频率合成技术
锁相技术及频率合成
![锁相技术及频率合成](https://img.taocdn.com/s3/m/f2c0b3ceed3a87c24028915f804d2b160a4e8648.png)
技术优势与挑战
技术优势
PLL和FS的结合可以实现快速频率切 换、低相位噪声、高分辨率等优点。
技术挑战
需要解决PLL和FS之间的相位噪声传 递和杂散抑制等问题,以确保输出信 号的质量。
实际应用案例
通信系统中的频率合成
用于产生稳定的本振信号,确保接收和发射信号的稳定性和准确 性。
雷达系统中的频率合成
锁相技术原理
锁相技术的基本原理是利用负反馈控制,将外部输入信号与 内部振荡信号进行相位比较,并根据比较结果调整内部振荡 器的参数,使两者的相位保持一致。
当外部输入信号的频率与内部振荡信号的频率相差较小时, 锁相环能够自动跟踪输入信号的频率,并保持两者之间的相 位差恒定。
锁相技术的应用
锁相技术在通信、雷达、导航 、测量等领域得到广泛应用。
智能化
利用人工智能和机器学习技术,实 现锁相技术及频率合成的智能化控 制,提高系统的自适应性。
研究热点与前沿
宽频带、高精度频率合成
01
研究宽频带、高精度频率合成技术,以满足通信、雷达、电子
对抗等领域的需求。
快速频率跳变
02
研究快速频率跳变技术,实现快速切换和灵活的通信方式,提
高通信系统的抗干扰能力和保密性。
电子对抗
在电子对抗领域,锁相技术和频率合成技术用于生成干扰信号和探测信
号,对于提高电子设备的抗干扰能力和探测能力具有重要作用。
02
锁相技术概述
锁相技术定义
Байду номын сангаас
01
锁相技术是一种通过相位比较和 调整实现信号频率跟踪和锁定相 位的电子技术。
02
它利用外部输入信号与内部振荡 信号的相位比较,自动调整内部 振荡器的参数,使两者的相位保 持一致。
频率合成技术
![频率合成技术](https://img.taocdn.com/s3/m/217174dc5022aaea998f0fc4.png)
频率合成技术一、频率合成技术简述频率合成技术起步于上世纪30年代,至今已有七十年的历史。
其原理是通过一个或多个参考信号源的线性运算,在某一频段内,产生多个离散频率点。
基于此原理制成的频率源称为频率合成器。
频率合成器是现代电子系统的重要组成部分,是决定整个电子系统系统性能的关键设备,不仅在通信、雷达、电子对抗等军事领域,更在广播电视、遥控遥测、仪器仪表等民用领域得到了广泛的应用。
随着电子技术在各领域内占有越来越重要的地位,现代雷达和精确制导等高精尖电子系统对频率合成器的各项指标提出了越来越高的要求,推动了频率合成技术的发展。
频率合成器的主要性能指标包括:(1).输出频率范围,是频率合成器输出的最低频率和最高频率之间的变化范围。
一般来说,输出的带宽越高越容易满足系统对于频率源的需求。
(2).频率分辨率,是输出频率两个相邻频率点之间的最小间隔。
作为标准信号源的频率合成器,频率分辨率越精细越好。
(3).频率切换时间,是输出频率由一个频率切换到另一个指定的频率的时间,电子对抗时的频率跳变对此有着极高的要求。
(4).频谱纯度,频谱的噪声包括杂散分量和相位噪声两方面,杂散又称为寄生信号,主要由频率合成过程中的非线性失真产生;相位噪声是衡量输出信号相位抖动大小的参数。
(5).频率稳定度,是指在规定的时间间隔内,频率合成器输出频率偏离指定值的数值,由作为参考信号源的时钟和各种随机噪声决定。
(6).调制性能,频率合成器是否具有调幅(AM)、调频(FM)和调相(PM)功能。
初期的频率合成技术采用一组晶体组成的晶体振荡器,输出频率点由晶体个数决定,频率准确度和稳定度由晶体性能决定,频率切换由人工手动完成。
随着时间的推移,频率合成技术理论的完善和微电子技术的发展,后来的科学家不断的提出了若干频率合成方法,现代的频率合成技术主要经历了三个阶段:直接模拟频率合成、间接频率合成和直接数字频率合成。
直接模拟频率合成(Direct Frequency Synthesis,DS)技术也是一种早期的频率合成技术,使用一个或几个晶体振荡器作为参考频率源,通过分频、混频和倍频的方法对参考源频率进行加减乘除的运算,然后用滤波器处理杂散频率得到需求的不同频率。
频率合成的原理及应用视频
![频率合成的原理及应用视频](https://img.taocdn.com/s3/m/fe966c48ba68a98271fe910ef12d2af90242a8fc.png)
频率合成的原理及应用视频1. 引言频率合成是一种将多个不同频率的信号进行合成,生成新的复合频率信号的技术。
通过频率合成,我们可以生成各种各样的音频信号,用于音乐制作、音频合成、声音合成等领域。
频率合成技术的发展使得音乐产生了革命性的变化,创造了更加多样化的音乐作品。
这个视频将会介绍频率合成的原理及其在实际应用中的一些例子。
2. 频率合成的原理频率合成的原理基于振荡器和混频器的组合。
频率合成器可以根据一组输入频率和幅度信息,输出所需的特定频率的复合信号。
频率合成主要依赖于两个核心组件:•振荡器:振荡器是一种电子设备,可以产生特定频率的周期性信号。
它们可以是简单的正弦波振荡器,也可以是复杂的波形合成器。
振荡器通常由振荡电路或晶体管实现。
•混频器:混频器是一种电子设备,可以将两个或多个不同频率的信号混合在一起。
混频器可以通过调整不同频率信号之间的相对幅度,生成新的复合频率信号。
频率合成的过程大致可以分为以下几步:1.输入待合成的频率信息和幅度信息。
2.使用振荡器生成具有特定频率的信号。
3.使用混频器将多个不同频率的信号混合在一起。
4.输出生成的复合频率信号。
3. 频率合成的应用频率合成技术在许多领域中得到广泛应用,以下是一些常见的应用示例:3.1 音乐合成频率合成技术在音乐制作中扮演重要角色。
通过合成器、调音台和效果器等设备,音乐制作人可以合成各种音乐乐器的声音,如钢琴、吉他、风琴等。
频率合成使得音乐制作人可以创造出各种奇特的音乐效果,为音乐作品增添独特的风格和魅力。
3.2 语音合成频率合成技术在语音合成中也得到广泛应用。
语音合成系统可以将文本或符号转化为声音信号。
通过合成器和音频处理算法,语音合成系统可以产生具有自然听感的合成语音。
这种技术被广泛应用于语音助手、导航系统、自动电话系统等各种语音交互应用中。
3.3 音频特效频率合成技术还可以用于音频特效的生成。
通过合成器和音频效果器,音频工程师可以产生各种特殊的音频效果,如回声、混响、声相位扭曲等。
直接数字频率合成技术
![直接数字频率合成技术](https://img.taocdn.com/s3/m/86fad4717e21af45b307a8d2.png)
通常用频率增量来表示频率合成器的分辨率,DDS的最小分辨率为
f min
fc 2N
这个增量也就是最低的合成频率。最高的合成频率受奈奎斯特抽样定理的限制,所 以有
f 0 max
fc 2
与PLL不同,DDS的输出频率可以瞬时地改变,即可以实现跳频,这是DDS的一个突 出优点,用于扫频测量和数字通讯中,十分方便。
直接数字频率合成技术 (DDS)
DDS技术是一种先进的波形产生技术,已经在实 际中获得广泛应用。
– 1971年,由J.Tierney 和C.M.Tader 等人在 “A Digital Frequency Synthesizer”一文中首次提出了 DDS的概念; DDS或DDFS 是 Direct Digital Frequency Synthesis 的 简称 –通常将此视为第三代频率合成技术; –它突破了前两种频率合成法的原理,从”相位”的概念 出发进行频率合成; –这种方法不仅可以产生不同频率的正弦波,而且可以控 制波形的初始相位; –还可以用DDS方法产生任意波形(AWG)。
AD公司的产品
型 号 AD9832 AD9831 AD9833 AD9834 AD9835 AD9830 AD9850 AD9853 AD9851 AD9852 AD9854 AD9858
最大工作(MHz) 25 25 25 50 50 50 125 165 180 300 300 1000
工作电压(V) 3.3/5 3.3/5 2.5~5.5 2.5~5.5 5 5 3.3/5 3.3/5 3/3.3/5 3.3 3.3 3.3
DDS原理
工作过程为: 1, 将存于数表中的数字波形,经数模转换器D/A,形成模拟量波形. 2, 两种方法可以改变输出信号的频率: (1),改变查表寻址的时钟CLOCK的频率, 可以改变输出波形的频率. (2), 改变寻址的步长来改变输出信号的频率.DDS即采用此法. 步长即为对数字波形查表的相位增量.由累加器对相位增量进行累加, 累加器的值作为查表地址. 3, D/A输出的阶梯形波形,经低通(带通)滤波,成为质量符合需要的模拟波形
频率合成的原理及应用
![频率合成的原理及应用](https://img.taocdn.com/s3/m/b3d057c270fe910ef12d2af90242a8956becaaa8.png)
频率合成的原理及应用1. 引言频率合成是指通过将多个频率的信号按照一定的方法合成成新的频率信号。
频率合成技术在通信、音乐合成、电子制作等领域有着广泛的应用。
本文将介绍频率合成的原理及其在不同领域的应用。
2. 频率合成的原理频率合成的原理是通过组合多个基础频率的正弦波,按照一定的振幅、相位和时间长度的比例进行叠加,从而得到新的频率信号。
2.1 基础频率基础频率是频率合成中最小的频率单位,可以选择任意合适的频率作为基础频率。
常用的基础频率包括正弦波、方波、锯齿波等。
2.2 振幅、相位和时间长度频率合成中每个基础频率的振幅、相位和时间长度都可以自由设定,以实现不同的合成效果。
通过调整振幅可以控制合成信号的音量,通过调整相位可以改变信号的起始相位,通过调整时间长度可以改变合成信号的持续时间。
2.3 叠加原理频率合成中的叠加原理是基于线性叠加原理,即将多个信号按照一定的比例进行叠加,得到新的合成信号。
叠加过程中,各个信号之间可以存在不同的相位差,通过调整相位差可以实现音色的变化。
3. 频率合成的应用3.1 通信领域在通信领域,频率合成常用于无线电调制解调器、频率分割多址访问等设备中。
通过合成不同频率的载波信号,可以实现不同频道之间的切换和传输。
3.2 音乐合成在音乐合成领域,频率合成被广泛应用于电子合成器和音乐制作软件中。
通过合成多个基础频率的正弦波,可以创建出各种不同的音色和音效。
3.3 电子制作在电子制作中,频率合成常用于生成各种音效和信号波形。
通过合成不同频率、振幅和相位的信号,可以实现闹钟、音乐播放器等电子产品的功能需求。
3.4 频率合成器频率合成器是一种常见的电子设备,可以通过合成多个频率信号来生成所需的频率。
频率合成器在频率测量、信号发生器、频谱分析仪等设备中得到广泛应用。
4. 总结频率合成是一种通过组合多个基础频率的正弦波,按照一定的振幅、相位和时间长度的比例进行叠加的技术。
频率合成在通信、音乐合成、电子制作等领域有着广泛的应用。
频率合成技术
![频率合成技术](https://img.taocdn.com/s3/m/7c11e66866ec102de2bd960590c69ec3d5bbdbfa.png)
1、直接模拟频率合成
直接模拟频率合成技术是一种早期旳频率合成技术,它用一种或几 种参照频率源经谐波发生器变成一系列谐波,再经混频、分频、倍频和 滤波等处理产生大量旳离散频率,这种措施旳优点是频率转换时间短、 相位噪声低,但因为采用大量旳混频、分频、倍频和滤波等途径,使频 率合成器旳体积大、成本高、构造复杂、轻易产生杂散分量且难于克制。 不能实现单片集成,逐渐被锁相频率合成,直接数字频率合成技术替代。
K
累加寄存器输出旳累加相位数据相加,把相加后旳成果送至累加寄存器旳数据输入端。累 加寄存器将加法器在上一种时钟脉冲作用后所产生旳新相位数据反馈到加法器旳输入端, 以使加法器在下一种时钟脉冲旳作用下继续与频率控制字相加。这么,相位累加器在时钟 作用下,不断对频率控制字进行线性相位累加。由此能够看出,相位累加器在每一种时钟 脉冲输入时,把频率控制字累加一次,相位累加器输出旳数据就是合成信号旳相位,相位 累加器旳溢出频率就是DDS输出旳信号频率。
DDS问世之初,构成DDS元器件旳速度旳限制和数字化引起旳噪声这两个主要缺 陷阻碍了DDS旳发展与实际应用。近几年超高速数字电路旳发展以及对DDS旳进一步 研究,DDS旳最高工作频率以及噪声性能已接近并到达锁相频率合成器相当旳水平。
2、锁相频率合成技术 (1)锁相环路工作原理
PD ————产生误差电压 ,LF ————产生控制电压, VCO ————产生瞬时输 出频率
PLL环路在某一原因作用下,利用输入与输出信号旳相位差产生误差电压,并滤除其 中非线性成份与噪声后旳纯净控制信号控制压控振荡器,使相位差朝着缩小固有角频 差方向变化,一旦相位差趋向很小常数(称为剩余相位差)时,则锁相环路被锁定了,
波形存储器设计主要考虑旳问题是其容量旳大小,利用波形幅值旳奇、偶对称特征,能够节省3/4 旳资源,这是非常可观旳。为了进一步优化速度旳设计,能够选择菜单Assign|Global Project Logic Synthesis旳选项Optimize10(速度),并设定Global Project logic Synthesis Style为FAST,经寄存器性 能分析最高频率到达100MHz以上。用FPGA实现旳DDS能工作在如此之高旳频率主要依赖于FPGA先 进旳构造特点。
直接数字频率合成技术DDS
![直接数字频率合成技术DDS](https://img.taocdn.com/s3/m/c16b5afdc67da26925c52cc58bd63186bceb92bf.png)
幅
位
度
码
码
数模变换器 DAC
时 钟
低通滤波器 LPF 输出
图3-11 相位/幅度变换装置
假设DAC的输入幅度码是四位,则它的输出幅度与输 入幅度码之间的关系是按线性变化的,如表3-1所示。
二进制幅度码 0000 0001 0010 0011 0100 0101 0110 0111
表 3-1
十进制幅度 二进制幅度码
0.1875
0 +1.1875
续表 3 - 4
8 1000 17π/16 -0.1951 0011 0.1875 1 9 1001 19π/16 - 0.5556 1001 0.5625 1 10 1010 21π/16 - 0.8316 1101 0.8125 1 11 1011 23π/16 -0.9808 1111 0.9375 1 12 1100 25π/16 -0.9808 1111 0.9375 1 13 1101 27π/16 -0.8316 1101 0.8125 1 14 1110 29π/16 -0.5556 1001 0.5625 1 15 1111 31π/16 -0.1951 0011 0.8175 1
② 将模2π的累加相位变换成相应的正弦函数值的幅度, 这里幅度可先用代码表示,这可以用一只读存储器ROM来 存储一个正弦函数表的幅值代码;
③ 用幅度代码变换成模拟电压,这可由数模变换器 DAC来完成;
④ 相位累加器输出的累加相位在两次采样的间隔时间 内是保持的,最终从DAC输出的电压是经保持的阶梯波。
2. 相位与幅度的变换
累加器输出的相位码,需先经过一个相位码/幅度码变换 装置之后,再经数/模变换生成阶梯波,最后通过低通滤波 器才能得到所需的模拟电压。
频率合成技术-锁相环路的应用
![频率合成技术-锁相环路的应用](https://img.taocdn.com/s3/m/b824632f24c52cc58bd63186bceb19e8b8f6ecf1.png)
稳定的载波。
雷达系统中的锁相环路
相位和频率控制
雷达系统中的锁相环路用于精确 控制发射信号的相位和频率,确 保雷达波束的定向和稳定。
目标检测与跟踪
通过锁相环路对回波信号进行处 理,实现目标检测与跟踪,提高 雷达系统的定位精度。
抗干扰能力
锁相环路有助于提高雷达系统的 抗干扰能力,降低杂波和噪声对 目标检测的影响。
频率合成技术的应用领域
通信领域
用于产生本振信号、调 制解调信号等,提高通 信系统的性能和稳定性。
雷达领域
用于产生高精度、高稳 定度的雷达信号,提高 雷达的探测精度和抗干
扰能力。
导航领域
用于产生高精度、高稳 定度的载波信号,提高 导航系统的定位精度和
稳定性。
电子对抗领域
用于产生干扰信号和侦 测信号,提高电子对抗 系统的干扰效果和侦测
锁相环路的局限性包括
跟踪速度较慢、容易受到外部干扰和 温度变化的影响等。
04
锁相环路的实际应用案例
通信系统中的锁相环路
信号解调与调制
01
锁相环路在通信系统中用于信号解调与调制,确保信号的准确
传输和解码。
载波恢复
02
在数字信号传输过程中,锁相环路用于恢复载波,以便正确解
调信号。
频率合成
03
锁相环路作为频率合成器,产生所需的频率,为通信系统提供
锁相环路在频率合成技术中的应用,主要是利用其跟踪和 锁定目标信号的频率和相位的能力,实现输出信号与目标 信号的同步。
锁相环路的频率合成方式
01
锁相环路的频率合成方式主要有三种:直接模拟合成、间接模拟合成 和数字合成。
直接模拟合成是通过模拟电路实现频率合成,具有较高的输出频率和 较低的杂散干扰,但体积较大,成本较高。
简述频率合成的原理及应用
![简述频率合成的原理及应用](https://img.taocdn.com/s3/m/17ef8d8609a1284ac850ad02de80d4d8d15a0128.png)
简述频率合成的原理及应用1. 引言频率合成技术是计算机科学和电子工程领域中的一项重要技术,它能够根据给定的频率生成相应的信号。
本文将介绍频率合成的原理及其应用。
2. 频率合成的原理频率合成是通过将多个频率信号进行组合,得到一个新的具有指定频率的信号的过程。
下面将介绍几种常用的频率合成方法。
2.1 直接合成法直接合成法是最基本的合成方法之一,它通过使用固定频率的正弦波和余弦波的线性组合来生成目标频率的信号。
这种方法是最简单且易于实现的,但是由于合成的信号中只包含有限个频率成分,因此合成后的信号存在较大的谐波失真。
2.2 频率分割法频率分割法是一种比较常见的合成方法,它通过将目标频率分割成多个子频段,然后分别生成相应的子频段信号,最后将这些子频段信号进行叠加得到目标频率的信号。
这种方法可以有效减小谐波失真,但是在频率分割过程中会引入额外的计算复杂性。
2.3 相位调制法相位调制法是一种基于相位调制技术的合成方法,它通过调制不同频率正弦波的相位来实现频率合成。
具体而言,使用一个相位锁定环路(PLL)来跟踪和调整参考频率信号与目标频率信号之间的相位差,从而生成目标频率的信号。
相位调制法能够实现较高的频率精度和稳定性。
3. 频率合成的应用频率合成技术在许多领域都有广泛的应用。
下面将介绍几个常见的应用场景。
3.1 通信系统在无线通信系统中,频率合成技术被广泛应用于信号调制、解调和频谱分析等方面。
通过合成不同频率的信号,可以实现信号的快速调频和频率的精确控制,从而提高通信系统的传输速率和可靠性。
3.2 音频设备在音频设备中,频率合成技术常用于生成特定频率的音频信号,例如合成器、数字音乐工作站等。
通过合成不同频率的音频信号,可以实现不同音调、和弦和音乐效果。
3.3 测试仪器在电子测试仪器中,频率合成技术被广泛应用于信号源、频谱分析仪和网络分析仪等设备中。
通过合成不同频率的信号,可以用来测试和分析电路、器件和系统的性能参数。
频率合成器原理
![频率合成器原理](https://img.taocdn.com/s3/m/fb315f91b04e852458fb770bf78a6529657d3579.png)
频率合成器原理
频率合成器是一种将一个高稳定度和高精度的标准频率信号(经过加减乘除四则运算),产生同样高稳定度和高精度的大量离散频率的技术。
基于频率合成原理所组成的设备或仪器称为频率合成器。
频率合成器的工作原理主要基于锁相环(PLL)技术。
PLL是一种用于锁定
相位的环路,其控制量是信号的频率和相位。
它利用外部输入的参考信号控制环路内部振荡信号的频率和相位,实现输出信号频率对输入信号频率的自动跟踪,最终呈现出动态平衡。
PLL频率合成器的工作原理如下:
1. 参考信号输入:将参考信号(例如晶振产生的稳定信号)输入PLL电路
中的相位检测器(PD)中。
2. 相位比较:将参考信号与频率可调的参考分频器输出的信号进行相位比较。
相位比较器会将两个信号的相位差转化为一个宽度与相位差成正比的脉冲信号。
3. 滤波器:将相位比较器输出的脉冲信号通过一个低通滤波器进行滤波,得到一个直流电压作为控制电压。
4. 控制电压输出:将滤波后的直流电压作为控制电压输入到压控振荡器(VCO)中,控制VCO的频率输出。
5. 输出信号调节:将VCO的输出信号经过分频器分频后得到所需的输出频率。
以上内容仅供参考,建议查阅关于频率合成器的书籍或咨询专业人士获取更准确的信息。
频率合成技术
![频率合成技术](https://img.taocdn.com/s3/m/a22b680d4a7302768e9939d8.png)
(2)设置前置混频器的频率合成器 ) 图6.8.2为设置前置混频器的频率合成器 为设置前置混频器的频率合成器
图6.8.2 设置前置混频器的频率合成器
由图知, 由图知,电路是对压控振荡器的输出频率进行混频 并取差频,从而降低可变分频器的输入信号的频率。 并取差频,从而降低可变分频器的输入信号的频率。 由图知, 由图知,可变分频器的输入信号的频率为 f o − f L
DDS具有极宽的工作频率范围 DDS输出频率的 具有极宽的工作频率范围。 ① DDS具有极宽的工作频率范围。DDS输出频率的 下限对应于频率控制字 K = 1 ,因而其最低频率为
f onim 1 = N fc 2
很大时, 式中, 为累加器的宽度或字长, N 式中, 为累加器的宽度或字长,当 N 很大时,最低输出 频率可达Hz甚至 频率可达 甚至mHz 数量级。最高频率受限于时钟频率 甚至 数量级。 和奈奎斯特抽样定理, 和奈奎斯特抽样定理,即每周期至少取样两次才能够重 建波形, 建波形,因此最大的合成频率为
2)频率间隔(分辨率) 相邻频率之间的最小间 )频率间隔(分辨率) 隔为频率合成器的频率间隔。 隔为频率合成器的频率间隔。
用途不同,要求的频率间隔不同。 用途不同,要求的频率间隔不同。 如:对短波单边带通信来说,多取频率间隔为 对短波单边带通信来说, 100Hz有的甚至取为 有的甚至取为10Hz、1Hz乃至 乃至0.1Hz。 有的甚至取为 、 乃至 。 对超短波通信来说,频率间隔多取为 对超短波通信来说,频率间隔多取为50kHz或10kHz。 或 。 3)频率转换时间 从一个工作频率转换到另一个工 ) 作频率并达到稳定工作所需要的时间。 作频率并达到稳定工作所需要的时间。 4)频率稳定度与准确度 频率稳定度是指在规定的时间间隔内, 频率稳定度是指在规定的时间间隔内,合成器频 率偏离标称值的程度。 率偏离标称值的程度。
频率合成技术
![频率合成技术](https://img.taocdn.com/s3/m/bf29d0781711cc7931b71645.png)
fi
fi
÷N
fo=fi/N PD LPF VCO
(b)数字分频环 )
(c)分频环简化图 ) 分频式锁相环原理图
第7页
电子测量原理
⑶混频式锁相环 混频环实现对频率的加减运算
fi1 PD fi2 M (-) (a)相加混频环 ) fi1 fi2 fo= fi1+ fi2 fi1 fi2 LPF fo-fi2 VCO fo= fi1+ fi2 f i1 fi2 PD M (+) (b)相减混频环 ) fo= fi1- fi2 LPF fo+fi2 VCO fo= fi1- fi2
第4页
电子测量原理
二、锁相环(PLL)的基本概念 锁相环(PLL)
1. 锁相环基本工作原理及性能
锁相环是一个相位环负反馈控制系统。 锁相环是一个相位环负反馈控制系统。该环路由鉴相 PD)、环路滤波器(LPF)、电压控制振荡器(VCO) )、环路滤波器 )、电压控制振荡器 器(PD)、环路滤波器(LPF)、电压控制振荡器(VCO) 及基准晶体振荡器等部分组成 。
(a) 谐波倍频环 )
(c)倍频环简化图 ) 倍频式锁相环原理图 第6页
电子测量原理
⑵分频式锁相环 分频环实现对输入频率的除法运算,与倍频环相似, 分频环实现对输入频率的除法运算,与倍频环相似,也有 两种基本形式。 两种基本形式。
fo=fi/N PD LPF 谐波 形成 (a)谐波分频环 ) fi ÷ N PLL fo=fi/N VCO
1MHz 晶振 谐波发生器(倍频) 谐波发生器(倍频) 分频( 10) 分频(÷10) 8MHz 2MHz 6MHz 1MHz 混频(+) 混频( 混频( 混频(+)
混频( 3MHz 混频(+) 9MHz 直接式频率合成原理框图
频率合成技术综述
![频率合成技术综述](https://img.taocdn.com/s3/m/dbdde67bf242336c1eb95efb.png)
输 出 功率 : 输 出的 频 率 信 号 的 功 率 , 般 用 d m 表 示 。 指 一 B
定、 高精 度 的参 考 时 钟 来 产 生 频 率 和 相位 可 调 的输 出 信 号 。 与其 它 频 率 合 成 方 法 相 比较 , 的 主 要 优 点 是 : 用 全 数 字 结 构 , 于 实 现 遥 它 采 易
21 年 01
第 1 期 9
S IN E&T C N L G F R TO CE C E H O O YI O MA I N N
0机械 与电子。
科技信息
频率合成技术综述
萧 明光 ( | 增城市 职 业技 术 学校 广 东
增城
5 3 0 1 0) 1
【 要】 绍各种频率合成技术 , 摘 介 并详细分析 了直接 频率合成 、 间接频率合成、 直接数字频率合 成、 混合频 率合成等技术的优点与缺点。 【 关键 词】 频率合成 ;P ; D P LD S
相 位 噪声 : 偏 离 某 频 率 1 z带宽 内 噪声 功 率 谱 密 度 与 输 出信 号 控 、 化 ; 高 的频 率 分 辨 率 , 达 微 赫兹 量 级 ; 指 H 优 极 可 频率 转 换 速 度 快 , 达 可 功 率 之 比 。 为 d c , 合 成 频 率 源 重 要 的 技 术 指 标 。 它 表 现 为 时 记 B/ 是 Hz 纳秒 量 级 ; 率 捷 变 时 相 位 连 续 。 的 主要 缺 点是 : 受 限于 器 件 的 可 频 它 一 域 中 的零 交 叉 随机 起 伏 和 频 域 中的 频 谱 扩 展 。 用 的最 高 时钟 频 率 , 使 合 成 频 率 不 能 太 高 , 出频 带 范 围 有 限 ; 是 致 输 二 杂 散 : 频 率 合 成 过 程 中 产 生 的不 需 要 的 频 率 分 量 。 没 有 被 充 在 又 输 出 杂 散 大 , 于 DD 由 S采 用 全 数 字 结 构 , 可 避 免 地 引 人 了杂 散 , 不 频 分 的抑 制 掉 . 些 不 需 要 的频 率 分 量 被 称 为 杂 散 。一 般 用 偏 离 输 出频 这 谱 纯度 不 如 P L L 。虽 然 D S技 术 的 基 本 理论 早在 7 D O年 代 就 已经 提 出 率 多少 频 率上 的频 谱 功率 与 载 波 功 率 之 比表 示 , 位 为 d c 单 B 。它 也 是 来 了, 是 由于 硬 件 条 件 的 限 制 , 在 初期 并 没有 得 到很 大 的 重 视 。 最 但 它 合 成 频 率 源 的一 项 重 要 技 术 指 标 。 散 越 小 越 好 , 般 要 求 一 0 B , 杂 一 6 d c 优 近 几 年,随 着 现 代 电 子 技 术 和 大 规 模 集 成 电路 的发 展 , D D S技 术 得 到 质 的频 率 源杂 散 能 达 到 优 于 一 0 B 。 8 d c 了 飞 速 的 发展 。 己 成 为 最 重 要 的 频 率 合 成 技 术 。D S技 术 虽 然 最 初 并 D
频率合成技术原理
![频率合成技术原理](https://img.taocdn.com/s3/m/df4ea10fe418964bcf84b9d528ea81c758f52ebe.png)
频率合成技术原理频率合成技术是一种用于产生特定频率的信号的技术。
通过频率合成技术,我们可以将一个或多个较低频率的信号组合在一起,从而得到一个高频率的合成信号。
频率合成技术在通信系统中得到广泛应用,特别是在无线通信和雷达系统中。
基于锁相环的频率合成是一种广泛使用的方法,它利用了锁相环电路的特性。
锁相环电路由相位比较器、环路滤波器、VCO(控制电压振荡器)和分频器组成。
其工作原理如下:1.相位比较器:相位比较器用于比较参考信号和VCO输出信号的相位差。
如果相位差存在,则相位比较器将产生一个纠偏信号。
2.环路滤波器:环路滤波器用于平滑纠偏信号,以便更好地控制VCO的频率。
3.VCO:VCO的频率受到环路滤波器输出信号的控制。
如果纠偏信号存在,则VCO的频率将增加或减小,以减小纠偏信号。
4.分频器:分频器将VCO的输出信号进行分频,以便产生所需的最终频率。
通过调节参考信号和锁相环中的其他参数,我们可以得到所需的合成频率。
基于锁相环的频率合成技术具有输出信号频率非常稳定的优点,可以实现高精度的频率合成。
另一种常见的频率合成技术是直接数字合成(DDS)技术。
基于DDS的频率合成器使用数字信号处理器(DSP)和相位累加器来产生输出信号。
1.相位累加器:相位累加器是一个数字计数器,用于累加一个固定的相位步进值。
这个相位步进值由控制器传递给相位累加器,并决定了输出信号的频率。
2.数字信号处理器:DSP接收相位累加器的输出,并使用一种数学公式将其转换为合成频率的数字表示。
该数字信号随后通过数字模拟转换器(DAC)转换为模拟信号。
3.数字模拟转换器:DAC将数字表示的信号转换为模拟信号,该信号经过滤波器以消除数字转换过程中引入的噪声和失真。
基于DDS的频率合成技术具有输出频率范围广、相位和频率调节较灵活等优点。
然而,由于其使用了数字信号处理器,因此在高频率合成时可能会受到时钟频率的限制。
总的来说,频率合成技术是一种通过组合较低频率信号以产生特定频率的信号的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
fA
fa M
NA M
fi
频率分辨率为
f A
1 M
fi
显然比单环合成器的频率分辨率提高了M倍。 因此一般称环路A为高分辨率环。
设环路B的输出频率为 fB fB NB fi
频率分辨率为 fB fi
环路C是混频相加环,将环路B的输出频率和环路
C的输出频率混频之后得到( fo fB),并送到鉴相器和
4)频率稳定度与准确度 频率稳定度是指在规定的时间间隔内,合成器频 率偏离标称值的程度。
频率准确度是指实际工作频率偏离标称值的数值, 即频率误差。
5)频谱纯度 频谱纯度是指输出信号接近正弦波 的程度,是频域指标。
理想的正弦信号的频谱只有一根谱线,但实际的正 弦信号由于噪声的影响不可能只有一根谱线。在有用 信号频谱的两边,总有一些不需要的离散谱和连续谱, 这些离散谱称为杂波,连续谱称为噪声。
频率合成器的输出频率为
fo Nt fi ( A PN ) fi
上式表明,与简单的频率合成器相比,f o 提高了P倍, 而频率分辨率仍保持为 fi 。其中A为个位分频器,又称 尾数分频器。
(4)集成频率合成器件, 图6.8.4为采用MC145152和双模分频器MC3393P 构成的吞脉冲型频率合成器电路。
(3)吞脉冲频率合成器 吞脉冲频率合成器(双模前置分频器型单环频率合成 器):将前置分频器用双模分频器(Two-Modulus Divider)取代,以保持频率间隔为 fi 的前提下提高输 出频率。它的组成框图如图6.8.3所示。
图6.8.3 吞脉冲频率合成器组成框图
在一个计数周期内,总计脉冲数即分频比为 Nt (P 1) A P(N A) A PN
图6.8.6所示是直接数字式频率合成的基本原理框图。
图6.8.6为
f
c
,输出频率为f
,频率建立字FSW
o
用相位增量 f 表示。
若累加器的宽度为 N 位,查询表ROM的输出位数为
M ,则2N 就相当于2 rad,N 位中的最低有效位相当于
2
2N
rad,即最小的相位增量, f 对应的相位为 f
实现频率合成的方法:有直接合成法、间接合成 法(锁相环路法)以及直接数字频率合成法。
6.8.1 锁相频率合成器
锁相频率合成是应用锁相环路的频率合成方法, 从一个高稳定度和高准确度的基准频率合成大量的离 散频率,基准频率产生器提供一个或几个参考频率, 锁相环路利用其良好的窄带跟踪特性,使压控振荡器 的输出频率准确地稳定在参考频率或某次谐波上。
与传统的频率合成器相比,DDS具有极高的分辨率、 快速的频率转换时间、很宽的相对带宽、任意波形的 输出能力和数字调制等优点。
直接数字式频率合成的的思路是:
根据奈奎斯特取样定理,从连续信号的相位出发, 对一个正弦信号取样、量化、编码,形成一个正弦函数 表,储存在只读存储器中,合成时通过改变相位累加器 的频率控制字,改变相位增量,相位增量的不同导致一 周期内的取样点不同,从而使得输出频率不同。
1、单环频率合成器 1)带有前置分频器的数字频率合成器
图6.8.1为带有前置分频器的数字频率合成器。固 定分频器的工作频率一般高于可变分频器的工作频率。
图6.8.1 带有前置分频器的数字频率合成器框图
环路锁定时,输出频率为 fo NPfi 当改变可变分频器时,就可以输出不同的合成频率。 频率合成器的频率分辨率为 f Pfi ,即频率分辨率降 低了P倍,可以把参考频率也降低P倍来克服这一缺点, 但降低鉴相器的参考频率会使锁相环路的许多性能变坏。 可见它是以加大频率间隔,降低分辨率为代价换取输出 频率的提高。解决这一问题的方法是采用下变频和双模 前置分频法来保持频率分辨率不变。
(2)设置前置混频器的频率合成器 图6.8.2为设置前置混频器的频率合成器
图6.8.2 设置前置混频器的频率合成器
由图知,电路是对压控振荡器的输出频率进行混频 并取差频,从而降低可变分频器的输入信号的频率。
由图知,可变分频器的输入信号的频率为 fo fL 当环路锁定时, fi fo fL N
图6.8.4 采用MC145152构成的吞脉冲型频率合成器
2、多环频率合成器
在不降低参考频率的情况下,提高频率分辨率的一个
方法就是采用多环频率合成的方法,常见的有双环和三 环的频率合成器。
图6.8.5所示是一个三环频率合成器框图,它由三个 锁相环路和一个混频电路构成,设环路A输出频率为 fa。
经过一个M倍的固定分频器后得到 f A
f A 做相位比较,可得到输出频率
fo
fA
fB
NA M
fi NB fi
图6.8.5 三环频率合成器框图
6.8.2 直接数字频率合成器
直接数字式频率合成器(Digital Direct Synthesizer,简称为DDS)是以数字信号处理理论为 基础,从信号的幅度相位关系出发进行频率合成的。
输出频率为 fo fL Nfi
可见这时频率分辨率仍然为 fi ,这种方法提高了频率 合成器的输出频率,但并没有降低频率分辨率,这种 频率合成器只是用混频器把频率Nfi 搬移到了 fL 频率两 边,因此环路性能和本地载频没有直接关系,环路的分 析和参数的计算和基本单环合成器相同。
在锁相环路中插入混频器和滤波器,使锁相环路的 电路复杂,滤波器会使环路性能变坏,混频过程必然会 产生组合频率分量,造成输出信号的频谱纯度下降。为 此,可以采用吞脉冲频率合成器。
6.8 频率合成技术
频率合成器的主要技术指标:
1)频率范围 频率合成器的输出频率最小值 fomin
和最大值 fomax 之间的变化范围,即频率合成器的工作
频率范围。也可以用频率覆盖系数 k fomax fomin 表示。
2)频率间隔(分辨率) 相邻频率之间的最小间 隔为频率合成器的频率间隔。
用途不同,要求的频率间隔不同。 如:对短波单边带通信来说,多取频率间隔为 100Hz有的甚至取为10Hz、1Hz乃至0.1Hz。 对超短波通信来说,频率间隔多取为50kHz或10kHz。 3)频率转换时间 从一个工作频率转换到另一个工 作频率并达到稳定工作所需要的时间。