实数知识点总结71035
实数知识点总结71035
)(无限不循环小数负有理数正有理数无理数⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧--⎩⎨⎧---)()32,21()32,21()()3,2,1()3,2,1,0(无限循环小数有限小数整数负分数正分数小数分数负整数自然数整数有理数、、 ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧实数第一章 实数考点一、平方根、算数平方根和立方根1、平方根如果一个数的平方等于a,那么这个数就叫做a 的平方根(或二次方跟). 一个数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±”。
2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“".正数和零的算术平方根都只有一个,零的算术平方根是零.(0)0≥a==a a 2 ;注意的双重非负性:—(<0) 03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根). 一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:33a a -=-,这说明三次根号内的负号可以移到根号外面.4.正数的立方根是正数;0的立方根是0;负数的立方根是负数。
5。
())0,0(0,0>≥=≥≥=⨯b a b a b a b a ab b a考点二、实数的概念及分类 (3分)1.实数的分类(1)按实数的定义分类:(2)按实数的正负分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧负无理数负分数负整数负有理数负实数负数)零(既不是正数也不是正无理数正分数正整数正有理数正实数实数 2、无理数在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0。
1010010001…等;(4)某些三角函数,如sin60o 等(这类在初三会出现)考点三、实数的倒数、相反数和绝对值1、相反数实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立.2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0.零的绝对值是它本身,若|a|=a ,则a ≥0;若|a |=—a ,则a ≤0.正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
关于实数知识点总结
关于实数知识点总结一、实数的定义实数是指包括所有正数、负数、零,以及所有有理数和无理数的数集。
在数轴上,实数用来表示长度、面积、体积、温度等物理量。
1. 有理数:在有理数集中,包括整数和分数的集合。
例如,2,-5,3/4等都是有理数。
2. 无理数:无理数是指不能表示为两个整数的比值的实数。
例如,根号2,π,e等都是无理数。
二、实数的表示实数可以用数轴来表示,数轴是一个平直的线段,上面标有零点和正负无穷大。
在数轴上,实数可以用点来表示,点的位置与实数的大小对应。
1. 正数:在数轴上,正数表示为右边的点,如1、2、3等。
2. 负数:在数轴上,负数表示为左边的点,如-1、-2、-3等。
3. 零:零表示为数轴上的原点。
实数还可以用分数、小数等形式表示,例如1/3、0.5、-2.7等都是实数的一种表示方式。
三、实数的运算1. 实数的加法:实数的加法满足交换律和结合律,即对任意实数a、b、c,有a+b=b+a,(a+b)+c=a+(b+c)。
加法的逆元是减法,任意实数a,存在一个实数-b,使得a+(-b)=0。
2. 实数的减法:实数的减法可以看作加法的逆运算,即a-b=a+(-b)。
3. 实数的乘法:实数的乘法也满足交换律和结合律,即对任意实数a、b、c,有a*b=b*a,(a*b)*c=a*(b*c)。
乘法的逆元是除法,任意非零实数a,存在一个实数1/a,使得a*(1/a)=1。
4. 实数的除法:实数的除法可以看作乘法的逆运算,即a/b=a*(1/b)。
四、实数的性质1. 实数的稠密性:在实数轴上,任意两个不相等的实数之间都存在其他实数,即任意实数a、b,若a<b,则存在实数c,使得a<c<b。
2. 实数的有序性:实数可以按大小进行比较,任意两个实数a、b,满足且仅满足下列三种关系之一:a=b,a<b,a>b。
3. 实数的完备性:实数满足柯西收敛准则,任意柯西数列都收敛于某一实数。
关于实数的知识点总结
关于实数的知识点总结一、基本概念1.1 实数的定义实数是一切有理数和无理数的总称。
有理数指整数和分数的集合,无理数指不能表示为分数形式的数。
实数包括了整数、有理数和无理数三种类型的数。
1.2 实数的表示实数可以用十进制、分数、无限不循环小数等形式表示。
其中,十进制形式是常见的实数表示形式,可以直观地表示出实数的大小。
1.3 实数的性质实数具有加法、减法、乘法、除法等运算性质,满足交换律、结合律、分配律等基本性质。
此外,实数还满足最大值和最小值的性质,即任何有上界的非空有限实数集合必有上确界,并且同样地有下确界。
二、实数的子集2.1 有理数集有理数包括整数和分数,其中整数是不含小数部分的数,分数是两个整数的比,可以用分数形式表示。
2.2 无理数集无理数是不能表示为有理数的数,其十进制表示形式为无限不循环小数。
无理数包括了无限多的十进制无限不循环小数,如$\sqrt{2}$、$\pi$等。
2.3 实数集实数集是有理数和无理数的总称,它包括了一切可以表示为十进制数的数。
三、实数的运算3.1 加法和减法实数的加法和减法满足交换律和结合律,对任意两个实数a和b,有a+b=b+a,a-b≠b-a。
3.2 乘法和除法实数的乘法和除法满足交换律和结合律,对任意两个实数a和b,有a×b=b×a,a/b≠b/a。
3.3 幂运算实数的幂运算是指a的n次方,其中a是实数,n是自然数。
幂运算的性质包括a的m 次方与a的n次方的乘积等。
3.4 开方实数的开方是指对任意非负实数a,存在唯一的非负实数b,使得b的平方等于a。
开方的性质包括平方根存在性和唯一性等。
四、实数的序关系4.1 实数的大小比较实数之间可以进行大小比较,对于任意两个实数a和b,有a<b、a>b或a=b中的一种关系。
4.2 实数的绝对值实数a的绝对值是指a到原点的距离,用|a|表示。
如果a≥0,则|a|=a;如果a<0,则|a|=-a。
实数的知识点总结
实数的知识点总结实数是我们日常生活中常常接触到的数,它包括了所有的有理数和无理数。
实数具有以下的一些基本性质和定义:1. 实数的定义:实数是有理数和无理数的统称。
有理数是可表示为两个整数之比的数,例如:整数、分数,以及无限循环小数和无限不循环小数。
无理数是不能表示为两个整数之比的数,例如:π、e等。
2. 实数的分类:a) 有理数:有理数可以写成两个整数之间的比值,可以表示为有限小数或者无限循环小数。
例如:1, 2/3, 0.5,3.142857142857...等。
b) 无理数:无理数不能写成两个整数之间的比值,它们的小数部分是无限不循环的。
例如:π, e, √2等。
3. 实数的基本性质:a) 密度性:实数集中的任意两个数之间都存在无限个实数。
这意味着,无论两个实数相差多小,总是可以找到另一个实数位于它们之间。
b) 有序性:任意两个实数可以通过比较大小来确定它们的顺序。
这意味着,在实数集中,可以定义大小关系(大于、小于、等于)。
c) 连续性:实数集是一个连续的集合,没有跳跃或间隙。
这意味着在实数集中,没有空隙或不可达的数。
4. 实数运算规则:a) 加法:实数的加法满足交换律、结合律和分配律。
即,对任意实数a,b和c,有:a + b = b + a,(a + b) + c = a + (b + c),a * (b + c) = a * b + a * c。
b) 乘法:实数的乘法满足交换律、结合律和分配律。
即,对任意实数a,b和c,有:a * b = b * a,(a * b) * c = a * (b * c),a * (b + c) = a * b + a * c。
c) 乘法的逆元:实数a的乘法逆元是1/a,即a * (1/a) = 1。
d) 零元和单位元:0是实数加法的零元,1是实数乘法的单位元。
即,对任意实数a,有:a + 0 = a,a * 1 = a。
e) 减法和除法:减法可以转化为加法的逆运算,即a - b = a+ (-b)。
完整版)实数知识点总结
完整版)实数知识点总结第一章实数考点一:实数的概念及分类(3分)实数可以分为以下几类:1.正有理数2.零、有限小数和无限循环小数的有理数3.实数负有理数4.正无理数5.无限不循环小数的无理数6.负无理数7.整数,包括正整数、零和负整数。
8.正整数又称自然数。
9.有理数包括正整数、零、负整数、正分数和负分数。
10.无理数包括开方开不尽的数、有特定意义的数、有特定结构的数和某些三角函数。
考点二:实数的倒数、相反数和绝对值1.相反数是指符号相反的两个数,互为相反数的两个数在数轴上关于原点对称。
2.如果a与b互为相反数,则有a+b=0,a=-b,反之亦成立。
3.一个数的绝对值是表示这个数的点与原点的距离,|a|≥0.4.零的绝对值是它本身,若|a|=a,则a≥0;若|a|=-a,则a≤0.5.正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
6.如果a与b互为倒数,则有ab=1,反之亦成立。
7.倒数等于本身的数是1和-1,零没有倒数。
考点三:平方根、算数平方根和立方根1.如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方根)。
2.一个数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
3.正数a的正的平方根叫做a的算术平方根,记作“a”。
4.正数和零的算术平方根都只有一个,零的算术平方根是零。
5.如果一个数的立方等于a,那么这个数就叫做a的立方根(或a的三次方根)。
6.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
7.注意:3-√a=-3√a,这说明三次根号内的负号可以移到根号外面。
考点四:科学记数法和近似数1.一个近似数四舍五入到哪一位,就说它精确到哪一位,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。
2.科学记数法是将一个数写成n±a×10的形式,其中1≤a<10.1.科学记数法当一个数的绝对值非常大或非常小时,我们可以使用科学记数法来表示。
实数常识知识点归纳总结
实数常识知识点归纳总结一、有理数有理数是可以表示为两个整数的比值的数,包括整数、分数和循环小数。
有理数的性质包括:1. 有理数的加减乘除运算规律;2. 有理数的乘方和开方运算规律;3. 有理数的大小比较和大小关系;4. 有理数的取整和绝对值等基本运算。
二、无理数无理数是不能由两个整数的比值来表示的数,它们是无限不循环的小数。
无理数的性质包括:1. 无理数与有理数的加减乘除运算规律;2. 无理数的乘方和开方运算规律;3. 无理数的大小比较和大小关系;4. 无理数的取整和绝对值等基本运算。
三、实数实数是有理数和无理数的总称,实数的性质包括:1. 实数与实数的加减乘除运算规律;2. 实数的乘方和开方运算规律;3. 实数的大小比较和大小关系;4. 实数的取整和绝对值等基本运算。
四、实数的表示实数可以用各种方式来表示,包括有限小数、循环小数、无限不循环小数和根式等形式。
在表示实数时,需要注意保留足够的有效数字和小数点后的位数。
五、实数的运算实数的加减乘除运算是数学中最基本的运算,要掌握实数的运算规律,包括正负数相加减、乘法法则、除法运算。
另外还有实数的乘方和开方运算,这也是实数的重要运算。
六、实数的大小比较实数的大小比较是数学中的一个重要概念,掌握了实数的大小比较,才能够更好地理解和运用实数。
实数的大小比较包括有理数和无理数的大小比较,以及实数的大小关系。
七、实数的应用实数在数学中有着广泛的应用,包括代数计算、几何运算、函数图像和方程求解等方面。
实数的应用可以帮助我们解决各种数学问题,提高数学运算能力和解题能力。
总结:实数是数学中的一个重要概念,掌握了实数的常识知识点,才能够更好地理解和运用数学知识。
实数的常识知识点包括有理数、无理数、实数的性质、表示、运算、大小比较和应用等方面,需要不断地进行学习和实践,才能够掌握实数的知识,提高数学运算能力。
实数知识点总结归纳
实数知识点总结归纳一、实数的定义1. 实数的定义实数是指包括有理数和无理数在内的所有数的集合。
有理数是可以表示为两个整数的比值的数,包括整数、分数和循环小数等;无理数是不能表示为有理数的数,如π和根号2等。
实数的概念是对一切可以在数轴上标出的点的统称。
2. 实数的表示实数可以用十进制数表示,包括整数部分和小数部分。
例如,数3.14是一个实数,3是它的整数部分,0.14是它的小数部分。
3. 实数的性质实数具有有限性、稠密性、连续性和比较性等基本性质。
有理数与无理数的性质有所不同,但它们都是实数的一部分。
二、实数的性质1. 实数的顺序性实数集合中任意两个数都可以比较大小,即对于任意a,b∈R,要么a<b,要么a= b,要么a>b。
2. 实数的稠密性实数集合中任意两个不相等的实数之间都有无穷多个实数。
例如,任意两个有理数之间必存在无理数,任意两个无理数之间必存在有理数。
3. 实数的加法性质实数的加法运算满足交换律、结合律和分配律。
对于任意a,b,c∈R,有a+b=b+a,(a+b)+c=a+(b+c),a(b+c)=ab+ac。
4. 实数的乘法性质实数的乘法运算也满足交换律、结合律和分配律。
对于任意a,b,c∈R,有ab=ba,(ab)c=a(bc),a(b+c)=ab+ac。
另外,实数0的乘法恒等于0,实数1的乘法恒等于自身。
5. 实数的整除性实数可以相互整除,如果a,b∈R,且a≠0,则必存在一个实数c,使得a=bc。
这个性质表明了实数的整除性。
6. 实数的实数运算实数的加法、减法、乘法和除法都是封闭的,即对于任意a,b∈R,a+b,a-b,ab,a/b∈R。
这意味着实数的四则运算可以得到实数。
7. 实数的有理数和无理数性质有理数和无理数的性质有所不同,其中有理数可以表示为有限小数、循环小数或分数,而无理数不能用这些形式表示。
三、实数的应用1. 实数在数轴上的表示实数可以用数轴上的点表示,数轴是一个无限延伸的直线,用来表示实数的大小和相对位置。
(完整版)实数知识点总结
(完整版)实数知识点总结1. 实数的定义实数是包括有理数和无理数在内的数的集合。
实数集包含有理数集和无理数集。
2. 有理数的性质有理数是可以表示为两个整数的比值的数。
有理数的性质包括:- 有理数的四则运算性质:加法、减法、乘法和除法。
- 有理数的分数形式,即可以表示为两个整数的比值。
- 有理数可以表示为小数,且小数可以是有限的或无限循环的。
3. 无理数的性质无理数是不能表示为两个整数的比值的数。
无理数的性质包括:- 无理数不能表示为分数形式。
- 无理数的十进制表示是无限不循环的。
- 无理数可以用无限不循环的小数表示,但无法精确表示。
4. 实数的数轴表示实数可以在数轴上表示,数轴上的每个点都对应一个实数。
5. 实数的运算实数的运算包括加法、减法、乘法和除法。
实数的运算满足以下性质:- 交换律:a + b = b + a,a * b = b * a。
- 结合律:(a + b) + c = a + (b + c),(a * b) * c = a * (b * c)。
- 分配律:a * (b + c) = a * b + a * c。
6. 绝对值绝对值是一个数离0的距离,可以用来表示数的大小。
绝对值的性质包括:- 绝对值非负:|a| >= 0。
- 非零数的绝对值大于0:|a| > 0。
- 绝对值的加法:|a + b| <= |a| + |b|。
7. 实数的比较实数可以进行大小比较,实数的比较满足以下性质:- 反身性:a = a。
- 对称性:如果a > b,则b < a。
- 传递性:如果a > b,b > c,则a > c。
8. 实数的区间实数可以按照大小关系分为开区间、闭区间、半开半闭区间等。
区间的边界可以是实数也可以是无穷大。
9. 实数的近似值由于实数的无理数部分是无限不循环的,所以我们一般用近似值来表示实数。
10. 实数的应用实数在数学和科学中有广泛的应用,如在几何中表示线段长度、在物理中表示物体的质量等。
实数的知识点总结
实数的知识点总结实数的性质有很多,包括实数的大小比较、加法、减法、乘法、除法的性质以及实数的有序性、稠密性等。
下面来详细介绍一下实数的这些性质。
1. 实数的大小比较实数的大小比较是指在实数集合中,对实数的大小进行比较。
实数集合中的数可以用数轴上的点来表示,数轴上每个点都对应一个实数。
通过数轴,我们可以直观地比较实数的大小。
如果a和b是实数,那么它们之间有以下关系:(1)a=b,即a等于b;(2)a>b,即a大于b;(3)a<b,即a小于b;实数的大小比较是实数运算和实数不等式研究的基础,是十分重要的。
2. 实数的加法性质实数的加法性质包括交换律、结合律、零元素和加法逆元素等。
具体来说,对于任意实数a、b、c,有以下性质:(1)交换律:a+b=b+a;(2)结合律:(a+b)+c=a+(b+c);(3)零元素:存在一个实数0,对任意实数a,有a+0=a;(4)加法逆元素:对于任意实数a,存在一个实数-b,使得a+(-b)=0。
3. 实数的减法性质实数的减法性质是指实数的减法运算满足的性质。
对于任意实数a、b、c,有以下性质:(1)减法的定义:a-b=a+(-b);(2)减法的性质:a-b=c等价于a=c+b。
4. 实数的乘法性质实数的乘法性质包括交换律、结合律、分配律、单位元素和乘法逆元素等。
具体来说,对于任意实数a、b、c,有以下性质:(1)交换律:a×b=b×a;(2)结合律:(a×b)×c=a×(b×c);(3)分配律:a×(b+c)=a×b+a×c;(4)单位元素:存在一个实数1,对任意实数a,有a×1=a;(5)乘法逆元素:对于任意非零实数a,存在一个实数1/a,使得a×(1/a)=1。
5. 实数的除法性质实数的除法性质是指实数的除法运算满足的性质。
对于任意实数a、b、c,有以下性质:(1)除法的定义:a÷b=a×(1/b),其中b≠0;(2)除法的性质:a÷b=c等价于a=c×b。
七年级数学下册第一章《实数》知识点整理
七年级数学下册第一章《实数》知识点整理★重点★实数的有关概念及性质,实数的运算☆内容提要☆一、重要概念.数的分类及概念数系表:说明:“分类”的原则:1)相称(不重、不漏)初中数学复习提纲2)有标准2.非负数:正实数与零的统称。
(表为:x≥0)初中数学复习提纲常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。
3.倒数:①定义及表示法②性质:Aa≠1/a(a≠±1);B1/a中,a≠0;0<a<1时1/a>1;a>1时,1/a<1;D积为1。
4.相反数:①定义及表示法②性质:Aa≠0时,a≠-a;Ba与-a在数轴上的位置;和为0,商为-1。
.数轴:①定义(“三要素”)②作用:A直观地比较实数的大小;B明确体现绝对值意义;建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n-1偶数:2n(n为自然数)初中数学复习提纲7.绝对值:①定义(两种):代数定义:几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。
②│a│≥0,符号“││”是“非负数”的标志;③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
二、实数的运算.运算法则(加、减、乘、除、乘方、开方)2.运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律)3.运算顺序:A高级运算到低级运算;B(同级运算)从“左”到“右”(如÷初中数学复习提纲×);由“小”到“中”到“大”。
三、应用举例(略)附:典型例题.初中数学复习提纲已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│=b-a2已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b 的符号。
《实数》知识点归纳
《实数》知识点归纳一、实数的定义实数是有理数和无理数的总称。
有理数包括整数和分数,整数又包括正整数、零和负整数;分数包括正分数和负分数。
无理数,也称为无限不循环小数,不能写作两整数之比。
二、实数的分类1、按定义分类实数可以分为有理数和无理数。
有理数:能表示为两个整数之比的数,包括整数和分数。
例如:-3、0、1/2 等。
无理数:无限不循环小数,例如:π(圆周率)、√2(根号 2)等。
2、按正负分类实数可以分为正实数、零和负实数。
正实数:大于 0 的实数,包括正有理数和正无理数。
负实数:小于 0 的实数,包括负有理数和负无理数。
三、数轴数轴是规定了原点、正方向和单位长度的直线。
实数与数轴上的点一一对应,也就是说,每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。
例如,在数轴上表示√2,我们可以先确定一个单位长度,然后以原点为起点,向正方向画出长度为√2 个单位长度的线段,其终点对应的数就是√2。
四、相反数绝对值相等,符号相反的两个数互为相反数。
实数a 的相反数是a,0 的相反数是 0。
例如,5 的相反数是-5,π 的相反数是π。
五、绝对值实数 a 的绝对值表示为|a|,定义为:当a≥0 时,|a| = a;当 a<0 时,|a| = a。
绝对值的几何意义是数轴上表示数 a 的点到原点的距离。
例如,|3| = 3,|-2| = 2。
六、倒数若两个数的乘积为 1,则这两个数互为倒数。
非零实数 a 的倒数是1/a,0 没有倒数。
例如,2 的倒数是 1/2,-3 的倒数是-1/3。
七、平方根如果一个数的平方等于 a,那么这个数叫做 a 的平方根。
正数有两个平方根,它们互为相反数;0 的平方根是 0;负数没有平方根。
例如,9 的平方根是±3,因为(±3)²= 9。
八、算术平方根正数 a 的正的平方根叫做 a 的算术平方根,记作√a,0 的算术平方根是 0。
实数知识点大全总结
实数知识点大全总结实数是指包括有理数和无理数在内的所有数的集合。
实数包括正数、负数、零、有理数、无理数等各种类型的数。
实数有着丰富的数学性质和运算规律,在数学和其他学科中都有广泛的应用。
1. 实数的分类实数可以分为有理数和无理数两大类。
有理数是可以用分数表示的数,包括正整数、负整数、零、分数等。
有理数具有分数形式和小数形式两种表达方式,例如3/4和0.75都是有理数。
无理数是不能用分数表示的数,或者说是无限不循环小数的数。
无理数包括无限不循环小数和根号形式的数,例如π和√2都是无理数。
2. 实数的运算实数可以进行各种运算,包括加法、减法、乘法、除法等。
实数的运算遵循一定的性质和规律。
加法和减法:实数的加法和减法满足交换律、结合律和分配律,即a+b=b+a,a+(b+c)=(a+b)+c,a*(b+c)=a*b+a*c。
加法的逆元是减法,即a+(-a)=0。
乘法和除法:实数的乘法和除法也满足交换律、结合律和分配律,即a*b=b*a,a*(b*c)=(a*b)*c,a/(b*c)=(a/b)/c。
乘法的逆元是除法,即a*(1/a)=1。
3. 有理数的性质有理数具有以下性质:a) 有理数的加法和乘法封闭性:两个有理数的和、积仍然是有理数。
b) 有理数的序关系:任意两个有理数可以比较大小,成立大小关系。
c) 有理数的密集性:在任意两个有理数之间,都可以找到另一个有理数。
d) 有理数的稠密性:在有理数的任何两个不同的数之间总存在无数个有理数。
4. 无理数的性质无理数具有以下性质:a) 无理数的加法和乘法封闭性:两个无理数的和、积仍然是无理数。
b) 无理数的密度性:在任意两个无理数之间,总存在另一个无理数。
c) 无理数的非周期性:无理数小数部分是无限不循环小数。
d) 无理数的无限性:无理数是无限不可数的。
5. 实数的绝对值实数a的绝对值记作|a|,定义为:a≥0时,|a|=a;a<0时,|a|=-a。
实数知识点总结大全
一、实数的概念及性质1. 实数的定义:实数是指可以用在数轴上表示的数,包括有理数和无理数。
2. 实数的性质:实数具有以下性质:(1)实数集合是一个实数域,它包含了所有实数。
(2)实数是可比较的,即任意两个实数之间可以进行大小比较。
(3)实数是封闭的,对任意两个实数进行加减乘除得到的结果还是实数。
(4)实数满足传递性,即如果a>b,b>c,则a>c。
3. 实数的稠密性:实数的一个重要性质是稠密性,即在任意两个不相等的实数之间,都存在着无穷多个实数。
这意味着实数在数轴上是密密麻麻地分布着的,没有空隙。
4. 实数的有限性:实数作为一种数学对象,是有限的,也就是说,对于任意一个实数,它都可以用有限个操作从某个给定的实数得到。
5. 实数的无限性:实数也具有无限性,例如无理数的小数部分是无限不循环的,这使得实数具有无限性。
二、实数的运算1. 实数的加法:实数的加法满足结合律、交换律和分配律,即对于任意实数a、b、c,有a+(b+c)=(a+b)+c,a+b=b+a,a(b+c)=ab+ac。
2. 实数的减法:实数的减法可以看作加上一个相反数,即a-b=a+(-b)。
3. 实数的乘法:实数的乘法满足结合律、交换律和分配律,即对于任意实数a、b、c,有a(bc)=(ab)c,ab=ba,a(b+c)=ab+ac。
4. 实数的除法:实数的除法满足除法运算的性质,即分子与分母都不为零。
5. 实数的乘方:实数的乘方运算是幂运算的一种特殊形式,即对于实数a和自然数n,有a^n=a*a*...*a(共n个a)。
6. 实数的开方:实数的开方是乘方运算的逆运算,即给定一个实数a,求出另一个实数b,使得b^2=a。
7. 实数的绝对值:实数的绝对值是一个非负的实数,它表示了这个实数到原点的距离,通常用|a|表示。
8. 实数的倒数:对于一个非零实数a,它的倒数是1/a。
1. 实数的大小比较:实数之间可以进行大小比较,对于任意两个实数a和b,有以下比较关系:(1)a>b:表示a大于b。
实数全章知识点总结
实数全章知识点总结1. 实数的定义和性质实数是指所有的正数、负数、零以及所有有理数和无理数的总称,即实数包括有理数和无理数。
有理数是可以用分数表示的数,无理数是不能用分数表示的数,它们的和、差、积和商都是实数。
实数可以用有理数和无理数的集合表示为R={x | x是有理数或无理数}。
实数具有以下性质:(1)实数集合是有序的,即任意两个实数都可以比较大小;(2)实数集合是稠密的,即任意两个不相等的实数之间必定存在有理数和无理数;(3)实数集合是完备的,即实数集合中的任何一个有界非空集合都有上确界和下确界。
2. 实数的运算规则(1)加法与减法:实数的加法和减法满足交换律、结合律和分配律,即对任意的实数a、b和c,有a+b=b+a,a+(b+c)=(a+b)+c,a(b+c)=ab+ac;(2)乘法与除法:实数的乘法和除法满足交换律、结合律和分配律,即对任意的实数a、b和c,有ab=ba,a(bc)=(ab)c,a(b+c)=ab+ac;(3)幂运算:实数的幂运算满足幂运算法则,即对任意的实数a、b和c,有a^0=1,a^1=a,a^m·a^n=a^(m+n),(a^m)^n=a^(mn),(ab)^n=a^n·b^n。
3. 实数的代数式代数式是由实数和各种运算符号组合而成的式子,包括有理数和无理数等。
实数的代数式可以进行加减乘除和幂运算,可以用代数式表示各种数学问题,如方程、不等式和函数等,是数学中非常重要的基本概念之一。
4. 实数的绝对值实数的绝对值是指实数到原点的距离,记作|a|,如果a≥0,则|a|=a,如果a<0,则|a|=-a。
实数的绝对值有以下性质:(1)非负性:对任意的实数a,有|a|≥0;(2)非负性:对任意的实数a,有|a|=0当且仅当a=0;(3)三角不等式:对任意的实数a和b,有|a+b|≤|a|+|b|。
5. 实数的大小关系实数的大小关系是研究实数大小顺序的一门数学理论。
实数的知识点全总结
实数的知识点全总结一、实数的定义实数是指包括有理数和无理数在内的所有实际存在的数。
有理数是可以表示为两个整数的比的数,而无理数是不能表示为两个整数的比的数。
例如,根号2就是一个无理数,它不能被表示为两个整数的比。
实数的定义是数学上一个很基础的定义,但是实数的性质和运算规则却有很多深刻的内容,需要深入研究和探讨。
二、实数的性质1. 实数的闭包性:任意两个实数相加、相减、相乘得到的仍然是一个实数,这就是实数的闭包性。
实数集合对于加法和乘法是封闭的,这也是实数集合与有理数集合的一个重要区别。
2. 实数的稠密性:实数集合是一个稠密集合,任意两个实数之间都存在有理数,也存在无理数。
这就意味着实数集合是一个非常密集的数学概念,包含了所有可能的数。
3. 实数的有序性:实数集合是一个有序集合,任意两个实数都可以进行比较大小。
这是实数集合与无理数集合的一个重要区别,也是实数集合在数学分析中应用广泛的一个性质。
4. 实数的无限性:实数集合是一个无限集合,它包括了所有可能的有理数和无理数。
实数集合的无限性是数学中一个非常重要的概念,它在分析、代数、几何等不同领域都有重要的应用。
5. 实数的稳定性:实数集合是一个稳定的数学概念,它对于加法、乘法、取绝对值等运算都是稳定的。
这也是实数集合与有理数集合的一个重要区别,有理数集合在进行除法运算时往往会出现不稳定的情况。
三、实数的运算规则1. 实数的加法:对于任意两个实数a和b,它们的和a+b也是一个实数。
加法满足交换律、结合律和分配律等运算规则。
2. 实数的减法:对于任意两个实数a和b,它们的差a-b也是一个实数。
减法是加法的逆运算,减法也满足交换律和结合律。
3. 实数的乘法:对于任意两个实数a和b,它们的积ab也是一个实数。
乘法满足交换律、结合律和分配律等运算规则。
4. 实数的除法:对于任意两个实数a和b,如果b不等于0,那么它们的商a/b也是一个实数。
实数的除法是乘法的逆运算,除法满足交换律和结合律。
实数的相关知识点总结
实数的相关知识点总结一、实数的分类根据数轴上的位置,实数可以分为正数、负数和零。
1. 正数:指大于零的实数,通常用正号(+)表示。
2. 负数:指小于零的实数,通常用负号(-)表示。
3. 零:指等于零的实数。
根据是否可以用分数表示,实数可以分为有理数和无理数。
1. 有理数:指可以表示为两个整数的比值的实数,包括整数和分数。
有理数的特点是其小数部分是有限的或者循环的。
2. 无理数:指不能表示为两个整数的比值的实数,其小数部分是无限不循环的。
常见的无理数有π、e和根号2等。
实数还可以分为代数数和超越数。
1. 代数数:指可以是方程的根的实数,即代数方程的解。
例如,整数、分数、无理数都是代数数。
2. 超越数:指不能是任何代数方程的解的实数,即不能用代数表达式表示的实数。
π和e都是超越数的例子。
二、实数的性质1. 实数的比较性质:对于任意两个不相等的实数a和b,要么a>b,要么a<b。
2. 实数的加法性质:对于任意三个实数a、b、c,有加法交换律a+b=b+a和加法结合律(a+b)+c=a+(b+c)。
3. 实数的乘法性质:对于任意三个实数a、b、c,有乘法交换律a×b=b×a和乘法结合律(a×b)×c=a×(b×c)。
4. 实数的分配律:对于任意三个实数a、b、c,有乘法对加法的分配律a×(b+c)=a×b+a×c。
5. 实数的零元素:存在一个实数0,使得对于任意实数a,有a+0=a。
6. 实数的负元素:对于任意实数a,存在一个实数-b,使得a+(-b)=0。
7. 实数的乘法单位元素:存在一个实数1,使得对于任意实数a,有a×1=a。
8. 实数的除法单位元素:对于任意非零实数a,存在一个实数1/a,使得a×(1/a)=1。
9. 实数的绝对值:对于任意实数a,有其绝对值|a|≥0,当a≠0时,|a|就是a的绝对值。
实数章节知识点总结
实数章节知识点总结一、实数的基本概念1. 实数的定义实数是所有有理数和无理数的集合,用R表示,即R={x|x是有理数或无理数}。
2. 实数的分类实数可以分为有理数和无理数两大类。
(1)有理数是可以表示为分数形式的数,包括正整数、负整数、零、分数等。
有理数的集合用Q表示,即Q={x|x=m/n,m和n为整数,且n≠0}。
(2)无理数是不能表示为分数形式的数,并且无限不循环小数。
无理数的集合用R-Q表示,即R-Q={x|x不是有理数}。
3. 实数的表示实数可以用小数、分数、根式等形式表示,例如:π,e,√2等就是无理数的例子。
二、实数的性质1. 有理数的性质(1)有理数的四则运算有理数的加减乘除运算仍然是有理数,即有理数集合对于加减乘除封闭。
(2)有理数的比较对于任意两个有理数a和b,有以下性质:① 若a>b,则a+c>b+c(c为任意有理数)② 若a>b且c>0,则ac>bc③ 若a>b且c<0,则ac<bc2. 实数的性质(1)实数集合的稠密性实数集合中的有理数和无理数是密集分布的,即任意两个实数之间都存在无限多的有理数和无理数。
(2)实数的有序性任意两个实数a和b,必属于下列三种关系中的一种:① a=b② a<b③ a>b(3)实数的加法封闭性和乘法封闭性任意两个实数的和、差、积仍然是实数。
三、实数的运算规则1. 实数的加法和减法(1)同号相加:两个正数相加,结果仍为正数;两个负数相加,结果仍为负数。
(2)异号相加:一个正数与一个负数相加,结果的绝对值为它们的差,符号取绝对值较大的数的符号。
2. 实数的乘法和除法(1)同号相乘:两个正数相乘,结果为正数;两个负数相乘,结果为正数。
(2)异号相乘:一个正数与一个负数相乘,结果为负数。
(3)除法:除数不为0时,实数的除法遵循乘法的性质。
3. 实数的乘方和开方实数的n次乘方和n次开方都有以下规律:(1)同号实数的n次乘方是正数,异号实数的n次乘方是负数。
实数常识知识点总结
实数常识知识点总结一、实数的定义实数包括有理数和无理数两个部分,有理数是可以表示为两个整数的比值,而无理数是不能以有限小数位数表示为两个整数的比值的数。
有理数包括整数和分数两部分,整数包括正整数、负整数和0,分数是整数的比值,可以表示为a/b的形式,其中a是分子,b是分母,a和b都是整数且b不等于0。
无理数是不能被表示为两个整数的比值的数,如π和根号2等。
二、实数的性质1. 交换律:对于任意实数a和b,a+b=b+a, a*b=b*a2. 结合律:对于任意实数a、b和c,(a+b)+c=a+(b+c),(a*b)*c=a*(b*c)3. 分配律:对于任意实数a、b和c,a*(b+c)=a*b+a*c4. 含元性:对于任意实数a,总有唯一的实数-b,使得a+(-b)=05. 乘除法的保号性:对于任意实数a和b,如果a大于0,且b大于0,则a*b大于0;如果a小于0,且b大于0,则a*b小于0;如果a等于0,或者a和b中有一个等于0,则a*b等于0。
另外,如果a大于0,且b大于0,则a/b大于0;如果a小于0,且b大于0,则a/b小于0。
6. 分数的乘除法:对于任意有理数a、b、c和d,(a/b)*(c/d)=(a*c)/(b*d);对于a、b和c(d≠0),a/(b/c)=(a*c)/b7. 全序性:对于任意实数a和b,要么a大于b,要么a小于b,或者a等于b8. 混合运算:对于任意实数a、b、c和d,有a+b=c+d,a*c=b*d时可以进行混合运算9. 实数的无限性:实数是无限的,没有开头和结尾10. 实数的稠密性:有理数和无理数混合在一起,将实数轴分成无数不可数的点11. 实数的最大最小性:任何非空有界的实数的集合有最小和最大值12. 实数的完备性:实数的有界非空集合必有上确界和下确界13. 实数的稳定性:如果一个数列有上确界和下确界,则有界数列一定有收敛子列14. 实数的分解性:任意正实数x,总可以分解成两个实数的乘积,即x=a*b,其中a是最小正实数,b是正实数三、实数的运算实数的运算包括加法、减法、乘法和除法四种基本运算。
实数 知识点总结
实数知识点总结一、实数的基本概念实数是指所有有理数和无理数的集合,用符号R表示。
有理数是可以表示为两个整数之比的数,包括整数和分数;无理数是不能表示为有理数的数,如根号2、圆周率等。
实数包括正实数、负实数和零。
正实数是大于零的实数,用正数符号+表示;负实数是小于零的实数,用负号-表示;零是没有方向的实数,用0表示。
二、实数的性质1. 实数集的有序性:实数集是有序的,任意两个实数a和b之间一定有大小关系,即a <b、a = b、a > b。
2. 实数集的稠密性:实数集中任意两个不相等的实数之间永远存在另一个实数。
3. 实数集的等差性:实数集中的任意两个数相减得到的差总是一个实数。
4. 实数集的无限性:实数集是无限的,不仅包括无限的有理数,还包括无限的无理数。
5. 实数集的稳定性:实数集中的任意两个数进行加法、减法、乘法、除法等运算后,得到的结果仍然是一个实数。
三、实数的表示与比较实数可以用小数、分数、根式等形式进行表示。
对于小数,可以用有限小数和无限循环小数两种形式;对于分数,可以用最简分数形式进行表示;对于根式,可以用开平方、开立方等形式进行表示。
对于实数的比较,可以通过大小关系符号进行比较。
当a > b时,表示a比b大;当a < b 时,表示a比b小;当a = b时,表示a等于b。
四、实数的运算规则1. 实数的加法:实数a和b的加法运算按照一般的加法规则进行,即a + b = b + a。
其中,满足交换律、结合律和单位元。
2. 实数的减法:实数a和b的减法运算可以看作加法运算的逆运算,即a - b = a + (-b)。
其中,a减b等于a加上b的相反数。
3. 实数的乘法:实数a和b的乘法运算按照一般的乘法规则进行,即a * b = b * a。
其中,满足交换律、结合律和单位元。
4. 实数的除法:实数a和b的除法运算可以看作乘法运算的逆运算,即a / b = a * (1/b)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 实数
考点一、平方根、算数平方根和立方根
1、平方根
如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
一个数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±”。
2、算术平方根
正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0) 0≥a
==a a 2 ;注意a 的双重非负性:
-a (a <0) a ≥0
3、立方根
如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。
4.正数的立方根是正数;0的立方根是0;负数的立方根是负数。
5.())0,0(0,0>≥=≥≥=⨯b a b a b a b a ab b a
考点二、实数的概念及分类 (3分)
1.实数的分类
)(无限不循环小数负有理数
正有理数无理数⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧--⎩⎨⎧---)()32,21()32,21()()3,2,1()3,2,1,0(无限循环小数有限小数整数负分数正分数小数分数负整数自然数整数有理数、、 ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧实数(1)按实数的定义分类:
(2)按实数的正负分类: ⎪⎪⎪⎪⎪⎩
⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧负无理数负分数负整数负有理数负实数负数)零(既不是正数也不是正无理数正分数
正整数正有理数正实数实数
2、无理数
在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类:
(1)开方开不尽的数,如32,7等;
(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3
π+8等; (3)有特定结构的数,如0.1010010001…等;
(4)某些三角函数,如sin60o 等(这类在初三会出现)
考点三、实数的倒数、相反数和绝对值
1、相反数
实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=-b ,反之亦成立。
2、绝对值
一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值是它本身,若|a|=a,则a≥0;若|a|=-a,则a≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数
如果a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点四、科学记数法和近似数
1、有效数字
一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。
2、科学记数法
把一个数写做
n
a10
⨯
±的形式,其中10
1<
≤a,n是整数,这种记数
法叫做科学记数法。
考点五、实数大小的比较
1、数轴
规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
2、实数大小比较的几种常用方法
(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。
(2)求差比较:设a、b是实数,
,
0b
a
b
a>
⇔
>
-
,
0b
a
b
a=
⇔
=
-
b
a
b
a<
⇔
<
-0
(3)求商比较法:设a、b是两正实数,
;1;1;1b a b
a b a b a b a b a <⇔<=⇔=>⇔> (4)绝对值比较法:设a 、b 是两负实数,则b a b a <⇔>。
(5)平方法:设a 、b 是两负实数,则b a b a <⇔>22。
考点六、实数的运算 (做题的基础,分值相当大)
1、加法交换律 a b b a +=+
2、加法结合律 )()(c b a c b a ++=++
3、乘法交换律 ba ab =
4、乘法结合律 )()(bc a c ab =
5、乘法对加法的分配律 ac ab c b a +=+)(
6、实数混合运算时,对于运算顺序有什么规定?
实数混合运算时,将运算分为三级,加减为一级运算,乘除为二级运算,乘方为三级运算。
同级运算时,从左到右依次进行;不是同级的混合运算,先算乘方,再算乘除,而后才算加减;运算中如有括号时,先做括号内的运算,按小括号、中括号、大括号的顺序进行。
7、有理数除法运算法则就什么?
有理数除法运算法则可用两种方式来表述:第一,除以一个不等于零的数,等于乘以这个数的倒数;第二,两数相除,同号得正,异号得负,并把绝对值相除。
零除以任何一个不为零的数,商都是零。
8、什么叫有理数的乘方?幂?底数?指数?
相同因数相乘的积的运算叫乘方,乘方的结果叫幂,相同因数的个数叫指数,这个因数叫底数。
记作: a n
9、有理数乘方运算的法则是什么?
负数的奇次幂是负数,负数的偶次幂是正数。
正数的任何次幂都是正数。
零的任何正整数幂都是零。
10、加括号和去括号时各项的符号的变化规律是什么?
去(加)括号时如果括号外的因数是正数,去(加)括号后式子各项的符号与原括号内的式子相应各项的符号相同;括号外的因数是负数去(加)括号后式子各项的符号与原括号内式子相应各项的符号相反。
思维启动
如图是一块由两个正方形并排放在一起而成的硬纸板,请你用两刀把它裁成四块,然后拼成一个正方形,拼后的正方形边长为多少?。