最新代数学选讲教学大纲

最新代数学选讲教学大纲
最新代数学选讲教学大纲

代数学选讲教学大纲

《代数学选讲》教学大纲

适用专业:数学与应用数学

执笔人:王庚

审定人:王宏勇

系负责人:张从军

南京财经大学应用数学系

《代数学选讲》教学大纲

课程代码:120010

英文名:Selected Topics in Advanced Algebra

课程类别:专业选修课

适用专业:数学与应用数学

前置课:数学分析、线性代数、概率论、数理统计

后置课:抽象代数(续),泛代数等

学分:3学分

课时:54课时

主讲教师:周惠新等

选定教材:[1] 陈志杰, 陈咸平, 林磊, 瞿森荣, 韩士安,高等代数与解析几何习题精解[M]. 北京: 科学出版社, 2002.[2]北京大学数学系几何与代数教研室小组,高等代数(第三版)[M].北京:高等教育出版社,2003.

课程概述:

本课程主要讲授高等代数(行列式及其计算、线性方程组理论、矩阵初步、二次型理论、线性空间和线性变换、Euclid空间)解题方法和内容再认识、专题选讲(如线性代数应用、用数学软件做线性代数、从模的观点来认识线性代数、特殊矩阵的研究)。

高等代数选论课程是数学类专业及相关专业的主干基础课高等代数的归纳整理、再认识,以及某些专题的深入,使学生在更好的掌握线性代数的基础知识和基础理论,并补充详讲多项式理论,了解高等代数的应用、软件实现、抽象代数中群、环、域的基本概念及线性代数的最新发展方向,进一步熟悉和掌握抽象的、严格的代数解题方法。

教学目的:

通过高等代数的教学,应使学生系统掌握高等代数的知识和理论,深入理解具体与抽象、特殊与一般、有限与无限等辩证关系,提高抽象思维、逻辑推理及运算能力,提高分析问题和解决问题的能力。进一步向学生渗透现代数学的研究结构和研究方式。同时,提高运用代数方法解决实际问题的能力;能在较高的理论水平的基础上,处理实际应用的有关问题。作为代数选论课程,学习本课程,要求学生对其他代数能有一些了解。

教学方法:

高等代数选论主要为课堂教学,辅助以上机实践和模拟测试,增强学生对有关内容的理解和掌握。

各章教学要求及教学要点

第一章多项式内容与解题方法

学时分配:8课时

教学要求:

1.理解数域上一元多项式环的概念及多项式和与积的性质。

2.理解最大公因式概念、性质及多项式互素的概念和性质。

3.了解不可约多项式概念,理解多项式唯一因式分解定理。

4.理解重因式的概念和多项式根的概念。了解多元多项式和对称多项式概念。

教学内容:

一、数域,一元多项式环的基本概念,

二、整除概念,最大公因式,

三、不可约多项式,因式分解定理,

四、重因式,

五、多项式的根,多项式函数,

六、代数基本定理,

七、实系数多项式,多元多项式环,对称多项式。

第二章行列式及其计算

学时分配:6课时

教学要求:

1.理解和掌握n阶行列式的概念与性质。

2.熟练并掌握n阶行列式的计算方法。

教学内容:

一、基本要求与主要内容。

二、基本题型与典型例题。

第三章线性方程组

学时分配:8课时

教学要求:

1.理解齐次线性方程组有非零解的充要条件。

2.理解非齐次线性方程组有解的充要条件。

3.掌握齐次方程组有解判别定理和基础解系及通解的求法。

4.掌握非齐次线性方程组通解的求法。

5.熟练运用矩阵的初等变换解一般线性方程组。

教学内容:

一、基本要求与主要内容,

二、基本题型与典型例题。

第四章矩阵

学时分配:6课时

教学要求:

1.理解矩阵的概念、性质和相关的基础知识。

2.会求逆矩阵和掌握矩阵的相关计算。

3.了解广义逆矩阵概念,了解广义逆矩阵与齐次方程组解的关系。教学内容:

一、基本要求与主要内容,

二、基本题型与典型例题。

第五章二次型

学时分配:3课时

教学要求:

1.理解二次型概念及其相关理论,掌握合同变换与合同矩阵概念。

2.熟练运用配方法和初等变换法化二次型为标准形。

教学内容:

一、基本要求与主要内容,

二、基本题型与典型例题。

第六章线性空间

学时分配:4课时

教学要求:

1.理解线性空间概念及其相关理论。

2.熟练掌握相关的计算。

教学内容:

一、基本要求与主要内容,

二、基本题型与典型例题。

第七章线性变换学时分配:3课时

教学要求:

1.理解线性变换概念及其相关理论。

2.熟练掌握相关的计算。

教学内容:

一、基本要求与主要内容,

二、基本题型与典型例题。

第八章λ—矩阵

学时分配:3课时

教学要求:

1.理解λ—矩阵概念及其相关理论。

2.熟练掌握相关的计算。

教学内容:

一、基本要求与主要内容,

二、基本题型与典型例题。

第九章欧几里得空间学时分配:3课时

教学要求:

1.理解欧几里得空间概念及其相关理论。

2.熟练掌握相关的计算。

现代代数基础复习资料

1 设a ,b 为群G 的元素,设a 为5阶元,且33 a b ba =,证明ab ba =。 证明:因为33a b ba =,所以133b a b a -=,所以1326()b a b a -=,即166 b a b a -=。 又a 为5阶元,所以5a e =,所以1 b ab a -=,即ab ba =。 2 证明对群G 的非空子集H ,若对所有,x y H ∈,1 xy -也属于H ,证明H 是一个子群。 证明:因对,x y H ∈,1xy H -∈,所以11 ,,x H e xx H x xe H --?∈=∈=∈, 1 111 ,,()y H y e y H x y x y H ----?∈=∈=∈,所以H 是G 的子群。 3 证明在任意群G 中,对其任意两个元素a ,b ,ab 与ba 的阶相等。 证明:因为()1 ab a ba a -=,故ab 与ba 共轭。 设ab n =,若()m ba e =,则1[()]m a ba a e -=,即()|m ab e n m =? 所以||||ab ba n ==。 4 置换群4S 中有多少个2阶元? 解:由置换群中每个元素都可表示为不相交的轮换之积,而k 轮换的阶为k 。两不相交轮换的阶为k 轮换的最小公倍数。故二阶元有9个,为: (1 2),(1 3),(1 4), (2 3), (2 4),(3 4),(1 2)(3 4),(1 3)(2 4),(1 4)(2 3)。 5证明群G 的自同构的集合以映射的合成为乘法构成一个群。 证明::AutG G =群的所有自同构的集合,恒等映射,id AutG AutG ∈≠?故 由G 上的所有双射显然构成一个群,关于映射的乘法,下证AutG 为其子群 (1)AutG 对于映射的合成封闭: ,(),()A u t G a b G a b G στττ?∈?∈?∈,, 故()(())(()())(())(())()()ab ab a b a b a b στστσττστστστστ==== 故AutG στ∈。 (2)下证1 AutG AutG σσ -?∈?∈ '''''1'1,,,,(),()(),()AutG a b G a b G a a b b a a b b σσσσσ--∈?∈?∈====使即 则1 1 ' ' 1 '' 1 '' '' 1 1 ()(()())(())()()()ab a b a b a b a b a b σσσσσσσσσσ------===== 所以1AutG σ -∈。 故AutG 关于映射合成的乘法构成一个群。 6 设G 是一个群。证明由()n x x φ=定义的映射:G G φ→是G 到自身的同态。

近世代数基础练习题

1.证明:在环R 到环R 的一个同态满射φ之下,R 的一个子环S 的象S 是R 的一个子环。 证明: S 为R 的一个子环, ∴0∈S , 而0=(0)φ∈S , 故S 非空。 对,a b ?∈S ,?,a b ∈S ,使得a =()a φ,b =()b φ 由于S 是环R 的子环,故a b S -∈,ab S ∈ ∴ a b -=()a φ-()b φ=()a b φ-S ∈ a b = ()a φ()b φ=()ab φS ∈ 故S 是R 的一个子环。 2. 证明:在环R 到环R 的一个同态满射φ之下, R 的一个子环S 的逆象S 是R 的一个子环。 证明: S 为R 的子环, ∴0∈S , 而0=(0)φ∈S , ∴0∈S ,故S 非空。 对?,a b ∈S ,?,a b ∈S ,使得 a =()a φ,b =()b φ, 由于S 是环R 的子环, 故 a b -=()a φ-()b φ=()a b φ-S ∈ a b =()a φ()b φ=()ab φS ∈ ∴a b S -∈,ab S ∈ 故S 是R 的一个子环。 3.证明:在环R 到环R 的一个同态满射φ之下,R 的一个理想A 的象A 是R 的一个理想。 证明: A 为R 的理想,∴ 0A ∈,,而0=(0)φ∈A ,故A 非空。 对,a b A ?∈,r R ?∈, ?,a b ∈A ,r R ∈ 使得 ()a a φ=,()b b φ=,()r r φ= 由于A 是环R 的一个理想,故 a b A -∈,ra A ∈,ar A ∈

∴ a b -=()a φ-()b φ=()a b φ-A ∈ ra =()r φ()a φ=()ra A φ∈, ar =()a φ()r φ=()ar A φ∈ 故 A 是环R 的一个理想。 4.证明:在环R 到环R 的一个同态满射φ之下,R 的一个理想A 的逆象A 是R 的一个理想。 证明: A 为环R 的理想,∴0∈A , 而0=φ(0)∈A , ∴0∈A, 故A 非空。 对于?,a b ∈A ,?r R ∈,?,a b ∈A ,r R ∈ 使得 ()a a φ=,()b b φ=,()r r φ= 由于A 是环R 的理想, 故 a -b ∈A ,ar A ∈,ra A ∈。 a -b =()a φ-()b φ=()a b φ-A ∈ r a =()r φ()a φ=()ra φ∈A , ar =()a φ()r φ=()ar φA ∈ ∴a b A -∈,ra A ∈,ar A ∈, 故 A 是R 的一个理想。

近世代数的基础知识

近世代数的基础知识 初等代数、高等代数与线性代数都称为经典代数(Classical algebra),它的研究对象主要就是代数方程与线性方程组)。近世代数(modern algebra)又称为抽象代数(abstract algebra),它的研究对象就是代数系,所谓代数系,就是由一个集合与定义在这个集合中的一种或若干种运算所构成的一个系统。近世代数主要包括:群论、环论与域论等几个方面的理论,其中群论就是基础。下面,我们首先简要回顾一下集合、映射与整数等方面的基础知识,然后介绍本文需要用到的近世代数的相关知识。 3.1 集合、映射、二元运算与整数 3.1.1 集合 集合就是指一些对象的总体,这些对象称为集合的元或元素。“元素a 就是集合A 的元”记作“A x ∈”,反之,“A a ?”表示“x 不就是集合A 的元”。 设有两个集合A 与B,若对A 中的任意一个元素a (记作A a ∈?)均有B a ∈,则称A 就是B 的子集,记作B A ?。若B A ?且A B ?,即A 与B 有完全相同的元素,则称它们相等,记作B A =。若B A ?,但B A ≠,则称A 就是B 的真子集,或称B 真包含A,记作B A ?。 不含任何元素的集合叫空集,空集就是任何一个集合的子集。 集合的表示方法通常有两种:一种就是直接列出所有的元素,另一种就是规定元素所具有的性质。例如: {}c b a A ,,=; {})(x p x S =,其中)(x p 表示元素x 具有的性质。 本文中常用的集合及记号有: 整数集合{}Λ,3,2,1,0±±±=Z ; 非零整数集合{}{}Λ,3,2,10\±±±==* Z Z ; 正整数(自然数)集合{}Λ,3,2,1=+Z ; 有理数集合Q,实数集合R,复数集合C 等。 一个集合A 的元素个数用A 表示。当A 中有有限个元素时,称为有限集,否则称为无限集。用∞=A 表示A 就是无限集,∞

13年《基础代数》复习题

基础代数》复习题 0.概念:群中元素的阶数; 正规子群; 商群;单群;(左、右) 理想;商环;分式环;整环;环的特征;模;域;代数元; (1)写出所有不同构的 18、 36 阶交换群。 写出所有不同构的p 2 阶群,P 为奇素数。 (1)证明 56 阶群有正规的 Sylow 2-子群或者有正规 的 Sylow 7- 子群。 2)证明 p 2q 阶群不是单群。 3)设是 p, q 是不同的素数, 证明 pq 阶群都有正规的 Sylow 子群. 4. 证明任意 2p 阶群都同构于循环群或者二面体群。 5.判断下面的命题是否正确?对正确的请加以证明;对不 正确的请举出反例说明。 (1)在有限群中,如果 a 与b 共轭,c 与d 共轭,那么ac 与 bd 共轭。 (2)如果H 是G 的正规子群,K 是H 的正规子群,那么K 是 G 的正规子群。 ⑶ 设Z(G)是有限群G 的中心,并且G/Z(G)是循环群,那 么 G 是交换群。 (4)设G 是有限群,那么对它的阶数|G|的每个因子n, G 都 有n 阶子群。 1. 求二面体群的全部子群、正规子群。 2. 3.

(5)设G是有限群,G的任意指数为2、3的子群都是G的 正规子群。 6.用GL(n,q)和SL(n,q)分别表示有限域 GF(q)上n维向量 空间上全体可逆线性变换、行列式为1的全体可逆线性变换所构成的群.O (1)分别求GL(n,q)和SL(n,q)的阶数。 (2)分别求GL(n,q)和SL(n,q)的中心。 7.设M2(F)是域F上全体2级矩阵按矩阵的加法、乘法所构 成的环。 (1)求M2(F)的所有左理想和右理想。 ⑵求M2(F)的所有理想。 &设G是有限群,P是其阶数|G|的最小素因子,证明 任意指数为P的子群都是G的正规子群。 9 .设G是有限群,如果Aut G = 1 ,那么G的阶数为1 10.求5次交错群、4次对称群的所有不共轭的子群 11叙述群同态基本定理、Sylow定理、同构定理. 12.试给出G的子群H是正规子群的几个等价条件 13求在模18剩余类环乙8 中的所有零因子、幕零元 14设G是有限群,P是其阶数|G|的最小素因子,证明任意阶数为P 的正规子群包含在 G的中心中。 15设a是有限域F=GF(2)上多项式x3+x + 1的根, (1)求扩域F(a)作为有限域F上线性空间的一组基; (2)化简(a4+a3+a2+a+1)(a中1)Section A 之所以不把二氧化碳列为污染物,是因为二氧化碳是大气的天然成份,植

数学名著

数学名著 《几何原本》 《几何原本》是古希腊数学家欧几里得的一部不朽之作,是当时整个希腊数学成果、方法、思想和精神的结晶,其内容和形式对几何学本身和数学逻辑的发展有着巨大的影响。自它问世之日起,在长达二千多年的时间里一直盛行不衰。它历经多次翻译和修订,自1482年第一个印刷本出版后,至今已有一千多种不同的版本。除了《圣经》之外,没有任何其他著作,其研究、使用和传播之广泛,能够与《几何原本》相比。但《几何原本》超越民族、种族、宗教信仰、文化意识方面的影响,却是《圣经》所无法比拟的。 公元前7世纪之后,希腊几何学迅猛地发展,积累了丰富的材料。希腊学者们开始对当时的数学知识作有计划的整理,并试图将其组成一个严密的知识系统。首先做出这方面尝试的是公元前5世纪的希波克拉底(Hippocrates),其后经过了众多数学家的修改和补充。到了公元前4世纪时,希腊学者们已经为建构数学的理论大厦打下了坚实的基础。 欧几里得在前人工作的基础之上,对希腊丰富的数学成果进行了收集、整理,用命题的形式重新表述,对一些结论作了严格的证明。他最大的贡献就是选择了一系列具有重大意义的、最原始的定义和公理,并将它们严格地按逻辑的顺序进行排列,然后在此基础上进行演绎和证明,形成了具有公理化结构的,具有严密逻辑体系的《几何原本》。 《几何原本》的希腊原始抄本已经流失了,它的所有现代版本都是以希腊评注家泰奥恩(Theon,约比欧几里得晚七百年)编写的修订本为依据的。《几何原本》的泰奥恩修订本分13卷,总共有465个命题,其内容是阐述平面几何、立体几何及算术理论的系统化知识。 第一卷首先给出了一些必要的基本定义、解释、公设和公理,还包括一些关于全等形、平行线和直线形的熟知的定理。该卷的最后两个命题是毕达哥拉斯定理及其逆定理。这里我们想到了关于英国哲学家T.霍布斯的一个小故事:有一天,霍布斯在偶然翻阅欧几里得的《几何原本》,看到毕达哥拉斯定理,感到十分惊讶,他说:“上帝啊!这是不可能的。”他由后向前仔细阅读第一章的每个命题的证明,直到公理和公设,他终于完全信服了。 第二卷篇幅不大,主要讨论毕达哥拉斯学派的几何代数学。 第三卷包括圆、弦、割线、切线以及圆心角和圆周角的一些熟知的定理。这些定理大多都能在现在的中学数学课本中找到。第四卷则讨论了给定圆的某些内接和外切正多边形的尺规作图问题。 第五卷对欧多克斯的比例理论作了精彩的解释,被认为是最重要的数学杰作之一。据说,捷克斯洛伐克的一位并不出名的数学家和牧师波尔查诺(Bolzano,1781-1848),在布拉格度假时,恰好生病,为了分散注意力,他拿起《几何原本》阅读了第五卷的内容。他说,这种高明的方法使他兴奋无比,以致于从病痛

代数学基础学习笔记

代数学基础学习笔记 第一章 代数基本概念
习题解答与提示(P54)
1. 如果群 G 中,对任意元素 a,b 有(ab) =a b ,则 G 为交换群. 证明: 对任意 a,b G,由结合律我们可得到 (ab) =a(ba)b, a b =a(ab)b 再由已知条件以及消去律得到 ba=ab, 由此可见群 G 为交换群.
2 2 2
2
2
2
2. 如果群 G 中,每个元素 a 都适合 a =e, 则 G 为交换群. 证明: [方法 1] 对任意 a,b G, ba=bae=ba(ab) =ba(ab)(ab) =ba b(ab)=beb(ab)=b (ab)=e(ab)=ab 因此 G 为交换群. [方法 2] 对任意 a,b G, a b =e=(ab) , 由上一题的结论可知 G 为交换群.
1
2 2 2 2 2 2
2

代数学基础学习笔记
3. 设 G 是一非空的有限集合,其中定义了一个乘法 ab,适合 条件: (1) (2) (3) a(bc)=(ab)c; 由 ab=ac 推出 a=c; 由 ac=bc 推出 a=b;
证明 G 在该乘法下成一群. 证明:[方法 1] 设 G={a1,a2,…,an},k 是 1,2,…,n 中某一个数字,由(2) 可知若 i j(I,j=1,2,…,n),有 akai ak aj------------<1> aiak aj ak------------<2> 再由乘法的封闭性可知 G={a1,a2,…,an}={aka1, aka2,…, akan}------------<3> G={a1,a2,…,an}={a1ak, a2ak,…, anak}------------<4> 由<1>和<3>知对任意 at G, 存在 am G,使得 akam=at. 由<2>和<4>知对任意 at G, 存在 as G,使得 asak=at. 由下一题的结论可知 G 在该乘法下成一群.
下面用另一种方法证明,这种方法看起来有些长但思
2

代数学基本定理

代数学基本定理:任何复系数一元n次多项式方程在复数域上至少有一根(n≥1),由此推出,n次复系数多项式方程在复数域内有且只有n个根(重根按重数计算).代数基本定理在代数乃至整个数学中起着基础作用。据说,关于代数学基本定理的证明,现有200多种证法。 代数学基本定理说明,任何复系数一元n次多项式方程在复数域上至少有一根。 由此推出,n次复系数多项式方程在复数域内有且只有n个根(重根按重数计算)。 有时这个定理表述为:任何一个非零的一元n次复系数多项式,都正好有n个复数根。这似乎是一个更强的命题,但实际上是“至少有一个根”的直接结果,因为不断把多项式除以它的线性因子,即可从有一个根推出有n个根。 尽管这个定理被命名为“代数基本定理”,但它还没有纯粹的代数证明,许多数学家都相信这种证明不存在[1] 。另外,它也不是最基本的代数定理;因为在那个时候,代数基本上就是关于解实系数或复系数多项式方程,所以才被命名为代数基本定理。 2证明历史 代数基本定理在代数乃至整个数学中起着基础作用。据说,关于代数学基本定理的证明,现有200多种证法。迄今为止,该定理尚无纯代数方法的证明。大数学家J.P. 塞尔曾经指出:代数基本定理的所有证明本质上都是拓扑的。美国数学家John Willard Milnor在数学名著《从微分观点看拓扑》一书中给了一个几何直观的证明,但是其中用到了和临界点测度有关的sard定理。复变函数论中,对代数基本定理的证明是相当优美的,其中用到了很多经典的复变函数的理论结果。 该定理的第一个证明是法国数学家达朗贝尔给出的,但证明不完整。接着,欧拉也给出了一个证明,但也有缺陷,拉格朗日于1772年又重新证明了该定理,后经高斯分析,证明仍然很不严格的。 代数基本定理的第一个严格证明通常认为是高斯给出的(1799年在哥廷根大学的博士论文),基本思想如下: 设为n次实系数多项式,记,考虑方根: 即与 这里与分别表示oxy坐标平面上的两条曲线C1、C2,于是通过对曲线作定性的研究,他证明了这两条曲线必有一个交点,从而得出,即,因此z0便是方程的一个根,这个论证具有高度的创造性,但从现代的标准看依然是不严格的,因为他依靠了曲线的图形,证明它们必然相交,而这些图形是比较复杂,正中隐含了很多需要验证的拓扑结论等等。 高斯后来又给出了另外三个证法,其中第四个证法是他71岁公布的,并且在这个证明中他允许多项式的系数是复数。 3证明方法 所有的证明都包含了一些数学分析,至少是实数或复数函数的连续性概念。有些证明也用到了可微函数,甚至是解析函数。 定理的某些证明仅仅证明了任何实系数多项式都有复数根。这足以推出定理的一般形式,这是因为,给定复系数多项式p(z),以下的多项式 就是一个实系数多项式,如果z是q(z)的根,那么z或它的共轭复数就是p(z)的根。 许多非代数证明都用到了“增长引理”:当|z|足够大时,首系数为1的n次多项式函数p(z)的表现如同z。一个更确切的表述是:存在某个正实数R,使得当|z| > R时,就有: 复分析证明

人物简介 代数学之父 韦达

人物简介: 代数学之父——韦达 韦达(F ? Viete,Francois,1540~1603),法国数学家。 韦达1540年出生于法国普瓦图地区的一个律师家庭,早年在家乡接受初等教育,后来考入普瓦杰大学学习法律。20岁时,他大学毕业了,理所当然地继承父业,成为一名律师。但过了4年之后,他便辞掉律师职务,去给别人做了一段时间的秘书和家庭教师。直到1573年,韦达才又重操旧业,出任法国某地方法院律师,后来在政治上几经波折,于1589年被亨利三世任命为法国最高法院律师。1595年~1598年,法国和西班牙发生战争,韦达效力于亨利四世,为法国军队翻译截获的军事密码,立下汗马功劳。但政治生涯多变化,在韦达去世前一年,他被亨利四世免去了职务,韦达的一生可谓波折起伏。但就是在这样一种环境下,他始终将数学作为业余爱好,在工作之余坚持数学研究,并自费印刷和发行自己的数学着作,最终取得了许多创造性的成就,充分体现了一个数学家对数学事业的热爱和执着追求。 韦达在数学上的研究领域主要包括方程理论、符号代数、三角学及几何学等,在每一个领域他都做了一些有意义的工作。 符号代数与方程理论 数学中代数与算术的区别在于代数引入了未知量,用字母等符号表示未知量的值进行运算,而算术则是以具体的数进行运算。1591年,韦达出版了他最重要的代数学着作《分析方法入门》,这是最早的符号代数专着。在书中,韦达引入字母表示未知量,并使之系统化,使得代数成为研究一般的类和方程的学问,为代数学的进一步发展奠定了基础。为此,韦达被后人称为“代数学之父”。 在研究方程的一般解法的过程中,韦达试图创立一种一般的符号代数来代替原来的每一问题各有一种特殊解法的情形。他引人字母来表示量,用辅音字母B,C,D等表示已知量,用元音字母A表示未知量,并将这种代数称为“类的运算”以区别于原来的“数的运算”。同时,韦达还规定了“类”的 运算法则(与数的运算法则相同)。以此为起点,韦达对代数方程理论进行了较为系统的研究。 韦达这样给出了方程的定义:一个方程是一个未知量和一个确定量的比较。他将方程作了一定的分类,给出了饵方程的基本步骤和方法。 1615年,韦达的生前好友将韦达早在1591年完成的《论方程的识别与订正》一书整理出版。书中研究了几类高次方程的解法,并得到了一般二次方程的求根公式,更为重要的是,韦达在书中提出了着名的韦达定理,即方程根与系数的关系式。他清楚地论述了对于二次方程,若第二项的系数是两数的和的相反数,第三项的系数是这两数的乘积,那么这两个数就是此方程的根。这在我们的中学代数中是一个很重要的定理,想来同学们对此肯定不会太陌生吧! 几何学上的贡献 韦达充分发挥自己在代数研究上的优势,用代数方法研究解决了一些几何问

人物简介代数学之父韦达

人物简介代数学之父韦达 The document was prepared on January 2, 2021

人物简介: 代数学之父——韦达 韦达(F Viete,Francois,1540~1603),法国数学家。 韦达1540年出生于法国普瓦图地区的一个律师家庭,早年在家乡接受初等教育,后来考入普瓦杰大学学习法律。20岁时,他大学毕业了,理所当然地继承父业,成为一名律师。但过了4年之后,他便辞掉律师职务,去给别人做了一段时间的秘书和家庭教师。直到1573年,韦达才又重操旧业,出任法国某地方法院律师,后来在政治上几经波折,于1589年被亨利三世任命为法国最高法院律师。1595年~1598年,法国和西班牙发生战争,韦达效力于亨利四世,为法国军队翻译截获的军事密码,立下汗马功劳。但政治生涯多变化,在韦达去世前一年,他被亨利四世免去了职务,韦达的一生可谓波折起伏。但就是在这样一种环境下,他始终将数学作为业余爱好,在工作之余坚持数学研究,并自费印刷和发行自己的数学着作,最终取得了许多创造性的成就,充分体现了一个数学家对数学事业的热爱和执着追求。 韦达在数学上的研究领域主要包括方程理论、符号代数、三角学及几何学等,在每一个领域他都做了一些有意义的工作。 符号代数与方程理论 数学中代数与算术的区别在于代数引入了未知量,用字母等符号表示未知量的值进行运算,而算术则是以具体的数进行运算。1591年,韦达出版了他最重要的代数学着作《分析方法入门》,这是最早的符号代数专着。在书中,韦达引入字母表示未知量,并使之系统化,使得代数成为研究一般的类和方程的学问,为代数学的进一步发展奠定了基础。为此,韦达被后人称为“代数学之父”。 在研究方程的一般解法的过程中,韦达试图创立一种一般的符号代数来代替原来的每一问题各有一种特殊解法的情形。他引人字母来表示量,用辅音字母B,C,D等表示已知量,用元音字母A表示未知量,并将这种代数称为“类的运算”以区别于原来的“数的运算”。同时,韦达还规定了“类”的 运算法则(与数的运算法则相同)。以此为起点,韦达对代数方程理论进行了较为系统的研究。 韦达这样给出了方程的定义:一个方程是一个未知量和一个确定量的比较。他将方程作了一定的分类,给出了饵方程的基本步骤和方法。 1615年,韦达的生前好友将韦达早在1591年完成的《论方程的识别与订正》一书整理出版。书中研究了几类高次方程的解法,并得到了一般二次方程的求根公式,更为重要的是,韦达在书中提出了着名的韦达定理,即方程根与系数的关系式。他清楚地论述了对于二次方程,若第二项的系数是两数的和的相反数,第三项的系数是这两数的乘积,那么这两个数就是此方程的根。这在我们的中学代数中是一个很重要的定理,想来同学们对此肯定不会太陌生吧! 几何学上的贡献

初中代数基础知识试题-123

一、 填空题 1. 一个数等于它倒数的4倍,这个数是__________. 2. 已知:| x | = 3,| y | = 2,且 xy <0,那么 x + y =__________. 3. 16的平方根是_________. 4. 用四舍五入法,对200626取近似值,保留四个有效数字是2006261≈_________. 5. 如果 a = 1 +2,b=211 -,那么a 与b 的关系是_________. 6. 如果单项式 b y x 2223与87y x a -是同类项,那么=+b a _________. 7. 若代数式1 ||)1)(2(-+-x x x 的值为零,那么x 的取值应为_________. 8. 某商品原价为 a 元,因需求量大,经营者连续两次提价,每次提价10%,后因市场 物价调整,又一次降价20%,降价后这种商品的价格是_________. 9. 计算:=?÷4 21245])[(a a a __________. 10. 因式分解:a 3 + a 2b – ab 2 – b 3 =_________. 11. 在实数范围内分解因式:9x 2 + 6x – 4 =________. 12. 化简:=+-÷-b a b a b ab 2 22 )(____________. 13. 化简:=---n m n m 1)(____________. 14. 计算:=--12134 ____________. 15. 如果| y – 3 | + (2x – 4)2 = 0,,那么2x – y =____________. 16. 如果 x = 1是方程x 2 + kx + k -5 = 0的一个根,那么 k =____________. 17. 若???-==25y x 是方程组? ??==+n xy m y x 的一个解,那么这个方程组的另一个解是____________. 18. 分式方程11 14=--x x 的解是____________. 19. 分式方程25211322=-+-x x x x ,设y x x =-1 2,那么原方程可化为关于y 的整式方程是____________. 20. 无理方程x x =-2的解是____________.

代数学之父

“ 代数学之父”——韦达 一、生平简介 韦达(viete 或vieta ,Fran c ois l540—1603.2.23)是法国数学家。出生于法国东部地区的普瓦图(Poitou),是十六世纪最有影响的数学家之一,被尊称为“代数学之父”。他是第一个引进系统的代数符号,并对方程论做了改进的数学家。由于韦达做出了许多重要贡献,成为十六世纪法国最杰出的数学家之一。 韦达1560年就读于法国普瓦图大学,是大学法律系的毕业生。毕业后长期从事法律工作,出任过地方法院律师,法国行政法院检察官,皇室律师,法国最高法院律师等。后从事政治活动,当过议会的议员。他对数学有着浓厚的兴趣,他把他的业余时间用于学习与研究数学。韦达系统地钻研过卡尔达诺、蒂文、塔尔塔利亚、邦贝利和丢番图的著作。为了使自己研究成果及时公诸于世,他自筹资金出版发行。他的数学研究工作为近代代数学的发展奠定了基础,被称为16世纪最伟大的代数学家。在法兰西与西班牙的战争中,他成功地破译了一份西班牙的数百字的密码,为法国打败西班牙提供了重要情报。韦达致力于数学研究,第一个有意识地和系统地使用字母来表示已知数、未知数及其乘幂,带来了代数学理论研究的重大进步。韦达讨论了方程根的各种有理变换,发现了方程根与系数之间的关系(所以人们把叙述一元二次方程根与系数关系的结论称为“韦达定理”)。 韦达最重要的贡献是对代数学的推进,他最早系统地引入代数符号,推进了方程论的发展。韦达用“分析”这个词来概括当时代数的内容和方法。他创设了大量的代数符号,用字母代替未知数,系统阐述并改良了三、四次方程的解法,指出了根与系数之间的关系。给出三次方程不可约情形的三角解法。主要著有《分析法入门》、《论方程的识别与修正》、《分析五章》、《应用于三角形的数学定律》。韦达第一个有意识地、系统地使用数学符号的人,他不仅用字母表示已知量、未知量及其乘幂,而且用来表示一般的系数。他把符号代数称为类的算术,从而划定了代数与算术的分界。 韦达从事数学研究只是出于爱好,然而他却完成了代数和三角学方面的巨著。他的《应用于三角形的数学定律》(1579年)是韦达最早的数学专著之一,可能是西欧第一部论述6种三角形函数解平面和球面三角形方法的系统著作。他被称为现代代数符号之父。韦达还专门写了一篇论文"截角术",初步讨论了正弦,余弦,正切弦的一般公式,首次把代数变换应用到三角学中。他考虑含有倍角的方程,具体给出了将COS(nx)表示成COS(x)的函数并给出当n≤11等于任意正整数的倍角表达式了。 二、主要数学成就 1、《应用于三角形的数学定律》 1579年发表的《数学定律;应用于三角形》(Canonmathermaticus seuad triangula)一书,系统地叙述了用所有6种三角函数解平面和球面三角形。该书提出了正切定理: )2()2( B A tg B A tg b a b a +-=+-

Strongart数学笔记:代数K理论的代数基础小结

代数K理论的代数基础小结 最近我在读一点代数K理论,尽管这是个比较年轻的分支,但是却在代数数论、代数几何、代数拓扑、算子代数等理论中都有着广泛的应用,可以说是代数学中的“泛函分析”。代数K理论自然是建立抽象代数的基础之上,特别需要交换与非交换环的内容,下面我就结合环上K0、K1群,对所需的代数基础作一点简单的小结。 所谓环R的K0群,就是R上的f.g.(有限生成)投射模在同构下的等价类的半群完备化,也就是相应等价类的Grothendieck群。这里考虑f.g.条件,是因为在无限生成的条件下,会出现类似Hilbert Hotel的情况,使得K=2K→K=0.这样一来,环上的f.g.投射模就比一般的投射模更受关注,最常见的问题就是问它们什么时候是自由的。一个答案是需要环是PID,因为PID上f.g.模有类似Abel 群的结构定理;另一个答案则是局部环(未必交换),这可以通过推广Nakayama lemma来证明。顺便说一下,即使不要求f.g.条件,在局部环上的投射模也都是自由的,只是证明起来要麻烦一些啊! 对于K0.K1群而言,比较重要的一类环就是Dedekind domain (DD),它是交换的遗传环,有着各种等价的描述:

1)从环的结构上看,DD就是一维的Noether的整闭整环。这里的整闭条件常常用来说明某个环不是DD,比如Z[√-5]就是PID但不是DD的典型例子。 2)从局部化构造来看,DD是Noether的局部DVR.这就使得对任意素理想p,都可以做p-adic赋值。 3)从理想的角度来看:DD的分式理想构成群。此等价于其任意(分式)理想均可逆。 4)从模的角度来看:DD的f.g.投射模是理想的直和。注意比较一下遗传条件,其理想实际上就是投射模。 此外,DD还有一些重要的性质: a)1+1/2的Noether性:理想由两个元素生成,并且其中一个元素可以事先给定。 b)理想的因子分解性:可以分解为素理想(=极大理想)的乘积。因此,相应的理想运算可以转化为素理想因子指数的运算,特别其准素理想是素理想的幂。 c)DD必为半局部环或半单环,前者即为PID.特别有 DD∩UFD→PID. d)DD的环稳定度为2:就是说其矩阵环的能够生成整个环R的行的最小数是2,这样就可以用二阶矩阵群来刻画K1群,导出所谓的Mennicke symbol.

近世代数的基础知识

近世代数的基础知识 初等代数、高等代数和线性代数都称为经典代数(Classical algebra ),它的研究对象主要是代数方程和线性方程组)。近世代数(modern algebra )又称为抽象代数(abstract algebra ),它的研究对象是代数系,所谓代数系,是由一个集合和定义在这个集合中的一种或若干种运算所构成的一个系统。近世代数主要包括:群论、环论和域论等几个方面的理论,其中群论是基础。下面,我们首先简要回顾一下集合、映射和整数等方面的基础知识,然后介绍本文需要用到的近世代数的相关知识。 3.1 集合、映射、二元运算和整数 3.1.1 集合 集合是指一些对象的总体,这些对象称为集合的元或元素。“元素a 是集合A 的元”记作“A x ∈”,反之,“A a ?”表示“x 不是集合A 的元”。 设有两个集合A 和B ,若对A 中的任意一个元素a (记作A a ∈?)均有B a ∈,则称A 是B 的子集,记作B A ?。若B A ?且A B ?,即A 和B 有完全相同的元素,则称它们相等,记作B A =。若B A ?,但B A ≠,则称A 是B 的真子集,或称B 真包含A ,记作B A ?。 不含任何元素的集合叫空集,空集是任何一个集合的子集。 集合的表示方法通常有两种:一种是直接列出所有的元素,另一种是规定元素所具有的性质。例如: $ {}c b a A ,,=; {})(x p x S =,其中)(x p 表示元素x 具有的性质。 本文中常用的集合及记号有: 整数集合{} ,3,2,1,0±±±=Z ; 非零整数集合{}{} ,3,2,10\±±±==* Z Z ; 正整数(自然数)集合{} ,3,2,1=+ Z ; 有理数集合Q ,实数集合R ,复数集合C 等。 —

代数学基础学习笔记

代数学基础学习笔记

第一章代数基本概念 习题解答与提示(P54) 1.如果群G中,对任意元素a,b有(ab)2=a2b2,则G为交换群. 证明: 对任意a,b G,由结合律我们可得到 (ab)2=a(ba)b, a2b2=a(ab)b 再由已知条件以及消去律得到 ba=ab, 由此可见群G为交换群. 2.如果群G中,每个元素a都适合a2=e, 则G为交换群. 证明: [方法1] 对任意a,b G, ba=bae=ba(ab)2=ba(ab)(ab) =ba2b(ab)=beb(ab)=b2(ab)=e(ab)=ab 因此G为交换群. [方法2] 对任意a,b G, a2b2=e=(ab)2, 由上一题的结论可知G为交换群.

3.设G是一非空的有限集合,其中定义了一个乘法ab,适合 条件: (1)a(bc)=(ab)c; (2)由ab=ac推出a=c; (3)由ac=bc推出a=b; 证明G在该乘法下成一群. 证明:[方法1] 设G={a1,a2,…,a n},k是1,2,…,n中某一个数字,由(2)可知若i j(I,j=1,2,…,n),有 a k a i a k a j------------<1> a i a k a j a k------------<2> 再由乘法的封闭性可知 G={a1,a2,…,a n}={a k a1, a k a2,…, a k a n}------------<3> G={a1,a2,…,a n}={a1a k, a2a k,…, a n a k}------------<4> 由<1>和<3>知对任意a t G, 存在a m G,使得 a k a m=a t. 由<2>和<4>知对任意a t G, 存在a s G,使得 a s a k=a t. 由下一题的结论可知G在该乘法下成一群. 下面用另一种方法证明,这种方法看起来有些长但思

代数学报告

第一部分对学习代数学引论的认识及理解 以下简要总结代数学引论所学的基本内容。 首先,介绍了初等数论和集合论的一些知识,为学习代数学做了必要的准备。 其次学习了群,环,域与模四个基本代数结构的基本性质,群伦的应用日益广泛,主要归功于变换群的理论,也就是群在集合上作用的理论;环的基本理论可通过跟群的基本理论比较加深理解,其中交换环上的多项式环以及整环上的一元多项式环的理论在初等数论及高等代数的多项式理论中都已经了解过,可看成是对以前所学知识的一种推广;域的基本理论是以域的代数扩张为中心,而我们对数由整数,分数,小数,有理数,无理数直至复数的认识实质上就是对数域扩张的认识,从本质上讲,域的代数扩张是为实现某种目的把一个数学体系在某种条件下扩张,使之达到某种更趋完美的程度,这也是现在数学研究中的一种基本方法;模是两个代数体系的结合,模的理论与语言在数学,物理中运用的越来越普遍,无疑是代数学基础的核心之一,可以用模论方法解决有限生成Abel群的分类以及有限维线性空间的线性变换的标准形问题,它们也是模应用很好的例子。 最后对Galois(伽罗瓦)理论进行了一定的了解。主要包括高次方程的根式解和圆规直尺作图两部分,这是两个已经圆满解决了的问题,但它们在历史上长期使数学家百思不得其解,只是等到数学家对数学家的抽象性有了跟进一步的了解,从而提出比如变换群等比以往更为抽象的概念之后,这两个问题才迎刃而解。 Galois(伽罗瓦)理论是抽象代数的开端,也是它强大生命力的最早得光辉例证。只要追本溯源,我们就能深切地感受到这门既近世又古老的学科的无穷魅力,因而在学习了代数学的一些基础之后,回头看看它的源头对加深对代数学的理解不无益处。 代数学是数学中最重要的,基础分支之一。代数学的历史悠久,它随着人类生活的提高,生产技术的进步,科学和数学本身的需要而产生和发展。在这个过程中,代数学的研究对象和研究方法发生了重大的变化。代数学可分为初等代数学和抽象代数学两部分。初等代数学是更古老的算术的推广和发展,而抽象代数

“代数”的由来

“代数”的由来 “用字母表示数”是代数的基础,它主要以引进符号和未知数为特征。“代数”(algebra)一词最初来源于公元9世纪阿拉伯数学家、天文学家阿尔?花拉子米一本著作的名称。该书于1813年被译成拉丁文传入欧洲。1859年,我国数学家李善兰首次把“algebra”译成“代数”。后来清代学者华蘅芳和英国人傅兰雅合译英国瓦里斯的《代数学》,卷首有“代数之法,无论何数,皆可以任何记号代之”,说明了所谓“代数”,就是用符号来代表数的一种方法。把复杂的语言文字叙述用简洁明了的字母公式表示出来,便于记忆,便于运用,正如华罗庚所说的“数学的特点是抽象,正因为如此,用符号表示就更具有广泛的应用性与优越性”。这种用符号来体现的数学语言是世界性语言,是一个人数学素养的综合反映。 首先开始有意识地、系统地使用符号的人就是韦达。韦达是16世纪末的法国数学家。因为他在现代的代数学的发展上起了决定的作用,后世称他为“代数之父”。有趣的是这个被人们称为“代数之父”的数学家竟然在一场战争中起了关键的作用。 那个时代,西班牙和法国正在进行战争。西班牙军队使用复杂的密码来传递消息。这样,就算信件被敌人发现,也不明白写的是什么意思。有一次,法国军队截获了一些秘密信件,可就是没有办法破译密码。 于是法国国王就请来大名鼎鼎的韦达帮忙。经过一番研究,韦达终于解开了密码。从此,法国在战争中取得了先机,法国人人对于西班牙的军事行动总是了如指掌,在军事上总能先发制人,不到两年的时间就打败了西班牙。可怜的西班牙国王对法国人在战争中的“未卜先知”十分恼火又无法理解,认为法国人使用了“魔法”。他万万没有想到的是,韦达利用自己精湛的数学知识,成功地破译了西班牙的军事机密,为他的祖国赢得了战争的主动权。 可喜的是,韦达在破解密码的时候大受启发。他想:密码就是大家事先约定好的一套符号,其实在数学中,我们不也可以借助这样的做法吗?数学家可以约定好特定的符号表示特定的意思,这样写起来就方便多了。后来,韦达又进一步研究,出版了一部数学专著。 韦达是一个伟大的开拓者,他赢得了“代数之父”的美誉。不过他的工作还没有结束,后来的很多科学家在他的基础上,不断完善这个符号体系。今天,数学还在发展,数学语言也在不断丰富它的“词汇”。

13年《基础代数》复习题

《基础代数》复习题 0.概念:群中元素的阶数;正规子群;商群;单群;(左、右)理想;商环;分式环;整环;环的特征;模;域;代数元;1.求二面体群的全部子群、正规子群。 2.(1)写出所有不同构的18、36阶交换群。 (2)写出所有不同构的p2阶群, p为奇素数。 3.(1)证明56阶群有正规的Sylow 2-子群或者有正规的Sylow 7-子群。 (2)证明p2q阶群不是单群。 (3)设是p, q是不同的素数,证明pq阶群都有正规的Sylow 子群. 4. 证明任意2p阶群都同构于循环群或者二面体群。 5.判断下面的命题是否正确?对正确的请加以证明;对不正确的请举出反例说明。 (1)在有限群中,如果a与b共轭,c与d共轭,那么ac 与bd共轭。 (2)如果H是G的正规子群,K是H的正规子群,那么K 是G的正规子群。 (3)设Z(G)是有限群G的中心,并且G/Z(G)是循环群,那 么G是交换群。 (4) 设G是有限群,那么对它的阶数|G|的每个因子n,G都有n阶子群。

(5) 设G是有限群,G的任意指数为2、3的子群都是G的正规子群。 6.用GL(n,q) 和SL(n,q)分别表示有限域GF(q)上n维向量空间上全体可逆线性变换、行列式为1的全体可逆线性变换所构成的群.。 (1)分别求GL(n,q) 和SL(n,q)的阶数。 (2)分别求GL(n,q) 和SL(n,q)的中心。 7.设M2(F)是域F上全体2级矩阵按矩阵的加法、乘法所构成的环。(1) 求M2(F)的所有左理想和右理想。 (2)求M2(F)的所有理想。 8.设G是有限群,p是其阶数|G|的最小素因子,证明G的任意指数为p的子群都是G的正规子群。 9.设G是有限群,如果Aut G = 1,那么G的阶数为1或2。 10. 求5次交错群、4次对称群的所有不共轭的子群. 11 叙述群同态基本定理、Sylow定理、同构定理. 12. 试给出G的子群H是正规子群的几个等价条件. 13 求在模18剩余类环Z18中的所有零因子、幂零元. 14设G是有限群,p是其阶数|G|的最小素因子,证明G的任意阶数为p的正规子群包含在G的中心中。 15 设a是有限域F=GF(2)上多项式31 ++的根, x x (1)求扩域F(a)作为有限域F上线性空间的一组基; (2)化简432 +++++Section A (1)(1) a a a a a

数学名家之“代数学之父”─丢番图和“数学之父”─塞乐斯-(Thales)

“代数学之父”--丢番图 目前,初中数学主要分成代数与几何两大部分,其中代数学的最大特点是引入了未知数,建立方程,对未知数加以运算.而最早提出这一思想并加以举例论述的,是古代数学名著《算术》一书,其作者是古希腊后期数学家丢番图.这部著作原有13卷.1464年,在威尼斯发现了前6卷希腊文抄本,最近又在马什哈德(伊朗东北部)发现了4卷阿拉伯文译本. 在丢番图时代的古希腊,学者们的兴趣中心在几何,他们认为只有经过推理论证的命题才是可靠的.为了逻辑的严密性,一切代数问题,甚至简单的一次方程的求解,也都纳入了几何的模式之中,而丢番图把代数解放了出来.但是由于这一思想远远超出了同时代人的理解力而不为同时代人所接受,很快就湮没了,因此没有对当时数学的发展产生太大的影响.直到15世纪《算术》被重新发掘,鼓舞了一大批数学家在此基础之上把代数学大大向前推进了.其中最著名的当属费马(17世纪),他手持一本《算术》,并在其空白处写写画画,写下了费马大定理(直到20世纪90年代才被证明),把数论引上了近代的轨道.对于丢番图的生平事迹,人们知道得很少.但在一本《希腊诗文选》(公元500年前后,大部分由语法学家梅特罗多勒斯编写)中,收录了丢番图的墓志铭:“坟中安葬着丢番图,多么令人惊讶,它忠实地记录了所经历的道路.上帝给予的童年占六分之一.又过十二分之一,两颊长胡.再过七分之一,点燃起结婚的蜡烛.五年之后天赐贵子,可怜迟到的宁馨儿,享年仅及其父之半,便进入冰冷的墓.悲伤只有用数论的研

究去弥补,又过四年,他也走完了人生的旅途.” 墓志铭的意思是:丢番图的一生,幼年时代占1/6,青少年时代占1/12,又过了其一生的1/7才结婚,5年后生了儿子,但很遗憾他的儿子比他还早4年去世,寿命只有他的一半.有兴趣的同学可以列方程算算丢番图到底活了多少岁. (答案:丢番图享年84岁.) 数学之父─塞乐斯 (Thales) 塞乐斯生于公元前624年,是古希腊第一位闻名世界的大数学家。他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。在那里,塞乐斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。 塞乐斯的方法既巧妙又简单:选一个天气晴朗的日子,在金字塔边竖立一根小木棍,然后观察木棍阴影的长度变化,等到阴影长度恰好等于木棍长度时,赶紧测量金字塔影的长度,因为在这一时刻,金字塔的高度也恰好与塔影长度相等。也有人说,塞乐斯是利用棍影与塔影长度的比等于棍高与塔高的比算出金字塔高度的。如果是这样的话,就要用到三角形对应边成比例这个数学定理。塞乐斯自夸,说是他把这种方法

相关文档
最新文档