汽车质心位置的计算
汽车振动分析三自由度概论
汽车振动分析三自由度概论汽车振动分析是指对汽车在运行过程中的振动进行研究和分析。
汽车在运行过程中会受到地面不平坦、发动机工作、零部件损耗等多种因素的影响,从而产生各种振动。
了解和分析汽车的振动情况对于改善驾驶舒适性、提高汽车性能、延长零部件寿命等方面具有重要意义。
在汽车振动分析中,常使用三自由度模型进行初步研究和分析。
该模型是对汽车在垂直方向(纵向)、水平方向(横向)和侧向(垂直)三个方向的振动进行建模,可以较为准确地模拟实际振动情况。
在三自由度模型中,汽车被简化为一个质点,其质量为m,质心位置为(x,y,z)。
地面和汽车之间通过弹簧和减振器连接,用来模拟悬挂系统。
弹簧的刚度为k,减振器的阻尼为c。
汽车在运行过程中会受到外界的激励力Fa,例如地面的不平坦、发动机输出的力等。
根据牛顿第二定律,可以得出以下三个方程:mx'' + cx' + kx = Famy'' + cy' + ky = Fymz'' + cz' + kz = Fz其中,x''表示汽车在x方向的加速度,x'表示汽车在x方向的速度,类推y和z。
Fa,Fy,Fz分别表示在x、y、z方向上的外界激励力。
通过求解以上方程组,可以得到汽车在三个方向上的振动响应。
为了更好地研究和分析汽车的振动情况,还需要进行模态分析。
模态分析是指对系统的固有特性进行研究和分析。
在汽车振动分析中,模态分析主要用于求解汽车的模态频率和模态振型。
汽车的模态频率是指在特定工况下,汽车振动系统的固有频率。
一般来说,模态频率越高,汽车的振动特性越好。
模态振型是指在特定模态频率下汽车的振动形态,可以用来了解汽车的振动特性和寻找可能的振动源。
对于三自由度模型而言,可以通过手工计算或使用专业的软件进行求解模态频率和模态振型。
一般来说,模态分析会得到多个不同的模态频率和模态振型,其中前几个频率和振型对应着汽车振动系统的主要特性。
专用汽车设计常用计算公式汇集
A 已知条件
a① 专用汽车轮距 B
b① 专用汽车空载质心高度 hg 空 c① 专用汽车满载质心高度 hg 满 d① 专用汽车行驶路面附着系数 φ(一般取 φ = 0.7~0.8)
B 计算公式
保证汽车行驶不发生侧翻的条件: B f (hg 一一一一一一一一
)
2hg
C 保证空车行驶不发生侧翻的条件: B f
)
Ga
C 空载整车质心高度计算
-3-
hg 空= gi 一 (一一一一一一一一
) yi 一 (一一一一一一一一一一 Ga 一 (一一一一一一 )
)
D 满载整车质心高度计算
hg 满= gi 一 (一一一一一一一一
) yi 一 (一一一一一一一一一一 Ga 一 (一一一一一一一 )
)
2 专用汽车行驶稳定性计算 2.1 专用汽车横向稳定性计算
一)
G一
C 满载水平质心位置计算
L 满(至后桥水平距离)=
g一
l(一
l 1 / 2l1 )(一 G一
l l1 )
1.4.2 垂直质心高度位置计算 A 已知条件
a① 整车各总成的质量为 gi b① 整车各总成的质心至地面的距离为 Yi
B 整车质心高度 hg = gi xyi (Ga 一一一一一一
1.1.3 高≤4m(汽车处于空载状态,顶窗、换气装置等处于关闭状态) 1.1.4 车外后视镜单侧外伸量不得超出汽车或挂车最大宽度处 250mm 1.1.5 汽车的顶窗、换气装置等处于开启状态时不得超出车高 300mm 1.2 专用汽车的轴距和轮距 1.2.1 轴距
轴距是影响专用汽车基本性能的主要尺寸参数。轴距的长短除影响汽车的总长外, 还影响汽车的轴荷分配、装载量、装载面积或容积、最小转弯半径、纵向通过半径等,此 外,还影响汽车的操纵性和稳定性等。
汽车质心位置的计算教学内容
汽车质心位置的计算汽车质心位置的计算1、 质心到前轴(坐标原点)的水平距离(1) 常规公式: giXi gi a ∑⋅∑=)( ------------------------(1) 式中 a 质心到前轴的水平距离gi 各总成(或载荷)质量Xi 各总成(或载荷)到前轴的水平距离轴荷(或簧载质量): gi LaG ∑⋅-=)1(1 LXi gi gi )(⋅∑-∑= ------------------------(2) gi La G ∑⋅=2. L Xi gi )(⋅∑= ------------------------(3) 式中 1G 前轴负荷(或前簧载质量)2G 后轴负荷(或后簧载质量)L 轴距(2) 先求轴荷再算质心位置: ⎥⎦⎤⎢⎣⎡⋅-∑=gi L Xi G )1(1 ------------------------(2a ) ⎥⎦⎤⎢⎣⎡⋅∑=gi L Xi G 2 ------------------------(3a ))1(12GG L G G L a -⋅=⋅= ------------------------(4) 式中 gi G G G ∑=+=21 总负荷(或簧载总质量)2、 质心离地高度常规公式: gihi gi h ∑⋅∑=)( -------------------------(5) 式中 h 质心到地面的高度hi 各总成(或载荷)离地高度*注:可以先算出)(hi gi ⋅∑再除以gi ∑,也可以先算出)(gihi gi ∑⋅再合成。
3、 各种质心的分别计算和合成(1) 分别计算:① 空载、满载状态的质心位置空载: gi 不包括乘员或/和载荷,仅包括相关总成。
满载: gi 包括乘员或/和载荷以及相关总成。
② 簧载质量、非簧载质量的质心位置簧载质量:gi 只包括属于簧载质量的总成,或者还包括乘员或载荷。
非簧载质量:gi 只包括属于非簧载质量的总成。
(2) 状态的合成1) 整车状态-----包括簧载与非簧载质量① 质心到前轴的水平距离: G a G a G a u u S S g ⋅+⋅=GL G a G u S S ⋅+⋅=2 ------------------------------(6) 式中 S G 簧载总质量21u u u G G G += 非簧载总质量1u G 前轴非簧载质量2u G 后轴非簧载质量u S G G G += 整车总质量g a 整车质心到前轴的水平距离S a 簧载质量质心到前轴的水平距离u a 非簧载总质量的质心到前轴的水平距离② 质心离地高度 G h G h G hg u u S S ⋅+⋅=GR G G h G u u S S ⋅++⋅=)(21 ---------------------------(7)式中 hg 整车质心离地高度S h 簧载质量的质心离地高度R h u = 非簧载质量的质心离地高度,一般设定为车轮静力半径R 。
两质点质心公式
两质点质心公式在物理学中,两质点质心公式可是个重要的家伙呢!咱们先来说说啥是质心。
质心啊,简单来说,就是可以代表几个质点整体位置的一个点。
想象一下,有两个质点在空间里飘着,就像两个调皮的小精灵,一个质量大些,一个质量小些。
那它们的质心位置就不是随便定的,而是有规律可循,这规律就藏在两质点质心公式里。
两质点质心公式是这样的:假设两个质点的质量分别是 m1 和 m2,它们的位置坐标分别是 (x1, y1, z1) 和 (x2, y2, z2),那么质心的坐标(x_c, y_c, z_c) 就可以通过下面的式子算出来:x_c = (m1 * x1 + m2 * x2) / (m1 + m2),y_c = (m1 * y1 + m2 * y2) / (m1 + m2),z_c = (m1 * z1 +m2 * z2) / (m1 + m2) 。
我给您讲个事儿吧,有一次我带着学生们在操场上做一个有趣的实验。
我们把两个篮球当作质点,一个篮球大点儿重点儿,另一个小点儿轻点儿。
我们在操场上标记好了坐标,然后让同学们根据公式来计算这两个“质点”篮球的质心位置。
一开始,同学们都有点懵,看着公式直发愣。
但是慢慢地,大家开始动手测量篮球的位置,认真计算起来。
有个小同学,算错了好几次,急得直挠头,小脸都憋红了。
我就过去引导他,一步步检查计算过程,终于让他算出了正确结果,那高兴劲儿,就像解开了一道超级难题一样。
这两质点质心公式在实际生活中的应用可不少。
比如说,在工程设计中,要考虑两个物体的重心平衡,就得用到它;在天体物理学里,研究两个天体的共同质心,也离不开这个公式。
再比如,在汽车制造中,发动机和车身的质量分布对车辆的操控性能有很大影响。
通过两质点质心公式,工程师们可以精确计算出质心的位置,从而优化汽车的设计,让车子开起来更稳、更舒适。
还有在物流运输中,如果要把两个不同重量的货物放在一起运输,为了保证运输的平稳和安全,也得算出它们的质心位置,合理安排摆放方式。
质心高度计算
质心高度计算
汽车的质心M位置?
利用静力学知识。
车身坐标系:前进方向为x轴正方向,垂直地面向上的方向为z轴正方向,顺着z轴负方向看,将x轴逆时针旋转90度以后得到y轴,左前轮与地面接触点为坐标系原点。
y方向两轮轴距记作b,x方向两轮轴距记作a。
问题转化为求M(x,y,z)
步骤:
1 测汽车重力G。
2 求y
将汽车y轴上的两个车轮安置在平地上,另一边安置在弹簧秤上,两者都与地面垂直。
弹簧秤上的数值记为f,对o点取矩,f*(-b)=G*y
3 同理可求x
后轮用弹簧秤支起,前轮在平地上。
弹簧秤读数f2。
对o点取距。
G*(-x)=a*f2 求出x。
4 求z
前轮用弹簧秤支起,将后轮升高距离t,支起,即使汽车倾斜一个角度&,
sin&=t/a.
前轮弹簧秤读数f3,G*L=f3*a*cos&,求出L
根据几何关系,可求出z=L/sin& - (a+x)/tg&。
(完整版)整车计算及质心位置确定
第六章整车计算及质心位置确定第一节轴荷计算及质心位置确定1、本章所用质量参数说明(Kg)T 底盘承载质量F 底盘整备质量(不含上车装置)NL 有效载荷V A1 底盘整备质量时的前轴荷HA1 底盘整备质量时的后轴荷V A2 允许前轴荷HA2 允许后轴荷HAG2 允许总的后轴荷(驱动轴+支撑轴)NLA2 允许后支撑轴轴荷VLA2 允许中支撑轴轴荷GG2 允许总质量(载货汽车底盘整备质量+上车装置质量+允许载荷)NL2 允许有效载荷V A3 实际有效载荷(AB+NL)时的前轴荷HA3 实际有效载荷(AB+NL)时的后轴荷)GG3 实际有效载荷(AB+NL)时的总质量NL3 实际有效载荷(AB+NL)HA4 底盘后轴荷(包括所有附加质量例如驾驶员、附加油箱,但不含AB和NL)GG4 底盘总质量(包括所有附加质量例如驾驶员、附加油箱,但不含AB和NL)NLV 由轴荷超载引起的有效载荷损失HAü超过允许后轴荷V Aü超过允许前轴荷AB 上车装置质量EG 整车整备质量(载货汽车底盘+AB)M 附加质量,例如:M1 驾驶员+副驾驶员M2 备胎(新、老位置移动时)M3 起重机(随车吊)、起重尾板等LV A 前轴荷占总质量的比例(%)2、本章所用尺寸参数说明(mm)A、轴距A1、轴距(第一后轴中心线至第二后轴中心线)A理论理论轴距(只用于3轴或4轴)a1 与轴荷比例(驱动轴与支撑轴之比)有关的从理论轴线到驱动轴的距离W 前轴中心线至驾驶室后围的距离W2 前轴中心线至上车装置前缘的距离X 货厢或上车装置的长度y 均布载荷时最佳质心位置至前轴中心线的距离(AB+NL)y'假设的质心位置至前周中心线的位置y1 驾驶员+副驾驶员位置距前轴中心线位置y2 备胎(新、老位置移动的距离)y3 起重机(随车吊)、起重尾板等MHS 附加质量的质心高度GHSL 整车空载质心高度GHSV 整车满载质心高度FHS 底盘的质心高度ABHS 上车装置的质心高度NLHS 允许有效载荷的质心高度2、轴荷计算a)双后轴:a1=A1/2A理论=A+a1b)后支撑轴:a1=NLA2×A1/HAG2A理论=A+a1c)中支撑轴:a1=VLA2×A1/HAG2A理论=A+A1-a1示例(一般)对于上车装置比较简单的车辆,例如自卸车、栅栏车或厢式车(未装随车吊、起重栏板等),为实现轴荷的最佳分配,y值和y'值应相等,否则会减少有效载荷。
轴荷分配及质心位置的计算
4 轴荷分配及质心位置的计算4.1轴荷分配及质心位置的计算根据力矩平衡原理,按下列公式计算汽车各轴的负荷和汽车的质心位置:g1l1+g2l2+g3l3+…=G2Lg1h1+g2h2+g3h3+…=Gh gg1+g2+g3+…=G (4.1)G1+G2=GG1L=GbG2L=Ga式中:g1、g2、g3——各总成质量,kg;l1、l2、l3——各总成质心到前轴距离,m;h1、h2、h3——各总成质心到地面距离,m;G1——前轴负荷,kg;G2——后轴负荷,kg;L——汽车轴距,m;a——汽车质心距前轴距离,m;b——汽车质心距后轴距离,m;h g——汽车质心到地面高度,m。
质心确定如表 4.1所示表4.1 各部件质心位置⑴.水平静止时的轴荷分配及质心位置计算 根据表4.1所求数据和公式(4.1)可求 满载:G 2=kg Llg ni ii 99.305236.310258.061==∑=G 1=4695-3052.99=1642.01kgm G L G a 18.2469536.399.30522=⨯=⨯=m a L b 18.118.236.3=-=-= 前轴荷分配:469501.16421=G G =35.0%后轴荷分配:469599.30522=G G =65.0% 0.97m 46954555.451===∑=Ghg h ni ii g 空载:=-=='∑=36.35.641206.1025812Llg G ni ii 1144.51kg='1G 2G G '-'=(2250+3×65)-1144.51=1300.49kg m G L G a 96.249.130036.351.1144''2=⨯=⨯=m a L b 4.096.236.3=-=-= 前轴荷分配:==''244549.13001G G 53.2% 后轴荷分配:==''244551.11442G G 46.8% 907.02445926.22161=='=∑=G hg h ni ii g根据表4.1,得知以上计算符合要求表4.2各类汽车的轴荷分配a.水平路面上汽车满载行驶时各轴的最大负荷计算对于后轮驱动的载货汽车在水平路面上满载加速行驶时各轴的最大负荷按下式计算:gg z h L h b G F ϕϕ--=)(1gz h L GaF ϕ-=2 (4.2)式中:1z F ——行驶时前轴最大负荷,kg ; 2z F ——行驶时后轴最大负荷,kg ;ϕ——附着系数,在干燥的沥青或混凝土路面上,该值为0.7~0.8。
专用汽车质心位置计算及验证方法
( 2 ) 满载水平质 心位置计算 。
L 满一旦 满
一
————— ■———一 芏眉影 F z 卜
± 型 坠
( 至后桥水平
车设 计 中是相 当重要参数 之一 。质心 高度对 专用汽 车 式中 : 1 ( 1 1 +1 2 ) 一底 盘轴距 ; 的使 用性能有重要 的影 响。一 般车辆 的纵 向稳 定性都 G 空一整车整备质量 ; 能满足要求 , 而侧 向稳定性对 厢式汽 车 、 罐式 汽车和集 G 满一满载总质量 ; 装箱运输车等质 心较 高 的专用 汽 车来 说 , 就 需要 认真 g 空 一 空载前轴质量 ; 考虑 了。质心过高 , 很易导致 车辆横 向失稳 , 特别是 弯 Z 空一 后轴轴载质量 ; 道行驶时 , 易造成侧 向倾 翻 , 操 纵稳定性 和侧倾 稳定性 g 满一满载前轴质量 ; 越不好 , 质心高度达到一定值 时 , 这两 项指标 就很难合 Z 满一后 轴轴载质量 。 格 。因此 , 使用厢式汽车和集装 箱运输 车时 , 除选用质 1 . 2 垂直质心高度位置计算 心较低 的车辆 以外 , 还应 注意合理配 载 , 即将 密度较 大 ( 1 ) 整车质心高度 。 的货物尽可能地 装在其 箱 ( 厢) 的下部 , 而密 度较 小 的 Eg i x y i 货物则应装在 上部 , 以保 证专 用汽 车 的行驶 稳 定性 和 h g 一 可 安全性 。因此质心高度就成 为确定汽 车质心 位置 的关 式 中: g i 一 整车各总成 的质量 ;
关键词 : 专 用汽 车 ; 质心位 置; 质 量反 应 法
中图分类号 : T B O 引言
文献标识码 : A
文章编 号 : 1 6 7 2 — 3 1 9 8 ( 2 0 1 5 ) 1 0 — 0 1 8 5 - 0 2
半挂牵引列车质心位置计算方法
半挂牵引列车质心位置计算方法
刘勇
【期刊名称】《汽车实用技术》
【年(卷),期】2024(49)1
【摘要】车辆质心位置测量是汽车设计、制造和检测过程中的重要参数,对于车辆质量有重要影响。
如何测量车辆质心,提高质心测量和计算精度,变得更加重要。
文章以车辆质心位置为主要研究对象,列举了纵倾法、侧倾法、摇摆法、悬挂法和零位法的主要质心位置测量原理,详细分析介绍了纵倾法和侧倾法的原理及计算推导过程。
以如何进行半挂牵引列车质心位置计算方法为主要研究内容,通过测量和理论计算相结合的手段,提出了一种半挂牵引列车质心位置计算方法,对实际工程应用有一定的借鉴作用。
【总页数】5页(P153-157)
【作者】刘勇
【作者单位】招商局检测车辆技术研究院有限公司
【正文语种】中文
【中图分类】U461
【相关文献】
1.试论欧美厢式半挂列车的"减负"(上)——减轻厢式半挂列车自身质量
2.试论欧美厢式半挂列车的"减负"(中)——减小厢式半挂列车行驶阻力
3.试论欧美厢式半挂列
车的"减负"(下)——减小厢式半挂列车行驶阻力4.半挂汽车列车的牵引座前置距与半挂汽车列车的标准化5.半挂汽车列车牵引联接装置牵引销受力分析
因版权原因,仅展示原文概要,查看原文内容请购买。
汽车质心位置的计算
汽车质心位置的计算1、 质心到前轴(坐标原点)的水平距离(1) 常规公式:giXi gi a ∑⋅∑=)( ------------------------(1) 式中 a 质心到前轴的水平距离gi 各总成(或载荷)质量Xi 各总成(或载荷)到前轴的水平距离轴荷(或簧载质量):gi L a G ∑⋅-=)1(1L Xi gi gi )(⋅∑-∑= ------------------------(2) gi La G ∑⋅=2. LXi gi )(⋅∑= ------------------------(3) 式中 1G 前轴负荷(或前簧载质量)2G 后轴负荷(或后簧载质量)L 轴距(2) 先求轴荷再算质心位置:⎥⎦⎤⎢⎣⎡⋅-∑=gi L Xi G )1(1 ------------------------(2a ) ⎥⎦⎤⎢⎣⎡⋅∑=gi L Xi G 2 ------------------------(3a ))1(12GG L G G L a -⋅=⋅= ------------------------(4) 式中 gi G G G ∑=+=21 总负荷(或簧载总质量)2、 质心离地高度常规公式:gihi gi h ∑⋅∑=)( -------------------------(5) 式中 h 质心到地面的高度hi 各总成(或载荷)离地高度*注:可以先算出)(hi gi ⋅∑再除以gi ∑,也可以先算出)(gihi gi ∑⋅再合成。
3、 各种质心的分别计算和合成(1) 分别计算:① 空载、满载状态的质心位置空载: gi 不包括乘员或/和载荷,仅包括相关总成。
满载: gi 包括乘员或/和载荷以及相关总成。
② 簧载质量、非簧载质量的质心位置簧载质量:gi 只包括属于簧载质量的总成,或者还包括乘员或载荷。
非簧载质量:gi 只包括属于非簧载质量的总成。
(2) 状态的合成1) 整车状态-----包括簧载与非簧载质量① 质心到前轴的水平距离: G a G a G a u u S S g ⋅+⋅=GL G a G u S S ⋅+⋅=2 ------------------------------(6) 式中 S G 簧载总质量21u u u G G G += 非簧载总质量1u G 前轴非簧载质量2u G 后轴非簧载质量u S G G G += 整车总质量g a 整车质心到前轴的水平距离S a 簧载质量质心到前轴的水平距离u a 非簧载总质量的质心到前轴的水平距离② 质心离地高度 G h G h G hg u u S S ⋅+⋅=GR G G h G u u S S ⋅++⋅=)(21 ---------------------------(7)式中 hg 整车质心离地高度S h 簧载质量的质心离地高度R h u = 非簧载质量的质心离地高度,一般设定为车轮静力半径R 。
汽车质心高度计算及误差分析方法研究
汽车质心高度计算及误差分析方法研究李多;王帅;李飞;门立忠【摘要】在整车前期开发过程中,质心参数扮演着重要的角色,直接影响到整车性能.为了更好的提高质心高度评估的准确性,在前期开发阶段以某款SUV为研究对象,提出一种质心计算方法,根据车型3D数据计算出该车型各系统的质心高度,同时比较同平台其他车型各系统质心高度差异,分析系统质心高度不一致原因,并建立一种质心误差评估方法,结合布置数据实现整车质心高度的评估.提高了整车质心评估的准确性及可靠性.【期刊名称】《汽车实用技术》【年(卷),期】2017(000)020【总页数】3页(P79-81)【关键词】质心高度;计算方法;误差评估【作者】李多;王帅;李飞;门立忠【作者单位】华晨汽车工程研究院,辽宁沈阳 110141;华晨汽车工程研究院,辽宁沈阳 110141;华晨汽车工程研究院,辽宁沈阳 110141;华晨汽车工程研究院,辽宁沈阳110141【正文语种】中文【中图分类】U467.1CLC NO.: U467.1 Document Code: A Article ID: 1671-7988 (2017)20-79-03 汽车的操作稳定性、平顺性及安全性已经成为评价整车性能的重要指标,而整车性能中的质心高度会对这些指标产生重大影响。
但一直以来,质心高度的评估仅仅通过参考几辆竞品车的质心高度进行简单定义,没有一种系统的评估方法,这样在整车的开发前期,会对底盘的性能计算的准确性(直接反映到后期的操作稳定性、平顺性及安全性)带来巨大影响。
因此制定一种可靠的、准确的质心高度评估方法显得尤为必要。
文章以某款SUV车型为研究对象,提出一种质心计算方法及误差分析方法,在车辆开发前期提高了质心评估的准确性[1]。
整车质心高度计算方法基于系统质心高度求和而得到,在整车坐标系下,计算各系统零部件的质心高度,然后再通过分析计算得到系统质心高度。
汽车可以分为10大系统,车身、闭合件、附件、内饰、外饰、电气、动力、传动、底盘及安全。
质心公式的推导
质心公式的推导摘要:1.质心定义及作用2.质心公式推导过程3.质心公式应用实例4.质心在实际生活中的重要性正文:质心,又称重心,是一个物体在空间中的平衡点。
它在物理学、力学等领域具有重要的理论价值和实践意义。
本文将介绍质心公式的推导过程,并举例说明其在实际生活中的应用。
一、质心定义及作用质心是一个物体所有部分的质量均匀分布时,物体内部各个部分所受重力的合力作用点。
在二维平面内,质心位于物体形心的位置。
质心在物体平衡、稳定以及运动过程中的作用至关重要。
它可以帮助我们分析物体在各种受力情况下的运动状态,为工程设计、建筑结构等领域提供理论依据。
二、质心公式推导过程质心公式是根据物体的质量分布和形状来计算质心位置的。
设物体质量为m,物体形状为S,物体上的任意一点到质心的距离为r。
根据物体质量分布的均匀性,可以得到以下公式:质心位置(x,y)= (Σmr / Σm)/ S其中,Σmr表示物体各部分质量与质心距离的乘积之和,Σm表示物体各部分质量之和。
通过数学运算,我们可以得到质心的坐标。
三、质心公式应用实例1.简单几何体:对于简单的几何体,如长方体、圆柱体等,可以通过测量各部分的尺寸和质量,直接计算出质心位置。
2.复杂物体:对于复杂的物体,如飞机、汽车等,需要先将物体分解为简单的几何体,然后分别计算各部分的质心,最后通过一定的算法求得整个物体的质心。
3.建筑结构:在建筑结构设计中,了解结构的质心位置有助于分析结构的稳定性和抗风能力。
通过计算质心,可以合理布局建筑物的重量分布,提高建筑物的抗风性能。
四、质心在实际生活中的重要性1.平衡控制:在运动控制、机器人等领域,掌握质心位置对于保持物体平衡具有重要意义。
例如,在无人驾驶汽车中,通过实时监测质心位置,可以有效避免因质心偏移导致的失控现象。
2.优化设计:在产品设计和工程设计中,合理调整质心位置可以提高产品的性能和稳定性。
例如,在飞机设计中,通过改变机翼形状和位置,可以调整质心与飞行速度的关系,实现更高效的飞行。
汽车质心高度计算公式
汽车质心高度计算公式汽车质心高度是指汽车质心相对于地面的垂直高度。
它对于汽车的稳定性和操控性有着重要的影响。
在设计和制造汽车的过程中,准确计算和控制汽车质心高度是非常关键的。
汽车质心高度的计算公式可以通过数学和物理原理推导得到。
但为了满足文章要求,我们将以人类的视角,用简单易懂的语言来解释汽车质心高度的计算方法。
汽车的质心是指汽车整个质量集中的地方,类似于物体的重心。
质心高度是指质心相对于地面的高度。
为了计算质心高度,我们需要考虑汽车各个部分的质量和位置。
一般来说,汽车的质心高度越低,其稳定性越好。
因为质心越低,汽车在转弯时产生的侧倾力就越小,操控性也就越好。
所以,在汽车设计中,降低质心高度是一个重要的目标。
那么,如何计算汽车的质心高度呢?我们需要知道汽车的总质量。
这可以通过称重设备来测量得到。
然后,我们需要确定汽车质心相对于前后轴的位置。
一种简单的方法是将汽车抬起,用两个支点分别支撑前后轮胎,然后测量质心相对于这两个支点的距离。
这样,我们就可以得到汽车质心相对于前后轴的位置。
接下来,我们需要知道汽车质心相对于地面的高度差。
这可以通过测量车身底部和地面的距离来得到。
我们可以用尺子或者测量工具来进行测量。
我们可以将汽车质心相对于前后轴的位置和质心相对于地面的高度差结合起来,得到汽车质心高度的计算结果。
需要注意的是,汽车质心高度的计算可能会受到一些因素的影响。
例如,汽车的燃料和乘客的位置会对质心高度产生一定的影响。
此外,不同类型的汽车,如轿车、SUV和卡车等,其质心高度可能会有所不同。
在汽车设计和制造过程中,我们需要通过合理的布局和结构设计来控制汽车的质心高度。
通过降低车身的重量分布和采用合适的悬挂系统,可以有效地降低汽车的质心高度,提高汽车的稳定性和操控性。
汽车质心高度的计算是非常重要的。
它对汽车的稳定性和操控性有着直接的影响。
在汽车设计和制造过程中,准确计算和控制汽车质心高度是一个关键的任务。
通过合理的设计和工程手段,我们可以降低汽车的质心高度,提高汽车的稳定性和操控性,为驾驶员提供更好的驾驶体验。
轴荷分配及质心位置的计算
4 轴荷分配及质心位置的计算4.1轴荷分配及质心位置的计算根据力矩平衡原理,按下列公式计算汽车各轴的负荷和汽车的质心位置:g1l1+g2l2+g3l3+…=G2Lg1h1+g2h2+g3h3+…=Gh gg1+g2+g3+…=G (4.1)G1+G2=GG1L=GbG2L=Ga式中:g1、g2、g3——各总成质量,kg;l1、l2、l3——各总成质心到前轴距离,m;h1、h2、h3——各总成质心到地面距离,m;G1——前轴负荷,kg;G2——后轴负荷,kg;L——汽车轴距,m;a——汽车质心距前轴距离,m;b——汽车质心距后轴距离,m;h g——汽车质心到地面高度,m。
质心确定如表 4.1所示表4.1 各部件质心位置⑴.水平静止时的轴荷分配及质心位置计算 根据表4.1所求数据和公式(4.1)可求 满载:G 2=kg Llg ni ii 99.305236.310258.061==∑=G 1=4695-3052.99=1642.01kgm G L G a 18.2469536.399.30522=⨯=⨯=m a L b 18.118.236.3=-=-= 前轴荷分配:469501.16421=G G =35.0%后轴荷分配:469599.30522=G G =65.0% 0.97m 46954555.451===∑=Ghg h ni ii g 空载:=-=='∑=36.35.641206.1025812Llg G ni ii 1144.51kg='1G 2G G '-'=(2250+3×65)-1144.51=1300.49kg m G L G a 96.249.130036.351.1144''2=⨯=⨯=m a L b 4.096.236.3=-=-= 前轴荷分配:==''244549.13001G G 53.2% 后轴荷分配:==''244551.11442G G 46.8% 907.02445926.22161=='=∑=G hg h ni ii g根据表4.1,得知以上计算符合要求表4.2各类汽车的轴荷分配a.水平路面上汽车满载行驶时各轴的最大负荷计算对于后轮驱动的载货汽车在水平路面上满载加速行驶时各轴的最大负荷按下式计算:gg z h L h b G F ϕϕ--=)(1gz h L GaF ϕ-=2 (4.2)式中:1z F ——行驶时前轴最大负荷,kg ; 2z F ——行驶时后轴最大负荷,kg ;ϕ——附着系数,在干燥的沥青或混凝土路面上,该值为0.7~0.8。
专用汽车设计常用计算公式汇集
第一章专用汽车的总体设计1 总布置参数的确定1.1 专用汽车的外廓尺寸(总长、总宽和总高)1.1.1 长①载货汽车≤12m②半挂汽车列车≤16.5m1.1.2 宽≤2.5m(不含后视镜、侧位灯、示廓灯、转向指示灯、可折卸装饰线条、挠性挡泥板、折叠式踏板、防滑链以及轮胎与地面接触部分的变形等)1.1.3 高≤4m(汽车处于空载状态,顶窗、换气装置等处于关闭状态)1.1.4 车外后视镜单侧外伸量不得超出汽车或挂车最大宽度处250mm1.1.5 汽车的顶窗、换气装置等处于开启状态时不得超出车高300mm1.2专用汽车的轴距和轮距1.2.1 轴距轴距是影响专用汽车基本性能的主要尺寸参数。
轴距的长短除影响汽车的总长外,还影响汽车的轴荷分配、装载量、装载面积或容积、最小转弯半径、纵向通过半径等,此外,还影响汽车的操纵性和稳定性等。
1.2.2 轮距轮距除影响汽车总宽外,还影响汽车的总重、机动性和横向稳定性。
1.3专用汽车的轴载质量及其分配专用汽车的轴载质量是根据公路运输车辆的法规限值和轮胎负荷能力确定的。
1.3.1 各类专用汽车轴载质量限值(JT701-88《公路工程技术标准》)前轴轴载质量(kg ) ≤3000 ≤5000 ≤7000 ≤6000 后轴轴载质量(kg ) ≤7000≤10000≤13000≤240001.3.2 基本计算公式 A 已知条件a ) 底盘整备质量G 1b ) 底盘前轴负荷g 1c ) 底盘后轴负荷Z 1d ) 上装部分质心位置L 2e ) 上装部分质量G 2f ) 整车装载质量G 3(含驾驶室乘员)g ) 装载货物质心位置L 3(水平质心位置)h ) 轴距)(21l l l +B 上装部分轴荷分配计算(力矩方程式)g 2(前轴负荷)×121l l +(例图1)=G 2(上装部分质量)×L 2(质心位置)例图1g 2(前轴负荷)=12221)()(l l L G +⨯上装部分质心位置上装部分质量则后轴负荷222g G Z -= C 载质量轴荷分配计算g 3(前轴负荷)×)21(1l l +=G 3×L 3(载质量水平质心位置)g 3(载质量前轴负荷)=13321)()(l l L G +⨯装载货物水平质心位置整车装载质量则后轴负333g G Z -= D 空车轴荷分配计算g 空(前轴负荷)=g 1(底盘前轴负荷)+g 2(上装部分前轴轴荷) Z 空(后轴负荷)=Z 1(底盘后轴负荷)+Z 2(上装部分后轴轴荷) G 空(整车整备质量)=空空Z g + E 满车轴荷分配计算 g 满(前轴负荷)=g 空+g 3 Z 满(后轴负荷)=Z 空+Z 3 G 满(满载总质量)=g 满+Z 满 1.4专用汽车的质心位置计算专用汽车的质心位置影响整车的轴荷分配、行驶稳定性和操纵性等,在总体设计时必须要慎重全面考虑计算或验算,特别是质心高度是愈低愈好。
汽车质心测量实验报告
一、实验目的1. 理解汽车质心高度对汽车操纵稳定性、平顺性和安全性的影响。
2. 掌握利用侧倾试验台测量汽车质心高度的方法。
3. 分析测量结果的不确定度,并对不确定度进行评定。
二、实验原理汽车质心高度是指汽车质心相对于地面的垂直高度。
它是影响汽车操纵稳定性、平顺性和安全性的重要参数。
本实验采用侧倾试验台测量法来测量汽车质心高度。
侧倾试验台测量法的原理如下:1. 将防侧滑挡块置于侧倾试验台的适当位置,标定试验台,排除防滑挡块及试验台自身对于测量结果的影响。
2. 被测车辆按照GB/T 14172-2009《汽车静侧翻稳定性台架试验方法》的要求置于侧倾试验台上,实施驻车制动并将防滑挡块安装到位。
3. 启动侧倾试验台,首先测量并记录水平放置的被测车辆四个轮胎的载荷。
4. 使被测车辆随侧倾试验台翻转平面缓慢倾斜,记录在一定倾斜角度下,被测车辆四个轮胎的轮荷。
5. 通过受力图分析,根据力矩平衡原理计算汽车质心高度。
三、实验器材1. 侧倾试验台2. 被测车辆3. 防侧滑挡块4. 测量工具(如测力计、钢卷尺等)5. 计算机及数据处理软件四、实验步骤1. 标定侧倾试验台,排除防滑挡块及试验台自身对于测量结果的影响。
2. 将被测车辆按照GB/T 14172-2009《汽车静侧翻稳定性台架试验方法》的要求置于侧倾试验台上,实施驻车制动并将防滑挡块安装到位。
3. 启动侧倾试验台,首先测量并记录水平放置的被测车辆四个轮胎的载荷。
4. 使被测车辆随侧倾试验台翻转平面缓慢倾斜,记录在一定倾斜角度下,被测车辆四个轮胎的轮荷。
5. 根据受力图分析,利用力矩平衡原理计算汽车质心高度。
6. 对测量结果进行数据处理,分析不确定度。
五、实验结果与分析1. 实验数据:| 轮荷(N) | 轮距(mm) | 车辆整备质量(kg) | 侧倾角度(度) | 质心高度(mm) || :-------: | :-------: | :--------------: | :------------: | :------------: || 5000 | 1600 | 1500 | 15 |580 |2. 不确定度评定:根据实验数据和测量原理,分析测量结果的不确定度来源,包括:(1)测量工具的精度:测量工具的精度会影响实验结果的准确性。
车辆动力学模型质心位置标定方法研究
2024年第03期总第322期车辆动力学模型质心位置标定方法研究郭传真范帅朱思瑶刘峰王玉龙广州汽车集团股份有限公司汽车工程研究院,广东广州,510641摘要:将整车动力学试验的纵向和横向控制量输入给15自由度车辆动力学仿真模型,比较它们的侧向加速度、横摆角速度、侧倾角、俯仰角等动力学响应指标与实车之间的差异。
根据经验调整15自由度车辆动力学仿真模型的质心纵向和垂向位置,使仿真与实验的动力学响应指标一致,以标定出比较准确的整车质心纵向和垂向位置,为车辆运动控制提供更准确的车辆动力学模型。
关键词:侧向加速度;横摆角速度;侧倾角;俯仰角;质心中图分类号:U463收稿日期:2024-01-23DOI:10 19999/j cnki 1004-0226 2024 03 0221前言车辆动力学建模是车辆控制系统设计的基础,车身姿态与自身关键参数的准确度与系统控制精度紧密相关[1-3]。
汽车的质心位置、质量和转动惯量是车辆动力学模型的重要参数[4-6]。
整车质心位置对车辆动力学性能影响较大,为了更好地控制车辆运动,需要获得准确的质心位置。
由于加工制造的误差以及实车使用过程中,负载的质量和位置的变化,使得实际车辆的质心位置与设计时的质心位置存在偏差。
本文假设车辆左右完全对称,不考虑质心横向位置偏差,本文通过仿真与实车数据对比的办法,标定出相对准确的质心纵向和垂向位置。
本文使用的15自由度车辆动力学仿真模型包括包括车身3个位移自由度(x 、y 、z )、车身3个旋转自由度(俯仰、侧倾、横摆)、4个车轮各自的转动、4个车轮各自的垂向跳动以及1个转向系统方向盘转向角输入。
车辆动力学模型原理如图1所示。
图1车辆动力学模型原理示意图本文使用的车辆动力学模型,其主要包括有车体系统、转向系统、悬架系统、传动系统、轮胎-地面力学系统等若干子模型。
a.车体模型。
车体模型采用均匀密度法建立,可以体现车体自身的质量、质心位置和三轴转动惯量,同时设置有阻力系数、升力系数等空气动力学指标。
专用汽车设计常用计算公式汇集 (2)
第一章专用汽车的总体设计1 总布置参数的确定1.1 专用汽车的外廓尺寸(总长、总宽和总高)1.1.1 长①载货汽车≤12m②半挂汽车列车≤16.5m1.1.2 宽≤2.5m(不含后视镜、侧位灯、示廓灯、转向指示灯、可折卸装饰线条、挠性挡泥板、折叠式踏板、防滑链以及轮胎与地面接触部分的变形等)1.1.3 高≤4m(汽车处于空载状态,顶窗、换气装置等处于关闭状态)1.1.4 车外后视镜单侧外伸量不得超出汽车或挂车最大宽度处250mm1.1.5 汽车的顶窗、换气装置等处于开启状态时不得超出车高300mm1.2专用汽车的轴距和轮距1.2.1 轴距轴距是影响专用汽车基本性能的主要尺寸参数。
轴距的长短除影响汽车的总长外,还影响汽车的轴荷分配、装载量、装载面积或容积、最小转弯半径、纵向通过半径等,此外,还影响汽车的操纵性和稳定性等。
1.2.2 轮距轮距除影响汽车总宽外,还影响汽车的总重、机动性和横向稳定性。
1.3专用汽车的轴载质量及其分配专用汽车的轴载质量是根据公路运输车辆的法规限值和轮胎负荷能力确定的。
1.3.1 各类专用汽车轴载质量限值(JT701-88《公路工程技术标准》)前轴轴载质量(kg ) ≤3000 ≤5000 ≤7000 ≤6000 后轴轴载质量(kg ) ≤7000≤10000≤13000≤240001.3.2 基本计算公式 A 已知条件a ) 底盘整备质量G 1b ) 底盘前轴负荷g 1c ) 底盘后轴负荷Z 1d ) 上装部分质心位置L 2e ) 上装部分质量G 2f ) 整车装载质量G 3(含驾驶室乘员)g ) 装载货物质心位置L 3(水平质心位置)h ) 轴距)(21l l l +B 上装部分轴荷分配计算(力矩方程式)g 2(前轴负荷)×(121l l +)(例图1)=G 2(上装部分质量)×L 2(质心位置)例图1g 2(前轴负荷)=12221)()(l l L G +⨯上装部分质心位置上装部分质量则后轴负荷222g G Z -= C 载质量轴荷分配计算g 3(前轴负荷)×)21(1l l +=G 3×L 3(载质量水平质心位置)g 3(载质量前轴负荷)=13321)()(l l L G +⨯装载货物水平质心位置整车装载质量则后轴负333g G Z -= D 空车轴荷分配计算g 空(前轴负荷)=g 1(底盘前轴负荷)+g 2(上装部分前轴轴荷) Z 空(后轴负荷)=Z 1(底盘后轴负荷)+Z 2(上装部分后轴轴荷) G 空(整车整备质量)=空空Z g + E 满车轴荷分配计算 g 满(前轴负荷)=g 空+g 3 Z 满(后轴负荷)=Z 空+Z 3 G 满(满载总质量)=g 满+Z 满 1.4专用汽车的质心位置计算专用汽车的质心位置影响整车的轴荷分配、行驶稳定性和操纵性等,在总体设计时必须要慎重全面考虑计算或验算,特别是质心高度是愈低愈好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汽车质心位置的计算
1、 质心到前轴(坐标原点)的水平距离
(1) 常规公式:
gi
Xi gi a ∑⋅∑=)( ------------------------(1) 式中 a 质心到前轴的水平距离
gi 各总成(或载荷)质量
Xi 各总成(或载荷)到前轴的水平距离
轴荷(或簧载质量):
gi L a G ∑⋅-=)1(1
L Xi gi gi )(⋅∑-
∑= ------------------------(2) gi L
a G ∑⋅=2 L
Xi gi )(⋅∑= ------------------------(3) 式中 1G 前轴负荷(或前簧载质量)
2G 后轴负荷(或后簧载质量)
L 轴距
(2) 先求轴荷再算质心位置:
⎥⎦⎤⎢⎣
⎡⋅-∑=gi L Xi G )1(1 ------------------------(2a ) ⎥⎦
⎤⎢⎣⎡⋅∑=gi L Xi G 2 ------------------------(3a )
)1(12G
G L G G L a -⋅=⋅= ------------------------(4) 式中 gi G G G ∑=+=21 总负荷(或簧载总质量)
2、 质心离地高度
常规公式:
gi
hi gi h ∑⋅∑=)( -------------------------(5) 式中 h 质心到地面的高度
hi 各总成(或载荷)离地高度
*注:可以先算出)(hi gi ⋅∑再除以gi ∑,也可以先算出)(
gi
hi gi ∑⋅再合成。
3、 各种质心的分别计算和合成
(1) 分别计算:
① 空载、满载状态的质心位置
空载: gi 不包括乘员或/和载荷,仅包括相关总成。
满载: gi 包括乘员或/和载荷以及相关总成。
② 簧载质量、非簧载质量的质心位置
簧载质量:gi 只包括属于簧载质量的总成,或者还包括乘员或载荷。
非簧载质量:gi 只包括属于非簧载质量的总成。
(2) 状态的合成
1) 整车状态-----包括簧载与非簧载质量
① 质心到前轴的水平距离: G a G a G a u u S S g ⋅+⋅=
G
L G a G u S S ⋅+⋅=2 ------------------------------(6) 式中 S G 簧载总质量
21u u u G G G += 非簧载总质量
1u G 前轴非簧载质量
2u G 后轴非簧载质量
u S G G G += 整车总质量
g a 整车质心到前轴的水平距离
S a 簧载质量质心到前轴的水平距离
u a 非簧载总质量的质心到前轴的水平距离
② 质心离地高度 G h G h G hg u u S S ⋅+⋅=
G
R G G h G u u S S ⋅++⋅=
)(21 ---------------------------(7)
式中 hg 整车质心离地高度
S h 簧载质量的质心离地高度
R h u = 非簧载质量的质心离地高度,一般设定为车轮静
力半径R 。
*注:①前、后轴非簧载质量的质心水平位置可设定就在前、后 轴的轴线上。
②前、后轴非簧载质量的质心垂直位置可设定都在车轮中心上。
③公式(6)、(7)经移项处理,可用来计算分离的簧载或非簧载质量的质心位置。
2) 满载状态------包括空载加乘员或货物
① 质心到前轴的水平距离 a p
p G a G a G a ⋅+⋅=00 ------------------------(8)
式中 0G 空载总质量(整车或簧载质量)
0a 空载总质量的质心到前轴的水平距离
p a G G G +=0 总质量(整车或簧载质量)
p G 乘员或货物总质量
p a 乘员或货物总质量的质心到前轴的水平距离
对于乘员:
pi G p ∑= -------------------------(9)
pi X pi a pi p ∑⋅∑=)
( ------------------------(10)
式中 pi 单个乘员质量
pi X 单个乘员质心到前轴的水平距离
对于货物:其总质量设定为均匀分布,质心位于货箱中心线。
② 质心离地高度 a p
p G h G h G h ⋅+⋅=00 -----------------------(11)
式中 0h 空载总质量的质心离地高度(整车或簧载质量)
p h 乘员或货物总质量的质心离地高度
对于乘员:
pi h pi h pi p ∑⋅∑=)
( -----------------------(12)
式中 pi h 单个乘员的质心离地高,应按其坐姿或立姿取值
对于货物:一般按均布货物总高度为600mm 考虑,即按货物质心高出货箱底板300mm 计算。
*注:式(8)、(11)按0G 含或不含非簧载质量u G ,其计算结果
则为整车的或簧载质量的满载质心位置。
陈耀明 2008年10月8日。