三角函数的平移与伸缩变换-整理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数的平移与伸缩变换-整理
练习:将2)5
42sin(2++=π
x y 做下列变换: (1)向右平移
2
π
个单位长度; (2)横坐标缩短为原来的一半,纵坐标不变; (3)纵坐标伸长为原来的4倍,横坐标不变;
(4)沿y 轴正方向平移1个单位,最后得到的函数._________)(==x f y 例3、把)(x f y =作如下变换:
(1)横坐标伸长为原来的1.5倍,纵坐标不变; (2)向左平移3
π个单位长度;
(3)纵坐标变为原来的5
3
,横坐标不变;
(4)沿y 轴负方向平移2个单位,最后得到函数),4
23sin(43π
+=x y 求).(x f y =
练习1:将)4
8sin(4π
π+=x y 作何变换可以得到.sin x y =
练习2:对于)53
6sin(3x y +=π作何变换可以得到.sin x y =
例4、把函数)2
||,0)(sin(π
ϑωϑω<>+=x y 的图象向左平移
3
π
个单位长度,所得曲线的一部分图象如图所示,则( ) A. 6
,1π
ϑω== B. 6
,1π
ϑω-
==
C. 3
,2π
ϑω=
= D. 3
,2π
ϑω-
==
练习:7、右图是函数))(sin(R x x A y ∈+=ϑω在区间
)6
5,6(π
π-
上的图象,只要将
(1)x y sin =的图象经过怎样的变换?
(2)x y 2cos =的图象经过怎样的变换? 【课堂练习】
1、为了得到函数)6
3sin(π
+=x y 的图象,只需把函数x y 3sin =的图象
1-1
5π6
-π6y x o
( ) A 、向左平移
6π B 、向左平移18π C 、向右平移6π D 、向右平移18
π 2、为得到函数πcos 23y x ⎛
⎫=+ ⎪⎝
⎭的图像,只需将函数sin 2y x =的图像( )
A 、向左平移5π
12个长度单位 B 、向右平移
5π
12个长度单位 C 、向左平移5π
6
个长度单位
D 、向右平移5π
6
个长度单位
3、要得到函数sin y x =的图象,只需将函数cos y x π⎛
⎫=- ⎪3⎝
⎭的图象( )
A 、向右平移π6个单位
B 、向右平移π3个单位
C 、向左平移π
3
个单位 D 、向
左平移
π
6
个单位 4、为了得到函数)6
2sin(π
-=x y 的图象,可以将函数x y 2cos =的图象( )
A 、向右平移6π个单位长度
B 、向右平移3π
个单位长度
C 、向左平移6π个单位长度
D 、向左平移3
π
个单位长度
5、把函数sin y x =(x R ∈)的图象上所有点向左平行移动3
π
个单位长度,再把
所得图象上所有点的横坐标缩短到原来的1
2
倍(纵坐标不变),得到的图象所表
示的函数是( )
A 、sin(2)3y x π=-,x R ∈
B 、sin()26x y π
=+,x R ∈
C 、sin(2)3y x π=+,x R ∈
D 、sin(2)3
2y x π
=+,x R ∈
6、为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6
y x π
=+的图像( )
A 、向左平移4π个长度单位
B 、向右平移4π
个长度单位
C 、向左平移2π个长度单位
D 、向右平移2π
个长度单位
7、已知函数()sin()(,0)4
f x x x R π
ϖϖ=+∈>的最小正周期为π,为了得到函数
()c o s g x x ϖ=的图象,只要将()y f x =的图象 ( )
A 、向左平移
8π个单位长度 B 、 向右平移8π
个单位长度 C 、 向左平移4π个单位长度 D 、 向右平移4π
个单位长度
8.将函数y=sinx 的图象向左平移ϕ(0 ≤ϕ<2π)的单位后,得到函数y=sin ()6x π
-的图象,则ϕ等于( )
A .6π
B .56π C. 76π D.116π
专练:
1.(2009山东卷理)将函数sin 2y x =的图象向左平移4
π
个单位, 再向上平移1个单位,所得图象的函数解析式是( ).
A.cos 2y x =
B.12cos +=x y
C.)4
2sin(1π
++=x y
D.22sin y x =
2.(2009天津卷理)已知函数()sin()(,0)4f x x x R π
ϖϖ=+∈>的最小正周期为π,
为了得到函数()cos g x x ϖ=的图象,只要将()y f x =的图象
A 向左平移
8π个单位长度 B 向右平移8π
个单位长度 C 向左平移4π个单位长度 D 向右平移4π
个单位长度3.(09山东)要得到函数sin y x =的图象,只需将函数cos y x π⎛
⎫=- ⎪3⎝
⎭的图象( )
A 、向右平移
π
6个单位 B 、向右平移
π
3个单位 C 、向左平移π
3个单位
D 、向左平移π
6
个单位
4.(10江苏卷)为了得到函数R x x
y ∈+=),6
3
sin(2π
的图像,只需把函数
R x x y ∈=,sin 2的图像上所有的点
A 、向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的3
1
倍(纵坐标不变) B 、向右平移
6π个单位长度,再把所得各点的横坐标缩短到原来的3
1
倍(纵