,设g (x )=f (x )x +1,则函数g (x )在(0,+∞)上递减, 故g (1)>g (4)>g (9),①f (1)2>f (4)3>f (9)4.故选B.【答案】 B6.已知函数f (x )在R 上可导,其导函数为f ′(x ),若f ′(x )满足f ′(x )-f (x )x -1>0,y =f (x )e x 关于直线x =1对称,则不等式f (x 2-x )e x 2-x<f (0)的解集是( )A .(-1,2)B .(1,2)C .(-1,0)①(1,2)D .(-∞,0)①(1,+∞)【解析】 令g (x )=f (x )e x ,则g ′(x )=f ′(x )-f (x )e x .①f ′(x )-f (x )x -1>0,当x >1时,f ′(x )-f (x )>0,则g ′(x )>0,①g (x )在(1,+∞)上单调递增; 当x <1时,f ′(x )-f (x )<0,则g ′(x )<0, ①g (x )在(-∞,1)上单调递减. ①g (0)=f (0),①不等式f (x 2-x )e x 2-x <f (0)即为不等式g (x 2-x )<g (0).①y =f (x )e x 关于直线x =1对称,①|x 2-x |<2,①0<x 2-x <2,解得-1<x <0或1<x <2,故选C. 【答案】 C7.已知偶函数f (x )(x ≠0)的导函数为f ′(x ),且满足f (1)=0,当x >0时,xf ′(x )<2f (x ),则使得f (x )>0成立的x 的取值范围是( )A .(-∞,-1)①(0,1)B .(-∞,-1)①(1,+∞)C .(-1,0)①(1,+∞)D .(-1,0)①(0,1)【解析】 根据题意,设函数g (x )=f (x )x 2(x ≠0),当x >0时,g ′(x )=f ′(x )·x -2·f (x )x 3<0,说明函数g (x )在(0,+∞)上单调递减,又f (x )为偶函数,所以g (x )为偶函数,又f (1)=0,所以g (1)=0,故g (x )在(-1,0)①(0,1)上的函数值大于零,即f (x )在(-1,0)①(0,1)上的函数值大于零.【答案】D8.定义在⎪⎭⎫⎝⎛2,0π上的函数f (x ),f ′(x )是它的导函数,且恒有f (x )<f ′(x )·tan x 成立,则( ) A.3f ⎪⎭⎫⎝⎛4π>2f ⎪⎭⎫ ⎝⎛3π B .f (1)<2f ⎪⎭⎫⎝⎛6πsin 1C.2f ⎪⎭⎫⎝⎛6π>f ⎪⎭⎫ ⎝⎛4π D.3f ⎪⎭⎫⎝⎛6π<f ⎪⎭⎫⎝⎛3π 【解析】 构造函数F (x )=f (x )sin x.则F ′(x )=f ′(x )sin x -f (x )cos x sin 2x >0,x ①⎪⎭⎫⎝⎛2,0π, 从而有F (x )=f (x )sin x 在⎪⎭⎫ ⎝⎛2,0π上为增函数,所以有F ⎪⎭⎫ ⎝⎛6π<F ⎪⎭⎫ ⎝⎛3π,3sin36sin 6ππππ⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛f f ①3f ⎪⎭⎫ ⎝⎛6π<f ⎪⎭⎫⎝⎛3π,故选D.【答案】 D 二、填空题9.已知曲线f (x )=a cos x 与曲线g (x )=x 2+bx +1在交点(0,m )处有公切线,则实数a +b 的值为____________.【解析】 因为两个函数的交点为(0,m ),①m =a cos0,m =02+b ×0+1,①m =1,a =1,①f (x ),g (x )在(0,m )处有公切线,①f ′(0)=g ′(0),①-sin 0=2×0+b ,①b =0,①a +b =1.【答案】 110.已知函数f (x )是定义在R 上的奇函数,且当x ①(0,+∞)时,都有不等式f (x )+xf ′(x )>0成立,若a =40.2f (40.2),b =(log 43)f (log 43),c =⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛1614log 1614log f ,则a ,b ,c 的大小关系是________. 【解析】 根据题意,令g (x )=xf (x ),则a =g (40.2),b =g (log 43),c =g (log 4116)有g (-x )=(-x )f (-x )=(-x )[-f (x )]=xf (x ),则g (x )为偶函数,又由g ′(x )=(x )′f (x )+xf ′(x )=f (x )+xf ′(x ),又由当x ①(0,+∞)时,都有不等式f (x )+xf ′(x )>0成立,则当x ①(0,+∞)时,有g ′(x )>0,即g (x )在(0,+∞)上为增函数,分析可得|log 4116|>|40.2|>|log 43|,则有c >a >b ;故答案为:c >a >b .【答案】 c >a >b11.已知函数f (x )=x (ln x -ax )有两个极值点,则实数a 的取值范围是________.【解析】 令f ′(x )=ln x -ax +x ⎪⎭⎫⎝⎛-a x 1=ln x -2ax +1=0,得ln x =2ax -1.因为函数f (x )=x (ln x -ax )有两个极值点,所以f ′(x )=ln x -2ax +1有两个零点,等价于函数y =ln x 与y =2ax -1的图象有两个交点,在同一个坐标系中作出它们的图象,过点(0,-1)作y =ln x 的切线,设切点为(x 0,y 0),则切线的斜率k =1x 0,切线方程为y =1x 0x -1.切点在切线y =1x 0x -1上,则y 0=x 0x 0-1=0,又切点在曲线y =ln x 上,则ln x 0=0,①x 0=1,即切点为(1,0),切线方程为y =x -1.再由直线y =2ax -1与曲线y =ln x 有两个交点,知直线y =2ax -1位于两直线y =0和y =x -1之间,其斜率2a 满足0<2a <1,解得实数a 的取值范围是⎪⎭⎫ ⎝⎛21,0.【答案】 ⎪⎭⎫ ⎝⎛21,012.曲线y =2sin x (0≤x ≤π)与直线y =1围成的封闭图形的面积为________.【解析】 令2sin x =1,得sin x =12,当x ①[0,π]时,得x =π6或x =5π6,所以所求面积S =∫5π6(2sin x -1)d x=(-2cos x -x )π6⎪⎪⎪5π6π6=23-2π3. 【答案】 23-2π3三、解答题13.已知函数f (x )=a e 2x +(a -2)e x -x . (1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.【解析】 (1)f (x )的定义域为(-∞,+∞),f ′(x )=2a e 2x +(a -2)e x -1=(a e x -1)(2e x +1), (i)若a ≤0,则f ′(x )<0,所以f (x )在(-∞,+∞)单调递减. (ii)若a >0,则由f ′(x )=0得x =-ln a .当x ①(-∞,-ln a )时,f ′(x )<0;当x ①(-ln a ,+∞)时,f ′(x )>0,所以f (x )在(-∞,-ln a )单调递减,在(-ln a ,+∞)单调递增.(2)(i)若a ≤0,由(1)知,f (x )至多有一个零点.(ii)若a >0,由(1)知,当x =-ln a 时,f (x )取得最小值,最小值为f (-ln a )=1-1a +ln a .①当a =1时,由于f (-ln a )=0,故f (x )只有一个零点; ①当a ①(1,+∞)时,由于1-1a +ln a >0,即f (-ln a )>0,故f (x )没有零点;①当a ①(0,1)时,1-1a+ln a <0,即f (-ln a )<0.又f (-2)=a e -4+(a -2)e -2+2>-2e -2+2>0,故f (x )在(-∞,-ln a )有一个零点. 设正整数n 0满足n 0>ln (3a-1),则f (n 0)=e n 0(a e n 0+a -2)-n 0>e n 0-n 0>2r 0-n 0>0.由于ln (3a -1)>-ln a ,因此f (x )在(-ln a ,+∞)有一个零点.综上,a 的取值范围为(0,1).14.已知函数f (x )=e ax (其中e =2.71828…),g (x )=f (x )x .(1)若g (x )在[1,+∞)上是增函数,求实数a 的取值范围; (2)当a =12时,求函数g (x )在[m ,m +1](m >0)上的最小值.【解析】 (1)由题意得g (x )=f (x )x =eaxx在[1,+∞)上是增函数,故'⎪⎪⎭⎫ ⎝⎛x e ax =e ax (ax -1)x 2≥0在[1,+∞)上恒成立,即ax -1≥0在[1,+∞)恒成立,a ≥1x 在x ①[1,+∞)上恒成立,而1x ≤1,①a ≥1; (2)当a =12时,g (x )=e x 2x ,g ′(x )=e x 2(x2-1)x 2,当x >2时,g ′(x )>0,g (x )在[2,+∞)递增, 当x <2且x ≠0时,g ′(x )<0,即g (x )在(0,2),(-∞,0)递减,又m >0,①m +1>1,故当m ≥2时,g (x )在[m ,m +1]上递增,此时,g (x )min =g (m )=e m 2m ,当1<m <2时,g (x )在[m,2]递减,在[2,m +1]递增,此时,g (x )min =g (2)=e2,当0<m ≤1时,m +1≤2,g (x )在[m ,m +1]递减,此时,g (x )min =g (m +1)=e m +12m +1,综上,当0<m ≤1时,g (x )min =g (m +1)=e m +12m +1,当1<m <2时,g (x )min =g (2)=e2,m ≥2时,g (x )min =g (m )=e m 2m .。
导数与定积分(一):高考数学一轮复习基础必刷题
![导数与定积分(一):高考数学一轮复习基础必刷题](https://img.taocdn.com/s3/m/c45d24190812a21614791711cc7931b765ce7b31.png)
导数与定积分(一):高考数学一轮复习基础必刷题姓名:___________��班级:___________��学号:___________一、单选题1.已知991001101,,ln100100a b e c -===,则,,a b c 的大小关系为()A .a b c <<B .a c b <<C .c a b<<D .b a c<<2.曲线sin y x =,[0,2]x πÎ与x 轴所围成的面积是()A .0B .2C .4D .π3.已知某商品的进价为4元,通过多日的市场调查,该商品的市场销量y (件)与商品售价x (元)的关系为e x y -=,则当此商品的利润最大时,该商品的售价x (元)为()A .5B .6C .7D .84.21232x dx x -+=+⎰()A .22ln +B .32ln -C .62ln -D .64ln -5.数列{}n a 为等差数列,且2020202204a a x π+=⎰,则()2021201920212023a a a a ++=()A .1B .3C .6D .126.我国著名数学家华罗庚先生曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔离分家万事休.”在数学的学习和研究中,常用函数的图像来研究函数的性质,也常用函数的解析式来琢磨函数图像的特征,如函数2()af x x x=+(a R ∈)的图像不.可能..是()A .B .C .D .7.设函数()()211ln 2f x x a x a x =-++有两个零点,则实数a 的取值范围为()A .()1,0-B .1,02⎛⎫- ⎪⎝⎭C .()0,1D .10,2⎛⎫ ⎪⎝⎭8.已知21232m x dx =-⎰,则4()(2)m m x y x y ++-中33x y 的系数为()A .80-B .40-C .40D .80二、填空题9.211x dx x ⎛⎫+= ⎪⎝⎭⎰=________.10.若211(2)3ln 2mx dx x+=+⎰,则实数m 的值为____________.11.设R a ∈,若不等式ln xa x>在()1,x ∈+∞上恒成立,则a 的取值范围是______.三、解答题12.已知函数21(log )f x x x=-(1)求()f x 的表达式;(2)不等式2(2)()0t f t mf t +≥对于[1,2]t ∈恒成立,求实数m 的取值范围.13.求由曲线2y x=与直线3x y +=所围图形的面积.14.已知函数3()2f x x ax b =++在2x =-处取得极值.(1)求实数a 的值;(2)若函数()y f x =在[0,4]内有零点,求实数b 的取值范围.15.已知函数()ln f x ax x x =+的图像在e x =(e 为自然对数的底数)处取得极值.(1)求实数a 的值;(2)若不等式()(1)f x k x >+在[e,)+∞恒成立,求k 的取值范围.参考答案:1.C 【解析】【分析】利用两个重要的不等式1x e x ≥+,ln 1≤-x x 说明大小即可【详解】先用导数证明这两个重要的不等式①1x e x ≥+,当且仅当0x =时取“=”()1x y e x =-+'1x y e =-()',0,0x y ∈-∞<,函数递减,()'0,,0x y ∈+∞>函数递增故0x =时函数取得最小值为0故1x e x ≥+,当且仅当0x =时取“=”②ln 1≤-x x ,当且仅当1x =时取“=”()ln 1y x x =--'11y x=-()'0,1,0x y ∈>,函数递增,()'1,,0x y ∈+∞<函数递减,故1x =时函数取得最大值为0,故ln 1≤-x x ,当且仅当1x =时取“=”故991009911100100e->-+=1011011ln 1100100100c =<-=故选:C 2.C 【解析】根据积分的几何意义化为求20sin (sin )S xdx x dx πππ=+-⎰⎰可得结果.【详解】曲线sin y x =,[0,2]x πÎ与x 轴所围成的面积20sin (sin )S xdx x dx πππ=+-⎰⎰20cos cos x xπππ=-+(cos cos 0)cos 2cos πππ=--+-(11)1(1)=---+--4=.故选:C 【点睛】结论点睛:由上下两条连续曲线2()y f x =与1()y f x =及两条直线x a =与x b =()b a >所围成的平面图形的面积为[]21()()baS f x f x dx =-⎰.3.A 【解析】【分析】根据题意求出利润函数的表达式,结合导数的性质进行求解即可.【详解】根据题意可得利润函数()()4e xf x x -=-,()e x f x -'=()()4e 5e x x x x ----=-,当5x >时,0,()f f x '<单调递减,当05x <<时,0,()f f x '>单调递增,所以当5x =时,函数()f x 取最大值,故选:A .4.D 【解析】先求出不定积分,再代入上下限来求定积分.【详解】由题,2211231d 2d 22x x x x x --+⎛⎫=- ⎪++⎝⎭⎰⎰21[2ln(2)]x x -=-+(4ln 4)(2ln1)6ln 4=----=-.故选:D 【点睛】本题考查定积分的运算,属于基础题.【解析】【分析】根据定积分的几何意义求20202022a a +,再应用等差中项的性质求目标式的值.【详解】∵0x ⎰表示半径为2的四分之一圆面积(处于第一象限),∴20202022044a a x π+==⎰,又{}n a 为等差数列,∴20212020202224a a a =+=,则()220212019202120232021312a a a a a ++==.故选:D.6.A 【解析】【分析】根据函数的奇偶性,分类0a =,0a <和0a >三种情况分类讨论,结合选项,即可求解.【详解】由题意,函数2()()af x x a R x=+∈的定义域为(,0)(0,)x ∈-∞⋃+∞关于原点对称,且()()f x f x -=,所以函数()f x 为偶函数,图象关于原点对称,当0a =时,函数2()f x x =且(,0)(0,)x ∈-∞⋃+∞,图象如选项B 中的图象;当0a <时,若0x >时,函数2()a f x x x =+,可得322()0x af x x-'=>,函数()f x 在区间(0,)+∞单调递增,此时选项C 符合题意;当0a >时,若0x >时,可得2()a f x x x =+,则3222()2a x af x x x x -'=-=,令()0f x '=,解得x =当x ∈时,()0f x '<,()f x 单调递减;当)x ∈+∞时,()0f x '>,()f x 单调递增,所以选项D 符合题意.故选:A.【解析】【分析】求出导函数()()()1x x a f x x--'=,分a 的符号,以及a 与1的大小关系讨论函数的单调性,从而分析其零点情况,得出答案.【详解】由()()211ln 2f x x a x a x =-++()0x >,则()()()()11x x a a f x x a x x--'=-++=,①0a <时,()f x 在()0,1上递减,在()1,+∞上递增,0x →时,()f x →+∞,x →+∞时,()f x →+∞,所以,要使函数()f x 有2个零点,则()10f <,所以有102a -<<,②0a =时,()212f x x x =-在()0,∞+上只有1个零点,不符合题意,③01a <<时,()f x 在()0,a 上递增,在(),1a 上递减,在()1,+∞上递增,因为()21ln 02f a a a a a =--+<,所以()f x 在()0,∞+上不可能有2个零点,不符合题意,④1a =时,()f x 在()0,∞+上递增,不可能有2个零点,不符合题意,⑤1a >时,()f x 在()0,1上递增,在()1,a 上递减,在(),a +∞上递增,因为()1102f a =--<,所以()f x 在()0,∞+不可能有2个零点,综上,1,02a ⎛⎫∈- ⎪⎝⎭时,方程()f x 有两个零点.故选:B .8.C 【解析】【分析】先计算积分得到m =1,利用二项式展开式对33x y 的构成进行分类,求出33x y 的系数.【详解】32232222213321122322(32)2(32)2[(3)|]2[(3)|]1m x dx x dx x dx x x x x =-=-+-=-+-=⎰⎰⎰,则45()(2)()(2)m m x y x y x y x y ++-=+-,5(2)x y -的通项公式555155(2)()(1)2r r r r r r r r r T C x y C x y ---+=⋅⋅-=-⋅⋅⋅⋅,则两个通项公式为5615(1)2r r r r r r x T C x y --+⋅=-⋅⋅⋅⋅,当3r =时3335440C x y -⋅⋅=-,55115(1)2r r r r r r y T C x y --++⋅=-⋅⋅⋅⋅,当2r =时2335880C x y ⋅⋅=,则33x y ⋅的系数为408040-+=.故选:C.【点睛】方法点睛:在与二项式定理有关的问题中,主要表现为一项式和三项式转化为二项式来求解;若干个二项式积的某项系数问题转化为乘法分配律问题.9.3ln 2+2【解析】【分析】直接利用微积分基本原理求211x dx x ⎛⎫+ ⎪⎝⎭⎰的值.【详解】根据题意得211x dx x ⎛⎫+ ⎪⎝⎭⎰=221113ln |ln 22(0)ln 2222x x +=+-+=+.故答案为3ln2+2【点睛】本题主要考查微积分基本原理求定积分,意在考查学生对该知识的掌握水平和分析推理能力.10.1【解析】【分析】先求12mx x+的原函数()F x ,再令(2)(1)3ln 2F F -=+即可.【详解】易得12mx x+的原函数2()ln F x x mx =+,所以211(2)(2)(1)3ln 2mx dx F F x +=-=+⎰,即ln 243ln 2m m +-=+,故1m =故答案为1【点睛】本题主要考查定积分的基本运算,属于基础题型.11.1e>a 【解析】【分析】构造ln ()xf x x=,利用导数求其最大值,结合已知不等式恒成立,即可确定a 的范围.【详解】令ln ()xf x x=,则21ln ()x f x x -'=且()1,x ∈+∞,若()0f x '>得:1e x <<;若()0f x '<得:e x >;所以()f x 在(1,e)上递增,在(e,)+∞上递减,故1()(e)ef x f ≤=,要使ln xa x >在()1,x ∈+∞上恒成立,即1e>a .故答案为:1e>a .12.(1);(2).【解析】【详解】试题分析:(1)令,利用换元法进行求解;(2)分离参数,将不等式恒成立问题转化为求函数的最值问题.试题解析:(1)令,则,则,即;(2)22112(2)(222t t tt tm o -+-≥即1112(2)(2(20222t tt t t t tm +-+-≥1[1,2],202t tt ∈-> 2(21)t m ∴≥-+所以对于上恒成立;因为,即,所以考点:1.函数的解析式;2.不等式恒成立问题.13.32ln 22-.【解析】【分析】联立方程组,求得积分上限和下限,结合微积分基本定理,即可求解.【详解】由方程组32x y y x +=⎧⎪⎨=⎪⎩,解得1x =或2x =,由定积分的几何意义,可得面积为2221123=[(3)](32ln )|2ln 222x S x dx x x x --=--=-⎰.14.(1)6a =-;(2)1616b - .【解析】【分析】(1)由题意可得(2)1220f a -=+=',从而可求出a 的值;(2)先对函数求导,求得函数的单调区间,从而可由函数的变化情况可知,要函数()y f x =在[0,4]内有零点,只要函数在[0,4]内的最大值大于等于零,最小值小于等于零,然后解不等式组可得答案【详解】解:(1)23()32,()2f x x a f x x ax b =+=++'在2x =-处取得极值,∴(2)1220f a -=+=',∴6a =-.经验证6a =-时,()f x 在2x =-处取得极值.(2)由(1)知32()12,()3123(2)(2)f x x x b f x x x x =-+=-=-+',∴()y f x =极值点为2,2-.将x ,()f x ,()'f x 在[0,4]内的取值列表如下:x0(0,2)2(2,4)4()'f x /-0+/()f x b极小值16b -16b +由此可得,()y f x =在[0,4]内有零点,只需max min ()160,()160,f x b f x b =+⎧⎨=-⎩∴1616b -.15.(1)2a =-(2)ee 1k <-+【解析】【分析】(1)由(e)0f '=求得a 的值.(2)由()(1)f x k x >+分离常数k ,通过构造函数法,结合导数求得k 的取值范围.(1)因为()ln f x ax x x =+,所以()ln 1f x a x '=++,因为函数()ln f x ax x x =+的图像在点e x =处取得极值,所以(e)20f a '=+=,2a ∴=-,经检验,符合题意,所以2a =-;(2)由(1)知,()2ln f x x x x =-+,所以()1f x k x <+在[e,)+∞恒成立,即2ln 1x x x k x -+<+对任意e x ≥恒成立.令2ln ()1x x xg x x -+=+,则2ln 1()(1)x x g x x +-'=+.设()ln 1(e)h x x x x =+-≥,易得()h x 是增函数,所以min ()(e)e 0h x h ==>,所以2ln 1()0(1)x x g x x +-'=>+,所以函数()g x 在[e,)+∞上为增函数,答案第9页,共9页则min e ()(e)e 1g x g ==-+,所以e e 1k <-+.。
高中数学高考总复习定积分与微积分基本定理习题及详解
![高中数学高考总复习定积分与微积分基本定理习题及详解](https://img.taocdn.com/s3/m/cff6e3d825c52cc58ad6be39.png)
年 级 高二 学科数学内容标题 定积分的计算 编稿老师马利军一、教学目标:1. 理解定积分的基本概念并能利用定积分的几何意义解决一些简单的积分计算问题.2. 理解微积分的基本定理,并会用定积分公式解决简单函数的定积分问题.二、知识要点分析1. 定积分的概念:函数)(x f 在区间[a ,b ]上的定积分表示为:⎰badx x f )(2. 定积分的几何意义:(1)当函数f (x )在区间[a ,b]上恒为正时,定积分⎰badx x f )(的几何意义是:y=f(x )与x=a ,x=b 及x 轴围成的曲边梯形面积,在一般情形下.⎰badx x f )(的几何意义是介于x 轴、函数f (x )的图象、以及直线x=a ,x=b 之间的各部分的面积代数和,在x 轴上方的面积取正号,x 轴下方的面积取负号.在图(1)中:0s dx )x (f ba>=⎰,在图(2)中:0s dx )x (f ba<=⎰,在图(3)中:dx)x (f ba⎰表示函数y=f (x )图象及直线x=a ,x=b 、x 轴围成的面积的代数和.注:函数y=f (x )图象与x 轴及直线x=a ,x=b 围成的面积不一定等于⎰badx x f )(,仅当在区间[a ,b]上f (x )恒正时,其面积才等于⎰badx x f )(.3. 定积分的性质,(设函数f (x ),g (x )在区间[a ,b ]上可积) (1)⎰⎰⎰±=±bab aba dx )x (g dx )x (f dx )]x (g )x (f [(2)⎰⎰=baba dx x f k dx x kf )()(,(k 为常数)(3)⎰⎰⎰+=bcbac adx x f dx x f dx x f )()()((4)若在区间[a ,b ]上,⎰≥≥badx x f x f 0)(,0)(则推论:(1)若在区间[a ,b ]上,⎰⎰≤≤babadx x g dx x f x g x f )()(),()(则(2)⎰⎰≤babadx x f dx x f |)(||)(|(3)若f (x )是偶函数,则⎰⎰=-aaadx x f dx x f 0)(2)(,若f (x )是奇函数,则0)(=⎰-aadx x f4. 微积分基本定理:一般地,若)()()(],[)(),()('a Fb F dx x f b a x f x f x F ba-==⎰上可积,则在且注:(1)若)()('x f x F =则F (x )叫函数f (x )在区间[a ,b ]上的一个原函数,根据导数定义知:F (x )+C 也是f (x )的原函数,求定积分⎰badx x f )(的关键是求f (x )的原函数,可以利用基本初等函数的求导公式和导数的四则运算法则从反方向求F (x ).(2)求导运算与求原函数的运算互为逆运算.【典型例题】知识点一:定积分的几何意义例1.根据⎰=π200sin xdx 推断:求直线x=0,x=π2,y=0和正弦曲线y=sinx 所围成的曲边梯形面积下列结论正确的是( )A .面积为0B .曲边梯形在x 轴上方的面积大于在x 轴下方的面积C .曲边梯形在x 轴上方的面积小于在x 轴下方的面积D .曲边梯形在x 轴上方的面积等于在x 轴下方的面积题意分析:本题考查定积分的几何意义,注意dx x ⎰π20sin 与y=sinx 及直线x=a ,x=b 和x轴围成的面积的区别.思路分析:作出函数y=sinx 在区间[0,π2]内的图象及积分的几何意义及函数的对称性可判断.解:对于(A ):由于直线x=0,x=π2,y=0和正弦曲线y=sinx 所围成的曲边梯形面积为正可判断A 错.对于(B ),(C )根据y=sinx 在[0,π2]内关于()0,π对称知两个答案都是错误的. 根据函数y=sinx 的图象及定积分的几何意义可知:答案(D )是正确的.解题后的思考:本题主要考查定积分的几何意义,体现了数与形结合的思想的应用,易错点是混淆函数y=sinx 与x 轴、直线x=0,x=π2围成的面积等于⎰π20)(dx x f .例2.利用定积分的几何意义,说明下列等式的合理性 (1)121=⎰xdx(2)⎰=-1241πdx x .题意分析:本题主要考查定积分的几何意义:在区间[0,1]上函数y=2x ,及y=21x -恒为正时,定积分⎰102xdx 表示函数y=2x 图象与x=0,x=1围成的图形的面积,dx x ⎰-121表示函数y=21x -图象与x=0,x=1围成的图形的面积.思路分析:分别作出函数y=2x 及y=21x -的图象,求此图象与直线x=0,x=1围成的面积.解:(1)在同一坐标系中画出函数y=2x 的图象及直线x=0,x=1(如图),它们围成的图形是直角三角形.其面积∆S =11221=⨯⨯.由于在区间[0,1]内f (x )恒为正,故1210=⎰xdx .(2)由]1,0[,11222∈=+⇒-=x y x x y ,故函数y 21x -=(]1,0[∈x 的图象如图所示,所以函数y 21x -=与直线x=0,x=1围成的图形面积是圆122=+y x 面积的四分之一,又y 21x -=在区间[0,1]上恒为正.⎰=-1241πdx x解题后的思考:本题主要考查利用定积分的几何意义来验证函数y=2x 及函数y=21x -在区间[0,1]上的定积分的值,体现了数与形结合的思想的应用,易错点是画函数图象的不准确造成错误的结果.例3.利用定积分的几何意义求⎰-+-4|)3||1(|dx x x 的值.题意分析:本题考查定积分的几何意义,⎰-+-4|)3||1(|dx x x 的值是函数|3||1|-+-=x x y 的图象与直线x=0,x=4所围成图形的面积.思路分析:首先把区间[0,4]分割为[0,1],[1,3],[3,4],在每个区间上讨论x -1,x -3的符号,把函数|3||1|-+-=x x y 化为分段函数,再根据定积分的几何意义求⎰-+-4|)3||1(|dx x x 的值.解:函数|3||1|-+-=x x y 化为⎪⎩⎪⎨⎧∈-∈∈+-=]4,3[(,42]3,1[(,2]1,0[(,42x x x x x y由于函数⎪⎩⎪⎨⎧∈-∈∈+-=]4,3[(,42]3,1[(,2]1,0[(,42x x x x x y 在区间[0,1],[1,3],[3,4]都恒为正.设函数y=-2x+4的图象与直线x=0,x=1围成的面积为S 1 函数y=2的图象与直线x=1,x=3围成的面积是S 2 函数y=2x -4的图象与直线x=3,x=4围成的面积是S 3 由图知:S 1=S 3=,31)24(21=⨯+S 2=422=⨯ 由定积分的几何意义知:⎰-+-4|)3||1(|dx x x =10231=++S S S解题后的思考:本题考查的知识点是定积分的几何意义,利用其几何意义求定积分⎰-+-4|)3||1(|dx x x 的值,体现了等价转化的数学思想(把区间[0,4]分割,把函数y=|x -1|+|x -3|化成分段函数)、数与形结合的思想的应用.易错点是:区间[0,4]分割不当及画函数图象不准确,造成错误的结果.当被积函数含有绝对值时,常采用分割区间把函数化为分段函数的方法求定积分的值.小结:本题主要考查定积分的几何意义,要分清在区间[a ,b ]上f (x )恒为正时,f (x )在区间[a ,b]上定积分值才等于函数图象与直线x=a ,x=b 围成的面积.在画函数图象时注意x 的取值区间.当被积函数含有绝对值时,恰当的分割区间把函数画为分段函数再求定积分的值.高中数学高考总复习定积分与微积分基本定理习题及详解一、选择题1.(2010·山东日照模考)a =⎠⎛02x d x ,b =⎠⎛02e xd x ,c =⎠⎛02sin x d x ,则a 、b 、c 的大小关系是( )A .a <c <bB .a <b <cC .c <b <aD .c <a <b2.(2010·山东理,7)由曲线y =x 2,y =x 3围成的封闭图形面积为( ) A.112B.14C.13D.712(2010·湖南师大附中)设点P 在曲线y =x 2上从原点到A (2,4)移动,如果把由直线OP ,直线y =x 2及直线x =2所围成的面积分别记作S 1,S 2.如图所示,当S 1=S 2时,点P 的坐标是( )A.⎝ ⎛⎭⎪⎫43,169B.⎝ ⎛⎭⎪⎫45,169C.⎝ ⎛⎭⎪⎫43,157D.⎝ ⎛⎭⎪⎫45,137 3.由三条直线x =0、x =2、y =0和曲线y =x 3所围成的图形的面积为( ) A .4B.43C.185D .64.(2010·湖南省考试院调研)⎠⎛1-1(sin x +1)d x 的值为( )A .0B .2C .2+2cos1D .2-2cos15.曲线y =cos x (0≤x ≤2π)与直线y =1所围成的图形面积是( ) A .2πB .3πC.3π2D .π6.函数F (x )=⎠⎛0x t (t -4)d t 在[-1,5]上( )A .有最大值0,无最小值B .有最大值0和最小值-323C .有最小值-323,无最大值D .既无最大值也无最小值7.已知等差数列{a n }的前n 项和S n =2n 2+n ,函数f (x )=⎠⎛1x 1td t ,若f (x )<a 3,则x 的取值范围是( )A.⎝⎛⎭⎪⎫36,+∞ B .(0,e 21) C .(e -11,e )D .(0,e 11)8.(2010·福建厦门一中)如图所示,在一个长为π,宽为2的矩形OABC 内,曲线y=sin x (0≤x ≤π)与x 轴围成如图所示的阴影部分,向矩形OABC 内随机投一点(该点落在矩形OABC 内任何一点是等可能的),则所投的点落在阴影部分的概率是( )A.1πB.2πC.3πD.π49.(2010·吉林质检)函数f (x )=⎩⎪⎨⎪⎧x +2-2≤x <02cos x 0≤x ≤π2的图象与x 轴所围成的图形面积S 为( )A.32B .1C .4D.1210.(2010·沈阳二十中)设函数f (x )=x -[x ],其中[x ]表示不超过x 的最大整数,如[-1.2]=-2,[1.2]=1,[1]=1.又函数g (x )=-x3,f (x )在区间(0,2)上零点的个数记为m ,f (x )与g (x )的图象交点的个数记为n ,则⎠⎛mn g (x )d x 的值是( )A .-52B .-43C .-54D .-7611.(2010·江苏盐城调研)甲、乙两人进行一项游戏比赛,比赛规则如下:甲从区间[0,1]上随机等可能地抽取一个实数记为b ,乙从区间[0,1]上随机等可能地抽取一个实数记为c (b 、c 可以相等),若关于x 的方程x 2+2bx +c =0有实根,则甲获胜,否则乙获胜,则在一场比赛中甲获胜的概率为( )A.13B.23C.12D.3412.(2010·吉林省调研)已知正方形四个顶点分别为O (0,0),A (1,0),B (1,1),C (0,1),曲线y =x 2(x ≥0)与x 轴,直线x =1构成区域M ,现将一个质点随机地投入正方形中,则质点落在区域M 内的概率是( )A.12 B.14 C.13D.25二、填空题13.(2010·芜湖十二中)已知函数f (x )=3x 2+2x +1,若⎠⎛1-1f (x )d x =2f (a )成立,则a =________.14.已知a =∫π20(sin x +cos x )d x ,则二项式(a x -1x )6的展开式中含x 2项的系数是________.15.抛物线y 2=2x 与直线y =4-x 围成的平面图形的面积为________.16.(2010·安徽合肥质检)抛物线y 2=ax (a >0)与直线x =1围成的封闭图形的面积为43,若直线l 与抛物线相切且平行于直线2x -y +6=0,则l 的方程为______.17.(2010·福建福州市)已知函数f (x )=-x 3+ax 2+bx (a ,b ∈R )的图象如图所示,它与x 轴在原点处相切,且x 轴与函数图象所围成区域(图中阴影部分)的面积为112,则a 的值为________.三、解答题18.如图所示,在区间[0,1]上给定曲线y =x 2,试在此区间内确定t 的值,使图中阴影部分的面积S1+S2最小.。
高考数学一轮总复习积分与定积分的常见错误与解析
![高考数学一轮总复习积分与定积分的常见错误与解析](https://img.taocdn.com/s3/m/b94b23ebb8f3f90f76c66137ee06eff9aef849d8.png)
高考数学一轮总复习积分与定积分的常见错误与解析积分与定积分在高考数学考试中占据着重要的位置。
然而,由于积分与定积分的概念较为抽象,经常会引发一些常见的错误。
本文将对高考数学一轮总复习中与积分与定积分相关的常见错误进行解析,帮助同学们更好地理解和掌握这个知识点。
1. 混淆积分与求和许多同学在计算积分时,常常将其与求和混淆。
积分是对函数在某个区间上的连续值进行求和的过程,而不是简单地对一组数值进行求和。
一个常见的错误是在进行积分计算时忘记加上微元符号“dx”,或者将它们错误地写成“∆x”。
解析:积分的本质是对函数曲线下面的面积进行求和,而不是对一组离散的数值求和。
在计算积分时,务必牢记加上微元符号“dx”,并正确运用积分的定义和性质。
2. 式子的不正确分解有些同学在遇到较复杂的函数式子时,常常将其不正确地分解,导致计算结果错误。
例如,在计算一定积分时,将被积函数错误地分解成两个互相独立的部分。
解析:正确分解被积函数是计算积分的关键步骤。
在分解过程中,应根据需要运用函数的性质,将其分解成更简单的形式,使得计算更加容易。
同时,要注意避免将不同区间上的积分误认为是互相独立的。
3. 忽略常数项在计算定积分时,有些同学经常会忽略掉函数中的常数项,从而导致最终结果错误。
这种错误通常出现在没有进行恰当的变量代换时。
解析:在计算定积分时,常数项是不容忽视的。
要通过变量代换等方法将常数项纳入计算,并在计算过程中对常数项进行正确处理。
4. 使用错误的积分公式使用错误的积分公式是一个常见的错误,特别是在遇到非常规的函数时。
有些同学可能会仅仅凭借模仿或记忆错误公式的方法计算积分。
解析:掌握正确的积分公式对于解决问题至关重要。
在积分计算中,需要熟练掌握常用的基本积分公式,并能够根据具体函数的特点选择合适的公式进行计算。
5. 积分上下限错误在计算定积分时,有些同学常常出现上下限设置错误的情况。
他们可能会将上下限的顺序写反,或者将变量混淆。
2020年高考数学 考点15 定积分与微积分基本定理必刷题 理(含解析)
![2020年高考数学 考点15 定积分与微积分基本定理必刷题 理(含解析)](https://img.taocdn.com/s3/m/20e93712fab069dc5122016a.png)
【答案】
【解析】
因为 ;
所以 的展开式的通项公式为:
,
令 ,则 ,所以常数项为 。
故答案为 .
22.直线 与抛物线 围成的封闭图形的面积为______.
【答案】
【解析】
由题意,联立方程组 ,解得 或 ,
所以直线 与抛物线 围成的封闭图形的面积为:
。
23.设 ,则 的展开式中的常数项为_____.(用数字填写)
A. B.
C. D.
【答案】A
【解析】
由题知A(1,1),阴影部分的面积为S
则S= =
故选:A.
6.如图所示,点 , 是曲线 上一点,向矩形 内随机投一点,则该点落在图中阴影内的概率为( )
A. B. C. D.
【答案】A
【解析】
阴影部分面积为 ,
所以所求概率为 ,选A。
7.已知 ,则多项式 的展开式中 的系数为( )
故选:B.
14.二次函数 的图象如图所示,则定积分 ( )
A. B. C.2 D.3
【答案】B
【解析】
由图象可知,二次函数 的零点为1,2
即方程 的根为1,2坐标原点 作曲线 的切线 ,则曲线 、直线 与 轴所围成的封闭图形的面积为______
【答案】 .
【解析】
A. B. C. D.
【答案】B
【解析】
∵A(﹣1,﹣1),B(1,﹣1),C(1,1),D(﹣1,1),
∴正方体的ABCD的面积S=2×2=4,
根据积分的几何意义以及抛物线的对称性可知阴影部分的面积:
S=2 [1﹣ ]dx=2( x3) 2[(1 )﹣0]=2 ,
高三数学积分试题
![高三数学积分试题](https://img.taocdn.com/s3/m/ee6fbaabf01dc281e43af0b4.png)
高三数学积分试题1.若函数,则____________.【答案】【解析】∵,∴.【考点】利用微积分基本定理求解定积分的知识.2.定积分的值为()A.B.C.D.【答案】C【解析】,故选C.【考点】定积分.3.如图所示,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率为()A.B.C.D.【答案】【解析】由图可知阴影部分面积由几何概型可知概率为.选.【考点】定积分的应用,几何概型.4.由曲线,直线及轴所围成的图形的面积为A.B.4C.D.6【答案】C【解析】用定积分求解,选C5.抛物线与直线及y=0所围成的图形的面积.【答案】【解析】由题意,作出图形(如图所示),解方程组得或 (舍去),所以与直线的交点为(2,4),所以所求面积为.6.设函数,若,则x的值为______.【答案】【解析】,又,∴.7.在平面直角坐标系中,记抛物线与x轴所围成的平面区域为,该抛物线与直线y=(k>0)所围成的平面区域为,向区域内随机抛掷一点,若点落在区域内的概率为,则k的值为()A.B.C.D.【答案】A【解析】∵,,∴,∴,故选A.【考点】1.积分的运算;2.几何概型.8.计算定积分(x2+sinx)dx=.【答案】【解析】(x2+sinx)dx=x2dx+sinxdx=2x2dx+0=.9.给出下列命题:①函数y=在区间[1,3]上是增函数;②函数f(x)=2x-x2的零点有3个;③函数y=sinx(x∈[-π,π])图象与x轴围成的图形的面积是S=sin x d x;④若X~N(1,σ2),且P(0≤X≤1)=0.3,则P(X≥2)=0.2,其中真命题的序号是________.【答案】②④【解析】①y′=,由y′>0得-2<x<2,即函数的增区间为(-2,2),①错误;②正确;③当-π≤x≤0时,sin x≤0,S=|sin x|d x,所以②错误;④P(X≥2)==0.2,所以④正确.10.已知某随机变量X的概率密度函数为P(x)=,则随机变量X落在区间(1,2)内的概率为( )A.e2+e B.C.e2-e D.【答案】D【解析】画出概率密度曲线,随机变量X落在区间(1,2)内的概率相当于和以及密度曲线和围成的阴影部分面积,.【考点】1、函数的图象;2、定积分的运算和几何意义.11.若函数f(a)=,则f等于【答案】p+1【解析】因为f(a)==.所以.故填p+1.本题考查定积分的知识点,易错点:求函数的导数的逆运算易错,最后结果的两组数对减易错.【考点】1.定积分的知识.2.函数的导数的逆运算.12.若函数,,则的值为__________.【答案】【解析】由题意知,,所以,解得.【考点】1.分段函数;2.定积分13.已知为常数,则使得成立的一个充分而不必要条件是 ( )A.B.C.D.【答案】C.【解析】由已知及牛顿-莱布尼茨公式得.由已知要求选项能推出,但不能推出选项.,但不能推出,故选C.【考点】1.定积分的计算;2充分、必要、充要条件的判断.14.若则的值为()A.B.C.D.【答案】A【解析】.【考点】积分的运算.15.由曲线,直线及轴所围成的图形的面积为_______.【答案】【解析】曲线y=,直线y=x-2及y轴所围成的图形如图所示,故:= .【考点】定积分的计算16.曲线和曲线围成的图形面积是.【答案】【解析】解得,或,则所求面积为 .【考点】定积分17.二项式的展开式的第二项的系数为,则的值为()A.B.C.或D.或【答案】C【解析】,所以,解得,当时,,当时, ,故选C.【考点】定积分的应用,二项式定理的应用,二项式定理的通项以及组合数的计算.18.从如图所示的正方形OABC区域内任取一个点,则点M取自阴影部分的概率为()A.B.C.D.【答案】B【解析】根据题意由定积分的几何意义可得如图所示阴影部分的面积为,所以点取自阴影部分的概率为.【考点】定积分的几何意义及几何概率.19.若,则常数T的值为.【答案】3【解析】.【考点】定积分.20.如下图,过曲线:上一点作曲线的切线交轴于点,又过作轴的垂线交曲线于点,然后再过作曲线的切线交轴于点,又过作轴的垂线交曲线于点,,以此类推,过点的切线与轴相交于点,再过点作轴的垂线交曲线于点(N).(1) 求、及数列的通项公式;(2) 设曲线与切线及直线所围成的图形面积为,求的表达式; (3) 在满足(2)的条件下, 若数列的前项和为,求证:N.【答案】(1) ,,;(2) ;(3)见解析.【解析】(1)利用导数求直线切线和切线的方程,从而易得的值,再得直线的方程,知点在直线上,所以,既得通项公式;(2)观察图形利用定积分求表达式;(3)分别求得及表达式,再用数学归纳法、二项式定理及导数的方法证明即可.试题解析:(1) 由,设直线的斜率为,则.∴直线的方程为.令,得, 1分∴,∴. ∴.∴直线的方程为.令,得. 2分一般地,直线的方程为,由于点在直线上,∴. 3分∴数列是首项为,公差为的等差数列.∴. 4分(2). 6分(3)证明: , 8分∴,.要证明,只要证明,即只要证明. 9分证法1:(数学归纳法)①当时,显然成立;②假设时,成立,则当时,,而,,,时,也成立,由①②知不等式对一切都成立. 14分证法2:.所以不等式对一切都成立. 14分证法3:令,则,当时, ,∴函数在上单调递增. ∴当时, .∵N, ∴, 即.∴.∴不等式对一切N都成立. 14分【考点】1、利用导数求切线方程;2、数列的运算;3、定积分计算图形面积.21.如图,在矩形ABCD中,AB =2.AD =3,AB中点为E,点F,G分别在线段AD,BC上随机运动,则∠FEG为锐角的概率为。
高考数学定积分应用选择题
![高考数学定积分应用选择题](https://img.taocdn.com/s3/m/a2e62c4911a6f524ccbff121dd36a32d7375c70f.png)
高考数学定积分应用选择题1. 定积分可以用来求解什么问题?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 以上都是2. 定积分表示的物理意义是什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 以上都是3. 求解曲线下的面积,应该使用哪种积分?A. 定积分B. 不定积分C. 双重积分D. 三重积分4. 定积分的基本性质是什么?A. 定积分与被积函数单调性无关B. 定积分与积分区间长度无关C. 定积分与积分上下限无关D. 以上都是5. 定积分在物理学中的一个应用是求解什么?A. 物体的质量B. 物体的速度C. 物体的加速度D. 物体的位移6. 求解物体的质量,应该使用哪种积分?A. 定积分B. 不定积分C. 双重积分D. 三重积分7. 定积分可以用来求解物体的体积,这是因为在三维空间中,物体的体积可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 以上都是8. 定积分在物理学中的一个应用是求解物体的位移,这是因为在物理学中,物体的位移可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的速度与时间的积分9. 求解物体的速度,应该使用哪种积分?A. 定积分B. 不定积分C. 双重积分D. 三重积分10. 求解物体的加速度,应该使用哪种积分?A. 定积分B. 不定积分C. 双重积分D. 三重积分11. 定积分可以用来求解物体的速度,这是因为在物理学中,物体的速度可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的位移与时间的积分12. 定积分在物理学中的一个应用是求解物体的加速度,这是因为在物理学中,物体的加速度可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的速度与时间的积分13. 求解物体的位移,应该使用哪种积分?A. 定积分B. 不定积分C. 双重积分D. 三重积分14. 定积分可以用来求解物体的加速度,这是因为在物理学中,物体的加速度可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的速度与时间的积分15. 求解物体的速度,应该使用哪种积分?A. 定积分B. 不定积分C. 双重积分16. 定积分可以用来求解物体的质量,这是因为在物理学中,物体的质量可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的位移与时间的积分17. 定积分在物理学中的一个应用是求解物体的位移,这是因为在物理学中,物体的位移可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的速度与时间的积分18. 求解物体的加速度,应该使用哪种积分?A. 定积分B. 不定积分D. 三重积分19. 定积分可以用来求解物体的速度,这是因为在物理学中,物体的速度可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的位移与时间的积分20. 定积分在物理学中的一个应用是求解物体的加速度,这是因为在物理学中,物体的加速度可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的速度与时间的积分21. 求解物体的位移,应该使用哪种积分?A. 定积分C. 双重积分D. 三重积分22. 定积分可以用来求解物体的加速度,这是因为在物理学中,物体的加速度可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的速度与时间的积分23. 求解物体的速度,应该使用哪种积分?A. 定积分B. 不定积分C. 双重积分D. 三重积分24. 定积分可以用来求解物体的质量,这是因为在物理学中,物体的质量可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的位移与时间的积分25. 定积分在物理学中的一个应用是求解物体的位移,这是因为在物理学中,物体的位移可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的速度与时间的积分26. 求解物体的加速度,应该使用哪种积分?A. 定积分B. 不定积分C. 双重积分D. 三重积分27. 定积分可以用来求解物体的速度,这是因为在物理学中,物体的速度可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的位移与时间的积分28. 定积分在物理学中的一个应用是求解物体的加速度,这是因为在物理学中,物体的加速度可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的速度与时间的积分29. 求解物体的位移,应该使用哪种积分?A. 定积分B. 不定积分C. 双重积分D. 三重积分30. 定积分可以用来求解物体的加速度,这是因为在物理学中,物体的加速度可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的速度与时间的积分31. 求解物体的速度,应该使用哪种积分?A. 定积分B. 不定积分C. 双重积分D. 三重积分32. 定积分可以用来求解物体的质量,这是因为在物理学中,物体的质量可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的位移与时间的积分33. 定积分在物理学中的一个应用是求解物体的位移,这是因为在物理学中,物体的位移可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的速度与时间的积分34. 求解物体的加速度,应该使用哪种积分?A. 定积分B. 不定积分C. 双重积分D. 三重积分35. 定积分可以用来求解物体的速度,这是因为在物理学中,物体的速度可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的位移与时间的积分36. 定积分在物理学中的一个应用是求解物体的加速度,这是因为在物理学中,物体的加速度可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的速度与时间的积分37. 求解物体的位移,应该使用哪种积分?A. 定积分B. 不定积分C. 双重积分D. 三重积分38. 定积分可以用来求解物体的加速度,这是因为在物理学中,物体的加速度可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的速度与时间的积分39. 求解物体的速度,应该使用哪种积分?A. 定积分B. 不定积分C. 双重积分D. 三重积分40. 定积分可以用来求解物体的质量,这是因为在物理学中,物体的质量可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的位移与时间的积分41. 定积分在物理学中的一个应用是求解物体的位移,这是因为在物理学中,物体的位移可以表示为什么?A. 曲线下的面积B. 物体的质量D. 物体的速度与时间的积分42. 求解物体的加速度,应该使用哪种积分?A. 定积分B. 不定积分C. 双重积分D. 三重积分43. 定积分可以用来求解物体的速度,这是因为在物理学中,物体的速度可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的位移与时间的积分44. 定积分在物理学中的一个应用是求解物体的加速度,这是因为在物理学中,物体的加速度可以表示为什么?A. 曲线下的面积C. 物体的体积D. 物体的速度与时间的积分45. 求解物体的位移,应该使用哪种积分?A. 定积分B. 不定积分C. 双重积分D. 三重积分46. 定积分可以用来求解物体的加速度,这是因为在物理学中,物体的加速度可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的速度与时间的积分47. 求解物体的速度,应该使用哪种积分?A. 定积分C. 双重积分D. 三重积分48. 定积分可以用来求解物体的质量,这是因为在物理学中,物体的质量可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的位移与时间的积分49. 定积分在物理学中的一个应用是求解物体的位移,这是因为在物理学中,物体的位移可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的速度与时间的积分50. 求解物体的加速度,应该使用哪种积分?B. 不定积分C. 双重积分D. 三重积分。
2020年新高考数学复习破解定积分的简单应用(理)专题解析
![2020年新高考数学复习破解定积分的简单应用(理)专题解析](https://img.taocdn.com/s3/m/36e05164f8c75fbfc67db283.png)
2020年新高考数学复习破解定积分的简单应用(理)专题解析考纲要求:1、了解定积分的概念,能用定义法求简单的定积分,用微积分基本定理求简单的定积分;2、了解定积分的几何意义,能够实现曲边图形的面积与定积分面积的相互转化. 基础知识回顾: 1、曲边梯形的定义我们把由直线,(),0x a x b a b y ==≠=和曲线()y f x =所围成的图形称为曲边梯形。
2、曲边梯形的面积的求法:分割→近似代替(以直代曲)→求和→取极限 3、定积分的概念一般地,设函数()f x 在区间[,]a b 上连续,用分点0121i i n a x x x x x x b -=<<<<<<<=L L 将区间[,]a b 等分成n 个小区间,每个小区间长度为x D (b ax n-D =),在每个小区间[]1,i i x x -上任取一点()1,2,,i i n x =L ,作和式:11()()nnn i i i i b aS f x x f nξ==-=∆=∑∑如果x D 无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。
记为:()baS f x dx =⎰,其中⎰是积分号,b 是积分上限,a 是积分下限, ()f x 是被积函数,x 是积分变量,[,]a b 是积分区间,()f x dx是被积式。
【注】(1)定积分()baf x dx ⎰是一个常数,可以是正数,也可以是负数,也可以是零,即n S 无限趋近的常数S (n →+∞时)记为()baf x dx ⎰,而不是n S .(2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈;③求和:1()ni i b a f n ξ=-∑;④取极限:()1()lim n b i a n i b af x dx f n ξ→∞=-=∑⎰4.定积分的性质根据定积分的定义,不难得出定积分的如下性质: 性质1()()()bba akf x dx k f x dx k =⎰⎰为常数(定积分的线性性质);性质21212[()()]()()bb ba aaf x f x dx f x dx f x dx ±=±⎰⎰⎰(定积分的线性性质);性质3()()()()bc baacf x dx f x dx f x dx a c b =+<<⎰⎰⎰其中(定积分对积分区间的可加性)5.定积分的几何意义(1)从几何上看,如果在区间[],a b 上函数()f x 连续且恒有()0f x ≥,那么定积分()b af x dx ⎰表示由直线,(),0x a x b a b y ==≠=和曲线()y f x =所围成的曲边梯形(如图中的阴影部分)的面积。
高考数学专题--定积分与微积分的基本定理
![高考数学专题--定积分与微积分的基本定理](https://img.taocdn.com/s3/m/48a369473b3567ec112d8a00.png)
高考专题--定积分与微积分的基本定理高考考点:1、定积分的计算2、定积分的应用高考中对定积分的考查主要是考查定积分的概念和几何性质,以及利用微积分定理计算定积分、使用定积分求曲边梯形的面积,并能解决一些简单的物理问题等.在解题时要熟练运用微积分定理及定积分的相关运算性质求解,必要时运用数形结合的思想求解. 考点1 定积分的计算题组一 用牛顿—莱布尼茨公式求定积分调研1 已知函数1(10)()πcos (0)2x x f x x x +-≤≤⎧⎪=⎨<≤⎪⎩,则π21()d f x x -=⎰A .12 B .1 C .2 D .32【答案】D 【解析】πππ200222101113()d (1)d cos d ()|sin |1222x f x x x x x x x x ---=++=++=+=⎰⎰⎰,故选D.☆技巧点拨☆1.用牛顿—莱布尼茨公式求定积分的步骤(1)把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数的积的和或差; (2)把定积分用定积分性质变形为求被积函数为上述函数的定积分; (3)分别用求导公式找到一个相应的原函数; (4)利用牛顿—莱布尼茨公式求出各个定积分的值; (5)计算原始定积分的值. 2.分段函数的定积分分段函数求定积分,可先把每一段函数的定积分求出后再相加. 题组二 用定积分的几何意义求定积分 调研2 计算333(cos )d x x x -=⎰.【答案】0【解析】∵3cos y x x =为奇函数,∴333(cos )d 0x x x -=⎰.调研3 若222d 2mx x x -π--=⎰,则m 等于 A .−1 B .0 C .1D .2【答案】B【解析】由已知可得: 22y x x =--的图象为圆:22(1)1x y ++=对应的上半部分,由定积分的几何意义可得0m =,故选B. ☆技巧点拨☆1.求定积分的三种方法(1)利用定义求定积分(定义法),可操作性不强; (2)利用微积分基本定理求定积分;(3)利用定积分的几何意义求定积分.当曲边梯形面积易求时,可通过求曲边梯形的面积求定积分.例如,定积分121d x x -⎰的几何意义是求单位圆面积的14,所以120π1d =4x x -⎰.2.奇偶函数的定积分(1)若奇函数y =f (x )的图象在[−a ,a ]上连续,则()d 0aa f x x -=⎰; (2)若偶函数y =g (x )的图象在[−a ,a ]上连续,则0()d 2()d aaag x x g x x -=⎰⎰.考点2 定积分的应用题组一 利用定积分求平面图形的面积 调研1 已知a >0,若曲线y x =、x a =与0y =所围成的封闭区域的面积为2a ,则a =________.【答案】49【解析】由题意322002d |3aa a x x x ==⎰,所以a =49. 调研2 已知{()|,01}1,0x y x y Ω≤≤≤≤=,A 是由直线x =1,y =0和曲线y =x 4所围成的曲边三角形的平面区域,若向平面区域Ω内随机投一点M ,则点M 落在区域A 内的概率为________. 【答案】15【解析】区域Ω对应的是边长为1的正方形,其面积为S =1.区域A 是由直线x =1,y =0和曲线y =x 4围成的曲边三角形,如图中阴影部分,故区域A 的面积为S A =14510011d |55x x x ==⎰.所以点M 落在区域A 内的概率为15. ☆技巧点拨☆利用定积分求平面图形的面积是近几年高考考查定积分的一个重要考查方向,多以选择题、填空题的形式考查.难度一般不大,属中低档题型.常见的题型及其解法如下: 1.利用定积分求平面图形面积的步骤 ①根据题意画出图形;②借助图形确定出被积函数,求出交点坐标,确定积分的上、下限; ③把曲边梯形的面积表示成若干个定积分的和; ④计算定积分,写出答案.注意:当曲边梯形位于x 轴上方时,定积分的值为正;当曲边梯形位于x 轴下方时,定积分的值为负;当位于x 轴上方的曲边梯形与位于x 轴下方的曲边梯形面积相等时,定积分的值为零. 2.知图形的面积求参数求解此类题的突破口:画图,一般是先画出它的草图;然后确定积分的上、下限,确定被积函数,由定积分求出其面积,再由已知条件可找到关于参数的方程,从而可求出参数的值. 3.与概率相交汇问题解决此类问题应先利用定积分求出相应平面图形的面积,再用相应概率公式进行计算. 题组二 定积分的物理意义调研3 一列火车在平直的铁轨上行驶,由于遇到紧急情况,火车以速度55()51V t t t=-++(t 的单位:s ,v 的单位:m/s)紧急刹车至停止.在此期间火车继续行驶的距离是 A .55ln 10 mB .55ln 11 mC .(12+55ln 7) mD .(12+55ln 6) m【解析】令55501t t -+=+,注意到t >0,得t =10,即行驶的时间为10 s. 行驶的距离s =1021000551(5)d [555ln(1)]|55ln1112t t t t t t -+=-++=+⎰,即紧急刹车后火车继续行驶的距离为55ln 11 m. ☆技巧点拨☆利用定积分解决变速直线运动问题和变力做功问题时,关键是求出物体做变速直线运动的速度函数和变力与位移之间的函数关系,确定好积分区间,得到积分表达式,再利用微积分基本定理计算即得所求. 强化训练:1.由曲线1xy =与直线y x =,3y =所围成的封闭图形的面积为 A .2ln3-B .ln3C .2D .4ln3-【答案】D2.设()[](]cos ,0,π1,π,2πx x f x x ⎧∈⎪=⎨∈⎪⎩,则()2π0d f x x =⎰A .0B .πC .π-D .π2【答案】B 【解析】由已知得()2πd f x x =⎰π2ππ2π0π0πcos d 1d sin ||πx x x x x +=+=⎰⎰,故选B.3.若π20π22sin d 4n x x ⎛⎫=+ ⎪⎝⎭⎰,则2ny y ⎛⎫+ ⎪⎝⎭的展开式中常数项为A .8B .16C .24D .604.已知平面区域(){,|0π,01}x y x y Ω=≤≤≤≤,现向该区域内任意掷点,则该点落在曲线2sin y x =下方的概率是 A .12B .1π C .2πD .π4【答案】A5.已知函数()f x 的部分图象如图所示,向图中的矩形区域随机投出200粒豆子,记下落入阴影区域的豆子数,通过100次这样的试验,算得落入阴影区域的豆子的平均数为66,由此可估计()2d f x x ⎰的值约为A .9925B .9950 C .310D .35【解析】由定积分的几何意义知()2d f x x ⎰的值即为阴影部分面积S ,再由几何概型可知6620023S=⨯,解得9950S =.故本题选B . 6.()22214d x x -+-=⎰___________.【答案】42π+ 【解析】由题意得()2222222214d 1d 4d x x x x x ---+-=+-⎰⎰⎰,令24y x =-,则()2240x y y +=≥,其图象为半圆,且面积为2π,又22221d |4x x --==⎰,所以填42π+. 7.如图所示,在平面直角坐标系内,四边形ABCD 为正方形且点C 坐标为11,2⎛⎫⎪⎝⎭.抛物线Γ的顶点在原点,关于x 轴对称,且过点C .在正方形ABCD 内随机取一点M ,则点M 在阴影区域内的概率为_________.【答案】238.设曲线cos y x =与x 轴、y 轴、直线π6x =围成的封闭图形的面积为b ,若()22ln 2g x x bx kx =--在[)1,+∞上单调递减,则实数k 的取值范围是__________.【答案】[0,)+∞【解析】由题意可知,ππ660π11cos d sin |sinsin 00622b x x x ===-=-=⎰,则()222ln 22ln g x x bx kx x x kx =--=--,()22g x x k x-'=-, 由()22ln 2g x x bx kx =--在[)1,+∞上单调递减,9.2(1)d x x -=⎰.【答案】0 【解析】2220011(1)d ()|42022x x x x -=-=⨯-=⎰.10.曲线2y x =与直线y x =所围成的封闭图形的面积为 . 【答案】16【解析】由题意可得封闭图形的面积为122310011111()d ()|23236x x x x x -=-=-=⎰. 11.执行如图所示的程序框图,输出的T 的值为 .【答案】错误!未找到引用源。
2020年高考数学一轮复习考点与题型总结:第三章 导数及其应用含答案
![2020年高考数学一轮复习考点与题型总结:第三章 导数及其应用含答案](https://img.taocdn.com/s3/m/2d9bec625901020207409c9c.png)
第三章 导数及其应用第一节 导数的概念及运算、定积分1.导数的概念(1)函数y =f (x )在x =x 0处的导数:函数y =f (x )在x =x 0处的瞬时变化率li mΔx →0 ΔyΔx=li mΔx →0 f (x 0+Δx )-f (x 0)Δx ❶为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′x =x 0,即f ′(x 0)=li mΔx →0 ΔyΔx =li m Δx →0 f (x 0+Δx )-f (x 0)Δx.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.(2)导数的几何意义:函数f (x )在x =x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)❷处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).❷曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,斜率为k =f ′(x 0)的切线,是唯一的一条切线. (3)函数f (x )的导函数:称函数f ′(x )=li mΔx →0 f (x +Δx )-f (x )Δx为f (x )的导函数.(4)f ′(x )是一个函数,f ′(x 0)是函数f ′(x )在x 0处的函数值(常数),[f ′(x 0)]′=0. 2.基本初等函数的导数公式原函数 导函数 f (x )=x n (n ∈Q *) f ′(x )=n ·x n -1 f (x )=sin x f ′(x )=cos x f (x )=cos x f ′(x )=-sin x f (x )=a x (a >0,且a ≠1)f ′(x )=a x ln a f (x )=e xf ′(x )=e x f (x )=log a x (a >0,且a ≠1)f ′(x )=1x ln af (x )=ln xf ′(x )=1x3.导数的运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).4.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.5.定积分的概念在∫b a f (x )d x 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式.6.定积分的性质(1)∫b a kf (x )d x =k ∫b a f (x )d x (k 为常数); (2)∫b a [f 1(x )±f 2(x )]d x =∫b a f 1(x )d x ±∫b a f 2(x )d x ; (3)∫b a f (x )d x =∫c a f (x )d x +∫b c f (x )d x (其中a <c <b ).求分段函数的定积分,可以先确定不同区间上的函数解析式,然后根据定积分的性质(3)进行计算. 7.微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么∫b a f (x )d x =F (b )-F (a ),常把F (b )-F (a )记作F (x )|b a ,即∫b a f (x )d x =F (x )|ba =F (b )-F (a ).8.定积分的几何意义定积分∫b a f (x )d x 的几何意义是介于x 轴、曲线y =f (x )及直线x =a ,x =b 之间的曲边梯形的面积的代数和,其值可正可负,具体来说,如图,设阴影部分的面积为S .①S =∫b a f (x )d x ;②S =-∫b a f (x )d x ;③S =∫c a f (x )d x -∫bc f (x )d x ; ④S =∫b a f (x )d x -∫b a g (x )d x =∫b a [f (x )-g (x )]d x .(1)定积分的几何意义是曲边梯形的面积,但要注意:面积非负,而定积分的结果可正可负.(2)当曲边梯形位于x 轴上方时,定积分的值为正;当曲边梯形位于x 轴下方时,定积分的值为负;当位于x 轴上方的曲边梯形与位于x 轴下方的曲边梯形面积相等时,定积分的值为零.二、常用结论1.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数. 2.熟记以下结论:(1)⎝⎛⎭⎫1x ′=-1x 2;(2)(ln|x |)′=1x ; (3)⎣⎡⎦⎤1f (x )′=-f ′(x )[f (x )]2(f (x )≠0); (4)[af (x )±bg (x )]′=af ′(x )±bg ′(x ). 3.常见被积函数的原函数(1)∫b a c d x =cx |b a ;(2)∫b a x n d x =x n +1n +1|ba(n ≠-1);(3)∫b a sin x d x =-cos x |b a ;(4)∫b a cos x d x =sin x |ba ;(5)∫b a 1x d x =ln|x ||b a ;(6)∫b a e x d x =e x |b a . 考点一 导数的运算1.f (x )=x (2 018+ln x ),若f ′(x 0)=2 019,则x 0等于( ) A .e 2 B .1 C .ln 2D .e解析:选B f ′(x )=2 018+ln x +x ×1x =2 019+ln x ,故由f ′(x 0)=2 019,得2 019+ln x 0=2 019,则lnx 0=0,解得x 0=1.2.(2019·宜昌联考)已知f ′(x )是函数f (x )的导数,f (x )=f ′(1)·2x +x 2,则f ′(2)=( ) A.12-8ln 21-2ln 2 B.21-2ln 2 C.41-2ln 2D .-2解析:选C 因为f ′(x )=f ′(1)·2x ln 2+2x ,所以f ′(1)=f ′(1)·2ln 2+2,解得f ′(1)=21-2ln 2,所以f ′(x )=21-2ln 2·2x ln 2+2x ,所以f ′(2)=21-2ln 2×22ln 2+2×2=41-2ln 2.3.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)=________. 解析:f ′(x )=4ax 3+2bx , ∵f ′(x )为奇函数且f ′(1)=2, ∴f ′(-1)=-2. 答案:-24.求下列函数的导数. (1)y =x 2sin x ; (2)y =ln x +1x ;(3)y =cos x ex ;(4)y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2. 解:(1)y ′=(x 2)′sin x +x 2(sin x )′ =2x sin x +x 2cos x .(2)y ′=⎝⎛⎭⎫ln x +1x ′=(ln x )′+⎝⎛⎭⎫1x ′=1x -1x2. (3)y ′=⎝⎛⎭⎫cos x e x ′=(cos x )′e x -cos x (e x)′(e x )2=-sin x +cos x e x .(4)∵y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2=12x sin(4x +π) =-12x sin 4x ,∴y ′=-12sin 4x -12x ·4cos 4x=-12sin 4x -2x cos 4x .考点二 导数的几何意义及其应用考法(一) 求切线方程[例1] (2018·全国卷Ⅰ)设函数f (x )=x 3+(a -1)·x 2+ax ,若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( )A .y =-2xB .y =-xC .y =2xD .y =x[解析] 法一:∵f (x )=x 3+(a -1)x 2+ax , ∴f ′(x )=3x 2+2(a -1)x +a .又f (x )为奇函数,∴f (-x )=-f (x )恒成立,即-x 3+(a -1)x 2-ax =-x 3-(a -1)x 2-ax 恒成立, ∴a =1,∴f ′(x )=3x 2+1,∴f ′(0)=1, ∴曲线y =f (x )在点(0,0)处的切线方程为y =x . 法二:∵f (x )=x 3+(a -1)x 2+ax 为奇函数, ∴f ′(x )=3x 2+2(a -1)x +a 为偶函数, ∴a =1,即f ′(x )=3x 2+1,∴f ′(0)=1, ∴曲线y =f (x )在点(0,0)处的切线方程为y =x . [答案] D考法(二) 求切点坐标[例2] 已知函数f (x )=x ln x 在点P (x 0,f (x 0))处的切线与直线x +y =0垂直,则切点P (x 0,f (x 0))的坐标为________.[解析] ∵f (x )=x ln x ,∴f ′(x )=ln x +1,由题意得f ′(x 0)·(-1)=-1,即f ′(x 0)=1,∴ln x 0+1=1,ln x 0=0,∴x 0=1,∴f (x 0)=0,即P (1,0).[答案] (1,0)考法(三) 由曲线的切线(斜率)求参数的值(范围)[例3] (1)(2018·商丘二模)设曲线f (x )=-e x -x (e 为自然对数的底数)上任意一点处的切线为l 1,总存在曲线g (x )=3ax +2cos x 上某点处的切线l 2,使得l 1⊥l 2,则实数a 的取值范围是( )A .[-1,2]B .(3,+∞)C.⎣⎡⎦⎤-23,13D.⎣⎡⎦⎤-13,23 (2)(2018·全国卷Ⅲ)曲线y =(ax +1)e x 在点(0,1)处的切线的斜率为-2,则a =________. [解析] (1)由f (x )=-e x -x ,得f ′(x )=-e x -1,∵e x +1>1,∴1e x +1∈(0,1).由g (x )=3ax +2cos x ,得g ′(x )=3a -2sin x ,又-2sin x ∈[-2,2],∴3a -2sin x ∈[-2+3a ,2+3a ].要使过曲线f (x )=-e x -x 上任意一点的切线l 1,总存在过曲线g (x )=3ax +2cos x上某点处的切线l 2,使得l 1⊥l 2,则⎩⎪⎨⎪⎧-2+3a ≤0,2+3a ≥1,解得-13≤a ≤23.(2)∵y ′=(ax +a +1)e x , ∴当x =0时,y ′=a +1, ∴a +1=-2,解得a =-3. [答案] (1)D (2)-3考法(四) 两曲线的公切线问题[例4] 已知曲线f (x )=x 3+ax +14在x =0处的切线与曲线g (x )=-ln x 相切,则a 的值为________.[解析] 由f (x )=x 3+ax +14,得f ′(x )=3x 2+a .∵f ′(0)=a ,f (0)=14,∴曲线y =f (x )在x =0处的切线方程为y -14=ax .设直线y -14=ax 与曲线g (x )=-ln x 相切于点(x 0,-ln x 0),g ′(x )=-1x,∴⎩⎪⎨⎪⎧-ln x 0-14=ax 0, ①a =-1x, ②将②代入①得ln x 0=34,∴x 0=e 34,∴a =-1e 34=-e -34.[答案] -e -34[题组训练]1.曲线y =x -1x +1在点(0,-1)处的切线与两坐标轴围成的封闭图形的面积为( )A.18B.14C.12D .1 解析:选B 因为y ′=2(x +1)2,所以y ′x =0=2,所以曲线在点(0,-1)处的切线方程为y +1=2x ,即y=2x -1,与两坐标轴的交点坐标分别为(0,-1),⎝⎛⎭⎫12,0,所以与两坐标轴围成的三角形的面积S =12×|-1|×12=14. 2.已知直线2x -y +1=0与曲线y =a e x +x 相切(其中e 为自然对数的底数),则实数a 的值为________. 解析:由题意知y ′=a e x +1=2,则a >0,x =-ln a ,代入曲线方程得y =1-ln a ,所以切线方程为y -(1-ln a )=2(x +ln a ),即y =2x +ln a +1=2x +1⇒a =1.答案:13.若一直线与曲线y =ln x 和曲线x 2=ay (a >0)相切于同一点P ,则a 的值为________. 解析:设切点P (x 0,y 0),则由y =ln x ,得y ′=1x,由x 2=ay ,得y ′=2ax ,则有⎩⎪⎨⎪⎧1x 0=2a x 0,y 0=ln x 0,x 20=ay 0,解得a =2e.答案:2e考点三 定积分的运算及应用[题组训练]1. ⎠⎛0π(sin x -cos x )d x =________.解析:⎠⎛0π (sin x -cos x )d x=⎠⎛πsin x d x -⎠⎛0πcos x d x =-cos x⎪⎪⎪π0-sin x ⎪⎪⎪π=2. 答案:2 2. ⎠⎛1e 1x d x +⎠⎛-224-x 2d x =________.解析:⎠⎛1e 1x d x =ln x ⎪⎪⎪e1=1-0=1,因为⎠⎛-224-x 2d x 表示的是圆x 2+y 2=4在x 轴及其上方的面积,故⎠⎛-224-x 2d x =12π×22=2π,故答案为2π+1.答案:2π+13.由曲线y =x ,y =2-x ,y =-13x 所围成图形的面积为____________.解析:法一:画出草图,如图所示.解方程组⎩⎨⎧y =x ,x +y =2,⎩⎪⎨⎪⎧ y =x ,y =-13x及⎩⎪⎨⎪⎧x +y =2,y =-13x ,得交点分别为(1,1),(0,0),(3,-1), 所以所求图形的面积S =⎠⎛01⎣⎡⎦⎤ x -⎝⎛⎭⎫-13x d x +⎠⎛13⎣⎡⎦⎤(2-x )-⎝⎛⎭⎫-13x d x =⎠⎛01⎝⎛⎭⎫ x +13x d x +⎠⎛13⎝⎛⎭⎫2-23x d x =⎝⎛⎭⎫23x 32+16x 2⎪⎪⎪10+⎝⎛⎭⎫2x -13x 2⎪⎪⎪31 =56+6-13×9-2+13=136. 法二:如图所求阴影的面积就是三角形OAB 的面积减去由y 轴,y =x ,y =2-x 围成的曲边三角形的面积,即S =12×2×3-⎠⎛01 (2-x -x )d x =3-⎝⎛⎭⎫2x -12x 2-23x 32⎪⎪⎪1=3-⎝⎛⎭⎫2-12-23=136. 答案:1364.一物体在力F (x ) =⎩⎪⎨⎪⎧5,0≤x ≤2,3x +4,x >2(单位:N)的作用下沿与力F 相同的方向,从x =0处运动到x =4(单位:m)处,则力F (x )做的功为________J.解析:由题意知,力F (x )所做的功为W =⎠⎛04F (x )d x =⎠⎛025d x +⎠⎛24(3x +4)d x =5×2+⎝⎛⎭⎫32x 2+4x ⎪⎪⎪42=10+⎣⎡⎦⎤32×42+4×4-⎝⎛⎭⎫32×22+4×2=36(J).答案:361.正确选用求定积分的4个常用方法 定理法 性质法 几何法 奇偶性法 2.定积分在物理中的2个应用(1)求物体做变速直线运动的路程,如果变速直线运动物体的速度为v =v (t ),那么从时刻t =a 到t =b 所经过的路程s =⎠⎛ab v (t )d t .(2)变力做功,一物体在变力F (x )的作用下,沿着与F (x )相同的方向从x =a 移动到x =b 时,力F (x )所做的功是W =⎠⎛ab F (x )d x .[课时跟踪检测]A 级1.曲线y =e x -ln x 在点(1,e)处的切线方程为( ) A .(1-e)x -y +1=0 B .(1-e)x -y -1=0 C .(e -1)x -y +1=0D .(e -1)x -y -1=0解析:选C 由于y ′=e -1x ,所以y ′|x =1=e -1,故曲线y =e x -ln x 在点(1,e)处的切线方程为y -e=(e -1)(x -1),即(e -1)x -y +1=0.2.曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则P 点的坐标为( ) A .(1,3) B .(-1,3) C .(1,3)和(-1,3)D .(1,-3)解析:选C f ′(x )=3x 2-1,令f ′(x )=2,则3x 2-1=2,解得x =1或x =-1,∴P (1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y =2x -1上,故选C.3.已知函数f (x )的导函数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f ′(2)的值等于( ) A .-2 B .2 C .-94 D.94解析:选C 因为f (x )=x 2+3xf ′(2)+ln x ,所以f ′(x )=2x +3f ′(2)+1x ,所以f ′(2)=2×2+3f ′(2)+12,解得f ′(2)=-94.4.(2019·四川名校联考)已知函数f (x )的图象如图所示,f ′(x )是f (x )的导函数,则下列数值排序正确的是( )A .0<f ′(2)<f ′(3)<f (3)-f (2)B .0<f ′(3)<f ′(2)<f (3)-f (2)C .0<f ′(3)<f (3)-f (2)<f ′(2)D .0<f (3)-f (2)<f ′(2)<f ′(3)解析:选C 设f ′(3),f (3)-f (2),f ′(2)分别表示直线n ,m ,l 的斜率,数形结合知0<f ′(3)<f (3)-f (2)<f ′(2),故选C.5.(2019·玉林模拟)由曲线y =x 2和曲线y =x 围成的一个叶形图如图所示,则图中阴影部分的面积为( )A.13B.310C.14D.15解析:选A 由⎩⎨⎧ y =x 2,y =x ,解得⎩⎪⎨⎪⎧ x =0,y =0或⎩⎪⎨⎪⎧x =1,y =1,所以阴影部分的面积为⎠⎛01 (x -x 2)d x =⎝⎛⎭⎫23x 32-13x 3⎪⎪⎪1=13.6.(2018·安庆模拟)设曲线y =e ax -ln(x +1)在x =0处的切线方程为2x -y +1=0,则a =( ) A .0 B .1 C .2D .3解析:选D ∵y =e ax -ln(x +1),∴y ′=a e ax -1x +1,∴当x =0时,y ′=a -1.∵曲线y =e ax -ln(x +1)在x =0处的切线方程为2x -y +1=0,∴a -1=2,即a =3.7.(2018·延边期中)设点P 是曲线y =x 3-3x +23上的任意一点,则曲线在点P 处切线的倾斜角α的取值范围为( )A.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫5π6,π B.⎣⎡⎭⎫2π3,π C.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,π D.⎝⎛⎦⎤π2,5π6解析:选C 因为y ′=3x 2-3≥-3,故切线的斜率k ≥-3,所以切线的倾斜角α的取值范围为⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,π.8.若曲线f (x )=x sin x +1在x =π2处的切线与直线ax +2y +1=0 相互垂直,则实数a =________.解析:因为f ′(x )=sin x +x cos x ,所以f ′⎝⎛⎭⎫π2=sin π2+π2cos π2=1.又直线ax +2y +1=0的斜率为-a2,所以1×⎝⎛⎭⎫-a2=-1,解得a =2.答案:29.(2019·重庆质检)若曲线y =ln(x +a )的一条切线为y =e x +b ,其中a ,b 为正实数,则a +eb +2的取值范围为________.解析:由y =ln(x +a ),得y ′=1x +a.设切点为(x 0,y 0),则有⎩⎪⎨⎪⎧1x 0+a =e ,ln (x 0+a )=e x 0+b ⇒b =a e -2.∵b >0,∴a >2e, ∴a +e b +2=a +1a ≥2,当且仅当a =1时等号成立.答案:[2,+∞)10.(2018·烟台期中)设函数F (x )=ln x +a x (0<x ≤3)的图象上任意一点P (x 0,y 0)处切线的斜率k ≤12恒成立,则实数a 的取值范围为________.解析:由F (x )=ln x +ax (0<x ≤3),得F ′(x )=x -a x 2(0<x ≤3 ),则有k =F ′(x 0)=x 0-a x 20≤12在(0,3]上恒成立,所以a ≥⎝⎛⎭⎫-12x 20+x 0max .当x 0=1时,-12x 20+x 0在(0,3]上取得最大值12,所以a ≥12. 答案:⎣⎡⎭⎫12,+∞B 级1.若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛01f (x )d x =( )A .-1B .-13C.13D .1解析:选B ∵f (x )=x 2+2⎠⎛01f (x )d x ,∴⎠⎛01f (x )d x =⎝ ⎛⎭⎪⎫13x 3+2x ⎠⎛01f (x )d x ⎪⎪⎪10=13+2⎠⎛01f (x )d x ,∴⎠⎛01f (x )d x =-13. 2.设f (x )=⎩⎨⎧1-x 2,x ∈[-1,1],x 2-1,x ∈(1,2],则⎠⎛-12f (x )d x 的值为( )A.π2+43 B.π2+3 C.π4+43D.π4+3 解析:选A ⎠⎛-12f (x )d x =⎠⎛-111-x 2d x +⎠⎛12 (x 2-1)d x =12π×12+⎝⎛⎭⎫13x 3-x ⎪⎪⎪21=π2+43. 3.等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)·(x -a 2)·…·(x -a 8),则f ′(0)=( ) A .26 B .29C .212D .215解析:选C 因为f ′(x )=x ′·[(x -a 1)(x -a 2)·…·(x -a 8)]+[(x -a 1)(x -a 2)·…·(x -a 8)]′·x =(x -a 1)(x -a 2)·…·(x -a 8)+[(x -a 1)(x -a 2)·…·(x -a 8)]′·x ,所以f ′(0)=(0-a 1)(0-a 2)·…·(0-a 8)+0=a 1a 2·…·a 8.因为数列{a n }为等比数列, 所以a 2a 7=a 3a 6=a 4a 5=a 1a 8=8, 所以f ′(0)=84=212.4.若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 等于( )A .-1或-2564B .-1或214C .-74或-2564D .-74或7解析:选A 因为y =x 3,所以y ′=3x 2,设过点(1,0)的直线与y =x 3相切于点(x 0,x 30), 则在该点处的切线斜率为k =3x 20,所以切线方程为y -x 30=3x 20(x -x 0),即y =3x 20x -2x 30.又点(1,0)在切线上,所以x 0=0或x 0=32.当x 0=0时,切线方程为y =0.由y =0与y =ax 2+154x -9相切可得a =-2564;当x 0=32时,切线方程为y =274x -274,由y =274x -274与y =ax 2+154x -9相切,可得a =-1.综上,a 的值为-1或-2564.5.已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 019(x )=( )A .-sin x -cos xB .sin x -cos xC .-sin x +cos xD .sin x +cos x解析:选A ∵f 1(x )=sin x +cos x ,∴f 2(x )=f 1′(x )=cos x -sin x ,f 3(x )=f 2′(x )=-sin x -cos x ,f 4(x )=f 3′(x )=-cos x +sin x ,f 5(x )=f 4′(x )=sin x +cos x ,…,∴f n (x )的解析式以4为周期重复出现,∵2 019=4×504+3,∴f 2 019(x )=f 3(x )=-sin x -cos x .6.曲线y =ln(2x -1)上的点到直线2x -y +8=0的最短距离是( ) A .2 5 B .2 C .2 3D. 3解析:选A 设M (x 0,ln(2x 0-1))为曲线上的任意一点,则曲线在点M 处的切线与直线2x -y +8=0平行时,点M 到直线的距离即为曲线y =ln(2x -1)上的点到直线2x -y +8=0的最短距离.∵y ′=22x -1,∴22x 0-1=2,解得x 0=1,∴M (1,0).记点M 到直线2x -y +8=0的距离为d ,则d =|2+8|4+1=2 5.7.如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),则曲线g (x )在x =3处的切线方程为________.解析:由题图可知曲线y =f (x )在x =3处的切线斜率等于-13,即f ′(3)=-13.又g (x )=xf (x ),所以g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3),由题图可知f (3)=1,所以g (3)=3f (3)=3,g ′(3)=1+3×⎝⎛⎭⎫-13=0,则曲线g (x )在x =3处的切线方程为y -3=0.答案:y -3=08.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积是否为定值,若是,求此定值;若不是,说明理由.解:(1)方程7x -4y -12=0可化为y =74x -3,当x =2时,y =12.又f ′(x )=a +bx 2,所以⎩⎨⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x.(2)是定值,理由如下:设P (x 0,y 0)为曲线y =f (x )上任一点,由f ′(x )=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝⎛⎭⎫1+3x 20(x -x 0), 即y -⎝⎛⎭⎫x 0-3x 0=⎝⎛⎭⎫1+3x 20(x -x 0). 令x =0,得y =-6x 0,得切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0. 令y =x ,得y =x =2x 0,得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以曲线y =f (x )在点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积S =12⎪⎪⎪⎪-6x 0·|2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,且此定值为6. 9.已知函数f (x )=ln x -a (x +1)x -1,曲线y =f (x )在点⎝⎛⎭⎫12,f ⎝⎛⎭⎫12处的切线平行于直线y =10x +1. (1)求函数f (x )的单调区间;(2)设直线l 为函数g (x )=ln x 图象上任意一点A (x 0,y 0)处的切线,问:在区间(1,+∞)上是否存在x 0,使得直线l 与曲线h (x )=e x 也相切?若存在,满足条件的 x 0有几个?解:(1)∵函数f (x )=ln x -a (x +1)x -1(x >0且x ≠1),∴f ′(x )=1x +2a(x -1)2,∵曲线y =f (x )在点⎝⎛⎭⎫12,f ⎝⎛⎭⎫12处的切线平行于直线y =10x +1,∴f ′⎝⎛⎭⎫12=2+8a =10,∴a =1,∴f ′(x )=x 2+1x (x -1)2. ∵x >0且x ≠1,∴f ′(x )>0,∴函数f (x )的单调递增区间为(0,1)和(1,+∞),无单调递减区间. (2)在区间(1,+∞)上存在唯一一个满足条件的x 0. ∵g (x )=ln x ,∴g ′(x )=1x,∴切线l 的方程为y -ln x 0=1x 0(x -x 0),即y =1x 0x +ln x 0-1.①设直线l 与曲线h (x )=e x 相切于点(x 1,e x 1), ∵h ′(x )=e x ,∴e x 1=1x 0,∴x 1=-ln x 0,∴直线l 的方程也可以写成y -1x 0=1x 0(x +ln x 0),即y =1x 0x +ln x 0x 0+1x 0.②由①②得ln x 0-1=ln x 0x 0+1x 0,∴ln x 0= x 0+1x 0-1.下证在区间(1,+∞)上存在唯一一个满足条件的x 0. 由(1)可知,f (x )=ln x -x +1x -1在区间(1,+∞)上单调递增,又∵f (e)=-2e -1<0,f (e 2)=e 2-3e 2-1>0,∴结合零点存在性定理,知方程f (x )=0在区间(e ,e 2)上有唯一的实数根,这个根就是所求的唯一满足条件的x 0.第二节 导数的简单应用一、基础知识1.函数的单调性与导数的关系在(a ,b )内可导函数f (x ),f ′(x )在(a ,b )任意子区间内都不恒等于0.f ′(x )≥0⇔f (x )在(a ,b )上为增函数.f ′(x )≤0⇔f (x )在❶(a,b)上为减函数.2.函数的极值(1)函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a❷,f(a)叫做函数y=f(x)的极小值.附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点❸(2)函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近的其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小值点、极大值点统称为极值点,极大值和极小值统称为极值.3.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.(3)开区间上的单调连续函数无最值.,(1)f′(x)>0(<0)是f(x)在区间(a,b)内单调递增(减)的充分不必要条件.(2)f′(x)≥0(≤0)是f(x)在区间(a,b)内单调递增(减)的必要不充分条件.(3)由f(x)在区间(a,b)内单调递增(减)可得f′(x)≥0(≤0)在该区间内恒成立,而不是f′(x)>0(<0)恒成立,“=”不能少,必要时还需对“=”进行检验.f′(x 0)=0是x0为f(x)的极值点的必要不充分条件.例如,f(x)=x3,f′(0)=0,但x=0不是极值点.(1)极值点不是点,若函数f(x)在x1处取得极大值,则x1为极大值点,极大值为f(x1);在x2处取得极小值,则x2为极小值点,极小值为f(x2).极大值与极小值之间无确定的大小关系.(2)极值一定在区间内部取得,有极值的函数一定不是单调函数.二、常用结论(1)若所求函数的单调区间不止一个,这些区间之间不能用并集“∪”及“或”连接,只能用“,”“和”字隔开.(2)若函数f(x)在开区间(a,b)内只有一个极值点,则相应的极值一定是函数的最值.(3)极值只能在定义域内取得(不包括端点),最值却可以在端点处取得,有极值的不一定有最值,有最值的也未必有极值;极值有可能成为最值,非常数可导函数最值只要不在端点处取,则必定在极值处取.第一课时导数与函数的单调性考点一求函数的单调区间1.已知函数f(x)=x ln x,则f(x)()A.在(0,+∞)上单调递增B .在(0,+∞)上单调递减C .在⎝⎛⎭⎫0,1e 上单调递增 D .在⎝⎛⎭⎫0,1e 上单调递减 解析:选D 因为函数f (x )=x ln x 的定义域为(0,+∞), 所以f ′(x )=ln x +1(x >0), 当f ′(x )>0时,解得x >1e,即函数f (x )的单调递增区间为⎝⎛⎭⎫1e ,+∞; 当f ′(x )<0时,解得0<x <1e,即函数f (x )的单调递减区间为⎝⎛⎭⎫0,1e ,故选D. 2.若幂函数f (x )的图象过点⎝⎛⎭⎫22,12,则函数g (x )=e x f (x )的单调递减区间为________. 解析:设幂函数f (x )=x a ,因为图象过点⎝⎛⎭⎫22,12,所以12=⎝⎛⎭⎫22a ,a =2,所以f (x )=x 2,故g (x )=e x x 2, 则g ′(x )=e x x 2+2e x x =e x (x 2+2x ), 令g ′(x )<0,得-2<x <0, 故函数g (x )的单调递减区间为(-2,0). 答案:(-2,0)3.(2018·开封调研)已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调递增区间是___________________________________________________________.解析:f ′(x )=sin x +x cos x -sin x =x cos x . 令f ′(x )=x cos x >0(x ∈(-π,π)), 解得-π<x <-π2或0<x <π2,即函数f (x )的单调递增区间是⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2. 答案:⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2 考点二 判断含参函数的单调性(2018·全国卷Ⅰ节选)已知函数f (x )=1x -x +a ln x ,讨论f (x )的单调性.[解] f (x )的定义域为(0,+∞),f ′(x )=-1x 2-1+ax =-x 2-ax +1x 2.①当a ≤2时,则f ′(x )≤0, 当且仅当a =2,x =1时,f ′(x )=0, 所以f (x )在(0,+∞)上单调递减. ②当a >2时,令f ′(x )=0, 得x =a -a 2-42或x =a +a 2-42.当x ∈⎝ ⎛⎭⎪⎫0,a -a 2-42∪⎝ ⎛⎭⎪⎫a +a 2-42,+∞时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42时,f ′(x )>0. 所以f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-42,⎝ ⎛⎭⎪⎫a +a 2-42,+∞上单调递减,在⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42上单调递增. 综合①②可知,当a ≤2时,f (x )在(0,+∞)上单调递减;当a >2时,f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-42,⎝ ⎛⎭⎪⎫a +a 2-42,+∞上单调递减,在⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42上单调递增.[题组训练]已知函数g (x )=ln x +ax 2+bx ,其中g (x )的函数图象在点(1,g (1))处的切线平行于x 轴. (1)确定a 与b 的关系;(2)若a ≥0,试讨论函数g (x )的单调性. 解:(1)g ′(x )=1x+2ax +b (x >0).由函数g (x )的图象在点(1,g (1))处的切线平行于x 轴, 得g ′(1)=1+2a +b =0,所以b =-2a -1. (2)由(1)得g ′(x )=2ax 2-(2a +1)x +1x =(2ax -1)(x -1)x .因为函数g (x )的定义域为(0,+∞), 所以当a =0时,g ′(x )=-x -1x. 由g ′(x )>0,得0<x <1,由g ′(x )<0,得x >1, 即函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减. 当a >0时,令g ′(x )=0,得x =1或x =12a ,若12a <1,即a >12,由g ′(x )>0,得x >1或0<x <12a ,由g ′(x )<0,得12a<x <1,即函数g (x )在⎝⎛⎭⎫0,12a ,(1,+∞)上单调递增,在⎝⎛⎭⎫12a ,1上单调递减; 若12a >1,即0<a <12,由g ′(x )>0,得x >12a或0<x <1, 由g ′(x )<0,得1<x <12a,即函数g (x )在(0,1),⎝⎛⎭⎫12a ,+∞上单调递增,在⎝⎛⎭⎫1,12a 上单调递减; 若12a =1,即a =12,在(0,+∞)上恒有g ′(x )≥0, 即函数g (x )在(0,+∞)上单调递增.综上可得,当a =0时,函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减; 当0<a <12时,函数g (x )在(0,1),⎝⎛⎭⎫12a ,+∞上单调递增,在⎝⎛⎭⎫1,12a 上单调递减; 当a =12时,函数g (x )在(0,+∞)上单调递增;当a >12时,函数g (x )在⎝⎛⎭⎫0,12a ,(1,+∞)上单调递增, 在⎝⎛⎭⎫12a ,1上单调递减.考点三 根据函数的单调性求参数[典例精析](1)若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是________.(2)若函数h (x )=ln x -12ax 2-2x (a ≠0)在[1,4]上单调递减,则a 的取值范围为________.[解析] (1)函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,等价于f ′(x )=1-23cos 2x +a cos x =-43cos 2x +a cos x +53≥0在(-∞,+∞)恒成立.设cos x =t ,则g (t )=-43t 2+at +53≥0在[-1,1]恒成立,所以⎩⎨⎧g (1)=-43+a +53≥0,g (-1)=-43-a +53≥0,解得-13≤a ≤13.(2)因为h (x )在[1,4]上单调递减,所以当x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立,即a ≥1x 2-2x 恒成立.由(1)知G (x )=1x 2-2x,所以a ≥G (x )max ,而G (x )=⎝⎛⎭⎫1x -12-1, 因为x ∈[1,4],所以1x ∈⎣⎡⎦⎤14,1, 所以G (x )max =-716(此时x =4), 所以a ≥-716,又因为a ≠0,所以a 的取值范围是⎣⎡⎭⎫-716,0∪(0,+∞). 答案:(1)⎣⎡⎦⎤-13,13 (2)⎣⎡⎭⎫-716,0∪(0,+∞)[变式发散]1.(变条件)若本例(2)条件变为“函数h (x )在[1,4]上单调递增”,则a 的取值范围为________. 解析:因为h (x )在[1,4]上单调递增,所以当x ∈[1,4]时,h ′(x )≥0恒成立,即a ≤1x 2-2x 恒成立,又因为当 x ∈[1,4]时,⎝⎛⎭⎫1x 2-2x min =-1(此时x =1), 所以a ≤-1,即a 的取值范围是(-∞,-1]. 答案:(-∞,-1]2.(变条件)若本例(2)条件变为“函数h (x )在[1,4]上存在单调递减区间”,则a 的取值范围为________. 解析:因为h (x )在[1,4]上存在单调递减区间, 所以h ′(x )<0在[1,4]上有解, 所以当x ∈[1,4]时,a >1x 2-2x有解,而当x ∈[1,4]时,⎝⎛⎭⎫1x 2-2x min =-1(此时x =1), 所以a >-1,又因为a ≠0,所以a 的取值范围是(-1,0)∪(0,+∞). 答案:(-1,0)∪(0,+∞)3.(变条件)若本例(2)条件变为“函数h (x )在[1,4]上不单调”,则a 的取值范围为________. 解析:因为h (x )在[1,4]上不单调,所以h ′(x )=0在(1,4)上有解,即a =1x 2-2x =⎝⎛⎭⎫1x -12-1在(1,4)上有解, 令m (x )=1x 2-2x ,x ∈(1,4),则-1<m (x )<-716.所以实数a 的取值范围是⎝⎛⎭⎫-1,-716. 答案:⎝⎛⎭⎫-1,-716[题组训练]1.(2019·渭南质检)已知函数f (x )=ax 3+bx 2的图象经过点M (1,4),曲线在点M 处的切线恰好与直线x +9y =0垂直.若函数f (x )在区间[m ,m +1]上单调递增,则m 的取值范围是________.解析:∵f (x )=ax 3+bx 2的图象经过点M (1,4), ∴a +b =4,①f ′(x )=3ax 2+2bx ,则f ′(1)=3a +2b .由题意可得f ′(1)·⎝⎛⎭⎫-19=-1,即3a +2b =9.② 联立①②两式解得a =1,b =3, ∴f (x )=x 3+3x 2,f ′(x )=3x 2+6x . 令f ′(x )=3x 2+6x ≥0,得x ≥0或x ≤-2. ∵函数f (x )在区间[m ,m +1]上单调递增, ∴[m ,m +1]⊆(-∞,-2]∪[0,+∞), ∴m ≥0或m +1≤-2,即m ≥0或m ≤-3. 答案:(-∞,-3]∪[0,+∞)2.已知函数f (x )=3xa -2x 2+ln x (a >0),若函数f (x )在[1,2]上为单调函数,则a 的取值范围是________.解析:f ′(x )=3a -4x +1x ,若函数f (x )在[1,2]上为单调函数,即f ′(x )=3a -4x +1x ≥0或f ′(x )=3a -4x +1x ≤0在[1,2]上恒成立,即3a ≥4x -1x 或3a ≤4x -1x 在[1,2]上恒成立. 令h (x )=4x -1x,则h (x )在[1,2]上单调递增, 所以3a ≥h (2)或3a ≤h (1),即3a ≥152或3a ≤3,又a >0, 所以0<a ≤25或a ≥1.答案:⎝⎛⎦⎤0,25∪[1,+∞) [课时跟踪检测]A 级1.下列函数中,在(0,+∞)上为增函数的是( )A .f (x )=sin 2xB .f (x )=x e xC .f (x )=x 3-xD .f (x )=-x +ln x解析:选B 对于A ,f (x )=sin 2x 的单调递增区间是⎣⎡⎦⎤k π-π4,k π+π4(k ∈Z);对于B ,f ′(x )=e x (x +1),当x ∈(0,+∞)时,f ′(x )>0,∴函数f (x )=x e x 在(0,+∞)上为增函数;对于C ,f ′(x )=3x 2-1,令f ′(x )>0,得x >33或x <-33,∴函数f (x )=x 3-x 在⎝⎛⎭⎫-∞,-33和⎝⎛⎭⎫33,+∞上单调递增;对于D ,f ′(x )=-1+1x =-x -1x ,令f ′(x )>0,得0<x <1,∴函数f (x )=-x +ln x 在区间(0,1)上单调递增.综上所述,应选B.2.已知函数f (x )=x 2+2cos x ,若f ′(x )是f (x )的导函数,则函数f ′(x )的大致图象是( )解析:选A 设g (x )=f ′(x )=2x -2sin x ,则g ′(x )2-2cos x ≥0,所以函数f ′(x )在R 上单调递增,结合选项知选A.3.若函数f (x )=(x 2-cx +5)e x 在区间⎣⎡⎦⎤12,4上单调递增,则实数c 的取值范围是( ) A .(-∞,2] B .(-∞,4] C .(-∞,8]D .[-2,4]解析:选B f ′(x )=[x 2+(2-c )x -c +5]e x ,∵函数f (x )在区间⎣⎡⎦⎤12,4上单调递增,∴x 2+(2-c )x -c +5≥0对任意x ∈⎣⎡⎦⎤12,4恒成立,即(x +1)c ≤x 2+2x +5对任意x ∈⎣⎡⎦⎤12,4恒成立,∴c ≤x 2+2x +5x +1对任意x ∈⎣⎡⎦⎤12,4恒成立,∵x ∈⎣⎡⎦⎤12,4,∴x 2+2x +5x +1=x +1+4x +1≥4,当且仅当x =1时等号成立,∴c ≤4. 4.(2019·咸宁联考)设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是( )A .(1,2]B .(4,+∞)C .(-∞,2)D .(0,3]解析:选A ∵f (x )=12x 2-9ln x ,∴f ′(x )=x -9x (x >0),由x -9x ≤0,得0<x ≤3,∴f (x )在(0,3]上是减函数,则[a -1,a +1]⊆(0,3],∴a -1>0且a +1≤3,解得1<a ≤2.5.(2019·南昌联考)已知函数f (x +1)是偶函数,当x ∈(1,+∞)时,函数f (x )=sin x -x ,设a =f ⎝⎛⎭⎫-12,b =f (3),c =f (0),则a ,b ,c 的大小关系为( )A .b <a <cB .c <a <bC .b <c <aD .a <b <c解析:选A ∵函数f (x +1)是偶函数,∴函数f (x )的图象关于直线x =1对称,∴a =f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52,b =f (3),c =f (0)=f (2).又∵当x ∈(1,+∞)时,函数f (x )=sin x -x ,∴当x ∈(1,+∞)时,f ′(x )=cos x -1≤0,即f (x )=sin x -x 在(1,+∞)上为减函数,∴b <a <c .6.已知函数y =f (x )(x ∈R)的图象如图所示,则不等式xf ′(x )≥0的解集为________________.解析:由f (x )图象特征可得,在⎝⎛⎦⎤-∞,12和[2,+∞)上f ′(x )≥0, 在 ⎝⎛⎭⎫12,2上f ′(x )<0,所以xf ′(x )≥0⇔⎩⎪⎨⎪⎧ x ≥0,f ′(x )≥0或⎩⎪⎨⎪⎧x ≤0,f ′(x )≤0⇔0≤x ≤12或x ≥2,所以xf ′(x )≥0的解集为⎣⎡⎦⎤0,12∪[2,+∞). 答案:⎣⎡⎦⎤0,12∪[2,+∞) 7.(2019·岳阳模拟)若函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,则实数a 的取值范围是________. 解析:∵函数f (x )=x 2-e x -ax 在R 上存在单调递增区间, ∴f ′(x )=2x -e x -a >0,即a <2x -e x 有解. 设g (x )=2x -e x ,则g ′(x )=2-e x , 令g ′(x )=0,得x =ln 2,则当x <ln 2时,g ′(x )>0,g (x )单调递增, 当x >ln 2时,g ′(x )<0,g (x )单调递减,∴当x =ln 2时,g (x )取得最大值,且g (x )max =g (ln 2)=2ln 2-2,∴a <2ln 2-2. 答案:(-∞,2ln 2-2)8.设f (x )=a (x -5)2+6ln x ,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线与y 轴相交于点(0,6). (1)确定a 的值;(2)求函数f (x )的单调区间. 解:(1)因为f (x )=a (x -5)2+6ln x , 所以f ′(x )=2a (x -5)+6x.令x =1,得f (1)=16a ,f ′(1)=6-8a ,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -16a =(6-8a )(x -1), 由点(0,6)在切线上,可得6-16a =8a -6,解得a =12.(2)由(1)知,f (x )=12(x -5)2+6ln x (x >0),f ′(x )=x -5+6x =(x -2)(x -3)x .令f ′(x )=0,解得x =2或x =3. 当0<x <2或x >3时,f ′(x )>0;当2<x <3时,f ′(x )<0,故函数f (x )的单调递增区间是(0,2),(3,+∞),单调递减区间是(2,3).9.已知e 是自然对数的底数,实数a 是常数,函数f (x )=e x -ax -1的定义域为(0,+∞).(1)设a =e ,求函数f (x )的图象在点(1,f (1))处的切线方程; (2)判断函数f (x )的单调性. 解:(1)∵a =e ,∴f (x )=e x -e x -1, ∴f ′(x )=e x -e ,f (1)=-1,f ′(1)=0.∴当a =e 时,函数f (x )的图象在点(1,f (1))处的切线方程为y =-1. (2)∵f (x )=e x -ax -1,∴f ′(x )=e x -a . 易知f ′(x )=e x -a 在(0,+∞)上单调递增.∴当a ≤1时,f ′(x )>0,故f (x )在(0,+∞)上单调递增; 当a >1时,由f ′(x )=e x -a =0,得x =ln a ,∴当0<x <ln a 时,f ′(x )<0,当x >ln a 时,f ′(x )>0, ∴f (x )在(0,ln a )上单调递减,在(ln a ,+∞)上单调递增. 综上,当a ≤1时,f (x )在(0,+∞)上单调递增;当a >1时,f (x )在(0,ln a )上单调递减,在(ln a ,+∞)上单调递增.B 级1.(2019·南昌模拟)已知函数f (x )=x sin x ,x 1,x 2∈⎝⎛⎭⎫-π2,π2,且f (x 1)<f (x 2),那么( ) A .x 1-x 2>0B .x 1+x 2>0C .x 21-x 22>0D .x 21-x 22<0解析:选D 由f (x )=x sin x ,得f ′(x )=sin x +x cos x =cos x (tan x +x ),当x ∈⎝⎛⎭⎫0,π2时,f ′(x )>0,即f (x )在⎝⎛⎭⎫0,π2上为增函数,又∵f (-x )=-x sin(-x )=x sin x =f (x ),∴f (x )为偶函数,∴当f (x 1)<f (x 2)时,有f (|x 1|)<f (|x 2|),∴|x 1|<|x 2|,x 21-x 22<0,故选D.2.函数f (x )=12x 2-ln x 的单调递减区间为________.解析:由题意知,函数f (x )的定义域为(0,+∞),由f (x )=x -1x <0,得0<x <1,所以函数f (x )的单调递减区间为(0,1).答案:(0,1)3.(2019·郴州模拟)已知函数f (x )=-12x 2+4x -3ln x 在区间[t ,t +1]上不单调,则实数t 的取值范围是________.解析:由题意知f ′(x )=-x +4-3x =-(x -1)(x -3)x ,由f ′(x )=0得函数f (x )的两个极值点为1和3,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间[t ,t +1]上就不单调,∴1∈(t ,t +1)或3∈(t ,t +1)⇔⎩⎪⎨⎪⎧ t <1,t +1>1或⎩⎪⎨⎪⎧t <3,t +1>3⇔0<t <1或2<t <3.答案:(0,1)∪(2,3)4.已知函数y =xf ′(x )的图象如图所示(其中f ′(x )是函数f (x )的导函数),下面四个图象中,y =f (x )的图象大致是( )解析:选C 当0<x <1时,xf ′(x )<0,∴f ′(x )<0,故y =f (x )在(0,1)上为减函数;当x >1时,xf ′(x )>0,∴f ′(x )>0,故y =f (x )在(1,+∞)上为增函数,因此排除A 、B 、D ,故选C.5.已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数.若f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________.解析:由f (x )=x 3-2x +e x -1e x ,得f (-x )=-x 3+2x +1e x -e x =-f (x ),所以f (x )是R 上的奇函数.又f ′(x )=3x 2-2+e x +1e x ≥3x 2-2+2e x ·1ex =3x 2≥0,当且仅当x =0时取等号, 所以f (x )在其定义域内单调递增. 因为f (a -1)+f (2a 2)≤0, 所以f (a -1)≤-f (2a 2)=f (-2a 2), 所以a -1≤-2a 2,解得-1≤a ≤12,故实数a 的取值范围是⎣⎡⎦⎤-1,12. 答案:⎣⎡⎦⎤-1,12 6.已知f (x )=ax -1x ,g (x )=ln x ,x >0,a ∈R 是常数.(1)求函数y =g (x )的图象在点P (1,g (1))处的切线方程;(2)设F (x )=f (x )-g (x ),讨论函数F (x )的单调性. 解:(1)因为g (x )=ln x (x >0), 所以g (1)=0,g ′(x )=1x,g ′(1)=1,故函数g (x )的图象在P (1,g (1))处的切线方程是y =x -1. (2)因为F (x )=f (x )-g (x )=ax -1x -ln x (x >0),所以F ′(x )=a +1x 2-1x=a +⎝⎛⎭⎫1x -122-14. ①当a ≥14时,F ′(x )≥0,F (x )在(0,+∞)上单调递增;②当a =0时,F ′(x )=1-xx 2,F (x )在(0,1)上单调递增,在(1,+∞)上单调递减;③当0<a <14时,由F ′(x )=0,得x 1=1-1-4a 2a >0,x 2=1+1-4a2a>0,且x 2>x 1, 故F (x )在⎝ ⎛⎭⎪⎫0,1-1-4a 2a ,⎝ ⎛⎭⎪⎫1+1-4a 2a ,+∞上单调递增,在⎝ ⎛⎭⎪⎫1-1-4a 2a ,1+1-4a 2a 上单调递减;④当a <0时,由F ′(x )=0,得 x 1=1-1-4a 2a >0,x 2=1+1-4a 2a<0, F (x )在⎝ ⎛⎭⎪⎫0,1-1-4a 2a 上单调递增,在⎝ ⎛⎭⎪⎫1-1-4a 2a ,+∞上单调递减.7.已知函数f (x )=ax -ln x ,g (x )=e ax +2x ,其中a ∈R. (1)当a =2时,求函数f (x )的极值;(2)若存在区间D ⊆(0,+∞),使得f (x )与g (x )在区间D 上具有相同的单调性,求实数a 的取值范围. 解:(1)当a =2时,f (x )=2x -ln x ,定义域为(0,+∞),则f ′(x )=2-1x,故当x ∈⎝⎛⎭⎫0,12时,f ′(x )<0,f (x )单调递减;当x ∈⎝⎛⎭⎫12,+∞ 时,f ′(x )>0,f (x )单调递增. 所以f (x )在x =12处取得极小值,且f ⎝⎛⎭⎫12=1+ln 2,无极大值. (2)由题意知,f ′(x )=a -1x,g ′(x )=a e ax +2,①当a >0时,g ′(x )>0,即g (x )在R 上单调递增,而f (x )在⎝⎛⎭⎫1a ,+∞上单调递增,故必存在区间D ⊆(0,+∞),使得f (x )与g (x )在区间D 上单调递增;②当a =0时,f ′(x )=-1x <0,故f (x )在(0,+∞)上单调递减,而g (x )在(0,+∞)上单调递增,故不存在满足条件的区间D ;③当a <0时,f ′(x )=a -1x <0,即f (x )在(0,+∞)上单调递减,而g (x )在⎝⎛⎭⎫-∞,1a ln ⎝⎛⎭⎫-2a 上单调递减,在⎝⎛⎭⎫1a ln ⎝⎛⎭⎫-2a ,+∞上单调递增,若存在区间D ⊆(0,+∞),使得f (x )与g (x )在区间D 上有相同的单调性,则有1a ln ⎝⎛⎭⎫-2a >0,解得a <-2. 综上可知,实数a 的取值范围为(-∞,-2)∪(0,+∞).第二课时 导数与函数的极值、最值 考点一 利用导数研究函数的极值考法(一) 已知函数的解析式求函数的极值点个数或极值[例1] 已知函数f (x )=x -1+ae x (a ∈R ,e 为自然对数的底数),求函数f (x )的极值.[解] 由f (x )=x -1+a e x ,得f ′(x )=1-aex .①当a ≤0时,f ′(x )>0,f (x )为(-∞,+∞)上的增函数,所以函数f (x )无极值. ②当a >0时,令f ′(x )=0, 得e x =a ,即x =ln a ,当x ∈(-∞,ln a )时,f ′(x )<0; 当x ∈(ln a ,+∞)时,f ′(x )>0,所以函数f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增,故函数f (x )在x =ln a 处取得极小值且极小值为f (ln a )=ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =ln a 处取得极小值ln a ,无极大值.[例2] 设函数f (x )=ln(x +1)+a (x 2-x ),其中a ∈R.讨论函数f (x )极值点的个数,并说明理由. [解] f ′(x )=1x +1+a (2x -1)=2ax 2+ax -a +1x +1(x >-1).令g (x )=2ax 2+ax -a +1,x ∈(-1,+∞).①当a =0时,g (x )=1,f ′(x )>0,函数f (x )在(-1,+∞)上单调递增,无极值点. ②当 a >0时,Δ=a 2-8a (1-a )=a (9a -8). 当0<a ≤89时,Δ≤0,g (x )≥0,f ′(x )≥0,函数f (x )在(-1,+∞)上单调递增,无极值点. 当a >89时,Δ>0,设方程2ax 2+ax -a +1=0的两根为x 1,x 2(x 1<x 2), 因为x 1+x 2=-12,所以x 1<-14,x 2>-14.由g (-1)=1>0,可得-1<x 1<-14.所以当x ∈(-1,x 1)时,g (x )>0,f ′(x )>0,函数f (x )单调递增; 当x ∈(x 1,x 2)时,g (x )<0,f ′(x )<0,函数f (x )单调递减; 当x ∈(x 2,+∞)时,g (x )>0,f ′(x )>0, 函数f (x )单调递增.。
2020年高考数学(理)函数与导数 专题16 定积分(解析版)
![2020年高考数学(理)函数与导数 专题16 定积分(解析版)](https://img.taocdn.com/s3/m/d29667b6f61fb7360b4c6591.png)
函数与导数16 导数及其应用 定积分一、具体目标:(1)了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念. (2)了解微积分基本定理的含义. 考点透析:1.以定积分与微积分基本定理的简单应用—计算为主;2.在计算面积方面的应用.3.备考重点:(1) 掌握微积分基本定理;(2) 会应用微积分基本定理解决简单的面积计算. 二、知识概述:1. 定积分的概念与微积分基本定理 1.定积分的概念 在()baf x dx ⎰中,,a b 分别叫做积分下限与积分上限,区间[]a b ,叫做积分区间,()f x 叫做被积函数,x 叫做积分变量,()f x dx 叫做被积式. 2.定积分的性质 (1) ()()bba akf x dx k f x dx =⎰⎰ (k 为常数);(2) 12[()()]baf x f x dx ±=⎰12()()bbaaf x dx f x dx ±⎰⎰;(3)()()()bc baacf x dx f x dx f x dx =+⎰⎰⎰ (其中a <c <b ).3.微积分基本定理:一般地,如果()f x 是在区间[]a b ,上的连续函数,且()()F x f x '=,那么【考点讲解】()()()dx baF f x b F a =⎰-,这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.其中()F x 叫做()f x 的一个原函数.为了方便,常把()()F b a F -记作()ba F x ,即()()()dx ()bba af x F x b F a F ==⎰-.2.定积分的几何意义(1)由直线x=a ,x=b a b <(),x 轴及一条曲线()y f x =(()0)f x ≥围成的曲边梯形的面积 ()baS f x dx =⎰,若'()()F X f x =,则(-S F b F =)(a). (2)推广:由直线x=a ,x=b a b <(),()y f x =和y=g(x )(()f x >g(x ))围成的平面图形的面积为[()()]baS f x g x dx =-⎰.3.定积分在物理中的两个应用(1)变速直线运动的位移:如果变速直线运动物体的速度为v =v (t ),那么从时刻t =a 到t =b 所经过的路程s =ʃb a v (t )d t .(2)变力做功:一物体在变力F (x )的作用下,沿着与F (x )相同方向从x =a 移动到x =b 时,力F (x )所做的功是W =ʃb a F (x )d x . 4.温馨提示:1)运用微积分基本定理求定积分时要注意以下几点: (1)对被积函数要先化简,再求积分;(2)求被积函数为分段函数的定积分,依据定积分“对区间的可加性”,先分段积分再求和; (3)对于含有绝对值符号的被积函数,要先去掉绝对值号再求积分. 2)利用定积分求平面图形面积的四个步骤①画出草图,在直角坐标系中画出曲线或直线的大致图象; ②借助图形确定出被积函数,求出交点坐标,确定积分的上、下限; ③把曲边梯形的面积表示成若干个定积分的和; ④计算定积分,写出答案.1. 【2019优选题】若222 21231111,,,xS x dx S dx S e dxx===⎰⎰⎰则123,,S S S的大小关系为()A.123S S S<<B.213S S S<<C.231S S S<<D.321S S S<<【解析】3221127133xS x dx===⎰,22121ln ln21S dx xx===⎰,223121x xS e dx e e e===-⎰.显然213S S S<<,故选B.【答案】B2.【2019优选题】如图所示,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率为()A.14B.15C.16D.17【解析】∵31221211)()326S x x dx x x-=-=⎰阴影=(,正方形的面积为1,∴P=16.【答案】C3.【2018优选题】由曲线y x=,直线2y x=-及y轴所围成的图形的面积为()A.103B.4 C.163D.6【解析】用定积分求解342422116(2)(2)323x x dx x x x-+=-+=⎰,选C.【答案】C【真题分析】4.【2017优选题】1(2)xex dx +⎰等于( )A .1B .1e -C .eD .1e + 【解析】1(2)x e x dx +⎰210()x e x e =+=,选C .【答案】C 5.【2017优选题】421dx x⎰等于( ) A .2ln 2- B .2ln 2 C .ln 2- D .ln 2【解析】∵1(ln )x x '=,∴421dx x ⎰=4ln ln 4ln 2ln 22x =-=.【答案】D6.【2015福建】如图,点A 的坐标为()1,0,点C 的坐标为()2,4,函数()2f x x =,若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于 .【解析】由已知得阴影部分面积为221754433x dx -=-=⎰.所以此点取自阴影部分的概率等于553412=.【答案】5127.【2019优选题】如图,在边长为e (e 为自然对数的底数)的正方形中随机撒一粒黄豆,则他落到阴影部分的概率为______.【解析】根据对称性,两个阴影部分面积相等,∴1100=2()22|2x x S e e dx e e -=-=⎰阴,由几何概型的概率计算公式,得所求的概率为22=S S e阴正. 【答案】22e8.【2019优选题】若29,T x dx T =⎰则常数的值为 . 【解析】393330302=⇒===⎰T T x dx x TT. 【答案】39.【2019优选题】计算定积分121(sin )x x dx -+=⎰___________.【解析】31211111(sin )cos |cos1cos1333x x x dx x --⎛⎫-⎛⎫⎛⎫+=-=--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰112333=+=. 【答案】2310.【2016优选题】设0>a ,若曲线x y =与直线0,==y a x 所围成封闭图形的面积为2a ,则=a .【解析】a a x dx x S a a====⎰232303232,解得49=a . 【答案】9411.【2015陕西理16】如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线表示),则原始的最大流量与当前最大流量的比值为 .【解析】考点为1、定积分;2、抛物线的方程;3、定积分的几何意义.建立空间直角坐标系,如图所示:原始的最大流量是()11010222162⨯+-⨯⨯=,设抛物线的方程为22x py =(0p >),因为该抛物线过点()5,2,所以2225p ⨯=,解得254p =,所以2252x y =,即2225y x =,所以当前最大流量是()()5323535522224022255255257575753x dx x x --⎛⎫⎛⎫⎛⎫⎡⎤-=-=⨯-⨯-⨯--⨯-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎰,故原始的最大流量与当前最大流量的比值是161.2403=,所以答案应填:1.2. 【答案】1.212.【2019优选题】(1)已知函数3()=f x x x -,其图象记为曲线C .(i )求函数()f x 的单调区间;(ii )证明:若对于任意非零实数1x ,曲线C 与其在点111(,())P x f x 处的切线交于另一点222(,())P x f x ,曲线C 与其在点222(,())P x f x 处的切线交于另一点333(,())P x f x ,线段1223,PP P P 与曲线C 所围成封闭图形的面积分别记为1,2S S ,则12S S 为定值; (2)对于一般的三次函数32()g x ax bx cx d =+++(0)a ≠,请给出类似于(1)(ii )的正确命题,并予以证明.【解析】(1)(i )由3()=f x x x -得2()=31f x x '-=333()()33x x+-, 当3(,)3x ∈-∞-和33+∞(,)时,()>0f x ';O xy当3(,3x ∈-3)3时,()<0f x ', 因此,()f x 的单调递增区间为3(,)3-∞-和33+∞(,),单调递减区间为3(,3-3)3. (ii )曲线C 与其在点1P 处的切线方程为231111=(31)()+,y x x x x x ---即2311y=(31)2,x x x --由23113(31)2=y x x x y x x⎧=--⎪⎨-⎪⎩得3=x x -2311(31)2x x x --,即211()+2)=0x x x x -(,解得1121=2,2x x x x x x =-=-或故,进而有 1123234111127(3+2)=4x x S x x x x dx x -=-⎰,用2x 代替1x ,重复上述计算过程,可得 322x x =-和42227=4S x ,又2120x x =-≠,所以4212716=0,4S x ⨯≠因此有121=16S S . (Ⅱ)记函数32()g x ax bx cx d =+++(0)a ≠的图象为曲线C ',类似于(Ⅰ)(ii )的正确命题为:若对任意不等式3ba-的实数1x ,曲线C '与其在点111(,())P x g x 处的切线交于另一点222(,())P x g x ,曲线C 与其在点222(,())P x g x 处的切线交于另一点333(,())P x g x ,线段1223,PP P P 与曲线C 所围成封闭图形的面积分别记为1,2S S ,则12S S 为定值. 证明如下:因为平移变换不改变面积的大小,故可将曲线=()y g x 的对称中心(3b g a -(,))3ba-平移至坐标原点,因而不妨设3()(0)g x ax hx x =+≠,类似(i )(ii )的计算可得41127=4S x ,4212716=0,4S x ⨯≠故121=16S S .1.设20lg 0()30ax x f x x t dt x >⎧⎪=⎨+⎪⎩⎰…,若((1))1f f =,则a = .【解析】因为10x =>,所以(1)lg10f ==,又因为230()3af x x t dt x a =+=+⎰,所以3(0)f a =,所以31a =,1a =.【答案】12.20(1)x dx ⎰-= .【解析】本题考点是定积分的计算. 试题分析:0)21()1(2220=-=-⎰x x dx x 【答案】0.3.曲线2y x = 与直线y x = 所围成的封闭图形的面积为 . 【解析】本题考点定积分几何意义与定积分运算.在同一坐标系内作出两个函数的图象,解议程组2y x y x⎧=⎨=⎩得两曲线的交点坐标为(0,0),(1,1),由图可知峡谷曲线所围成的封闭图形的面积()1122300111236S x x dx x x ⎛⎫=-=-= ⎪⎝⎭⎰.21.510.50.511.522.543211234【答案】16【模拟考场】4. 计算:ʃ313+2x -x 2 d x =________.【解析】由定积分的几何意义知,ʃ313+2x -x 2 d x 表示圆(x -1)2+y 2=4和x =1,x =3,y =0围成的图形的面积,∴ʃ313+2x -x 2d x =14×π×4=π. 【答案】π5.由曲线xy =1,直线y =x ,y =3所围成的封闭平面图形的面积为______. 【解析】 由xy =1,y =3可得交点坐标为(13,3).由xy =1,y =x 可得交点坐标为(1,1),由y =x ,y =3得交点坐标为(3,3),由曲线xy =1,直线y =x ,y =3所围成图形的面积为:1312311113311(3)d (3)d (3ln )|(3)|2x x x x x x x x -+-=-+-⎰⎰=(3-1-ln 3)+(9-92-3+12)=4-ln 3. 【答案】4-ln 36. .二项式()0633>⎪⎪⎭⎫ ⎝⎛-a ax 的展开式的第二项的系数为23-,则⎰-a dx x 22的值为__________.【解析】二项式()0633>⎪⎪⎭⎫ ⎝⎛-a ax 的展开式的通项公式()2221322363x a ax C T -=⎪⎪⎭⎫ ⎝⎛-=. ∵第二项的系数为23-,∴23232-=-a ,∴a 2=1,a >0,解得a =1.当a =1时,则322=⎰-a dx x .【答案】37.若ʃ10(2x +λ)d x =2(λ∈R ),则λ等于( ) A .0 B .1 C .2 D .-1【解析】 (1)ʃ10(2x +λ)d x =(x 2+λx )|10=1+λ=2,所以λ=1.【答案】B8.定积分ʃ2-2|x 2-2x |d x 等于( )A .5B .6C .7D .8 【解析】ʃ2-2|x 2-2x |d x =ʃ0-2(x 2-2x )d x +ʃ20(2x -x 2)d x =(x 33-x 2)|0-2+(x 2-x 33)|20=83+4+4-83=8. 【答案】D9.定积分ʃ309-x 2d x 的值为( )A .9πB .3π C.94π D.92π【解析】由定积分的几何意义知ʃ309-x 2d x 是由曲线y =9-x 2,直线x =0,x =3,y =0围成的封闭图形的面积,故ʃ309-x 2d x =π·324=94π,故选C. 【答案】C10.一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=7-3t +251+t(t 的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是( ) A .1+25ln 5 B .8+25ln113C .4+25ln 5D .4+50ln 2【解析】 令v (t )=0,得t =4或t =-83(舍去),∴汽车行驶距离S =ʃ40(7-3t +251+t)d t =[7t -32t 2+25ln(1+t )]|40=28-24+25ln 5=4+25ln 5. 【答案】 C 11.若π20(sin cos )d 2x a x x ⎰-=,则实数a 的值为( ) A .-1 B .1 C .- 3 D. 3 【解析】 ππ220(sin cos )d (cos sin )|⎰-=--x a x x x a x =0-a -(-1-0)=1-a =2,∴a =-1.【答案】A12.设f (x )=⎩⎪⎨⎪⎧ x 2,x ∈[0,1],2-x ,x ∈(1,2],则()dx x f ⎰20等于( ) A.34 B.45 C.56 D.67【解析】()dx x f ⎰20=ʃ10x 2d x +ʃ21(2-x )d x =13x 3|10+(2x -12x 2)|21=13+(4-12×4)-(2-12)=56. 【答案】C13.一物体在变力F (x )=5-x 2(力单位:N ,位移单位:m)作用下,沿与F (x )成30°方向作直线运动, 则由x =1运动到x =2时,F (x )做的功为( ) A. 3 J B.233 J C.433J D .2 3 J 【解析】()()dx x dx x F 2212152330cos -=⎰⎰ο=⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛-=233153x x |21=433,∴F (x )做的功为433 J. 【答案】C 14.若4222π=--⎰-dx x x m,则m =________. 【解析】根据定积分的几何意义ʃm -2-x 2-2x d x 表示圆(x +1)2+y 2=1和直线x =-2,x =m 和y =0围成的图形的面积,又ʃm -2-x 2-2x d x =π4为四分之一圆的面积,结合图形知m =-1. 【解析】-1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.-1
B.-13
1 C.3
D.1
解析 ∵f(x)=x2+2ʃ 10f(x)dx,
∴ʃ 10f(x)dx=(13x3+2xʃ 10f(x)dx)|10 =13+2ʃ 10f(x)dx, ∴ʃ 10f(x)dx=-13.
点评 (1)计算定积分要先将被积函数化简后利用运算性 质分解成几个简单函数的定积分,再利用微积分基本定理 求解; (2)对有关函数图象和圆的定积分问题可以利用定积分的 几何意义求解.
4
+(-cos x-sin x)
0
π4-sin 0-cos 0+[(-cos
2π-π4 sin
2π)-
(-cos π4-sin 4π)]=2 2-2. 故选D.
方法二 由 sin x=cos x(x∈(0,π2)),得 x=4π.
根据图象的对称性,可知所求阴影部分的面积
S=2π4 (cos x-sin x)dx
专题3 函数与导数
定积分问题
题型分析·高考展望
定积分在理科高考中,也是重点考查内容.主要考查定积 分的计算和利用定积分求不规则图形的面积,题目难度 不大,多为中低档题目,常以选择题、填空题的形式考 查,掌握定积分的计算公式,会求各种类型的曲边图形 的面积是本节重点.
常考题型精析 高考题型精练
常考题型精析
将点(5,2)代入抛物线方程得 a=225, 故抛物线方程为 y=225x2, 抛物线的横截面面积为 S1=2502-225x2dx =22x-725x350 =430(m2),
而原梯形下底为 10-tan245°×2=6(m), 故原梯形面积为 S2=12(10+6)×2=16,
(2)直线l过抛物线C:x2=4y的焦点且与y轴垂直,则l与C
所围成的图形的面积等于( )
4
8
16 2
A.3
B.2
C.3
D. 3
解析 ∵抛物线方程为x2=4y,
∴其焦点坐标为F(0,1),故直线l的方程为y=1.
即 S=4-2ʃ 20x42dx= 4-2·1x23 20=4-43=38. 答案 C
A.1 解析
π B.4
22 C. 3
D.2 2-2
方法一 由 sin x=cos x(x∈(0,π2)),得 x=π4.
故所求阴影部分的面积
S=π4
0
π
(cos x-sin x)dx+2
π
(sin x-cos x)dx
4
π
π2
=(sin =sin
x+cos π4+cos
x)
x2, x∈[0,1], 变式训练 1 (1)设 f(x)=2-x, x∈1,2], 则 ʃ 20f(x)dx 等
于( C )
3
4
5
A.4
B.5
C.6
解析 ʃ 20f(x)dx=ʃ 10x2dx+ʃ 21(2-x)dx
=13x3|10+2x-12x2|21 =13+4-2-2+12=56.
题型一 定积分的计算 题型二 利用定积分求曲边梯形的面积
题型一 定积分的计算
例1 (1)(2014·陕西)定积分ʃ10 (2x+ex)dx的值为( C )
A.e+2
B.e+1
C.e
D.e-1
解析 ʃ 10(2x+ex)dx=(x2+ex)|10=e.故选 C.
(2)(2014·江西)若 f(x)=x2+2ʃ 10f(x)dx,则 ʃ 10f(x)dx 等于( B )
变式训练2 (2015·陕西)如图,一横截面为 等腰梯形的水渠,因泥沙沉积,导致水渠 截面边界呈抛物线型(图中虚线表示),则原始的最大流量与 当前最大流量的比值为________. 解析 由题意可知最大流量的比即为横截 面面积的比,建立以抛物线顶点为原点的 直角坐标系,如图所示,
设抛物线方程为y=ax2,
0
0
=12gt2t00 =12gt20.
高考题型精练 1 2 3 4 5 6 7 8 9 10 11 12
2.若π2(sin x-acos x)dx=2,则实数 a 等于( A )
0
A.-1
B.1
C.- 3
ห้องสมุดไป่ตู้
D. 3
解析
π
π2sinx-acosxdx=-cos x-asin x2
0
0
=-a+1=2,a=-1.
高考题型精练 1 2 3 4 5 6 7 8 9 10 11 12
3.由直线 x=-3π,x=3π,y=0 与曲线 y=cos x 所围成的封闭 图形的面积为( D )
1 A.2 解析
B.1
π
3 cos
-π
xdx=sin
SS21=1460=1.2. 3
答案 1.2
高考题型精练 1 2 3 4 5 6 7 8 9 10 11 12
1.已知自由落体运动的速率v=gt,则落体运动从t=0到t=t0
所走的路程为( C )
A.g3t20
B.gt20
C.g2t20
D.g6t20
解析 由题意,可知所走路程为t0vdt=t0gtdt
D.不存在
(2)若定积分
ʃ
m -2
-x2-2xdx=4π,则 m 等于(
)
A.-1
B.0
C.1
D.2
解析 根据定积分的几何意义知,
定积分
ʃ
m -2
-x2-2xdx 的值就是函数 y=
-x2-2x的图象与
x 轴及直线 x=-2,x=m 所围成图形的面积, y= -x2-2x是一个半径为 1 的半圆,其面积等于π2,
0
π
=2(sin x+cos x)
4
0
=2(sin π4+cos π4-sin 0-cos 0) =2 2-2.
故选D. 答案 D
点评 求曲边多边形面积的步骤: (1)画出草图,在直角坐标系中画出曲线或直线的大致图形. (2)借助图形确定被积函数,求出交点坐标,确定积分的上 限、下限. (3)将曲边梯形的面积表示为若干个定积分之和. (4)计算定积分.
而
ʃ
m -2
-x2-2xdx=4π,
即在区间[-2,m]上该函数图象应为14个圆,
于是得m=-1,故选A.
答案 A
题型二 利用定积分求曲边梯形的面积
例2 (1)(2014·山东)直线y=4x与曲线y=x3在第一象限内围 成的封闭图形的面积为( D )
A.2 2
B.4 2
C.2
D.4
解析 令4x=x3,解得x=0或x=±2, ∴S=ʃ 20(4x-x3)= 2x2-x4420=8-4=4,故选 D.