<弧长、扇形面积和圆锥>练习卷

合集下载

初中数学冀教版九年级上册 28.5弧长和扇形面积的计算练习题

初中数学冀教版九年级上册 28.5弧长和扇形面积的计算练习题

初中数学冀教版九年级上册第二十八章弧长和扇形面积的计算练习题一、选择题1.圆心角为的扇形的半径是3cm,则这个扇形的面积是A. B. C. D.2.一个圆锥的底面半径是4cm,其侧面展开图的圆心角是,则圆锥的母线长是A. 8cmB. 12cmC. 16cmD. 24cm3.圆锥的表面展开图由一个扇形和一个圆组成,已知圆的周长为,扇形的圆心角为,则圆锥的全面积为A. B. C. D.4.如图,已知点C,D是以AB为直径的半圆的三等分点,弧CD的长为,则图中阴影部分的面积为A. B. C. D.5.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚如图,那么B点从开始至结束所走过的路径长度为A. B. C. 4 D.6.如图已知扇形AOB的半径为6cm,圆心角的度数为,若将此扇形围成一个圆锥,则围成的圆锥的底面半径为A. 2cmB. 4cmC. 1cmD. 8cm7.一个扇形的半径为6,圆心角为,则该扇形的面积是A. B. C. D.8.如图,在▱ABCD中,,的半径为3,则图中阴影部分的面积是A. B. C. D.9.圆锥的底面半径是5cm,侧面展开图的圆心角是,圆锥的高是A. B. 10cm C. 6cm D. 5cm10.钟面上的分针的长为1,从9点到9点15分,分针在钟面上扫过的面积是A. B. C. D.二、填空题11.如图,扇形纸扇完全打开后,外侧两竹条AB,AC夹角为,AB的长为20cm,扇面BD的长为15cm,则弧DE的长是______.12.若圆锥的底面直径为6cm,母线长为10cm,则圆锥的侧面积为______.13.已知扇形的面积为,圆心角为,则它的半径为______.14.一个扇形的圆心角是,半径为4,则这个扇形的面积为______结果保留15.如图,中,,CD平分交AB于点D,O是BC上一点,经过C、D两点的分别交AC、BC于点E、F,,,则劣弧的长为______.三、解答题16.如图,在平面直角坐标系中,将点C顺时针旋转后得则.请在图中画出,并写出点A的对应点的坐标;求线段AC旋转到时扫过的面积S.17.如图,的直径,半径,D为上一动点不包括B,C两点,,,垂足分别为E,F.求EF的长.若点E为OC的中点,求劣弧CD的长度;者点P为直径AB上一动点,直接写出的最小值.18.如图,把圆锥的侧面展开得到扇形,其半径,圆心角,求的长.19.已知:扇形的圆心角为,弧长为,求扇形面积.20.如图,AB是的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连结EF、EO,若,.求的半径;求图中阴影部分的面积.答案和解析1.【答案】B【解析】解:扇形的面积公式,故选:B.根据扇形的面积公式计算可得答案.本题考查扇形的面积公式.2.【答案】B【解析】解:圆锥的底面周长为,即为展开图扇形的弧长,由弧长公式得,,解得,,即圆锥的母线长为12cm.故选:B.根据圆锥侧面展开图的实际意义求解即可.本题考查圆锥的侧面展开图,明确展开图扇形的各个部分与圆锥的关系是正确计算的前提.3.【答案】A【解析】解:设圆锥的底面圆的半径为r,母线长为l,根据题意得,解得,,解得,所以圆锥的全面积.故选:A.设圆锥的底面圆的半径为r,母线长为l,利用圆的周长公式得,解得,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到,解得,然后计算底面圆的面积与扇形的面积可得到圆锥的全面积.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.4.【答案】A【解析】解:连接CD、OC、OD.,D是以AB为直径的半圆周的三等分点,,,弧CD的长为,,解得:,又,、是等边三角形,在和中,,≌,.故选:A.连接OC、OD,根据C,D是以AB为直径的半圆周的三等分点,可得,是等边三角形,将阴影部分的面积转化为扇形OCD的面积求解即可.本题考查了扇形面积的计算,解答本题的关键是将阴影部分的面积转化为扇形OCD的面积,难度一般.5.【答案】B【解析】解:如图:,,点从开始至结束所走过的路径长度为弧,故选:B.根据题目的条件和图形可以判断点B分别以C和A为圆心CB和AB为半径旋转,并且所走过的两路径相等,求出一个乘以2即可得到.本题考查了弧长的计算方法,求弧长时首先要确定弧所对的圆心角和半径,利用公式求得即可.6.【答案】A【解析】解:扇形的弧长是,设底面半径是r,则,解得:.故选:A.首先利用扇形的弧长公式即可求得扇形,然后根据圆的周长公式即可求解.本题考查圆锥的计算,理解圆锥的展开图中扇形的弧长等于圆锥的底面周长是关键.7.【答案】C【解析】解:,故选:C.根据扇形的面积公式计算即可.本题考查的是扇形面积的计算,掌握扇形的面积公式是解题的关键.8.【答案】C【解析】【分析】本题考查扇形面积的计算、平行四边形的性质,解答本题的关键是明确题意,利用扇形面积的计算公式解答.根据平行四边形的性质可以求得的度数,然后根据扇形面积公式即可求得阴影部分的面积.【解答】解:在▱ABCD中,,的半径为3,,图中阴影部分的面积是:,故选:C.9.【答案】A【解析】【分析】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.设圆锥的母线长为R,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到,然后解方程即可母线长,然后利用勾股定理求得圆锥的高即可.【解答】解:设圆锥的母线长为R,根据题意得,解得.即圆锥的母线长为10cm,圆锥的高为:.故选:A.10.【答案】B【解析】解:从9点到9点15分分针扫过的扇形的圆心角是,则分针在钟面上扫过的面积是:故选:B.从9点到9点15分分针扫过的扇形的圆心角是,利用扇形的面积公式即可求解.本题考查了扇形的面积公式,正确理解公式是关键.11.【答案】【解析】解:弧DE的长为:.故答案为:.直接利用弧长公式计算得出答案.此题主要考查了弧长公式计算,正确应用弧长公式是解题关键.12.【答案】【解析】解:圆锥的侧面积故答案为.利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.13.【答案】3【解析】解:设半径为r,由题意,得,解得,故答案为:3.根据扇形的面积公式,可得答案.本题考查了扇形面积公式,利用扇形面积公式是解题关键.14.【答案】【解析】解:,故答案为.利用扇形的面积公式计算即可.本题考查扇形的面积,解题的关键是记住扇形的面积是扇形的半径,l是扇形的弧长.15.【答案】【解析】解:连接DF,OD,是的直径,,,,,平分交AB于点D,,,,,在中,,的半径,劣弧的长,故答案为连接DF,OD,根据圆周角定理得到,根据三角形的内角和得到,根据三角函数的定义得到,根据弧长个公式即可得到结论.本题考查了圆周角定理,解直角三角形,弧长的计算,作出辅助线构建直角三角形是本题的关键.16.【答案】解:如图所示,;由勾股定理得,,线段AC旋转到时扫过的面积.【解析】根据网格结构找出点A、B绕点C顺时针旋转后的对应点、的位置,再与点C 顺次连接即可,根据平面直角坐标系写出点的坐标;利用勾股定理列式求出AC,再根据扇形的面积公式列式计算即可得解.本题考查了利用旋转变换作图,扇形的面积公式,熟练掌握网格结构,准确找出对应点的位置是解题的关键.17.【答案】解:如图,连接OD,圆的半径为.,,,四边形OFDE是矩形,.点E为OC的中点,,,,劣弧CD的长度为.延长CO交于点G,连接DG交AB于点P,则的最小值为DG.,,,的最小值为.【解析】连接OD,由,,知四边形OFDE是矩形,据此可得;先求出的度数,再利用弧长公式求解可得;延长CO交于点G,连接DG交AB于点P,则的最小值为DG,再根据及可得答案.本题主要考查圆的有关概念与性质,解题的关键是掌握矩形的判定与性质、轴对称的性质、圆的相关性质.18.【答案】解:的长为:.【解析】弧长的计算公式为,把半径和圆心角代入公式可以求出弧长.本题考查的是弧长的计算,知道圆心角和半径,代入弧长公式计算.19.【答案】解:设扇形的半径为R,则由弧长公式得:,解得:,即扇形的面积是.【解析】先根据弧长公式求出扇形的半径,再根据扇形面积公式求出即可.本题考查了弧长公式和扇形面积公式的应用,注意:扇形的面积弧长半径.20.【答案】解:直径,.平分AO,.又,..在中,的半径为2;连接OF.在中,,...,,.【解析】本题综合考查了垂径定理和解直角三角形及扇形的面积公式.根据垂径定理得CE的长,再根据已知DE平分AO得解直角三角形求解.先求出扇形的圆心角,再根据扇形面积和三角形的面积公式计算即可.。

弧长与扇形面积经典习题(有难度)

弧长与扇形面积经典习题(有难度)

弧长与扇形面积练习题1. 一圆锥的侧面展开图是半径为2的半圆,则该圆锥的全面积是()A.5πB. 4πC.3πD.2π2. 如图,如果从半径为9cm的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为()A.6cmB.35cm C.8cm D.53cm3.如图,是一圆锥的主视图,则此圆锥的侧面展开图的圆心角的度数是()A.60° B.90° C.120° D.180°12cm 6cm7.如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B’,则图中阴影部分的面积是().A. 3πB. 6πC. 5πD. 4π8.如图,圆柱的底面周长为6cm,AC是底面圆的直径,高BC= 6cm,点P是母线BC上一点,且PC=23 BC.一只蚂蚁从A点出发沿着圆柱体的表面爬行到点P的最短距离是()A.(64π+)cm B.5cm C.35cm D.7cm9.如图,半径为1的小圆在半径为 9 的大圆内滚动,且始终与大圆相切,则小圆扫过的阴影部分的面积为()A . 17πB . 32πC . 49πD . 80π10. 如图,AB切⊙O于点B,OA=23,AB=3,弦BC∥OA,则劣弧⌒BC的弧长为().A.33πB.32πC.πD.32π11. 在半径为4π的圆中,45°的圆心角所对的弧长等于.12. 已知一个半圆形工件,未搬动前如图所示,直径平行于地面放置,搬动时为了保护圆弧部分不受损伤,先将半圆作如图所示的无滑动翻转,使它的直径紧贴地面,再将它沿地面平移50m,半圆的直径为4m,则圆心O所经过的路线长是 m。

(结果用π表示)13.如图,圆锥的底面半径OB为10cm,它的展开图扇形的半径AB为30cm,则这个扇形的圆心角a的度数为____________.14. 如图,点A、B、C在直径为32的⊙O上,∠BAC=45º,则图中阴影的面积等于______________,(结果中保留π).2、如果一条弧长等于l,它的半径等于R,这条弧所对的圆心角增加1o,则它的弧长增加()A.lnB.180RπC.180lRπD.360l3、已知圆锥的母线长为6cm,底面圆的半径为3cm,则此圆锥侧面展开图的面积为()A、18πcm2B、36πcm2C、12πcm2D、9πcm24、圆的半径增加一倍,那么圆的面积增加到()A、1倍B、2倍C、3倍D、4倍5、一个点到圆的最小距离为6cm,最大距离为9cm,则该圆的半径是()A、1.5cmB、7.5cmC、1.5cm或7.5cmD、3cm或15cm8、扇形的周长为16,圆心角为360πo,则扇形的面积是()A.16 B.32 C.64 D.16π10、如图,AC是⊙O的直径,BD是⊙O的弦,EC∥AB交⊙O于E,则图中与12∠BOC相等的角共有()A、2个B、3个C、4个D、5个15、如图,将三角尺ABC(其中∠B=60°,∠C=90°,AB=6)绕点B按顺时针转动一个角度到A1BC1的位置,使得点A、B、C1在同一条直线上,点A所经过的路程是()A、2πB、4πC、8πD、12π16、如图,圆锥的轴截面是边长为6cm 的正三角形ABC ,P 是母线AC 的中点.则在圆锥的侧面上从B 点到P 点的最短路线的长为( )13、如图,扇形OAB 的圆心角为90o,且半径为R ,分别以OA ,OB 为直径在扇形内作半圆,P 和Q 分别表示两个阴影部分的面积,那么P 和Q 的大小关系是()A.P Q = B.P Q > C.P Q <D.无法确定17、如图,在足球比赛场上,甲、乙两名队员互相配合向对方球门MN 进攻,当甲带球冲到A 点时,乙已跟随冲到B 点。

人教版 数学九年级(上)学期 :24.4弧长和扇形面积同步练习卷含详解

人教版 数学九年级(上)学期 :24.4弧长和扇形面积同步练习卷含详解

24.4 弧长和扇形面积同步练习卷一.选择题(共10小题).1.若扇形的半径为6,圆心角为120°,则此扇形的弧长是()A.3πB.4πC.5πD.6π2.已知圆锥的底面半径为6cm,母线长为10cm,则这个圆锥的全面积是()A.60πcm2B.96πcm2C.132πcm2D.168πcm23.如图,用一个半径为6cm的定滑轮拉动重物上升,滑轮旋转了120°,假设绳索粗细不计,且与滑轮之间没有滑动,则重物上升了()A.πcm B.2πcm C.3πcm D.4πcm4.如图,Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=2cm,绕AC所在直线旋转一周,所形成的圆锥侧面积是()A.16πcm2B.8πcm2C.4πcm2D.2πcm25.如图,点A、B、C、D都在边长为1的网格格点上,以A为圆心,AE为半径画弧,弧EF经过格点D,则扇形AEF的面积是()A.B.C.πD.6.如图,从一块半径为20cm的圆形铁皮上剪出一个圆心角是60°的扇形ABC,则此扇形围成的圆锥的侧面积为()A.200πcm2B.100πcm2C.100πcm2D.50πcm27.如图,为了美化校园,学校在一块边角空地建造了一个扇形花圃,扇形圆心角∠AOB=120°,半径OA为3m,那么花圃的面积为()A.6πm2B.3πm2C.2πm2D.πm28.如图,长方形ABCD中,AB=3BC,且AB=9cm,以点A为圆心,AD为半径作圆交BA 的延长线于点M,则阴影部分的面积等于()A.(π+9)cm2B.(π+18)cm2C.(π+9)cm2D.(π+18)cm2二.填空题9.弧长等于半径的圆弧所对的圆心角是度.10.一个周长确定的扇形,要使它的面积最大,扇形的圆心角应为度.11.已知扇形的弧长为6π,它的圆心角为120°,则该扇形的半径为.12.已知圆弧所在圆的半径为6,所对圆心角为60°,则这条弧的长为.13.扇形的半径为6cm,弧长为10cm,则扇形面积是.14.已知一个圆锥形零件的母线长为13cm,底面半径为5cm,则这个圆锥形的零件的侧面积为cm2.(结果用π表示).15.如图,扇形纸扇完全打开后,外侧两竹条AB,AC夹角为150°,AB的长为18cm,BD 的长为9cm,则纸面部分BDEC的面积为cm2.16.如图,在扇形AOB中,∠AOB=90°,OA=4,以OB为直径作半圆,圆心为点C,过点C作OA的平行线分别交两弧点D、E,则阴影部分的面积为.三.解答题17.计算下图中扇形AOB的面积(保留π)18.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,求该圆锥的高h的长.19.如图,在4×4的方格纸中(共有16个小方格),每个小方格都是边长为1的正方形.O、A、B分别是小正方形的顶点,求扇形OAB的弧长,周长和面积.(结果保留根号及π).20.如图,在半径为6cm的⊙O中,圆心O到弦AB的距离OE为3cm.(1)求弦AB的长;(2)求劣弧的长.21.在扇形OAB中,C是弧AB上一点,延长AC到D,且∠BCD=75°.(1)求∠AOB的度数;(2)扇形OAB是某圆锥的侧面展开图,若OA=12,求该圆锥的底面半径.22.如图所示,现有一圆心角为90°、半径为80cm的扇形铁片,用它恰好围成一个圆锥形的量筒;如果用其它铁片再做一个圆形盖子把量筒底面密封.(接缝都忽略不计).求:(1)该圆锥盖子的半径为多少cm?(2)制作这个密封量筒,共用铁片多少cm2.(注意:结果保留π)参考答案一.选择题1.解:∵扇形的半径为6,圆心角为120°,∴此扇形的弧长==4π.故选:B.2.解:根据题意,这个圆锥的全面积=×2π×6×10+π×62=60π+36π=96π(cm2).故选:B.3.解:根据题意,重物的高度为=4π(cm).故选:D.4.解:∵∠ACB=90°,∠BAC=30°,BC=2cm∴AB=4,则圆锥的底面周长=4π,旋转体的侧面积=×4π×4=8π,故选:B.5.解:由题意,扇形的半径AD==,∠EAF=45°,∴扇形AEF的面积==.故选:A.6.解:作OD⊥AB于D,如图,则AD=BD,∵∠OAD=∠BAC=30°,∴OD=OA=10,AD=OD=10,∴AB=2AD=20,∴扇形围成的圆锥的侧面积==200π(cm2).故选:A.7.解:∵扇形花圃的圆心角∠AOB=120°,半径OA为3cm,∴花圃的面积为=3π,故选:B.8.解:阴影部分的面积=扇形MAD的面积+矩形ABCD的面积﹣△CMB的面积=+3×9﹣×3×12=(π+9)cm2,故选:C.二.填空题9.解:设圆的半径为r,弧长等于半径的圆弧水对的圆心角是n°,根据题意得r=,即得n=,即弧长等于半径的圆弧所对的圆心角是度.10.解:设扇形的半径为r,周长为C,圆心角为n°,面积为S,S=(C﹣2r)r=﹣r2+r=﹣(r﹣)2+,∴当r=C时,S取得最大值,∴C=4r,∴=4r﹣2r,解得,n=,故答案为:.11.解:设扇形的半径为r,6π=,解得,r =9,故答案为:9.12.解:l ==2π, 故答案为2π.13.解:根据题意得,S 扇形=lR ==30(cm 2). 故答案为30cm 2.14.解:圆锥的底面周长=2π×5=10π,圆锥形的零件的侧面积=×10π×13=65π,故答案为:65π.15.解:S =S 扇形BAC ﹣S 扇形DAE =﹣=π(cm 2). 故答案是:π16.解:连接OE ,如图,∵CE ∥OA ,∴∠BCE =90°,∵OE =4,OC =2,∴CE =OC =2,∴∠CEO =30°,∠BOE =60°,∴S阴影部分=S 扇形BOE ﹣S △OCE ﹣S 扇形BCD =﹣×2×2﹣=π﹣2.故答案为π﹣2三.解答题17.解:如图,因为∠ACO=60°,OC=OA=4cm,所以△ACO是等边三角形,所以∠AOC=60°,所以∠AOB=120°,=π(cm2)答:扇形AOB的面积是πcm2.18.解:如图,由题意得:2πr=,而r=2,∴AB=6,∴由勾股定理得:AO2=AB2﹣OB2,而AB=6,OB=2,∴AO=4.即该圆锥的高为4.19.解:由图形可知,∠AOB=90°,∴OA=OB==2,∴扇形OAB的面积==2π,弧AB的长是:=π∴周长=弧AB的长+2OA=π+4.综上所述,扇形OAB的弧长是π,周长是π+4,面积是2π.20.解:(1)∵OE⊥AB,∴E为AB的中点,即AE=BE,在Rt△AOE,OA=6cm,OE=3cm,根据勾股定理得:AE==3cm,则AB=2AE=6cm.(2)在直角△OAE中,OA=6cm,OE=3cm,则OA=2OE,所以∠OAE=30°,∴∠AOE=∠BOE=60°,∴∠AOB=120°,∴劣弧的长是:=4π(cm).21.解:(1)作出所对的圆周角∠APB,∵∠APB+∠ACB=180°,∠BCD+∠ACB=180°,∴∠APB=∠BCD=75°,∴∠AOB=2∠APB=150°;(2)设该圆锥的底面半径为r,根据题意得2πr=,解得r=5,∴该圆锥的底面半径为5.22.解:(1)圆锥的底面周长是:=40πcm .设圆锥底面圆的半径是r ,则 2πr =40π.解得:r =20cm ;(2)S =S 侧+S 底=×π×802+400π=2000π(cm 2). 答:共用铁片2000πcm 2.。

弧长与扇形面积练习题

弧长与扇形面积练习题

姓名______________成绩_____________1.已知圆锥的高是cm 30,母线长是cm 50,则圆锥的侧面积是.2.如图,四边形OABC 为菱形,点B 、C 在以点O 为圆心的⌒EF 上,若OA=1,∠1=∠2,则扇形OEF 的面积为__________________3.如图=10,∠AOB=36︒。

若固定B 点,将此扇形依顺时针方向旋转,得一新扇形A’O’B,其中A 点在B O '上,如图2所示,则O 点旋转至O’点所经过的轨迹长度__________ 4π4. 现有一个圆心角为90,半径为cm 8的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计).该圆锥底面圆的半径为___________5.如图,有一块含︒30的直角三角板OAB 的直角边长BO 的长恰与另一块等腰直角三角板ODC 的斜边OC 的长相等,把该套三角板放置在平面直角坐标系中,且3=AB .(1)若双曲线的一个分支恰好经过点A ,求双曲线的解析式;(2)若把含︒30的直角三角板绕点O 按顺时针方向旋转后,斜边OA 恰好与x 轴重叠,点A 落在点A ',试求图中阴影部分的面积(结果保留π).E F O B C 21 图1 图2姓名______________成绩_____________ 2010年_____月______日1、已知圆锥的底面半径是3cm ,母线长为6cm ,则侧面积为________cm 2.(结果保留π)2、已知圆锥的底面半径为3,侧面积为15π,则这个圆锥的高为3、已知扇形的圆心角为120°,半径为15cm ,则扇形的弧长为cm (结果保留π).4、如图,如果从半径为9cm 的圆形纸片剪去三分之一圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为_________5、如图,扇形OAB ,∠AOB=90︒,⊙P 与OA 、OB 分别相切于点F 、E ,并且与弧AB 切于点C ,则扇形OAB 的面积与⊙P 的面积比是.6、如图,有一块半圆形钢板,直径AB=20cm ,计划将此钢板切割成下底为AB 的等腰梯形,上底CD 的端点在圆周上,且CD=10cm .求图中阴影部分的面积.E BAC D (第4题)剪去1、如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连结EF、EO,若32=DE,︒=∠45DPA。

中考数学精选汇编弧长与扇形面积---13道题目(含答案)

中考数学精选汇编弧长与扇形面积---13道题目(含答案)

01已知该圆锥的侧面展开图的圆心角为120°、半径长为6,圆锥的高与母线的夹角为α,则()A.圆锥的底面半径为3 B.tanα=C.圆锥的表面积为12πD.该圆锥的主视图的面积为8已知该圆锥的侧面展开图的圆心角为120°、半径长为6,圆锥的高与母线的夹角为α,则()A.圆锥的底面半径为3 B.tanα=C.圆锥的表面积为12πD.该圆锥的主视图的面积为8【考点】圆锥的计算.【分析】根据圆锥的侧面展开图的弧长=2πr=,求出r以及圆锥的高h即可解决问题.【解答】解:设圆锥的底面半径为r,高为h.由题意:2πr=,解得r=2,h==4,所以tanα==,圆锥的主视图的面积=×4×4=8,表面积=4π+π×2×6=16π.∴选项A、B、C错误,D正确.故选D.【点评】本题考查圆锥的有关知识,记住侧面展开图的弧长=2πr=,圆锥的表面积=πr2+πrl是解决问题的关键,属于中考常考题型.02如图,是半径为1的圆弧,∠AOC 等于45°,D 是上的一动点,则四边形AODC 的面积s 的取值范围是 ( )A .42242+≤≤S B .42242+≤<S C .22222+≤≤S D .22222+<<S如图,是半径为1的圆弧,∠AOC 等于45°,D 是上的一动点,则四边形AODC 的面积s 的取值范围是 ( )A .42242+≤≤S B .42242+≤<S C .22222+≤≤S D .22222+<<S 答案:B 解析如图,过点C 作CF 垂直AO 于点F,过点D 作DE 垂直CO 于点E, ∵CO=AO=1,∠COA=45°所以CF=FO=22,∴S △AFC=22121⨯⨯42=则面积最小的四边形面积为D 无限接近点C 所以最小面积无限接近42但是不能取到∵△AOC 面积确定,∴要使四边形AODC 面积最大,则要使△COD 面积最大。

浙教新版九年级上册《3.8弧长及扇形的面积》2024年同步练习卷(3)+答案解析

浙教新版九年级上册《3.8弧长及扇形的面积》2024年同步练习卷(3)+答案解析

浙教新版九年级上册《3.8弧长及扇形的面积》2024年同步练习卷(3)一、选择题:本题共5小题,每小题3分,共15分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.若扇形的圆心角为,半径为6,则该扇形的弧长为()A. B. C. D.2.如图,半径是1,A、B、C是圆周上的三点,,则劣弧的长是()A.B.C.D.3.如图是两个同心圆的一部分,已知,则的长是的长的()A.B.2倍C.D.4倍4.如图,在的正方形网格中,若将绕着点A逆时针旋转得到,则的长为()A.B.C.D.5.如图,内接于,,若,则的长为()A. B. C. D.二、填空题:本题共6小题,每小题3分,共18分。

6.已知弧的长为,弧的半径为6cm ,则圆弧的度数为______.7.一块等边三角形木板,边长为1,现将木板沿水平线翻滚,如图所示,若翻滚了40次,则B 点所经过的路径长度为______.8.如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为2,则该莱洛三角形的周长为______.9.在半径为6cm 的圆中,的圆心角所对的弧长为______10.如图,在的正方形网格中,每个小正方形的边长为以点O 为圆心,4为半径画弧,交图中网格线于点A 、B ,则的长为______.11.已知一个半圆形工件,搬动前如图所示,直径平行于地面放置,搬动时为了保护圆弧部分不受损伤,先将半圆作如图所示的无滑动翻转,使它的直径紧贴地面,再将它沿地面平移50m ,半圆的直径为6m ,则圆心O 所经过的路线长是______结果用表示三、计算题:本大题共1小题,共6分。

12.如图,已知四边形ABCD 内接于圆O ,连接BD ,,求证:;若圆O 的半径为3,求的长.四、解答题:本题共2小题,共16分。

解答应写出文字说明,证明过程或演算步骤。

13.本小题8分一段铁丝长,把它弯成半径为160cm的一段圆弧,求铁丝两端间距离.14.本小题8分如图,在矩形ABCD中,将矩形ABCD在直线l上按顺时针方向不滑动地每秒转动,转动3s后停止,则顶点A经过的路程为多长?答案和解析1.【答案】B【解析】解:弧长故选:根据弧长公式进行求解即可.本题考查了弧长的计算,解答本题的关键是掌握弧长公式:2.【答案】B【解析】解:连OB,OC,如图,,,劣弧的长故选连OB,OC,根据圆周角定理得到,然后根据弧长公式计算劣弧的长.本题考查了弧长公式:也考查了圆周角定理.3.【答案】A【解析】解:设,,则,,的长是的长的故选:利用弧长公式计算即可.本题考查了弧长公式:弧长为l,圆心角度数为n,圆的半径为熟记公式是解题的关键.4.【答案】A【解析】解:根据图示知,,的长为:故选根据图示知,所以根据弧长公式求得的长.本题考查了弧长的计算、旋转的性质.解答此题时采用了“数形结合”是数学思想.5.【答案】A【解析】【分析】本题考查圆周角定理,弧长公式,等腰直角三角形的性质的等知识,解题的关键是熟练掌握基本知识,属于常考题.连接OB,OC,首先证明是等腰直角三角形,求出OB即可解决问题.【解答】解:连接OB,,,,,的长为,故选:6.【答案】【解析】解:设圆心角为n,则即圆弧的度数的把数量关系对应代入弧长公式,即可求解.主要考查了弧长公式:本题是利用弧长公式作为相等关系求圆心角的度数,即弧度.7.【答案】【解析】解:从图中发现:B点从开始至结束所走过的路径长度为两段弧长即第一段,第二段故B点翻滚一周所走过的路径长度,三次一个循环,……1,若翻滚了40次,则B点所经过的路径长度为故答案为:B点翻滚一周所走过的路径长度为两段弧长,一段是以点C为圆心,BC为半径,圆心角为,第二段是以A为圆心,AB为半径,圆心角为的两段弧长,依弧长公式计算即可.本题考查了旋转的性质,等边三角形的性质,弧长公式等知识,求出两次旋转的角度是解题的关键.8.【答案】【解析】解:该莱洛三角形的周长故答案为:直接利用弧长公式计算即可.本题考查了弧长的计算,等边三角形的性质,熟练掌握弧长的计算公式是解题的关键.9.【答案】【解析】解:半径为6cm的圆中,的圆心角所对的弧长为:故答案为:直接利用弧长公式求出即可.此题主要考查了弧长公式的应用,正确记忆弧长公式是解题关键.10.【答案】【解析】解:如图,,,,,的长,故答案为:如图,根据直角三角形的性质得到,根据三角形的内角和定理得到,根据弧长公式计算即可.本题考查了弧长的计算、解直角三角形等知识,解题的关键是正确寻找直角三角形解决问题,属于中考常考题型.11.【答案】【解析】解:由图形可知,圆心先向前走的长度即圆的周长,然后沿着弧旋转圆的周长,最后向右平移50米,所以圆心总共走过的路程为圆周长的一半即半圆的弧长加上50,由已知得圆的半径为3,设半圆形的弧长为l,则半圆形的弧长,故圆心O所经过的路线长故答案为:根据弧长的公式先求出半圆形的弧长,即根据弧长的公式先求出半圆形的弧长,即半圆作无滑动翻转所经过的路线长,把它与沿地面平移所经过的路线长相加即为所求.本题主要考查了弧长公式,同时考查了旋转的知识.解题关键是得出半圆形的弧长=半圆作无滑动翻转所经过的路线长.12.【答案】证明:四边形ABCD内接于圆O,,,,;解:连接OB、OC,,,由圆周角定理得,,的长【解析】根据圆内接四边形的性质求出,根据等腰三角形的判定定理证明;连接OB、OC,根据圆周角定理求出,根据弧长公式计算即可.本题考查的是圆内接四边形的性质、弧长的计算,掌握圆内接四边形的对角互补、弧长公式是解题的关键.13.【答案】解:设半径为160cm的一段圆弧的角度为n,则解得所以铁丝两端间距离为【解析】由半径为160cm的一段圆弧的长度为一段铁丝长,求得圆弧的角度,进一步利用勾股定理求得结论即可.此题考查弧长计算公式的运用,以及.勾股定理的运用,注意利用特殊的角度直接解决问题14.【答案】解:由勾股定理得矩形ABCD的对角线长为10,从A到,,路线长为;从到,,路线长为;从到,,路线长为;所以顶点A经过的路程为【解析】由勾股定理得矩形ABCD的对角线长为10,从A到是以B点为圆心AB为半径的弧,从到是以C为圆心AC为半径的弧,从到是以D为圆心AD为半径的弧,利用弧长公式即可求出顶点A经过的路线长.本题主要考查圆的弧长公式,旋转的性质以及勾股定理的运用,此题正确理解题意也很重要.。

专题3弧长和扇形面积(专项练习含答案

专题3弧长和扇形面积(专项练习含答案

专题3.24 弧长和扇形面积(专项练习1)一、单选题知识点一、求弧长1.如图,PA 、PB 是⊙O 的切线,切点分别为A 、B ,若OA =2,⊙P =60°,则AB 的长为( )A .23πB .πC .43πD .53π 2.如图,在扇形AOB 中,AC 为弦,140AOB ∠︒=,60CAO ∠︒=,6OA =,则BC 的长为( )A .43πB .83πC .D .2π 3.如图,半径为1的⊙O 与正五边形ABCDE 相切于点A ,C ,则劣弧AC 的长度为( )A .25π B .23π C .34π D .45π 知识点二、求半径4.一个扇形的圆心角为60°,弧长为2π厘米,则这个扇形的半径为( )A .6厘米B .12厘米C .厘米D 厘米 5.若扇形的圆心角为90︒,弧长为3π,则该扇形的半径为( )A B .6 C .12 D .,圆心角是150,则它的半径长为()6.已知一个扇形的弧长为5cmA.6cm B.5cm C.4cm D.3cm 知识点三、求圆心角7.已知扇形半径为3,弧长为π,则它所对的圆心角的度数为()A.120°B.60°C.40°D.20°8.圆锥的地面半径为10cm.它的展开图扇形半径为30cm,则这个扇形圆心角的度数是()A.60°B.90°C.120°D.150°9.有一条弧的长为2πcm,半径为2cm,则这条弧所对的圆心角的度数是()A.90°B.120°C.180°D.135°知识点四、求点的运动路径长10.如图,在边长为1的正方形组成的网格中,⊙ABC的顶点都在格点上,将⊙ABC绕点C 顺时针旋转60°,则顶点A所经过的路径长为()A.10πBC D.π11.如图,四个三角形拼成一个风车图形,若AB=2,当风车转动90°时,点B运动路径的长度为()A.πB.2πC.3πD.4π12.如图,已知□ABCD的对角线BD=4cm,将□ABCD绕其对称中心O旋转180°,则点D所转过的路径长为( )A .4π cmB .3π cmC .2π cmD .π cm知识点五、求扇形面积13.如图,AB 为半圆的直径,其中4AB =,半圆绕点B 顺时针旋转45︒,点A 旋转到点A '的位置,则图中阴影部分的面积为( )A .πB .2πC .2πD .4π14.如图,AB 是⊙O 的直径,CD 是弦,⊙BCD=30°,OA=2,则阴影部分的面积是( )A .3πB .23πC .πD .2π15.如图,等边三角形ABC 内接于O ,若O 的半径为2,则图中阴影部分的面积等于( )A .3πB .23πC .43πD .2π知识点六、求旋转扫过的面积16.如图,C 是半圆⊙O 内一点,直径AB 的长为4cm ,⊙BOC =60°,⊙BCO =90°,将⊙BOC 绕圆心O 逆时针旋转至⊙B′OC′,点C′在OA 上,则边BC 扫过的区域(图中阴影部分)的面积为( )A .43πB .πC .4πD 17.在⊙ABC 中,⊙C=90°,BC=4cm ,AC=3cm ,把⊙ABC 绕点A 顺时针旋转90°后,得到⊙A 1B 1C 1(如图所示),则线段AB 所扫过的面积为( )A .2B .254πcm 2C .252πcm 2D .5πcm 218.如图,直径AB 为6的半圆,绕A 点逆时针旋转60°,此时点B 到了点B′,则图中阴影部分的面积是( )A .6πB .5πC .4πD .3π知识点七、求弓形的面积19.如图,在O 中,2OA =,45C ∠=︒,则图中阴影部分的面积为( )A.2πB .πC .22π- D .2π-20.如图,阴影表示以直角三角形各边为直径的三个半圆所组成的两个新月形,若127S S +=,且8AC BC +=,则AB 的长为( )A .6B .7C .8D .1021.如图,某商标是由三个半径都为R 的圆弧两两外切得到的图形,则三个切点间的弧所围成的阴影部分的面积是( )A .(√3﹣12π)R 2B .(√3+12π)R 2C .(√32﹣π)R 2D .(√32+π)R 2知识点八、求不规则图形面积22.如图,在菱形ABCD 中,点E 是BC 的中点,以C 为圆心、CE 为半径作弧,交CD 于点F ,连接,AE AF .若6AB =,60B ∠=,则阴影部分的面积为( )A .3πB .2πC .9π-D .6π 23.如图,直径6AB =的半圆,绕B 点顺时针旋转30︒,此时点A 到了点A ',则图中阴影部分的面积是( ).A .2πB .34πC .πD .3π24.如图,菱形ABCD 的边长为4cm ,⊙A =60°,弧BD 是以点A 为圆心,AB 长为半径的弧,弧CD 是以点B 为圆心,BC 长为半径的弧,则阴影部分的面积为( )A .2cm 2B .2C .4cm 2D .πcm 2二、填空题 知识点一、求弧长25.如图,边长为的正六边形螺帽,中心为点O ,OA 垂直平分边CD ,垂足为B ,AB =17cm ,用扳手拧动螺帽旋转90°,则点A 在该过程中所经过的路径长为_____cm .26.一个扇形的圆心角是120°.它的半径是3cm .则扇形的弧长为__________cm . 27.如图,在66⨯的方格纸中,每个小方格都是边长为1的正方形,其中A 、B 、C 为格点,作ABC 的外接圆,则BC 的长等于_____.知识点二、求半径28.已知扇形的圆心角为120°,弧长为6π,则它的半径为________.29.若扇形的圆心角为120°,弧长为18πcm ,则该扇形的半径为_____cm .30.如图,⊙O 的半径为6cm ,B 为⊙O 外一点,OB 交⊙O 于点A ,AB=OA ,动点P 从点A 出发,以π cm/s 的速度在⊙O 上按逆时针方向运动一周回到点A 立即停止.当点P 运动的时间为______时,BP 与⊙O 相切.知识点三、求圆心角31.一个扇形的弧长是20cm π,面积是2240cm π,则这个扇形的圆心角是___度. 32.如图,点A 、B 、C 在半径为9的⊙O 上,AB 的长为,则⊙ACB 的大小是___.33.若一个扇形的弧长是2πcm ,面积是26πcm ,则扇形的圆心角是__________度.知识点四、求点的运动路径长34.如图,扇形AOB 中,10,36OA AOB =∠=︒.若将此扇形绕点B 顺时针旋转,得一新扇形A O B '',其中A 点在O B '上,则点O 的运动路径长为_______cm .(结果保留π)35.将边长为2的正六边形ABCDEF 绕中心O 顺时针旋转α度与原图形重合,当α最小时,点A 运动的路径长为_____.36.如图,在扇形铁皮AOB中,OA=10,⊙AOB=36°,OB在直线l上.将此扇形沿l按顺时针方向旋转(旋转过程中无滑动),当OA第5次落在l上时,停止旋转.则点O所经过的路线长为_____.知识点五、求扇形面积37.如图,在正六边形ABCDEF中,分别以C,F为圆心,以边长为半径作弧,图中阴影部分的面积为24π,则正六边形的边长为_____.38.一个扇形的半径为3cm,面积为 2cm,则此扇形的圆心角为______.39.如图,矩形ABCD的对角线交于点O,以点A为圆心,AB的长为半径画弧,刚好过点O,以点D为圆心,DO的长为半径画弧,交AD于点E,若AC=2,则图中阴影部分的面积为_____.(结果保留π)知识点六、求旋转扫过的面积40.如图,在⊙ABC 中,⊙ABC =45°,⊙ACB =30°,AB =2,将⊙ABC 绕点C 顺时针旋转60°得⊙CDE ,则图中线段AB 扫过的阴影部分的面积为_____.41.如图,在⊙ABC 中,AB =5,AC =3,BC =4,将⊙ABC 绕点A 逆时针旋转30°后得到⊙ADE ,点B 经过的路径为弧BD ,则图中阴影部分的面积为________.42.如图,将ABC 绕点A 逆时针旋转120︒得ADE ,已知4AB =,1AC =,那么图中阴影部分的面积是________.(结果保留π)知识点七、求弓形的面积43.如图,⊙O 的半径为2,点A ,B 在⊙O 上,⊙AOB =90°,则阴影部分的面积为________.44.如图,点A 、B 、C 在⊙O 上,若⊙BAC =45°,OB =2,则图中阴影部分的面积为_____.45.如图,点C 是以AB 为直径的半圆O 的三等分点,2AC = ,则图中阴影部分的面积是 _______.知识点八、求不规则图形面积46.如图,边长为2的正方形ABCD 中心与半径为2的⊙O 的圆心重合,E 、F 分别是AD 、BA 的延长与⊙O 的交点,则图中阴影部分的面积是______.(结果保留π)47.如图,AB 是O 的直径,点E 是BF 的中点,过点E 的切 线分别交AF AB ,的延长线于点D C ,,若C 30∠=,O 的半径是2,则图形中阴影部分的面积是_______.48.如图所示的扇形AOB 中,920,OA B OB AO ∠===︒,C 为AB 上一点,30AOC ∠=︒,连接BC ,过C 作OA 的垂线交AO 于点D ,则图中阴影部分的面积为_______.三、解答题知识点一、求弧长49.如图,PC是⊙O的直径,PA切⊙O于点P,OA交⊙O于点B,连结BC.已知⊙O的半径为2,⊙C=35°(1)求⊙A的度数;(2)求BC的长.知识点二、求半径50.在⊙O中,弦AB所对的圆周角为30°,且5cmAB=,求AB的长.嘉琪的解法如下:⊙弦AB所对的圆周角是30°,AB∴的长为3055(cm) 1806ππ⨯=.请问嘉琪的解法正确吗?如果不正确,请给出理由.知识点三、求圆心角51.若一条圆弧所在圆半径为9,弧长为52π,求这条弧所对的圆心角.知识点四、求点的运动路径长52.如图,正方形网格中的每一个小正方形的边长都是1,四边形ABCD的四个顶点都在格点上,O为AD边的中点,若把四边形ABCD绕点O顺时针旋转180°,试解决下列问题:(1)画出四边形ABCD旋转后的图形;(2)求点C在旋转过程中经过的路径长.知识点五、求扇形面积53.如图,AB是O的直径,点D是AB延长线上的一点,点C在O上,且AC=CD,=.∠︒120ACD()求证:CD是O的切线;1()若O的半径为3,求图中阴影部分的面积.2知识点六、求旋转扫过的面积54.如图所示,在平面直角坐标系中,Rt⊙ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).(1)将⊙ABC以点C为旋转中心逆时针旋转90°,画出旋转后对应的⊙A1B1C;(2)图中⊙ABC外接圆的圆心的坐标是,⊙ABC外接圆的面积是平方单位长度.知识点七、求弓形的面积55.如图,以AB为直径的⊙O经过AC的中点D,DE⊙BC于点E.(1)求证:DE是⊙O的切线;(2)当AB=⊙C=30°时,求图中阴影部分的面积(结果保留根号和π).知识点八、求不规则图形面积56.如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,AB,DC的延长线交于点E.(1)求证:AC平分⊙DAB;(2)若BE=3,参考答案1.C【解析】试题解析:⊙P A、PB是⊙O的切线,⊙⊙OBP=⊙OAP=90°,在四边形APBO中,⊙P=60°,⊙⊙AOB =120°,⊙OA =2,⊙AB 的长l =12024=1803ππ⨯. 故选C.2.B【分析】连接OC ,根据等边三角形的性质得到80BOC ∠︒=,根据弧长公式计算即可.【详解】连接OC ,60OA OC CAO ∠︒=,=,AOC ∴为等边三角形,60AOC ∴∠︒=,1406080BOC AOB AOC ∴∠∠-∠︒-︒︒===,则BC 的长80681803ππ⨯==, 故选B . 【点拨】本题考查弧长的计算,等边三角形的判定和性质,掌握弧长公式:180n r l π=是解题的关键.3.D【分析】连接OA 、OC ,如图,根据正多边形内角和公式可求出⊙E 、⊙D ,根据切线的性质可求出⊙OAE 、⊙OCD ,从而可求出⊙AOC ,然后根据圆弧长公式即可解决问题.【详解】连接OA 、OC ,如图.⊙五边形ABCDE 是正五边形, ⊙⊙E =⊙D =(52)1805︒-⨯=108°.⊙AE 、CD 与⊙O 相切,⊙⊙OAE =⊙OCD =90°,⊙⊙AOC =(5﹣2)×180°﹣90°﹣108°﹣108°﹣90°=144°,⊙劣弧AC 的长为144141805ππ⨯=. 故选D .【点拨】本题主要考查了切线的性质、正五边形的性质、多边形的内角和公式、圆弧长公式等知识,求出圆弧所对应的圆心角是解决本题的关键.4.A【解析】 l=180n R π⨯, 由题意得,2π=60180R π⨯, 解得:R=6cm .故选A .故选A .【点睛】运用了弧长的计算公式,属于基础题,熟练掌握弧长的计算公式是关键. 5.B 【分析】根据弧长公式180n r l π=可以求得该扇形的半径的长度. 【详解】 解:根据弧长的公式180n r l π=,知 180180390l r n πππ⨯===6, 即该扇形的半径为6.故选:B .【点拨】本题考查了弧长的计算.解题时,主要是根据弧长公式列出关于半径r 的方程,通过解方程即可求得r 的值.6.A【分析】设扇形半径为rcm ,根据扇形弧长公式列方程计算即可.【详解】设扇形半径为rcm , 则150180r π=5π,解得r =6cm . 故选A.【点拨】本题主要考查扇形弧长公式.7.B【解析】【详解】解:根据l=3180180n r n ππ⨯==π, 解得:n=60°,故选B .【点拨】本题考查弧长公式,在半径为r 的圆中,n°的圆心角所对的弧长为l=180n r π. 8.C【解析】【分析】根据圆锥的侧面展开图为扇形,圆锥的底面圆的周长等于扇形的弧长得到圆锥的展开图扇形的弧长=2π•10,然后根据扇形的弧长公式l =180n R π 计算即可求出n . 【详解】解:设圆锥的展开图扇形的圆心角的度数为n .⊙圆锥的底面圆的周长=2π•10=20π,⊙圆锥的展开图扇形的弧长=20π,⊙20π=30180n π⋅⋅, ⊙n =120°.故答案选:C .【点拨】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,圆锥的底面圆的周长等于扇形的弧长,母线长等于扇形的半径.也考查了扇形的弧长公式.9.C【分析】根据弧长公式:l =180n R π(弧长为l ,圆心角度数为n ,圆的半径为R ),代入即可求出圆心角的度数.【详解】解:由题意得,2π=2180n π⨯, 解得:n =180.即这条弧所对的圆心角的度数是180°.故选C .【点拨】本题考查了弧长的计算,解答本题关键是熟练掌握弧长的计算公式,及公式字母表示的含义.10.C【详解】如图所示:在Rt⊙ACD 中,AD=3,DC=1,根据勾股定理得:又将⊙ABC 绕点C 顺时针旋转60°,则顶点A 所经过的路径长为=. 故选C.11.A【分析】B 点的运动路径是以A 点为圆心,AB 长为半径的圆的14的周长,然后根据圆的周长公式即可得到B 点的运动路径长度为π.【详解】解:⊙B 点的运动路径是以A 点为圆心,AB 长为半径的圆的14的周长, ⊙9022360,故选:A .【点拨】本题考查了弧长的计算,熟悉相关性质是解题的关键.12.C【分析】点D 所转过的路径长是一段弧,是一段圆心角为180°,半径为OD 的弧,故根据弧长公式计算即可.【详解】解:BD=4, ⊙OD=2⊙点D 所转过的路径长=1802180π⨯=2π. 故选:C .【点拨】本题主要考查了弧长公式:180n r l π=. 13.B【分析】由旋转的性质可得:AB A B BAA S S S S ''+=+阴影半圆半圆扇形,从而可得BAA S S '=阴影扇形,利用扇形面积公式计算即可.【详解】解:半圆AB 绕点B 顺时针旋转45︒,点A 旋转到A '的位置, AB A B S S '∴=半圆半圆,45ABA '∠=︒.AB A B BAA S S S S ''+=+阴影半圆半圆扇形,BAA S S '∴=阴影扇形24542360ππ⨯==. 故选B . 【点拨】本题考查的是旋转的性质,扇形面积的计算,掌握以上知识是解题的关键. 14.B【分析】根据圆周角定理可以求得⊙BOD 的度数,然后根据扇形面积公式即可解答本题.【详解】⊙⊙BCD=30°,⊙⊙BOD=60°,⊙AB 是⊙O 的直径,CD 是弦,OA=2,⊙阴影部分的面积是:236236020ππ⨯⨯=, 故选B .【点拨】本题考查扇形面积的计算、圆周角定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.15.C【分析】连接OC ,如图,利用等边三角形的性质得120AOC ∠=,AOB AOC SS =,然后根据扇形的面积公式,利用图中阴影部分的面积AOC S =扇形进行计算.【详解】解:连接OC ,如图, ABC 为等边三角形,120AOC ∠∴=,AOB AOC S S =,∴图中阴影部分的面积212024.3603AOC S 扇形ππ⋅⨯===故选C .【点拨】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了等边三角形的性质.16.B【解析】【分析】根据直角三角形的性质求出OC 、BC ,根据扇形面积公式:2360n r S π=计算即可. 【详解】解:⊙⊙BOC=60°,⊙BCO=90°,⊙⊙OBC=30°,⊙OC=12OB=1,则边BC 扫过的区域的面积为:2212021120111136023602ππ⨯⨯+-- =πcm 2.故答案为B .【点拨】本题主要考查扇形面积公式,三角形的性质.正确计算扇形面积是解题的关键. 17.B【解析】【分析】首先求出AB ,然后根据扇形面积公式计算即可.【详解】解:,⊙线段AB 所扫过的面积为:290525=3604ππ⋅⋅, 故选:B.【点拨】本题主要考查扇形面积计算,熟练掌握扇形面积计算公式是解题关键. 18.A【详解】试题分析:根据题意可得:阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积-以AB 为直径的半圆的面积=扇形ABB′的面积=26066360ππ⨯=,故选A . 考点:图形旋转的性质、扇形的面积.19.D【分析】根据圆周角定理得出⊙AOB=90°,再利用S 阴影=S 扇形OAB -S ⊙OAB 算出结果.【详解】解:⊙⊙C=45°,⊙⊙AOB=90°,⊙OA=OB=2,⊙S阴影=S扇形OAB-S⊙OAB=29021223602π⋅⋅-⨯⨯=2π-,故选D.【点拨】本题考查了圆周角定理,扇形面积计算,解题的关键是得到⊙AOB=90°.20.A【分析】根据勾股定理得到AC2+BC2=AB2,根据扇形面积公式、完全平方公式计算即可.【详解】解:由勾股定理得,AC2+BC2=AB2,⊙S1+S2=7,⊙12×π×(2AC)2+12×π×(2BC)2+12×AC×BC−12×π×(2AB)2=7,⊙AC×BC=14,AB6,故选:A.【点拨】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.21.A【解析】【分析】由题意知,得到的如图三角形是等边三角形,边长也为R,阴影的部分的面积等于等边三角形的面积减去三个弓形的面积.而一个弓形的面积等于圆心角为60度的半径为R 的扇形的面积减去边长为R的等边三角形的面积.【详解】解:边长为R的等边三角形的面积SΔ=12×sin60°R2=√34R2;半径为R的扇形的面积S扇形=60πR2360=πR26;⊙一个弓形的面积S扇形=πR26−√34R2,⊙阴影的部分的面积=√34R 2−3×(πR 26−√34R 2)=(√3−12π)R 2. 故选:A .【点拨】本题考查了等边三角形的性质和面积的求法,及扇形,弓形的面积的求法. 22.A【分析】连接AC ,根据菱形的性质求出BCD ∠和6BC AB ==,求出AE 长,再根据三角形的面积和扇形的面积求出即可.【详解】连接AC ,⊙四边形ABCD 是菱形,⊙6AB BC ==,⊙60B ∠=,E 为BC 的中点,⊙3CE BE CF ===,ABC ∆是等边三角形,//AB CD ,⊙60B ∠=,⊙180120BCD B ∠=-∠=,由勾股定理得:AE ==⊙11622AEB AEC AFC S S S ∆∆∆==⨯⨯==,⊙阴影部分的面积212033360AEC AFC CEFS S S S ππ∆∆⨯=+-==扇形, 故选A .【点拨】本题考查了等边三角形的性质和判定,菱形的性质,扇形的面积计算等知识点,能求出AEC ∆、AFC ∆和扇形ECF 的面积是解此题的关键.23.D【分析】由半圆A′B 面积+扇形ABA′的面积-空白处半圆AB 的面积即可得出阴影部分的面积.【详解】解:⊙半圆AB,绕B点顺时针旋转30°,⊙S阴影=S半圆A′B+S扇形ABA′-S半圆AB= S扇形ABA′=2630 360π⋅=3π故选D.【点拨】本题考查了扇形面积的计算以及旋转的性质,熟记扇形面积公式和旋转前后不变的边是解题的关键.24.B【解析】【分析】连接BD,判断出⊙ABD是等边三角形,根据等边三角形的性质可得⊙ABD=60°,再求出⊙CBD=60°,DB=BC=AD,从而确定S扇形BDC=S扇形ABD,然后求出阴影部分的面积=S扇形BDC -(S扇形ABD-S⊙ABD)=S⊙ABD,计算即可得解.【详解】解:如图,连接BD,⊙四边形ABCD是菱形,⊙AB=AD=BC,⊙⊙A=60°,⊙⊙ABD是等边三角形,⊙⊙ADB=60°,AD=DB=BC=4又⊙菱形的对边AD⊙BC,⊙⊙CBD=⊙ADB=60°,⊙S扇形BDC=S扇形ABD⊙S阴影=S扇形BDC-(S扇形ABD-S⊙ABD)=S⊙ABD24cm2.故选B.【点拨】本题考查了菱形的性质,等边三角形的性质和面积,熟记性质并作辅助线构造出等边三角形是解题的关键.25.10π【分析】利用正六边形的性质求出OB的长度,进而得到OA的长度,根据弧长公式进行计算即可.【详解】解:连接OD,OC.⊙⊙DOC=60°,OD=OC,⊙⊙ODC是等边三角形,⊙OD=OC=DC=cm),⊙OB⊙CD,⊙BC=BD cm),⊙OB=3(cm),⊙AB=17cm,⊙OA=OB+AB=20(cm),⊙点A在该过程中所经过的路径长=9020180π⋅⋅=10π(cm),故答案为:10π.【点拨】本题考查了正六边形的性质及计算,扇形弧长的计算,熟知以上计算是解题的关键.26.2π【解析】分析:根据弧长公式可得结论. 详解:根据题意,扇形的弧长为1203180π⨯=2π, 故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.27 【分析】由AB 、BC 、AC 长可推导出⊙ACB 为等腰直角三角形,连接OC ,得出⊙BOC =90°,计算出OB 的长就能利用弧长公式求出BC 的长了.【详解】⊙每个小方格都是边长为1的正方形,⊙AB =AC ,BC ,⊙AC 2+BC 2=AB 2,⊙⊙ACB 为等腰直角三角形,⊙⊙A =⊙B =45°,⊙连接OC ,则⊙COB =90°,⊙OB⊙BC 的长为:90180π⋅=2.【点拨】本题考查了弧长的计算以及圆周角定理,解题关键是利用三角形三边长通过勾股定理逆定理得出⊙ACB 为等腰直角三角形.28.9【分析】根据弧长公式L =180n R π求解即可. 【详解】 ⊙L =180n R π, ⊙R =1806120ππ⨯=9. 故答案为9.【点拨】本题考查了弧长的计算,解答本题的关键是掌握弧长公式:L =180n R π. 29.27【解析】【分析】根据弧长公式即可得解.【详解】解:设扇形的半径为r (cm ),则18π=120180r π⨯⨯, 解得:r=27.故答案为27.【点拨】本题考查扇形的弧长公式,l=180n r π,l 是弧长,n 是圆心角的度数,r 是半径. 30.2或10【分析】根据切线的判定与性质进行分析即可.若BP 与⊙O 相切,则⊙OPB=90°,又因为OB=2OP ,可得⊙B=30°,则⊙BOP=60°;根据弧长公式求得弧AP 长,除以速度,即可求得时间.【详解】连接OP⊙当OP⊙PB 时,BP 与⊙O 相切,⊙AB=OA ,OA=OP ,⊙OB=2OP ,⊙OPB=90°;⊙⊙B=30°;⊙⊙O=60°;⊙OA=6cm ,弧AP=606180π⨯=2π, ⊙圆的周长为:12π,⊙点P 运动的距离为2π或12π-2π=10π;⊙当t=2秒或10秒时,有BP 与⊙O 相切.故答案为:2或10【点拨】本题考查的是切线的性质及弧长公式,解答此题时要注意过圆外一点有两条直线与圆相切,不要漏解.31.150【分析】根据弧长公式计算.【详解】 根据扇形的面积公式12S lr =可得: 1240202r ππ=⨯, 解得r =24cm , 再根据弧长公式20180n r l cm ππ==, 解得150n =︒.故答案为:150.【点拨】本题考查了弧长的计算及扇形面积的计算,要记熟公式:扇形的面积公式12S lr =,弧长公式180n r l π=. 32.20°. 【分析】连接OA 、OB ,由弧长公式的92180n ππ⨯⨯=可求得⊙AOB ,然后再根据同弧所对的圆周角等于圆心角的一半可得⊙ACB.【详解】解:连接OA、OB,由弧长公式的92180nππ⨯⨯=可求得⊙AOB=40°,再根据同弧所对的圆周角等于圆心角的一半可得⊙ACB=20°.故答案为:20°【点拨】本题考查弧长公式;圆周角定理,题目难度不大,掌握公式正确计算是解题关键.33.60【分析】根据扇形的面积公式求出半径,然后根据弧长公式求出圆心角即可.【详解】解:扇形的面积=12lr=6π,解得:r=6,又⊙6180nlπ⨯==2π,⊙n=60.故答案为:60.【点拨】此题考查了扇形的面积和弧长公式,解题的关键是掌握运算方法.34.4π.【分析】根据弧长公式,此题主要是得到⊙OBO′的度数.根据等腰三角形的性质即可求解.【详解】解:根据题意,知OA=OB.又⊙AOB=36°,⊙⊙OBA=72°.⊙点O 旋转至O′点所经过的轨迹长度=7210180π︒⨯⨯︒=4πcm . 故答案是:4π. 【点拨】本题考查了弧长的计算、旋转的性质.解答该题的关键是弄清楚点O 的运动轨迹是弧形,然后根据弧长的计算公式求解.35.23π . 【详解】试题分析:根据题意α最小值是60°,然后根据弧长公式即可求得.⊙正六边形ABCDEF 绕中心O 顺时针旋转α度与原图形重合,α最小值是60°, ⊙点A 运动的路径长=60221803. 故答案为23π. 考点:轨迹;旋转对称图形.36.60π.【解析】【分析】点O 所经过的路线是2段弧和一条线段,一段是以点B 为圆心,10为半径,圆心 角为90°的弧,另一段是一条线段,和弧AB 一样长的线段,最后一段是以点A 为圆心,10为半径,圆心角为90°的弧,从而得出答案.【详解】当OA 第1次落在l 上时:点O 所经过的路线长为:90π1036π1090π10216π1012π.180180180180⨯⨯⨯⨯++== 则当OA 第5次落在l 上时:点O 所经过的路线长=12π×5=60π.故答案是:60π.【点拨】本题考查了轨迹:利用特殊几何图形描述点运动的轨迹,然后利用几何性质计算相应的几何量.37.6【分析】根据多边形的内角和公式求出扇形的圆心角,然后按扇形面积公式列方程求解计算即可.【详解】解:⊙正六边形的内角是120度,阴影部分的面积为24π,设正六边形的边长为r,⊙2120224360rππ⨯⨯=,2224,3rππ∴=236,r∴=解得r=6.(负根舍去)则正六边形的边长为6.故答案为:6.【点拨】本题考查的是正多边形与圆,扇形面积,掌握以上知识是解题的关键.38.40°.【详解】解:根据扇形的面积计算公式可得:23360n=π,解得:n=40°,即圆心角的度数为40°.考点:扇形的面积计算.39.4π【分析】由图可知,阴影部分的面积是扇形ABO和扇形DEO的面积之和,然后根据题目中的数据,可以求得AB、OA、DE的长,⊙BAO和⊙EDO的度数,从而可以解答本题.【详解】解:⊙四边形ABCD是矩形,⊙OA=OC=OB=OD,⊙AB=AO,⊙⊙ABO是等边三角形,⊙⊙BAO=60°,⊙⊙EDO =30°,⊙AC =2,⊙OA =OD =1,⊙图中阴影部分的面积为:22601301+=3603604ππ⨯⨯⨯⨯π, 故答案为:4π. 【点拨】本题主要考查扇形面积、矩形的性质及等边三角形的性质与判定,熟练掌握扇形面积、矩形的性质及等边三角形的性质与判定是解题的关键.40.3【分析】作AF ⊙BC 于F ,解直角三角形分别求出AC 、BC ,根据扇形面积公式、三角形面积公式计算即可.【详解】作AF ⊙BC 于F ,⊙⊙ABC =45°,⊙AF =BF =2AB 在Rt⊙AFC 中,⊙ACB =30°,⊙AC =2AF =FC =tan ∠AF ACF , 由旋转的性质可知,S ⊙ABC =S ⊙EDC ,⊙图中线段AB 扫过的阴影部分的面积=扇形DCB 的面积+⊙EDC 的面积﹣⊙ABC 的面积﹣扇形ACE 的面积=扇形DCB 的面积﹣扇形ACE 的面积﹣260360π⨯,.【点拨】本题考查的是扇形面积计算,掌握扇形面积公式S=2360n Rπ是解题的关键.41.25 12π【解析】【详解】由题意得,S⊙AED=S⊙ABC,由题图可得,阴影部分的面积= S⊙AED+S扇形ABD-S⊙ABC,⊙阴影部分的面积= S扇形ABD=2 30525π36012π⨯=.故答案为25 12π.42.5π【分析】根据旋转的性质可以得到阴影部分的面积=扇形DAB的面积-扇形EAC的面积,利用扇形的面积公式即可求解.【详解】解:⊙将ABC绕点A逆时针旋转120︒得ADE,⊙S⊙ABC= S⊙ADE,⊙阴影部分的面积=扇形DAB的面积+S⊙ADE-扇形EAC的面积-S⊙ABC=扇形DAB的面积-扇形EAC的面积⊙阴影部分的面积221205 12041360360πππ⨯⨯⨯=-=⨯,故答案为:5π.【点拨】本题考查了旋转的性质以及扇形的面积公式,根据旋转的性质推出:阴影部分的面积=扇形DAB的面积-扇形EAC的面积是解题关键.43.π-2【解析】【分析】先求出扇形面积,再求三角形面积,阴影面积=扇形面积-三角形面积.【详解】由已知可得,S 阴影=S 扇形OAB -S ⊙OAB =290212223602ππ-⨯⨯=-. 故答案为π-2【点睛】本题考核知识点:扇形面积. 解题关键点:熟记扇形面积公式,用求差法得到阴影面积.44.π﹣2【分析】先根据圆周角定理证得⊙BOC=90°,从而得出⊙OBC 是等腰直角三角形,然后根据S 阴影=S 扇形OBC -S ⊙OBC 即可求得.【详解】解:⊙⊙BAC=45°,⊙⊙BOC=90°,⊙⊙OBC 是等腰直角三角形,⊙OB=2,⊙S 阴影=S 扇形OBC -S ⊙OBC =14π×22-12×2×2=π-2. 故答案为π﹣2【点拨】本题考查的是圆周角定理及扇形的面积公式,熟记扇形的面积公式是解答此题的关键.45.43π【解析】【分析】连接OC,用扇形OBC 的面积减去OBC 的面积即可.【详解】如图:连接OC,点C 是以AB 为直径的半圆O 的三等分点,60,120,AOC BOC ∴∠=∠=,OA OC =OAC ∴是等边三角形,60,2,A OA OC AC ∴∠====S 扇形OBC 2120π24π.3603⨯== 1111122tan 603,22222OBC ABC S S AC BC ==⨯⋅=⨯⨯⨯=则阴影部分的面积为:43π故答案为43π 【点拨】考查不规则图形面积的计算,掌握扇形的面积公式是解题的关键.46.π-1【分析】延长DC ,CB 交⊙O 于M ,N ,根据圆和正方形的面积公式即可得到结论.【详解】解:延长DC ,CB 交⊙O 于M ,N ,则图中阴影部分的面积=14×(S 圆O −S 正方形ABCD )=14×(4π−4)=π−1, 故答案为π−1.【点拨】本题考查了圆中阴影部分面积的计算,正方形的性质,正确的识别图形是解题的关键.472π3- 【分析】先根据已知条件证明四边形AOEF 为菱形,再得到ΔEOB 为等边三角形,求出AE 的长,得到弓形的面积,再利用ΔFDE S S S =-阴弓即可求解.【详解】解:连接OE EF ,连接OF 交AE 与点G .连接BE⊙点E 是BF 的中点即=EF BE ,C 30∠=︒.⊙EF BE DAB 60∠==︒,又OF AO =⊙AEC 90ΔAFO ∠=︒,为等边三角形⊙AF AO OE EF ===,即四边形AOEF 为菱形,⊙EF AO ,从而DFE FAO 60∠∠==︒⊙AB 为直径⊙AEB 90∠=︒又⊙CD 为切线⊙OE CD ⊥⊙EOC 60∠=︒又OE OB =,⊙ΔEOB 为等边三角形.⊙BE 2=,EBA 60∠=︒,⊙AEsin EBA sin60AB ∠=︒=,即AE AB sin604=⋅︒==.2AOE AOEF 114π2S S S π22323=-=⨯-⨯⨯=-弓EF 扇菱形即2πS 3=弓在RT⊙FDE 中,DEsin DFE sin60EF ∠=︒=即ED EFsin6022=︒=⨯=⊙DF 1==⊙ΔFDE 12π2πS S S 12323⎛=-=⨯=- ⎝阴弓.2π3-.【点拨】此题主要考查了扇形的面积计算以及三角形面积求法等知识,根据图形的特点求出弓形的面积是解题的关键.48.232π- 【分析】先根据题目条件计算出OD ,CD 的长度,判断BOC 为等边三角形,之后表示出阴影面积的计算公式进行计算即可.【详解】在Rt COD 中,30,2AOC OC OA ︒∠===⊙1,CD OD ==⊙90AOB ︒∠=⊙60BOC ︒∠=⊙OB OC =⊙BOC 为等边三角形⊙BOC =COD BOC S S S S +-△△阴影扇形221602122360π⨯=+-232π=-故答案为:232π-【点拨】本题考查了阴影面积的计算,熟知不规则阴影面积的计算方法是解题的关键. 49.(1)⊙A =20°;(2)119π.【分析】(1)根据圆周角定理求出⊙AOP ,根据切线的性质计算,得到答案;(2)根据弧长公式计算即可.【详解】解:(1)由圆周角定理得,⊙AOP =2⊙C =70°⊙P A 切⊙O 于点P ,⊙⊙APO =90°,⊙⊙A =20°;(2)⊙BOC =180°﹣⊙AOP =110°, ⊙1102180BA π==119π. 【点拨】本题考查的是切线的性质、弧长的计算,掌握圆的切线垂直于经过切点的半径是解题的关键.50.嘉琪的解法不正确,见解析【分析】连接AO ,OB ,根据圆周角定理可得60AOB ∠=︒,进而得到OAB ∆是等边三角形,然后根据弧长计算公式可得答案.【详解】解:嘉琪的解法不正确,理由如下:如图,连接AO ,OB ,AB 所对的圆周角为30,60AOB ∴∠=︒,AO BO =,OAB ∴∆是等边三角形,5AB cm =,∴AB 的长为:6055()1803cm ππ⨯=. 【点拨】此题主要考查了圆周角定理和弧长计算公式,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.注意:弧长公式。

(完整版)弧长和扇形面积练习题

(完整版)弧长和扇形面积练习题

24.4 弧长和扇形面积习题一、 选择题1.已知扇形的圆心角为120°,半径为6,则扇形的弧长是( ).A .3πB .4πC .5πD .6π2.如图1所示,把边长为2的正方形ABCD 的一边放在定直线L 上,按顺时针方向绕点D 旋转到如图的位置,则点B 运动到点B ′所经过的路线长度为( )A .1B .πC .2D .2π(1) (2) (3)3.如图2所示,实数部分是半径为9m 的两条等弧组成的游泳池,若每条弧所在的圆都经过另一个圆的圆心,则游泳池的周长为( )A .12πmB .18πmC .20πmD .24πm4.圆锥的母线长为13cm ,底面半径为5cm ,则此圆锥的高线为( )A .6cmB .8cmC .10cmD .12cm 5.在半径为50cm 的圆形铁皮上剪去一块扇形铁皮,•用剩余部分制作成一个底面直径为80cm ,母线长为50cm 的圆锥形烟囱帽,则剪去的扇形的圆心角度数为( )A .228°B .144°C .72°D .36°6.如图所示,圆锥的母线长是3,底面半径是1,A 是底面圆周上一点,•从点A 出发绕侧面一周,再回到点A 的最短的路线长是( )A .3B .332 C .3 D .3 二、填空题1.如果一条弧长等于4πR ,它的半径是R ,那么这条弧所对的圆心角度数为______,• 当圆心角增加30°时,这条弧长增加________.2.如图3所示,OA=30B ,则AD 的长是BC 的长的_____倍.3.母线长为L ,底面半径为r 的圆锥的表面积=_______.4.矩形ABCD 的边AB=5cm ,AD=8cm ,以直线AD 为轴旋转一周,•所得圆柱体的表面积是__________(用含π的代数式表示)5.粮仓顶部是一个圆锥形,其底面周长为36m ,母线长为8m ,为防雨需在粮仓顶部铺上油毡,如果按用料的10%计接头的重合部分,那么这座粮仓实际需用________m 2的油毡.三、综合提高题1.如图所示,AB 所在圆的半径为R ,AB 的长为3πR ,⊙O ′和OA 、OB 分别相切于点C 、E ,且与⊙O 内切于点D ,求⊙O ′的周长.2.如图,若⊙O 的周长为20πcm ,⊙A 、⊙B 的周长都是4πcm ,⊙A 在⊙O•内沿⊙O 滚动,⊙B 在⊙O 外沿⊙O 滚动,⊙B 转动6周回到原来的位置,而⊙A 只需转动4周即可,你能说出其中的道理吗?3.如图所示,在计算机白色屏幕上,有一矩形着色画刷ABCD ,AB=1,AD=3,将画刷以B 为中心,按顺时针转动A ′B ′C ′D ′位置(A ′点转在对角线BD 上),求屏幕被着色的面积.4.一个圆锥形和烟囱帽的底面直径是40cm ,母线长是120cm ,需要加工这样的一个烟囱帽,请你画一画:(1)至少需要多少厘米铁皮(不计接头)(2)如果用一张圆形铁皮作为材料来制作这个烟囱帽,那么这个圆形铁皮的半径至少应是多少?_ . . . _B_A_O5.如图所示,已知圆锥的母线长AB=8cm,轴截面的顶角为60°,求圆锥全面积.6.如图所示,一个几何体是从高为4m,底面半径为3cm的圆柱中挖掉一个圆锥后得到的,圆锥的底面就是圆柱的上底面,圆锥的顶点在圆柱下底面的圆心上,求这个几何体的表面积.。

【中考专项】2023年中考数学转向练习之选择题11 弧长、扇形与圆锥侧面积的有关计算

【中考专项】2023年中考数学转向练习之选择题11 弧长、扇形与圆锥侧面积的有关计算

【填空题】必考重点11 弧长、扇形与圆锥侧面积的有关计算圆的有关计算主要包括弧长的计算、扇形的面积、圆锥的侧面积以及圆锥的半径或母线的长度计算,是江苏省各地市中考的必考点,难度一般或较为简单。

接此类题目时,要求考生熟记弧长的计算公式,扇形的面积公式等基本知识,在做题时注意找出已知量,标出所求量,根据公式计算即可。

【2022·江苏徐州·中考真题】如图,圆锥的母线AB=6,底面半径CB=2,则其侧面展开图扇形的圆心角α=_______.【考点分析】本题考查圆的周长公式,弧长公式,方程思想在初中数学的学习中非常重要,是中考的热点,在各种题型中均有出现,要特别注意.【思路分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到6180απ⨯=2π•2,然后解方程即可.【2022·江苏宿迁·中考真题】将半径为6cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥底面圆的半径为______cm.【考点分析】本题考查了扇形、圆锥的知识;解题的关键是熟练掌握弧长公式、圆锥的性质,从而完成求解.【思路分析】根据弧长公式、圆锥的性质分析,即可得到答案.【2021·江苏徐州·中考真题】如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若母线长l为8cm,扇形的圆心角90θ=︒,则圆锥的底面圆半径r为__________cm.【考点分析】本题考查了弧长、圆周长的知识;解题的关键是熟练掌握弧长计算的性质,从而完成求解.【思路分析】结合题意,根据弧长公式,得圆锥的底面圆周长;再根据圆形周长的性质计算,即可得到答案.【2021·江苏宿迁·中考真题】已知圆锥的底面圆半径为4,侧面展开图扇形的圆心角为120°,则它的侧面展开图面积为_____________.【考点分析】考查了圆锥的计算,解题的关键是了解圆锥的侧面展开扇形的弧长等于底面圆的周长,难度不大.【思路分析】首先根据底面圆的半径求得扇形的弧长,然后根据弧长公式求得扇形的半径,然后利用公式求得面积即可.1.(2022·江苏·宿迁市宿豫区教育局教研室二模)把半径为12且圆心角为150︒的扇形围成一个圆锥,则这个圆锥的底面圆的半径为__________.2.(2022·江苏·徐州市第十三中学三模)用一个直径为30cm圆形扫地机器人,打扫一间长为4m、宽为3m 的矩形房间,则打扫不到的角落的面积为______.(结果保留π)3.(2022·江苏·淮安市淮安区教师发展中心学科研训处模拟预测)已知圆锥的底面圆半径是2,母线长是3,则圆锥的侧面积为______.4.(2022·江苏常州·二模)已知圆锥的底面半径为9,高为12,则这个圆锥的侧面积为____________.5.(2022·江苏南京·二模)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形.若扇形的半径R=6cm,扇形的圆心角θ=120°,该圆锥的高为______cm.6.(2022·江苏扬州·三模)小红用图中所示的扇形纸片制作一个圆锥形容器(接缝忽略不计)的侧面,已知扇形纸片的半径为5cm,圆心角为240°,那么这个圆锥形容器底面半径为______cm.7.(2022·江苏南京·二模)如图,在矩形ABCD中,AD=1,AB A为圆心,AB长为半径画弧交CD于点E,则阴影部分的面积为______.8.(2022·江苏·二模)如图,将半径为4,圆心角为120°的扇形OAB绕点B逆时针旋转60°,得到扇形O'A'B,其中点A的运动路径为AA ,则图中阴影部分的面积和为_______.9.(2022·江苏无锡·模拟预测)学习圆锥有关知识的时候,韩老师要求每个同学都做一个圆锥模型,小华用家里的旧纸板做了一个底面半径为3cm ,母线长为5cm 的圆锥模型,则此圆锥的侧面积是__cm 2. 10.(2022·江苏徐州·二模)如图,圆锥的底面半径r 为6cm ,高h 为8cm ,则圆锥的侧面积为______2cm (结果保留π).11.(2022·江苏南京·一模)如图,正方形ABCD 的边长为3,点E 为AB 的中点,以E 为圆心,3为半径作圆,分别交AD 、BC 于M 、N 两点,与DC 切于P 点.则图中阴影部分的面积是 _____.12.(2022·江苏苏州·一模)如图,菱形ABCD 的对角线AC ,BD 相交于点O ,60DAB ∠=︒,4AB =.分别以点A ,点C 为圆心,AO ,CO 长为半径画弧交AB ,AD ,CD ,CB 于点E ,F ,G ,H ,则图中阴影部分面积为______.(结果保留根号和π)13.(2022·江苏南京·一模)如图,在正五边形ABCDE中,BD、CE相交于点O.以O为圆心,OB为半径画弧,分别交AB,AE于点M,N.若BC=2,则MN的长为______(结果保留π).AB=,将半圆O绕点B顺时针旋转45︒得到半圆'O,与14.(2022·江苏无锡·一模)如图,半圆O的直径6AB交于点P,图中阴影部分的面积等于__________.15.(2022·江苏无锡·一模)如图,边长为2的等边ABC的中心与半径为2的O的圆心重合,E,F分别是CA,AB的廷长线与O的交点,则图中阴影部分的面积为__________.16.(2022·江苏扬州·一模)如图,等腰Rt△AOD的直角边OA长为2,扇形BOD的圆心角为90°,点P 是线段OB的中点,PQ⊥AB,且PQ交弧DB于点Q.则图中阴影部分的面积是______.17.(2022·江苏徐州·模拟预测)如图,小明利用半径为40cm的扇形纸片制作成一个圆锥形纸帽(接缝忽略不计),若圆锥底面半径为10cm,那么这个圆锥的侧面积是_____cm2.(结果用含π的式子表示)18.(2022·江苏·靖江市滨江学校一模)如图,将矩形ABCD绕着点A逆时针旋转得到矩形AEFG,点B的对应点E落在边CD上,且DE=AD=2,则BE的长为_____.19.(2022·江苏苏州·二模)如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧,交AC 于点E,若∠A=60°,∠ABC=100°,BC=4,则扇形BDE的面积为_______.20.(2022·江苏盐城·一模)如图,半径为3的扇形AOB中,∠AOB=90°,C为弧上一点,CD⊥OA,CE ⊥OB,垂足分别为D、E.若∠CDE为40°,则图中阴影部分的面积为_______.21.(2022·江苏徐州·模拟预测)如图,扇形OAB是一个圆锥的侧面展开图,∠AOB=120°,AB的长为6πcm,则该圆锥的侧面积为_______cm2(结果保留π).22.(2022·江苏·苏州高新区实验初级中学三模)如图,在扇形AOB 中,∠AOB =90°,点C 是AB 的中点,过点C 的切线交OB 的延长线于点E ,当BE =43 __________________.23.(2022·江苏南京·模拟预测)如图,在Rt AOB 中,90AOB ︒∠=,3OA =,2OB =,将Rt AOB 绕O 顺时针旋转90︒后得Rt FOE ,将线段EF 绕点E 逆时针旋转90︒后得线段ED ,分别以O ,E 为圆心,OA 、ED 长为半径画弧AF 和弧DF ,连接AD ,则图中阴影部分面积是________.24.(2022·江苏南京·模拟预测)OABC 中,D 为边BC 上一点,且CD =1,以O 为圆心,OD 为半径作圆,分别与OA 、OC 的延长线交于点E 、F ,则阴影部分的面积为__.25.(2022·江苏无锡·模拟预测)如图,AB 是半圆O 的直径,以O 为圆心,C 为半径的半圆交AB 于C 、OC=,则图中阴影部分的面积为_________(结果保留D两点,弦AF切小半圆于点E.已知2OA=,1π)【填空题】必考重点11 弧长、扇形与圆锥侧面积的有关计算圆的有关计算主要包括弧长的计算、扇形的面积、圆锥的侧面积以及圆锥的半径或母线的长度计算,是江苏省各地市中考的必考点,难度一般或较为简单。

人教版 九年级数学上册 第24章 24.4弧长和扇形面积 专题练习(含答案)

人教版 九年级数学上册 第24章 24.4弧长和扇形面积 专题练习(含答案)

人教版 九年级数学上册 第24章 24.4弧长和扇形面积 专题练习(含答案)基础巩固1.⊙的内接多边形周长为3 ,⊙的外切多边形周长为3.4, 则下列各数中与此圆的周长最接近的是( )AB. D2.如图已知扇形的半径为6cm ,圆心角的度数为,若将此扇形围成一个圆锥,则围成的圆锥的侧面积为( )A .B .C .D .3.若一个圆锥的底面圆的周长是4πcm ,母线长是6cm ,则该圆锥的侧面展开图的圆心角的度数是A .40°B .80°C .120°D .150°4.艳军中学学术报告厅门的上沿是圆弧形,这条弧所在圆的半径为1.8 米,所对的圆心角为100°,则弧长是 米.(π≈3) 【参考答案】 1. C 2. D 3. C 4. 3O O 10AOB 120°24πcm 26πcm 29πcm 212πcm 120 BOA6cm能力提高 一、选择题1.如图,已知的半径,,则所对的弧的长为( ) A .B .C .D .2.将直径为60cm 的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为 ( )A .10cmB .30cmC .40cmD .300cm3.若用半径为9,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是( ) A .1.5B .2C .3D .64.有30%圆周的一个扇形彩纸片,该扇形的半径为40cm ,小红同学为了在“六一”儿童节联欢晚会上表演节目,她打算剪去部分扇形纸片后,利用剩下的纸片制作成一个底面半径为10cm 的圆锥形纸帽(接缝处不重叠),那么剪去的扇形纸片的圆心角为( ).A.9°B.18°C.63°D.72°5.已知圆锥的底面半径为5cm ,侧面积为65πcm 2,设圆锥的母线与高的夹角为θ(如图所示),则sin θ的值为( )A.B. C. D. O ⊙6OA =90AOB ∠=°AOB ∠AB 2π3π6π12π125135131013126.在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径高则这个圆锥漏斗的侧面积是( ) A . B . C . D .二、填空题1.,圆心角等于450的扇形AOB 内部作一个正方形CDEF ,使点C 在OA上,点D .E 在OB 上,点F 在上,则阴影部分的面积为(结果保留) .2.如图,方格纸中4个小正方形的边长均为1,则图中阴影部分三个小扇形的面积和为 (结果保留).3.将一块含30°角的三角尺绕较长直角边旋转一周得一圆锥,这个圆锥的高是3,则圆锥的侧面积是____.4.如图,三角板中,,,.三角板绕直角顶点逆时针旋转,当点的对应点落在边的起始位置上时即停止转动,则点转过的路径长为 .6cm OB =,8cm OC =.230cm 230cm π260cm π2120cm AB ππABC ︒=∠90ACB ︒=∠30B 6=BC C A 'A AB B 第2题图5.已知正六边形的边长为1cm ,分别以它的三个不相邻的顶点为圆心,1cm 长为半径画弧(如图),则所得到的三条弧的长度之和为 cm (结果保留).6.矩形ABCD的边AB =8,AD =6,现将矩形ABCD 放在直线l 上且沿着l 向右作无滑动地翻滚,当它翻滚至类似开始的位置时(如图所示),则顶点A 所经过的路线长是_________.7.已知在△ABC 中,AB=6,AC=8,∠A=90°,把Rt△ABC 绕直线AC 旋转一周得到一个圆锥,其表面积为,把Rt△ABC 绕直线AB 旋转一周得到另一个圆锥,其表面积为,则:等于_________ 三、解答题1.如图,有一个圆O 和两个正六边形,.的6个顶点都在圆周上,的6条边都和圆O 相切(我们称,分别为圆O 的内接正六边形和外切正六边形).(1)设,的边长分别为,,圆O 的半径为,求及的值; (2)求正六边形,的面积比的值.π1111A B C D 1S 2S 1S 2S 1T 2T 1T 2T 1T 2T 1T 2T a b r a r :b r :1T 2T 21:S SB 'A CAB 第4题2.如图,圆心角都是90º的扇形OAB 与扇形OCD 叠放在一起,连结AC ,BD .(1)求证:AC=BD ; (2)若图中阴影部分的面积是,OA=2cm ,求OC 的长.3.如图,已知菱形的边长为,两点在扇形的上,求的长度及扇形的面积.2 43cm ABCD 1.5cm B C ,AEF ABCBCD AEF【参考答案】 选择题 1. B 2. A3. C4. B5. A6. C 填空题 1.2. 3. 18π 4. 5. 6. 7. 2∶3 解答题1.解:(1)连接圆心O 和T 的6个顶点可得6个全等的正三角形 .所以r∶a=1∶1;连接圆心O 和T 相邻的两个顶点,得以圆O 半径为高的正三角形, 所以r∶b=∶2;(2) T ∶T 的连长比是∶2,所以S ∶S = . 2. (1)证明:2385-π∏83π22ππ24123123124:3):(2=b a(2)根据题意得:;∴ 解得:OC =1cm .3. 解:四边形是菱形且边长为1.5,.又两点在扇形的上,,是等边三角形..的长(cm )BDAC BOD AOC DO CO BO AB BOD AOC AODBOD AOD AOC COD AOB =⇒∆≅∆⇒⎪⎭⎪⎬⎫==∠=∠⇒∠+∠=∠+∠⇒∠∠ 900==360)(9036090360902222OC OA OC OA S -=-=πππ阴影360)2(904322OC -=ππABCD 1.5AB BC ∴==B C 、AEF 1.5AB BC AC ∴===ABC ∴△60BAC ∴∠=°21805.160ππ=∙=ππ835.122121=∙∙==lR S ABC 扇形)(2cm。

符合中学弧长和扇形面积圆锥侧面积练习题

符合中学弧长和扇形面积圆锥侧面积练习题

符合中学弧长和扇形面积-圆锥侧面积练习题弧长和扇形面积,圆锥的侧面积练习题一:选择题1.已知如图5,两同心圆中大圆的半径OA 、OB 交小圆于C 、D ,OC ∶CA =3∶2,则和的长度比为A.1∶1 B.3∶2 C.3∶5D.9∶25ACD BO2. 一块等边三角形的木板,边长为1,现将木板沿水平翻滚(如图),那么,B 点从开始至结束所走过的路径长度为( )A.23πB.34π C. 4D. 232π+3.如图所示,在同心圆中,两圆的半径分别为2,1,∠AOB =120°,则阴影部分的面积是( )A.B.C.D.4. 若一个扇形的圆心角是45°,面积为2л,则这个扇形的半径是( ) A. 4 B. 2 C. 47л D. 2л5. 扇形的圆心角是60°,则扇形的面积是所在图面积的( ) A.B.C.D.6. 扇形的面积等于其半径的平方,则扇形的圆心角是( )A. 90°B.C.D.180°7. 两同心圆的圆心是O ,大圆的半径是以OA ,OB 分别交小圆于点M , N .已知大圆半径是小圆半径的3倍,则扇形OAB 的面积是扇形OMN 的面积的( )A. 2倍B. 3倍C. 6倍D. 9倍8. 半圆O 的直径为6cm ,∠BAC =30°,则阴影部分的面积是( ) A.B.C..8.如图,Rt △ABC 中,∠C =90°,AC =8,BC =6,两等圆⊙A ,⊙B 外切,那么图中两个扇形(即阴影部分)的面积之和为( ).A .π425 B .π825 C .π1625 D .π3225 9.如图,扇形纸扇完全打开后,外侧两竹条AB ,AC 夹角为120°,AB 的长为30cm ,贴纸部分BD 的长为20cm ,则贴纸部分的面积为( ).A .2πcm 100B .2πcm 3400C .2πcm 800D .2πcm 380010.如图,△ABC 中,BC =4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于E ,交AC 于F ,点P 是⊙A 上一点,且∠EPF =40°,则圆中阴影部分的面积是( ).A .9π4-B .9π84-C .94π8-D .98π8-11.如图 .一扇形纸扇完全打开后,外侧两竹条AB 、AC 的夹角为120°,AB 长为30 cm ,贴纸部分BD 长为20 cm ,贴纸部分的面积为 A.800π cm 2B.500π cm 2C.3800π cm 2D.3500π cm 212.如图 ,AB 为半圆O 的直径,C 是半圆上一点,且∠COA =60°,设扇形AOC 、△COB 、弓形BmC 的面积为S 1、S 2、S 3,则它们之间的关系是 A.S 1<S 2<S 3B.S 2<S 1<S 3C.S 1<S 3<S 2D.S 3<S 2<S 1(1)(2)(3)(4)A.(1)(2)(3)B.(2)(3)(4)C.(1)(3)(4)D.(1)(2)(3)(4)14. 如图,在同心圆中,两圆半径分别为2、4,∠AOB=120°,则阴影部分的面积为( )A. π4B. π2C.π34D. π15.扇形的周长为16,圆心角为’,则扇形的面积为( ) A .16 B .32 C .64 D .16π16.制作一个底面直径为30cm ,高40cm 的圆柱形无盖铁桶,所需铁皮至少为( )。

《弧长和扇形面积》精编测试题及参考答案(能力提高)

《弧长和扇形面积》精编测试题及参考答案(能力提高)

《弧长和扇形面积》精编测试题及参考答案(能力提高)一、选择题1.在半径为1的⊙O 中,120°的圆心角所对的弧长是( ) A.π3 B.2π3 C.π D.3π22.一个圆锥的底面半径是2,母线长是4,则这个圆锥的表面积为( )A.4πB.20πC.8πD.12π3.圆锥的底面半径是6,高是8,则圆锥的侧面积是( )A.15πB.30πC.45πD.60π4.若圆锥的底面积为16πcm 2,母线长为12cm,则它的侧面展开图的圆心角为( )A.240°B.120°C.180°D.90° 5.如图,在平行四边形ABCD 中,∠B=60°,⊙C 的半径为3,则图中阴影部分的面积是( )A.πB.2πC.3πD.6π第5题 第6题 第7题 第8题6.如图,四边形ABCD 是⊙O 的内接四边形,∠B=58°,∠ACD =40°.若⊙O 的半径为5,则DC⏜的长为( ) A.13π3 B.10π9 C.π D.π2 7.如图,从一块直径是2的圆形铁片上剪出一个圆心角为90°的扇形,将剪下来的扇形围成一个圆锥.那么这个圆锥的底面圆的半径是( )A.π4B.√24C.12 D.1 8.如图,放置在直线l 上的扇形OAB.由图①滚动(无滑动)到图②,再由图②滚动到图③.若半径OA=2,∠AOB=45°,则点O 所经过的最短路径的长是( )A.2π+ 2B.3πC.5π2 D.5π2+2 9.如图,在Rt △ABC 中,∠ACB=90°,AB 的长是√5,BC 的长是2,以点A 为圆心,AC 的长为半径画弧,交AB 于点D,以点B 为圆心,AC 的长为半径画弧,交AB 于点E,交BC 于点F,则图中阴影部分的面积为( )A.8-πB.4-πC.2-π4D.1-π4 第9题 第10题 第11题 第12题10.如图,在△ABC 中,AB=2,将△ABC 绕点A 逆时针旋转60°得到△AB 1C 1,AB 1恰好经过点 C,则图中阴影部分的面积为( )A.2π3 B.3π2 C.4π3 D.3π411.如图,C,D 是以AB 为直径的半圆的三等分点,若CD ⏜的长为π3,则图中阴影部分的面积为( ) A.π6 B.3π16 C.π24 D.π12 + √3412.如图,在△ABC 中,BC=4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D,交AB 于E,交AC 于F,点P 是⊙A 上一点,且∠EPF=40°,则图中阴影部分的面积是( )A.4- 8π9 B.4- π9 C.8- 4π9 D.8- 8π913.如图,将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,点O,B 的对应点分别为O ',B ',连接BB ',则图中阴影部分的面积是( )A.2π3 B.2√3- π3 C.2√3- 2π3 D.4√3- 2π3第13题 第14题 第15题 第16题14.已知圆锥底面半径为1,母线长为4,地面圆周上有一点A,一只蚂蚁从点A 出发沿圆锥侧面运动一周后到达母线PA 中点B,则蚂蚁爬行的最短路程为( )A.πB.√5πC.2√5D.2π15.如图,一个扇形纸片的圆心角为90°,半径为6.将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD,则阴影部分的面积为( )A.9√3-3πB.6π-9√3C.3π-9√3D.9√3-6π16.如图,在等腰Rt △ABC 中,AC=BC=2√2,点P 在以斜边AB 为直径的半圆上,M 为PC 的中点.当点P 沿半圆从点A 运动至点B 时,点M 运动的路径长是( )A.√2πB.πC.2√2D.2二、填空题17.如图,一扇形纸扇完全打开后,外侧两竹条AB 和AC 的夹角为120°,AB 长为25cm,贴纸部分的宽BD 为15cm,若纸扇两面贴纸,则贴纸的面积为_____.(结果保留π)第17题 第18题 第19题 第20题18.如图,PA,PB 是⊙O 的两条切线,切点分别为A,B,∠P=60°.若⊙O 的半径为3,则图中阴影部分的面积为_____(结果保留π).19.如图,在扇形BOC 中,∠BOC=60°,OD 平分∠BOC 交BC⏜于点D,点E 为半径OB 上一动点.若OB=2,则阴影部分周长的最小值为_____.20.如图,在△ABC 中,AB=AC=6cm,∠BAC=50°,以AB 为直径作半圆,交BC 于点D,交AC 于点E,则DE⏜的长为_____cm.21.如图,在△ABC 中,∠ACB=90°,D 是BC 边上的点,CD=2,以CD 为直径的⊙O 与AB 相切于点E,若DE ⏜的长为π3,则阴影部分的面积_____.(保留π)第21题 第22题22.如图,等边△ABC 的边长为2,以A 为圆心,1为半径作圆分别交AB,AC 边于D,E,再以点C 为圆心,CD 长为半径作圆交BC 边于F,连接E,F,那么图中阴影部分的面积为_____.三、解答题23.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△OAB的三个顶点O(0,0)、A(4,1)、B(4,4)均在格点上.(1)画出△OAB关于y轴对称的△OA1B1,并写出点A1的坐标;(2)画出△OAB绕原点O顺时针旋转90°后得到的△OA2B2,并写出点A2的坐标;(3)在(2)的条件下,求线段OA在旋转过程中扫过的面积(结果保留π),24.如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗).(1)求扇形的圆心角的度数;(2)求圆锥的底面半径r.25.如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2√3,BF=2,求阴影部分的面积.26.如图,AB 为⊙O 的直径,C 为⊙O 上一点,弦AE 的延长线与过点C 的切线互相垂直,垂足为 D,∠CAD=35°,连接BC.(1)求∠B 的度数;(2)若AB=2,求EC⏜的长.27.如图,在正方形ABCD 中有一点P,连接AP,BP,旋转△APB 到△CEB 的位置.(1)若正方形的边长是10,PB=4.则阴影部分面积为___;(2)若PB=4,PA=7,∠APB=135°,求PC 的长.参考答案一、选择题1-5 BDDBC 6-10 CBCDA 11-16 AACCAB二、填空题17.175πcm 218.3π 19.6√2+π320.5π621.√3−π3 22.π12 + √32 - 34 23(1)A 1(-4,1)(2)A 2(1,-4)(3)17π424(1)120°(2)10 25(1)略(2)2√3−2π3 26(1)55°(2)7π18 27(1)21π(2)9。

中考数学弧长和扇形面积和圆锥习题及答案

中考数学弧长和扇形面积和圆锥习题及答案

弧长和扇形面积及圆锥、圆柱面积 一、 温故而知新1、( 旅顺)若圆锥的底面周长为20π,侧面展开后所得扇形的圆心角为120°,则圆锥的侧面积为 .2、(2009 海南)正方形ABCD 的边长为2cm ,以B 点为圆心,AB 长为半径作,则图中阴影部分的面积为( ) A 、(4— π)cm 2 B 、(8—π )cm 2 C 、(2π —4)cm 2 D 、(π —2)cm 23、(2008 山西)要在面积为1256m 2的三角形广场ABC 的三个角处各建一个半径相同的扇形草坪,要求草坪总面积为广场面积的一半,那么扇形的半径应是 m (π取3.14)4、(2009 陕西)已知圆柱的底面半径为3,高为8,求得这个圆柱的侧面积为( )A 、48πB 、48C 、24πD 、24 二、考点解读 (1)、考点1、圆周长:C=2πR2、弧长:L= n πR3、扇形面积:S=n πR 2=LR 4、圆柱的侧面积 S=2πr ·h (r 是底面积,r 是底面半径) S 表 =S 侧 + 2S 底=2πr ·h+ 2πr 2AC 11801360125、圆锥的侧面积 S=L ·2πr=πrL (L 是母线,r 是底面半径) S 表=S 侧 + S 底=πrL+πr 2 (2)、难点1、圆锥、圆柱侧面展开图的计算2、弓形面积的求法:① 当弓形的弧是劣弧时 S 弓形=S 扇形-S ▲ ② 当弓形的弧是优弧时S 弓形=S 扇形+S ▲2、阴影部分面积的计算:阴影部分的面积一般是不规则图形的面积,一般不能直接利用公式,常采用① 割补法 ② 拼凑法 ③ 等积变形法 二、 例题讲解1、如图,圆锥的底面半径为6cm ,高为8cm ,求这个圆锥的 侧面积.解:根据条件得:圆锥母线长为10cm ,所以圆锥侧 面积为:S=πrL=π·6·10=60π变式题:如图,圆锥的底面半径为6cm ,高为8cm ,则将该圆锥沿母线剪开后所得扇形对应的圆心角为 2、AB 是⊙O 的直径,点D 、E 是半圆的三等分点,AE 、 BD 的延长线交于点C ,若CE=2,则图中阴影部分的 面积是( )A 、π-B 、πC 、π-D 、π解、∵ ∴ ∠A=∠ABC=600 ∴△ABC 是等边三角形 又 AB 是⊙O 的直径 ∴∠AEB=900 即 BE ⊥AE ,∴AC=2CE=4=AB124332323313AE ED DB ==∴S 阴=S 扇形OBE -S ▲ABE =π-故选A变式题:AB 是⊙O 的直径,点D 、E 是半圆的三等分点,AE 、BD 的延长线交于点C ,若OA=2,则图中阴影部分的面积是( )3、已知矩形ABCD 的一边AB=5cm,另一边AD=2cm ,求:以直线AB 为轴旋转一周,所得到的圆柱的表面积 解:C=2π·AD=4π(cm)S=2π·AD 2+C ·AB=28π(cm 2) 变式题:已知矩形ABCD 的一边AB=10πcm,另一边AD=4cm ,求:将BC 、AD 边重合后所得圆柱的体积 三、 中考视窗1、(2009 广东)如图,已知圆柱体底面圆的半径为,高为2,AB 、CD 分别是两底面的直径,AD 、BC 是母线若一只小虫从A 点出发,从侧面爬行到C 点,则小虫爬行的最短D 路线的长度是 (结果保留根式). 解、小虫爬行的最短路线的长度是==22 如图,已知△ABC ,AC =BC =6,∠C =90°.O 是AB 的中点,⊙O与AC 相切于点D 、与BC 相切于点E .设⊙O 交OB 于F ,连DF 并延长交CB 的延长线于G . (1)∠BFG 与∠BGF 是否相等?为什么?(2)求由DG 、GE 和弧ED 围成图形的面积(阴影部分).解: (1)∠BFG =∠BGF连OD ,∵OD =OF (⊙O 的半径), ∴∠ODF =∠OFD∵⊙O 与AC 相切于点D ,∴OD ⊥AC433π22222+2A B C DE F GOABCDEFGO又∵∠C =90°,即GC ⊥AC ,OD ∥GC ∴∠BGF =∠ODF又∵∠BFG =∠OFD ,∴∠BFG =∠BGF (2)连OE ,则ODCE 为正方形且边长为3∵∠BFG =∠BGF ∴BG =BF =OB -OF =3-3∴阴影部分的面积=△DCG 的面积-(正方形ODCE 的面积-扇形ODE 的面积) =·3·(3+3)-(32-·32)=+- 四、 牛刀小试1、钟表的轴心到分针针端的长为5cm ,那么经过40分钟,分针针端转过的弧长是(A ) (B ) (C ) (D )2、已知圆锥侧面展开图的圆心角为90°,则该圆锥的底面半径与母线长的比为( )A .1:2B .2:1C .1:4D .4:13、如图,在△ABC 中,BC =4,以点A 为圆心、2为半径的⊙A 与BC 相切于点D ,交AB 于E ,交 AC 于F ,点P 是⊙A 上的一点,且∠EPF =40°,则图中阴影部分的面积是( ).A .4-πB .4-πC .8-πD .8-π221241ππ4922949cm 310πcm 320πcm 325πcm 350π949894984圆锥的底面半径为3cm ,母线长为5cm ,则它的侧面积为( ) A. 60πcm 2 B. 45πcm 2 C. 30πcm 2 D15πcm 2、5、如图1,O 为圆柱形木块底面的圆心,过底面的一条弦AD ,沿母线AB 剖开,得剖面矩形ABCD ,AD =24 cm ,AB =25 cm .若的长为底面周长的,如图2所示. (1)求⊙O 的半径;)(2)求这个圆柱形木块的表面积.(结果可保留和根号)六、总结、反思、感悟32弧长和扇形面积及圆锥、圆柱面积答案温故知新:1、A 2、A 3、4、300π例题变式题: 1、216o解:(cm ) C=2πr=12π∴n= 2、解:∵∴ ∠AOE=600, ∠BOE=1200又 AB 是⊙O 的直径 ∴∠AEB=900 ,即 BE ⊥AE ,O 为AB 中点∴S △AOE = S △OBE∵D 、E 是半圆的三等分点 ∴ S 弓AE = S 弓BD ,∴ S 阴= S 弓BE - S 弓BD = S 弓BE - S 弓AE=( S 扇BE - S △OBE )-( S 扇AE - S △AOE )= S 扇BE - S 扇AE=·120π·22-·60π·22=π3.解:R==5(cm) V=π·R 2·AD=100π(cm 3)牛刀小试:1、A 2、C 3、B 4、D00180216CLπ=AE ED DB ==13601360232ABπ5、(1) 连接0A ,过点O 作OH ⊥AD ∵的长是底面圆周长的∴∠AOD=1200 在Rt ▲AHO 中,AO=(2)S 表=2π·AO ·AB+2π·AO 2=()π32012sin 60。

弧长、扇形面积和圆锥练习卷

弧长、扇形面积和圆锥练习卷

N MH E DCBA<弧长、扇形面积和圆锥>练习卷一、填空题1. 在一个圆中,如果︒60的圆心角所对的弧长是6πcm ,那么这个圆的半径r=_________.2. 正n 边形的中心角的度数是_______︒.3. 边长为2的正方形的外接圆的面积等于________.4. 已知扇形的半径为3,圆心角为︒60,那么这个扇形的面积等于_________.5. 如果圆锥的高为8cm ,圆锥底面半径为6cm ,那么它的侧面积为_________cm 2.6. 在一个周长为180厘米的圆中,长度为60厘米的弧所对圆心角为 度.7. 已知扇形的弧长是π4cm ,面积为π122cm ,那么它的圆心角为 度.8. 已知一个圆柱的高是π16cm ,如果它的侧面展开图是一个正方形,那么底面半径是 cm .9. 已知圆柱的底面圆的半径为2 cm ,高为cm 10,那么它的侧面积是 2cm10. 已知圆锥底面的面积为16πcm ,高为3cm ,那么它的全面积为 2cm.11. 如图,正方形ABCD 的边长是10cm ,则图中阴影部分的面积是 . 12. 如右下图,已知阴影部分甲比阴影部分乙的面积大240cm π,直径AB 长40 cm ,则BC 的长是 . 二、选择题 13.圆内接正三角形的边心距与半径的比是( ). A .2:1 B .1:2 C .4:3 D .2:314.正六边形的内切圆与外接圆面积之比是( ).A .43B .23C .21D .41 15.如果圆锥的高为3cm ,母线长为5cm ,则圆锥的全面积是( )cm 2.A .16πB .20πC .28πD .36π16.已知:如右上图,ABCD 为正方形,边长为a ,以B 为圆心, 以BA 为半径画弧,则阴影部分面积为( ).A .(1-π)a 2B .1-πC .44π-D .44π-a 2 17.已知:如图,Rt △ABC 中,∠BAC=︒90,AB=AC=2,以AB 为直径的圆交BC 于D ,则图中阴影部分的面积为( ).A .1B .2C .1+4πD .2-4π 18.如果一个正方形的周长和一个圆的周长相等,那么这两个图形的面积相比较,结果是( ).A .正方形面积大B .圆的面积大C .一样大D .不能比较19中正确的有( )..2个 C .3个 D .4个( )AB =1,BC =3,以BC 中点E D C BA为圆心,以AB 长为半径作弧MNH 于AB 及CD 交于M 、N ,与AD 切于H ,则图中阴影部分的面积是( ).A .π32B . π34C .π43 D .π31 三、解答题22.已知弓形的弧所对的圆心角∠AOB 为120°,弓形的弦AB 长为12,求这个弓形的面积。

弧长及扇形的面积、圆锥的侧面积练习题

弧长及扇形的面积、圆锥的侧面积练习题

弧长及扇形的面积、圆锥的侧面积一、请准确填空(每小题3分,共24分) 1.两个同心圆的半径差为5,其中一个圆的周长为15π,则另一个圆的周长为_____.2.已知a 、b 、c 分别是正六边形的一边、最短对角线和最长对角线,则a ∶b ∶c 为_____.3.已知Rt △ABC ,斜边AB=13 cm ,以直线BC 为轴旋转一周,得到一个侧面积为65πcm 2的圆锥,则这个圆锥的高等于_____.4.已知在同一平面内圆锥两母线在顶点最大的夹角为60°,母线长为8,则圆锥的侧面积为_____.5.已知圆柱的底面半径长和母线长是方程4x 2-11x+2=0的两个根,则该圆柱的侧面展开图的面积是_____.6.圆内接正方形的一边切下的一部分的面积等于2π-4,则正方形的边长是_____,这个正方形的内切圆半径是_____.7.要制造一个圆锥形的烟囱帽,如图1,使底面半径r 与母线l 的比r ∶l=3∶4,那么在剪扇形铁皮时,圆心角应取_____.8.将一根长24 cm 的筷子,置于底面直径为 5 cm ,高为12 cm 的圆柱形水杯中(如图2).设筷子露在杯子外面的长为h cm ,则h 的取值范围是_____.图1 图2二、相信你的选择(每小题3分,共24分)9.已知正三角形的边长为a ,其内切圆的半径为r ,外接圆的半径为R ,则r ∶a ∶R 等于A.1∶23∶2 B.1∶2∶23 C.1∶2∶3D.1∶3∶210.如图3,△ABC 是正三角形,曲线ABCDEF …叫做“正三角形的渐开线”,其中、、…A 、B 、C 循环,它们依次相连接,如果AB=1,那么曲线CDEF 的长是A.8πB.6πC.4πD.2π11.如图4,一扇形纸扇完全打开后,外侧两竹条AB 、AC 的夹角为120°,AB 长为30 cm ,贴纸部分BD 长为20 cm ,贴纸部分的面积为A.800πcm2B.500πcm 2C.3800πcm2D.3500πcm 212.已知如图5,两同心圆中大圆的半径OA 、OB 交小圆于C 、D ,OC ∶CA=3∶2,则和的长度比为A.1∶1B.3∶2C.3∶5D.9∶2513.如图6,AB 为半圆O 的直径,C 是半圆上一点,且∠COA=60°,设扇形AOC 、△COB 、弓形BmC 的面积为S 1、S 2、S 3,则它们之间的关系是A.S 1<S 2<S 3B.S 2<S 1<S 3C.S 1<S 3<S 2D.S 3<S 2<S 1ABCDEFACDBODEF图3 图4 图5 图614.如图7中,正方形的边长都相等,其中阴影部分面积相等的有(1) (2)(3) (4)图7A.(1)(2)(3)B.(2)(3)(4)C.(1)(3)(4)D.(1)(2)(3)(4) 15.如果圆锥的母线长为 5 cm ,底面半径为 3 cm ,那么圆锥的表面积为A.39πcm2B.30πcm2C.24πcm2D.15πcm216.一个圆台形物体的上底面积是下底面积的41.如图8,放在桌面上,对桌面的压强是200 帕,翻过来放,对桌面的压强是A.50帕B.80帕C.600帕D.800帕图8三、考查你的基本功(共14分)17.(6分)如图9,圆锥底面半径为r ,母线长为3r ,底面圆周上有一蚂蚁位于A 点,它从A 点出发沿圆锥面爬行一周后又回到原出发点,请你给它指出一条爬行最短的路径,并求出最短路径.AABCDOEF图9图1018.(8分)如图10,等腰Rt △ABC 中斜边AB=4,O 是AB 的中点,以O 为圆心的半圆分别与两腰相切于点D 、E ,图中阴影部分的面积是多少?请你把它求出来.(结果用π表示)四、生活中的数学(共18分)19.(10分)如图11,有一直径是1 m 的圆形铁皮,要从中剪出一个最大的圆心角是90°的扇形CAB.(1)被剪掉的阴影部分的面积是多少?(2)若用所留的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径是多少?(结果可用根号表示)ABCOABO图11 图12 图13五、探究拓展与应用(共20分)21.(10分)现有总长为8 m 的建筑材料,用这些建筑材料围成一个扇形的花坛(如图12),当这个扇形的半径为多少时,可以使这个扇形花坛的面积最大?并求最大面积.22.(10分)如图13,正三角形ABC 的中心恰好为扇形ODE 的圆心,且点B 在扇形内,要使扇形ODE绕点O 无论怎样转动,△ABC 与扇形重叠部分的面积总等于△ABC 的面积的31,扇形的圆心角应为多少度?说明你的理由.。

弧长、扇形面积和圆锥测试题

弧长、扇形面积和圆锥测试题

1弧长、扇形面积和圆锥测试题一、填空题:1. 扇形的圆心角是300,半径是2cm ,则扇形的面积是 cm 2.2. 一个扇形的弧长为20лcm ,面积为240лm 2,则该扇形的圆心角为 .3. 已知扇形的圆心角为1500,弧长为20лcm ,则扇形的面积为 m 2 .4.2,半径是2cm ,则扇形的弧长是 cm.5. 如图,同心圆中,两圆半径分别为2和1,∠AOB=1200,则阴影部分的面积为 .6. 如图,扇形AOB 的圆心角为600,半径为6cm , C, D 分别是弧AB 的三等分点,则阴影部分的面积是 .7. 如图正方形的边长为2,分别以正方形的两个顶点为圆心,以2为半径画弧,则阴影部分的周长为 ,面积为 .8、已知圆锥的母线长是10cm,侧面开展图的面积是60πcm2,则这个圆锥的底面半径是_______cm.9、已知圆锥的底面半径为2cm,母线长为5cm,则它的侧面积是_____cm2. 10、一个圆锥形的烟囱帽的底面直径是80cm,母线长是50cm,则这个烟囱帽的侧面展开图的面积是_______cm2.11、一个扇形的半径为6cm,圆心角为120°,用它做成的一个圆锥的侧面, 这个圆锥的底面半径为________. 12、如图,圆锥的底面半径OA=3cm,高SO=4cm,则它的侧面积为______cm2.13、一个扇形的圆心角为120°,以这个扇形围成一个无底圆锥, 所得圆锥的底面半径为6cm,则这个扇形的半径是______cm.二、选择题 1.在半径为1的⊙O 中,弦AB=1,则AB 的长是( )A.6πB.4πC.3πD.2π2.已知100°的圆心角所对的弧长l=5π,则该圆的半径r 等于( )A.7B.8C.9D.10 3.如果扇形的圆心角为150°,扇形面积为240π cm 2,那么扇形的弧长为( )A .5π cmB .10π cmC .20π cmD.40π cm24. 若一个扇形的圆心角是45°,面积为2л,则这个扇形的半径是( ) A. 4B. 2C. 47лD. 2л5. 扇形的圆心角是60°,则扇形的面积是所在图面积的( )A.B.C.D.6. 半圆O 的直径为6cm ,∠BAC =30°,则阴影部分的面积是( )A.B.C. D.7 用一个半径长为 6cm 的半圆围成一个圆锥的侧面,则此圆锥的底面半径为( ) A. 2cm B. 3cm C. 4cm D. 6cm8.圆锥的底面半径为2cm,母线长为3cm,则它的侧面积为( ) A.2πcm2; B. 3πcm2; C. 12πcm2; D. 6πcm2;9.如图,已知Rt △ABC 的斜边AB=13cm,一条直角边AC=5cm,以直线BC 为轴旋转一周得一个圆锥,则这个圆锥的表面积为( )cm2.A.65πB.90πC.156πD.300π10.小明要制作一个圆锥模型,其侧面是由一个半径为9cm,圆心角为240 °的扇形纸板制成的,还需要用一块圆形纸板做底面,那么这块圆形纸板的直径为( ) A.15cm B.12cm C.10cm D.9cm11.圆锥的底面直径为30cm,母线长为50cm, 那么这个圆锥的侧面展开图的圆心角为( ) A.108° B.120° C.135° D.216°12.将一个半径为8cm,面积为32πcm2的扇形铁皮围成一个圆锥形容器(不计接缝),那么这个圆锥形容器的高为( ) A.4cmB.4cmC.4cm13.一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是 ( ).A .1B .34C .12D .13( ) 中,AC 是⊙O 的直径,AC=12,AC ⊥BD 于F ,∠A(1)求图中阴影部分的面积;(2)若用阴影扇形OBD围成一个圆锥侧面,请求出这个圆锥的底面圆的半径.第1题图32.如图,点D 在O ⊙的直径AB 的延长线上,点C 在O ⊙上,CD AC =,0120=∠ACD ,(1)求证:C D 是O ⊙的切线;(2)若O ⊙的半径为2,求图中阴影部分的面积.3.如图,已知在⊙O 中,AB,AC 是⊙O 的直径,AC ⊥BD 于F ,∠A =30°.(1)求图中阴影部分的面积;(2)若用阴影扇形OBD 围成一个圆锥侧面, 请求出这个圆锥的底面圆的半径.4.如图,AB 是⊙O 的直径,弦DE 垂直平分半径OA ,C 为垂足,弦DF 与半径OB 相交于点P ,连结EF 、EO ,若DE =32,∠DPA =45°.(1)求⊙O 的半径; (2)求图中阴影部分的面积.5. 如图,在正方形ABCD 中,AB=4,0为对角线BD 的中点,分别以OB ,OD 为直径作⊙O 1,⊙02. 。

弧长、扇形面积与圆锥侧面积专题

弧长、扇形面积与圆锥侧面积专题

弧长、扇形面积与圆锥侧面积专题 1.一个扇形的弧长是20πcm ,面积是240πcm 2,那么扇形的圆心角是( )A .120°B .150°C .210°D .240°2. 如图,以AD 为直径的半圆O 经过Rt ABC ∆斜边AB 的两个端点,交直角边AC 于点,,E B E 是半圆弧的三等分点,BE 的长为23π,则图中阴影部分的面积为 ( ) A.9π B. 3π C. 332ππ- D. 3323π- 3.如图,在边长为4的正方形ABCD 中,先以点A 为圆心,AD 的长为半径画弧,再以AB 边的中点为圆心,AB 长的一半为半径画弧,则两弧之间的阴影部分面积是______ .4.如图,AB 是⊙O 的直径,弦AC =2,∠ABC =30∘,则图中阴影部分的面积是________.5.如图,在△ABC 中,CA=CB ,∠ACB=90°,AB=4,点D 为AB 的中点,以点D 为圆心作圆,半圆恰好经过三角形的直角顶点C ,以点D 为顶点,作90°的∠EDF ,与半圆交于点E ,F ,则图中阴影部分的面积是____.6.如图,以正方形ABCD 的边BC 为直径作半圆O ,过点D 作直线与半圆相切于点F ,交AB 于点E ,若AB=2cm ,则阴影部分的面积为_____.7.如图,AB是半圆O的直径,且AB=8,点C为半圆上的一点.将此半圆沿BC所在的直线折叠,若圆弧BC恰好过圆心O,则图中阴影部分的面积是____________________.(结果保留π)8.如图,半圆的半径为2cm,点C、D三等分半圆,则阴影部分的面积为.9.如图,扇形AOB中,半径OA=2,∠AOB=120°,C是的中点,连接AC、BC,则图中阴影部分面积是()A.﹣2B.﹣2C.﹣D.﹣10.沈阳某中学举办校园文化艺术节,小颖设计了同学们喜欢的图案《我的宝贝》,图案的一部分是以斜边长为12cm 的等腰直角三角形的各边为直径作半圆,如图24-198所示,则图中阴影部分的面积为()A.36πcm2B.72πcm2C.36cm2D.72cm211.如图,在正方形ABCD内有一折线段,其中AE丄EF,EF丄FC,并且AE=6,EF=8,FC=10,则正方形与其外接圆之间形成的阴影部分的面积为.12.如图,将Rt△ABC绕点A逆时针旋转90°得到Rt△AB1C1,阴影部分为线段BC扫过的区域,已知AB=4,BC=3,则阴影部分面积为()A.2π B. C. D.613.如图,在菱形ABCD中,∠DAB=60°,现把菱形ABCD绕点A逆时针方向旋转30°得到菱形AB′C′D′,若AB=4,则阴影部分的面积为()A.4π﹣12+12 B. 4π﹣8+12 C. 4π﹣4 D. 4π+1214.如图,在△ABC中,AB=4cm,BC=2cm,∠ABC=30°,把△ABC以点B为中心按逆时针方向旋转,使点C旋转到AB边的延长线上的点C′处,那么AC边扫过的图形(图中阴影部分)的面积是 cm2.15.如图,如果从半径为9cm的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为()A.6cm B.35cm C.8cm D.53cm16.如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4,则S阴影=()A. B.π C. 2π D.17.一个圆锥的侧面积是底面积的4倍,则圆锥侧面展开图的扇形的圆心角是 ( )A.60°B.90°C.120°D.180°18.如图,两个半径相等的直角扇形的圆心分别在对方的圆弧上,半径AE、CF交于点G,半径BE、CD交于点H,且点C是AB的中点,若扇形的半径为2,则图中阴影部分的面积等于______.19.如图,在扇形中,,半径.将扇形沿过点的直线折叠.点恰好落在上点处,折痕交于点,则整个阴影部分的周长为和面积为.20.如图,点O是半径为3的圆形纸片的圆心,将这个圆形纸片按下列顺序折叠,使AB和AC都经过圆心O,则阴影部分面积是______。

人教版九年级上册数学同步练习《弧长和扇形面积》(习题+答案)

人教版九年级上册数学同步练习《弧长和扇形面积》(习题+答案)

24.4 弧长和扇形面积内容提要1.在半径为r 的圆中,n ︒的圆心角所对的弧长为l ,扇形面积为S ,则有(1)2360180n n rl r ππ=⋅=; (2)2213603602n n r S r lr ππ=⋅==.2.圆锥的侧面展开图是扇形,这个扇形的半径是圆锥的母线长,弧长是圆锥底面圆的周长.3.圆锥的全面积是侧面扇形面积与底面圆的面积之和. 24.4.1 弧长和扇形面积基础训练1.在半径为9cm 的圆中,60︒的圆心角所对的弧长为cm. 2.若一个扇形的弧长为43π,半径为6,则此扇形的面积为.3.已知扇形的圆心角为150︒,它所对的弧长为20πcm ,则扇形的半径为cm ,扇形的面积是2cm .4.已知扇形的弧长是2πcm ,半径为12cm ,则这个扇形的圆心角( ) A .60︒B .45︒C .30︒D .20︒5.如图,一块边长为10cm 的正方形木板ABCD 在水平桌面上绕点D 按顺时针方向旋转到'''A B C D 的位置时,顶点B 从开始到结束所经过的路径长为( )A .20cmB .202cmC .10πcmD .52πcm6.如图所示,扇形AOB 的圆心角为120︒,半径为2,则图中阴影部分的面积为( ) A .433πB .4233π-C .433π D .43π7.如图,正方形ABCD中,分别以B,D为圆心,以正方形的边长a为半径画弧,形成树叶形(阴影部分)图案,求树叶图案的周长与面积.8.如图,在O中,弦BC垂直于半径OA,垂足为E,D是优弧BC上一点,连接BD,AD,BC=cm.∠=︒,弦6OC,30ADB(1)求BC的长度;(2)求图中阴影部分的面积.24.4.2圆锥的侧面积和全面积基础训练1.已知圆锥的底面直径为4,母线长为6,则它的侧面积为,全面积是.2.已知圆锥的母线长是10cm,侧面展开图的面积是2π,则这个圆锥的底面半径是60cmcm.3.小明要用圆心角为120︒,半径是27cm的扇形纸片卷成一个圆锥形纸帽,做成后这个纸帽的底面直径为cm(不计接缝部分,材料不剩余).4.若一个圆锥的底面积为4πcm ,高为42cm ,则该圆锥的侧面展开图的圆心角的度数是( ) A .40︒B .80︒C .120︒D .150︒5.如果一个圆锥的主观图是正三角形,则其侧面展开图的圆心角为( ) A .120︒B .156︒C .180︒D .208︒6.在ABC ∆中,90C ∠=︒,12AC =,5BC =,现在以AC 为轴旋转一周得到一个圆锥,则该圆锥的表面积为( ) A .130πB .90πC .25πD .65π7.如果圆锥的底面圆的半径是8,母线的长是15,求这个圆锥侧面展开图的扇形的圆心角的度数.8.如图,从直径为4cm 的圆形纸片中,剪出一个圆心角为90︒的扇形OAB ,且点O ,A ,B 在圆周上,把它围成一个圆锥,求圆锥的底面圆的半径.能力提高1.如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.已知正三角形的边长为1,由凸轮的周长等于.2.如图,一根5m 长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A (羊只能在草地上活动),那么小羊A 在草地上的最大活动区域面积( ) A .21712m π B .2176m π C .2254m π D .27712m π3.如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF 长为10cm.母线()OE OF 长为10cm ,在母线OF 上的点A 处有一块爆米花残渣,且2FA =cm ,一只蚂蚁从杯口的点E 处沿圆锥表面爬行到A 点,则此蚂蚁爬行的最短距离为cm.4.如图,有一直径为4的圆形铁皮,要从中剪出一个最大圆心角为60︒的扇形ABC .那么剪下的扇形ABC (阴影部分)的面积为;用此剪下的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径r =.5.如图,四边形ABCD 是菱形,60A ∠=︒,2AB =,扇形BEF 的半径为2,圆心角为60︒,则图中阴影部分的面积是( ) A .233π B .233πC .3πD .3π6.若圆锥的侧面展开图为半圆,则该圆锥的母线l 与底面半径r 的关系是( ) A .2l r =B .3l r =C .l r =D .32l r =7.如图,矩形ABCD 中,4AB =,3BC =,边CD 在直线l 上,将矩形ABCD 沿直线l 作无滑动翻滚,当点A第一次翻滚到点1A的位置时,(1)画出点A经过的路线;(2)求出点A经过的路线长为多少?8.如图,P,C是以AB为直径的半圆O上的两点,10AB=,CP的长为52π,连接PB交AC于点M,线段MC与弦BC的长度相等吗?为什么?9.如图,在Rt ABC∆中,90C∠=︒,4AC=,2BC=,分别以AC,BC为直径画半圆,求图中阴影部分的面积(结果保留π).10.如图,已知O 的半径为4,CD 是O 的直径,AC 为O 的弦,B 为CD 的延长线上的一点,30ABC ∠=︒,且AB AC =. (1)求证:AB 为O 的切线; (2)求弦AC 的长; (3)求图中阴影部分的面积.内容提要1.如图,正三角形ABC 的边长为1cm ,将线段AC 绕点A 顺时针旋转120︒至1AP ,形成扇形1D ;将线段1BP 绕点B 顺时针旋转120︒至2BP ,形成扇形2D ;将线段2CP 绕点C 顺时针旋转120︒至3CP ,形成扇形3D ;将线段3AP 绕点A 顺时针旋转120︒至4AP ,形成扇形1D ……设n l 为扇形n D 的弧长()1,2,3,n =,回答下列问题: (1)按照要求填表:n1 2 3 4 n l(2n n D (设地球赤道半径为6400km )?2.在一次数学探究性学习活动中,某学习小组要制作一个圆锥体模型,操作规则是:在一块边长为16cm的正方形纸片上剪出一个扇形和一个圆,使得扇形围成圆锥的侧面时,圆恰好是该圆锥的底面,他们首先设计了如图所示的方案二.(两个方案的图中,圆与正方形相邻两边及扇形的弧均相切.方案一中扇形的弧与正方形的两边相切.)(1)请说明方案一不可行的理由;(2)判断方案二是否可行?若要行,请确定圆锥的母线长及其底面圆半径;若不可行,请说明理由.数学应用应用1当四边形ABCD的四个内角满足时,则过A,B,C,D四点能作一个圆.应用2如图,点M,N,C在O上,点A在O外,点B在O内,则A∠∠,B∠,MCN 三个角的大小关系是.应用3已知四边形ABCD,过顶点A,B,C三点作O.①若180∠+∠=︒,则点D在O.B D②若180∠+∠>︒,则点D在O.B D③若180B D∠+∠<︒,则点D在O.整理归纳1.在学习本章内容时,注意结合课本知识和生活周围的一些实例,以加深相关概念的认识,如:圆、圆周角、三角形的内心和外心、圆锥侧面展开图等.2.圆的轴对称性和旋转对称性是理解圆中各类性质与定理的基础,要学会用对称性来分析和解决问题.3.在解决与本章内容有关的问题时,转化思想有着广泛的应用.如:可以将判定点和圆、直线和圆的位置关系等转化为实数大小的比较问题;利用圆心角、弦、弧的关系将角、线段、弧线之间的等量关系进行转化;将不规则图形的计算转化成规则图形的计算等.4.学习中注意前后知识之间的联系,及与其他章节知识的联系,形成综合运用知识的能力.如:利用圆周角和圆心角的关系,寻找(或构造)直角三角形,利用直角三角形的相关知识解决问题;根据圆锥的侧面展开图是扇形的特点,利用扇形的相关计算公式解决问题.5.注意分类讨论,避免答案不全.如:探索圆周角和圆心角的关系时分三种情况;两圆相切时,有内切和外切两种情形等.数学实践圆在凸多边形上无滑动滚动时圆心运动轨迹的研究广州一中实验学校初三实验2班梁家瑜指导老师罗小颖在一次测验中,有下面一道题:半径为R的圆在边长为a的正三角形的边上无滑动滚动一周,求圆心所经过的路程长为多少?当时,我忽略了圆在三角形的角上运动时圆心运动轨迹的特点,所以没有做对,该题答案是圆心运动所经过的路程的长等于等边三角形的周长与圆的周长的和.于是我猜想,圆在一般的三角形中无滑动滚动有没有特殊规律呢?为此我对圆在三角形上无滑动滚动时圆心的运动轨迹作了探讨.1.圆在三角形的边上无滑动滚动时,圆心轨迹如图1.圆心所经过的路程的长为IH ID DE EF FG GH +++++,其中四边形IACH ,DEBA ,FBCG 为矩形,所以IH CA =,DE AB =,GF BC =,3609090180IAD CAB CAB ∠=︒-︒-︒-∠=︒-∠, 3609090180HCG ACB ACB ∠=︒-︒-︒-∠=︒-∠,3609090180FBE ABC ABC ∠=︒-︒-︒-∠=︒-∠.设圆的半径为R ,根据弧长定理得1802360BAC ID R π︒-∠=⋅︒,1802360ABC EF R π︒-∠=⋅︒,1802360ACBHG R π︒-∠=⋅︒.所以()2180180180360RID EF HG BAC ACB ABC π++=⋅︒-∠+︒-∠+︒-∠︒. 因为180BAC ABC ACB ∠+∠+∠=︒, 所以()21801801801802360RID EF HG R ππ++=⋅︒+︒+︒-︒=︒. 由此可以发现,三段弧的长度之和恰好等于圆的周长.所以圆在三角形ABC 边上无滑动滚动时,圆心的运动轨迹的长度为AB AC BC C +++圆.因为AB BC CA C ++=三角形,设圆心轨迹长度为S ,则有S C C =+圆 三角形. 因此圆在一般三角形上的无滑动滚动时,圆心所经过的路程的长也符合圆在等边三角形边上无滑动滚动的规律,既然如此,那么圆在一般四边形中无滑动滚动又有什么规律呢?2.圆在四边形的边上无滑动滚动时,圆心轨迹如图2.圆心所经过的路程的长为EF FG GH HI IJ JK KL LE +++++++.3609090180KDJ CDA CDA ∠=︒-︒-︒-∠=︒-∠, 3609090180LAE DAB DAB ∠=︒-︒-︒-∠=︒-∠, 3609090180FBG ABC ABC ∠=︒-︒-︒-∠=︒-∠, 3609090180ICH BCD BCD ∠=︒-︒-︒-∠=︒-∠.设圆的半径为R ,根据弧长定理得1802360ABC FG R π︒-∠=⋅︒,1802360BCDHI R π︒-∠=⋅︒,1802360CDA JK R π︒-∠=⋅︒,1802360DABLE R π︒-∠=⋅︒,所以FG HI JK LE +++()2180180180180360RABC BCD CDA DAB π=⋅︒-∠+︒-∠+︒-∠+︒-∠︒. 而360ABC BCD CDA DAB ∠+∠+∠+∠=︒, 所以()27203602360RFG HI JK LE R ππ+++=⋅︒-︒=︒. 由此可发现,四段弧的长度之和恰好也等于圆的周长,而AB BC CD DA +++为四边形ABCD 的周长.设圆心运动的距离为S ,则有S C C =+圆 四边形. 3.圆在凸多边形上无滑动滚动的研究既然三角形、四边形圆心运动路程分别为S C C =+圆三角形,S C C =+圆四边形,那么n 边形有什么规律呢?观察前面,不难发现,圆心作直线运动时圆心所走的线段与多边形的边长是平行且相等的,是矩形的对边,由此我们可以得到圆心轨迹中的直的线段之和等于多边形的周长,而圆心所走的总长为线段总长的弧长总长之和.设现有一个n 边形,且这个n 边形的内角为1∠,2∠,…,n ∠.那么n 段弧分别为18012360R π︒-∠⋅︒,18022360R π︒-∠⋅︒,…,1802360n R π︒-∠⋅︒. 设圆弧总长为L ,相加得()218018018012360R L n π=⋅︒+︒++︒-∠-∠--∠︒因为n 边形内角和为()()18023n n ︒⋅-≥, 所以代入得()21801802360R L n n π=⋅︒⋅-︒⋅-⎡⎤⎣⎦︒ ()21802360R n n π=⋅︒⋅-+⎡⎤⎣⎦︒ ()218022360R R ππ=⋅︒⋅=︒. 因此弧长之和为2R π,即圆的周长.设圆心运动距离为S ,则有S =弧长之和+多边形周长,即S C C =+圆多边形.因此,当圆在凸多边形边上无滑动滚动时,圆心运动所经过的路程的长度等于圆的周长与凸多边形的周长之和.学业评价24.4 参考答案:24.4.1 弧长和扇形面积基础训练1.3π 2.4π 3.24 240π 4.C 5.D 6.A 7.周长:a π,面积:2212a a π- 8.(1)43cm π (2)2(433)cm π- 24.4.2 圆锥的侧面积和全面积基础训练1.12π 16π 2.6 3.18 4.C 5.C 6.B 7.192︒ 8.2 能力提高1.π 2.D 3.241 4.2π 3 5.B 6.A 7.(1)如图 (2)6π8.MC BC =(提示:90C ∠=︒,45PBC ∠=︒) 9.542π- 10.(1)图 (2)43 (3)8433π+拓展探究 1.(1)123l π=,243l π=,363l π=,483l π=. (2)6400640000000km cm =,由226400000003n ππ=⨯,91.9210n =⨯. 2.(1)因为扇形的弧长902168360ππ︒=⨯⨯=︒,圆锥底面周长2r π=,所以圆的半径为4cm .由于所给正方形纸片的对角线长为2cm ,而制作这样的圆锥实际需要正方形纸片的对角线长为1642(202)cm ++=+,2042162+>(2)方案二可行.设圆锥底面圆的半径为r cm ,圆锥的母线长为R cm ,则(12)162r R ++=①,224R r ππ=②.由②得4R r =,代入①得(5r +=,所以r ==,所以R = 数学应用应用1 180A C ∠+∠=︒或180B D ∠+∠=︒ 应用2 A MCN B ∠<∠<∠ 应用3 ①上②内 ③外。

九年级数学弧长和扇形面积、圆锥经典习题

九年级数学弧长和扇形面积、圆锥经典习题

弧长和扇形面积、圆锥的侧面经典习题【巩固练习】一、选择题1.一圆锥的侧面展开图是半径为2的半圆,则该圆锥的全面积是()A.5πB. 4πC.3πD.2π2.如图所示,边长为12m的正方形池塘的周围是草地,池塘边A、B、C、D处各有一棵树,且AB=BC=CD=3m.现用长4m的绳子将一头羊拴在其中的一棵树上,为了使羊在草地上活动区域的面积最大,应将绳子拴在( ).A.A处 B.B处 C.C处 D.D处3.劳技课上,王红制作了一顶圆锥形纸帽,已知纸帽底面圆半径为10 cm,母线长为50 cm,则制作一顶这样的纸帽所需纸的面积至少为( ).A.250πcm2 B.500πcm2 C.600πcm2 D.1000πcm24.一圆锥的侧面积是底面积的2倍,这个圆锥的侧面展开图所对应的扇形的圆心角是( ).A.120° B.180° C.240° D.300°5.底面圆半径为3cm,高为4cm的圆锥侧面积是( ).A.7.5π cm2 B.12π cm2 C.15πcm2 D.24π cm26.如图,半径为1的圆O与正五边形ABCDE相切于点A、C,劣弧AC的长度为()A.πB.πC.πD.π7. 一个直角三角形绕它的一边所在直线旋转一周所得到的几何体一定是( ).A.圆锥 B.圆柱 C.圆锥或圆柱 D.以上都不对8. 如图,扇形AOB中,∠AOB=150°,AC=AO=6,D为AC的中点,当弦AC沿扇形运动时,点D所经过的路程为()A.3πB.C.D.4π9.如图所示,已知点A、B、C、D均在已知圆上,AD∥BC,AC平分∠BCD,∠ADC=120°,四边形ABCD的周长为10cm ,图中阴影部分的面积为( ). A .32B .233π-C .23D .43第9题图 第10题图 第11题图10.如图所示,Rt △ABC 中,∠BAC 是直角,AB =AC =2,以AB 为直径的圆交BC 于D ,则图中阴影部分的面积为( ). A .1 B .2 C .14π+D .24π-11.如图所示,在△ABC 中,BC =4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于点E ,交AC 于点F ,点P 是⊙A 上一点,且∠EPF =40°,则图中阴影部分的面积是( ). A .49π-B .849π-C .489π-D .889π- 12.在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型,如图所示,它的底面半径OB =6cm ,高OC =8cm ,则这个圆锥漏斗的侧面积是( ).A .30cm 2B .30π cm 2C .60π cm 2D .120cm 2二、填空题13.已知扇形圆心角是150°,弧长为20πcm ,则扇形的面积为________.14.如图,某传送带的一个转动轮的半径为40cm ,转动轮转90°传送带上的物品A 被传送 厘米.第14题图 第15题图 第17题图15.如图所示,已知扇形的半径为3cm ,圆心角为120°,则扇形的面积为________cm 2(结果保留π). 16.用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是 .17.如图所示,把一块∠A =30°的直角三角板ABC ,在水平桌面上绕点C 按顺时针方向旋转到A B C ''的位置.若BC 的长为15cm ,求顶点A 从开始到结束所经过的路径长 .18.如图所示,边长为1的菱形ABCD 绕点A 旋转,当B 、C 两点恰好落在扇形AEF 的弧EF 上时,弧BC 的长度等于 .19. 如图,已知矩形纸片ABCD ,AD=2,3AB =,以A 为圆心,AD 长为半径画弧交BC 于点E ,将扇形AED 剪下围成一个圆锥,则该圆锥的底面半径为 .第18题第19题20.圆锥的侧面展开图是一个半圆,则这个圆锥的母线长与底面半径的比为.21.已知在△ABC中,AB=6,AC=8,∠A=90°,把Rt△ABC绕直线AC旋转一周得到一个圆锥,其表面积为S1,把Rt△ABC绕直线AB旋转一周得到另一个圆锥,其表面积为S2,则S1:S2等于________.22.如图所示,有一圆心角为120°、半径长为6 cm的扇形,若将OA、OB重合后围成一圆锥侧面,那么圆锥的高是.A BO第22题图第23题图第24题图23.矩形ABCD的边AB=8,AD=6,现将矩形ABCD放在直线l上且沿着l向右做无滑动地翻滚,当它翻滚到类似于开始的位置A1B1C1D1时(如图所示),则顶点A所经过的路线长是________.24.如图,用一张半径为24cm的扇形纸板制作一顶圆锥形帽子(接缝忽略不计),如果圆锥形帽子的底面半径为10cm,那么这张扇形纸板的面积是 .三、解答题25.如图是两个半圆,点O为大半圆的圆心, AB是大半圆的弦关与小半圆相切,且AB=24.问:能求出阴影部分的面积吗?若能,求出此面积;若不能,试说明理由.26. 圆心角都是90°的扇形OAB与扇形OCD如图所示那样叠放在一起,连接AC、BD.(1)求证:△AOC≌△BOD;(2)若OA=3cm,OC=1cm,求阴影部分的面积.AB CDE27.如图所示,线段AB与⊙O相切于点C,连接OA、OB,OB交⊙0于点D,已知OA=OB=6cm,AB=63cm,求:(1)⊙O的半径;(2)图中阴影部分的面积.28.已知:如图△ABC内接于⊙O,OH⊥AC于H,过A点的切线与OC的延长线交于点D,∠B=30°,.请求出:(1)∠AOC的度数;(2)线段AD的长(结果保留根号);(3)求图中阴影部分的面积.29. 如图所示,圆锥的母线长为4,底面圆半径为1,若一小虫P从A点开始绕着圆锥表面爬行一圈到SA的中点C,求小虫爬行的最短距离是多少?30.现有一张边长为20cm的正方形纸片,你能用这张纸片制成一个表面积尽可能大的有底圆锥吗?说明你的做法并计算圆锥的表面积(结果精确到0.1cm2 1.414).31.如图所示,有一直径是1m 的圆形铁皮,要从中剪出一个最大的圆心角为90°的扇形ABC .求:(1)被剪掉阴影部分的面积;(2)用所留的扇形铁皮围成一个圆锥,该圆锥的底面圆半径是多少?(结果用根号表示)32.如图,AB 为⊙O 的直径,弦AC=2,∠B=30°,∠ACB 的平分线交⊙O 于点D ,求: (1)BC 、AD 的长;(2)图中两阴影部分面积的和.【答案与解析】 一、选择题1.C2.B3.B4.B5.C6.B7.D 8.C 9.B 10.A 11.B 12.C 二、填空题13.240πcm 214.20π(cm ) 15.3π 16.2 17.20()cm π 18.3π 19.13 20.2:1 21.2:3 22.42cm 23.12π 24.240π cm 2三、解答题25.【答案与解析】 将小圆向右平移,使两圆变成同心圆,如图,连OB , 过O 作OC ⊥AB 于C 点,则AC=BC=12, ∵AB 是大半圆的弦且与小半圆相切, ∴OC 为小圆的半径, ∴S 阴影部分=S 大半圆-S 小半圆 =π•OB 2-π•OC 2 =π(OB 2-OC 2) =πAC 2=72π. 故答案为72π.26.【答案与解析】(1)证明:同圆中的半径相等,即OA =OB ,OC =OD .再由∠AOB =∠COD =90°,得∠1=∠2, 所以△AOC ≌△BOD . (2)解:22211()(91)2(cm )44S S S OA OC πππ=-=-=-=阴影扇形AOB 扇形COD . 27.【答案与解析】(1)如图所示,连接OC ,则OC ⊥AB ,∴ OA =OB ,∴ AC =BC =1163cm 33cm 22AB =⨯=. 在Rt △AOC 中,22226(33)cm 3cm OC OA AC =-=-=.∴ ⊙O 的半径为3 cm . (2)∵ OC =3cm 12=OB ,∠B =30°,∠COD =60°. ∴ 扇形OCD 的面积为226033(cm )3602ππ=. ∴ 阴影部分的面积为 213933(cm )222BOC OCD S S OC CB ππ∆--=-=扇形. 28. 【答案与解析】解:(1)∵∠B=30°,∴∠AOC=2∠B=60°;(2)∵∠AOC=60°,AO=CO , ∴△AOC 是等边三角形; ∵OH=, ∴AO=4;∵AD 与⊙O 相切, ∴AD=; (3)∵S 扇形OAC ==π,S △AOD =×4×4=8;∴.29.【答案与解析】将圆锥的侧面展开如图所示,取SA '的中点C ,连接AC .则AC 是小虫爬行的最短路线.∵ 421180n ππ⨯⨯=, ∴ 90n =°,即90ASA '∠=°.∵ SA =4,SC =2,∴ 224225AC =+=. ∴ 小虫爬行的最短距离为25.30. 【答案与解析】用一张正方形纸片制成一个有底圆锥,方法有多种,但使其表面积尽可能大的只有一种,确定了扇形、圆、正方形三者之间的关系之后;就可通过计算求出扇形及圆的半径,并制成符合条件的圆锥. 具体做法:(1)通过分析、比较确定符合条件的扇形、圆与正方形的位置关系,并画出示意图,如图所示. (2)通过它们的位置关系计算出扇形和圆的半径,并根据计算结果在纸片上画出截剪线. (3)剪下符合条件的扇形与圆,用扇形作侧面,圆作底面粘接成圆锥.其表面积的计算过程是:如上图所示,设扇形的半径为Rcm ,⊙O 的半径为r cm ,M 、N 均为切点, 连接OM 、ON .则有OM ⊥BC ,ON ⊥DC . ∵ OM =ON =r .∴ 四边形OMCN 为正方形.∴ OC =2r .∵ AC =AG+GO+OC ,AC =2AB =202cm ,∴ 2202R r r ++=. ① ∵ EF 的弧长等于⊙O 的周长, ∴1224R r ππ⨯=,即R =4r . ② 由①②得2024.4152r =+≈,∴ 2214S S S R r ππ=+=+侧表底. 222255 3.14 4.41cm 305.3cm r π==⨯⨯≈.故所做圆锥的表面积约为305.3cm2.31. 【答案与解析】(1)连接BC.∵∠BAC=90°,∴ BC是⊙O的直径,∴ BC=1m.∵ AB=AC,∴22AB AC==m.∴O ABCS S S=-阴扇形222221121m m m2428πππ⎛⎫⎛⎫=-=⎪⎪ ⎪⎝⎭⎝⎭.(2)设圆锥底面圆的半径为r,∴29022180rππ=.∴2m8r=.32. 【答案与解析】解:(1)∵AB是直径,∴∠ACB=∠ADB=90°(直径所对的圆周角是直角),在Rt△ABC中,∠B=30°,AC=2,∴AB=4,∴BC==2,∵∠ACB的平分线交⊙O于点D,∴∠DCA=∠BCD∴=,∴AD=BD,∴在Rt△ABD中,AD=BD=AB=2;(2)连接OC,OD,∵∠B=30°,∴∠AOC=∠2∠B=60°,∵OA=OB,∴S△AOC=S△ABC=××AC×BC=××2×2=,由(1)得∠AOD=90°,∴∠COD=150°,S△AOD=×AO×OD=×22=2,∴S阴影=S扇形COD﹣S△AOC﹣S△AOD=﹣﹣2=π﹣﹣2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

<弧长、扇形面积和圆锥>练习卷
一、填空题
1. 在一个圆中,如果︒60的圆心角所对的弧长是6πcm ,那么这个圆的半径r=_________. 2. 正n 边形的中心角的度数是_______︒.
3. 边长为2的正方形的外接圆的面积等于________.
4. 已知扇形的半径为3,圆心角为︒60,那么这个扇形的面积等于_________. 5. 如果圆锥的高为8cm ,圆锥底面半径为6cm ,那么它的侧面积为_________cm 2. 6. 在一个周长为180厘米的圆中,长度为60厘米的弧所对圆心角为 度. 7. 已知扇形的弧长是π4cm ,面积为π122cm ,那么它的圆心角为 度.
8. 已知一个圆柱的高是π16cm ,如果它的侧面展开图是一个正方形,
那么底面半径是 cm . 9. 已知圆柱的底面圆的半径为2 cm ,高为cm 10,那么它的侧面积是 2cm 10. 已知圆锥底面的面积为16πcm ,高为3cm ,那么它的全面积为 2cm .
11. 如图,正方形ABCD 的边长是10cm ,则图中阴影部分的面积是 . 12. 如右下图,已知阴影部分甲比阴影部分乙的面积大240cm π,直径AB 长40 cm , 则BC 的长是 . 二、选择题
13.圆内接正三角形的边心距与半径的比是( ).
A .2:1
B .1:2
C .4:3
D .2:3 14.正六边形的内切圆与外接圆面积之比是( ). A .
43 B .23 C .21 D .4
1
15.如果圆锥的高为3cm ,母线长为5cm ,则圆锥的全面积是( )cm 2.
A .16π
B .20π
C .28π
D .36π
16.已知:如右上图,ABCD 为正方形,边长为a ,以B 为圆心, 以BA 为 半径画弧,则阴影部分面积为( ).
A .(1-π)a 2
B .1-π
C .
44π- D .4
4π-a 2
17.已知:如图,Rt △ABC 中,∠BAC=︒90,AB=AC=2,以AB 为 直径的圆交BC 于D ,则图中阴影部分的面积为( ).
A .1
B .2
C .1+
4π D .2-4
π
18.如果一个正方形的周长和一个圆的周长相等,那么这两个图形的面积相比较,结果是( ).
A .正方形面积大
B .圆的面积大
C .一样大
D .不能比较
19.在四个命题:①各边相等的圆内接多边形是正多边形;②各边相等的圆外切多边形是正多边形;③各角相等的圆内接多边形是正多边形;④各角相等的圆外切多边形是正多边形,其中正确的有( ).
A .1个
B .2个
C .3个
D .4个
D
C
B
A
O


D
A
N
M
H
E
D
C
B
A
( )
B C D
21.如图,矩形ABCD 中,AB =1,BC =3,以BC 中点E
为圆心,以AB 长为半径作弧MNH 于AB 及CD 交于M 、N , 与AD 切于H ,则图中阴影部分的面积是( ).
A .π32
B . π34
C .π43
D .π3
1
三、解答题
22.已知弓形的弧所对的圆心角∠A OB 为120°,弓形的弦AB 长为12,求这个弓形的面积。

23.如图,有一四边形形状的铁皮ABCD ,BC=CD=6,AB=2AD ,∠ABC=∠ADB=90°,以C 为圆心,CB 为半径作弧BD 得一扇形CBD ,剪下扇形并用它围成一圆锥的侧面.
求:(1)∠BCD 的度数
(2) 该圆锥的底面半径.
谢谢大家
A
B。

相关文档
最新文档