机械振动案例分析_PPT课件

合集下载

大学物理机械振动和机械波ppt课件

大学物理机械振动和机械波ppt课件

2024/1/26
12
03
驻波形成条件及其性质分析
Chapter
2024/1/26
13
驻波产生条件及特点描述
产生条件
两列沿相反方向传播、振幅相同、频 率相同的波叠加。
特点描述
波形不传播,能量在波节和波腹之间 来回传递,形成稳定的振动形态。
2024/1/26
14
驻波能量分布规律探讨
能量分布
驻波的能量主要集中在波腹处,波节处能量为零。
2024/1/26
16
04
多普勒效应原理及应用举例
Chapter
2024/1/26
17
多普勒效应定义及公式推导
2024/1/26
定义
当波源与观察者之间存在相对运动时,观察者接收到的波的频率会发生变化,这种现象 称为多普勒效应。
公式推导
设波源发射频率为f0,波速为v,观察者与波源相对运动速度为vr,则观察者接收到的 频率为f=(v±vr)/v×f0,其中“+”号表示观察者向波源靠近,“-”号表示观察者远离
Chapter
2024/1/26
25
非线性振动概念引入和分类
非线性振动定义
描述系统振动特性不满足叠加原理的振动现象。
分类
根据振动性质可分为自治、非自治、周期激励和 随机激励等类型。
与线性振动的区别
线性振动满足叠加原理,而非线性振动则不满足 。
2024/1/26
26Biblioteka 混沌理论基本概念阐述混沌定义
确定性系统中出现的内在随 机性现象。
受迫振动
物体在周期性外力作用下所发生的振动。
共振现象
当外力的频率与物体的固有频率相等时,物体的振幅达到最大的现象。

旋转机械振动分析案例 ppt课件

旋转机械振动分析案例  ppt课件

d.保持架故障: f (Hfz0 ) { fi [1 d (cos) / D] fo[1 d (cos) / D]} / 2
式中:
n径-滚、动α-体接数触、角f、r-内ffi0、外f环o12几相f分r (对1别转为Dd速内co频外s率环) 、转d速-滚频动率体,直二径者、方D向-节一圆致直
ppt课件
19
波形出现“削顶”
丰富的高次谐波
ppt课件
20
滚动轴承故障的振动诊断及实例
1. 滚动轴承信号的频率结构 滚动轴承主要振动频率有:
(1)通过频率 当滚动轴承元件出现局部损
伤时(如图中轴承的内外圈或 滚动体出现疲劳剥落坑),机 器在运行中就会产生相应的振 动频率,称为故障特征频率, 又叫轴承通过频率。
ppt课件
23
该机组自1986年1月30日以后,测点③的振 动加速度从0.07g逐渐上升,至6月19日达到 0.68g,几乎达到正常值的10倍。为查明原因, 对测点③的振动信号进行频谱分析。
轴承的几何尺寸如下: 轴承型号:210; 滚动体直径:d=12.7mm; 轴承节径:D=70mm; 滚动体个数:z=10; 压力角:=00。
um P-P
H
85
30
V
15
6
A
28
28
ppt课件
15
振动信号所包含的主要频率成分都是奇数倍转频,尤以3倍 频最突出。另外,观察其振动波形振幅变化很不规则,含有 高次谐波成分。根据所获得的信息,判断汽轮机后轴承存在 松动。
ppt课件
16
停机检查时发现汽轮机后轴承的一侧有两颗 地脚螺栓没有上紧,原因在于预留热膨胀间隙过 大。后来按要求旋紧螺母,振幅则从85μm下降 至27μm,其余各点的振动值也有所下降,实现 了平稳运行。

2024-2025学年高中物理第一章机械振动4阻尼振动受迫振动教案教科版选修3-4

2024-2025学年高中物理第一章机械振动4阻尼振动受迫振动教案教科版选修3-4
二、新课内容(25分钟)
1. 阻尼振动
a. 概念介绍
b. 运动特征
c. 影响因素
2. 受迫振动
a. 概念介绍
b. 原理阐述
c. 与阻尼振动的关系
三、案例分析(10分钟)
1. 分析实际生活中阻尼振动和受迫振动的实例,如汽车减震器、音乐乐器等。
2. 引导学生运用所学知识解释现象,提高解决问题的能力。
四、课堂小结(5分钟)
2. 设计丰富的教学活动,提高学生的课堂参与度和积极性。
3. 创设实际问题情境,培养学生运用物理知识解决问题的能力。
4. 加强课后辅导,帮助学生巩固所学知识,提高学习效果。
5. 关注学生心理健康,引导他们树立正确的学习态度,克服恐惧心理。
四、教学资源
1. 硬件资源:
- 投影仪
- 讲台
- 白板
- 振动实验器材(如弹簧振子、阻尼器等)
课堂上,我鼓励学生积极参与讨论,提出自己的想法。有些学生对于生活中的阻尼振动和受迫振动实例能够给出很好的分析,这让我感到很高兴。但也有一些学生在讨论中显得不够积极,可能是因为他们对这些概念还不够熟悉。我考虑在下次课上,提前给学生发放一些相关资料,让他们有所准备,提高课堂讨论的参与度。
在作业布置方面,我发现有些学生对于课后习题的完成情况较好,但案例分析报告的质量参差不齐。有的学生分析得非常到位,有的则过于简单。我会在批改作业时,给出详细的反馈,指导他们如何更好地进行分析。此外,小组讨论报告也反映出一些问题,有的小组讨论不够深入,报告内容较为表面。针对这个问题,我打算在下次小组讨论时,给出更明确的指导,引导他们深入探讨问题。
六、知识点梳理
1. 阻尼振动
- 定义:阻尼振动是指在振动系统中存在阻力,使振动幅度逐渐减小的振动现象。

振动分析案例(48个实例)

振动分析案例(48个实例)
13
实例No.3 某汽轮机叶片断裂故障
转子不平衡 !
上海石化自备电厂5#汽轮机轴承座振动速度突增至5. 25毫米/ 秒, 有效值,而6#机仅为0. 466毫米/秒,有效值;振动速度频谱均为 一倍转速频率50赫兹。诊断为转子不平衡,据历史经验,汽轮 14 机叶片又断了!停机检查证实的确断了五片转子叶片!
故障诊断应用实例精选 -------(48例)-------1
Contents目录
实例No.1某压缩机组振动频谱分析 实例No.2某 30万吨/年乙烯装置裂解气压缩机组转子 动不平衡故障 实例No.3某汽轮机叶片断裂故障 实例No.4某透平膨胀机叶片断裂故障 实例No.5某锅炉风机地脚螺栓松动故障 实例No.6某大型风机轴承座松动故障 实例No.7某油气田平台中甲板压缩机平台振动故障诊断 实例No.8某循环气压缩机管道振动和噪声故障 实例No.9某原油泵进口管道共振故障的诊断和排除 实例No.10某立式泵严重共振引起叶轮轴疲劳断裂故障的诊断 实例No.11某往复式空压机的出口管道共振故障的诊断 实例No.12某锅炉给水泵的流体动力振动故障的诊断 实例No.13某除尘风机组轴承座刚性差及流体动力激振振动故障的诊断 实例No.14某汽轮机转子摩擦和滚动轴承故障 实例No.15某送风机电动机转子与定子相磨故障的诊断 2 实例No.16某螺杆式压缩机转子磨损故障的诊断
振动频谱中包含机器零部件的机械状态信息
电机转速N0=1480转/分 =24.6667赫兹
9999999
压缩机转速N1=6854.7转/分 =114.245赫兹 小齿轮齿数Z0=38 大齿轮齿数Z1=176 齿轮啮合频率Fm=N0Z0 =N1 Z =4341.3赫兹 齿轮边带频率Fb=Fm±i N0或 Fm ±i N1

《振动力学基础》课件

《振动力学基础》课件
非耦合振动
各自由度之间相互独立,可分别进行分析。
固有频率和主振型
多自由度系统具有多个固有频率和相应的主振型 。
连续系统的振动
分布参数系统
描述长弦、长杆等连续介质的振动,需要考虑空间位 置的变化。
集中参数系统
将连续介质离散化,用弹簧、质量等元件模拟,适用 于简单模型。
波的传播
连续系统中振动能量的传播形式,如声波、地震波等 。
线性振动和非线性振动
线性振动
满足叠加原理,各激励之间互不影响,系统响应与激励成正比。
非线性振动
不满足叠加原理,激励之间存在相互作用,系统响应与激励不成正 比。
周期性振动和非周期性振动
根据振动是否具有周期性进行分类。
CHAPTER 03
振动分析方法
频域分析法
01
频域分析法是一种通过将时间域的振动问题转换为频率域的振动问题 ,从而利用频率特性来分析振动的方法。
CHAPTER 02
振动的基本原理
单自由度系统的振动
自由振动
无外力作用下的振动,系统具有固有频率和固有振型。
强迫振动
在外力作用下产生的振动,其频率与外力频率相同或相近。
阻尼振动
由于系统内部摩擦或外部阻尼作用导致的振动,能量逐渐耗散。
多自由度系统的振动
耦合振动
多个自由度之间相互影响,振动频率和振型较为 复杂。
汽车悬挂系统和路面激励会导致车内振动,影响乘客舒适性。
船舶与海洋工程
船舶和海洋结构的振动会影响其性能和安全性,需要进行有效的振 动控制。
建筑领域
结构健康监测
对建筑物和桥梁等大型结构进行振动监测,可以评估其健康状况和 安全性。
地震工程
地震引起的振动对建筑结构的影响非常大,需要进行抗震设计和分 析。

《振动信号测试》课件

《振动信号测试》课件

振动信号测试的实 践案例
机械设备的振动信号测试
测试目的:了解机械设备的振动情况,及时发现和排除故障 测试方法:采用振动传感器进行数据采集,分析振动信号的频率、幅值和 相位 测试设备:振动传感器、数据采集器、分析软件等
测试结果:根据振动信号分析结果,判断机械设备的运行状态和故障原因
建筑结构的振动信号测试
滤波器设计:设计 滤波器以提取特定 频率成分
频谱估计:估计信 号的频率成分和强 度
时频域分析
傅里叶变换:将信号从时域转换到 频域
连续小波变换:对信号进行多尺度 分析,提取信号的局部特征
添加标题
添加标题
添加标题
添加标题
短时傅里叶变换:对信号进行局部 分析,提取信号的瞬时频率
经验模态分解:将信号分解为多个 固有模态函数,提取信号的局部特 征和整体趋势
振动信号:物体在受到外力作用下 产生的位移、速度、加速度等物理 量的变化
振动信号的幅值:振动信号的最大 值和最小值之间的差值
添加标题
添加标题
添加标题
添加标题
振动信号的频率:振动信号在一定 时间内的周期性变化
振动信号的相位:振动信号在时间 轴上的位置关系
振动信号测试的目的和意义
目的:通过测 试振动信号, 了解设备的运 行状态和性能
其他领域的振动信号测试
航空航天领域:用于检测飞机、火箭等飞行器的振动情况 汽车领域:用于检测汽车发动机、轮胎等部件的振动情况 建筑领域:用于检测建筑物、桥梁等结构的振动情况 医疗领域:用于检测人体器官、骨骼等部位的振动情况
振动信号测试的挑 战与展望
测试中的干扰与误差来源
环境因素:温度、湿度、电磁 场等
交通运输:监测车辆、船舶、飞机等交通工具的振动情况, 提高安全性和舒适性

机械振动测试技术与案例分享

机械振动测试技术与案例分享

北京东方振动和噪声ห้องสมุดไป่ตู้术研究所
振动.应变.声学.冲击 全面解决方案
14
3.传感器与仪器使用注意事项
★应变测试时,发现电桥无法平衡怎么办? a. 检查应变片是否绝缘、检查应变片桥路是否接对,应 变仪上桥路档位选择是否正确 b.用万用表量应变片电阻:标准应该为120欧姆,如果过 大,如到达131欧姆,则是由于电阻过大无法平衡。解 决方法如下: ◆更换电阻小的导线,或缩短导线长度;
1.试验概述 2.试验仪器 3.测点布置 4.测试过程 5.测试结果
北京东方振动和噪声技术研究所 振动.应变.声学.冲击 全面解决方案
29
1.试验概述
对某型号电机转子进行了双面动平衡测试,通过 动平衡测试,得到两个不平衡面的不平衡量及相位, 最后给出平衡该不平衡量所需加的配重及相位。
北京东方振动和噪声技术研究所
振动.应变.声学.冲击 全面解决方案
30
2.试验仪器
北京东方振动和噪声技术研究所
振动.应变.声学.冲击 全面解决方案
31
3.测点位置
本次试验属于双面动平衡,将被测对象某发电 机转子放置于平衡机上,在两个平衡面的径向 分别放置一个加速度传感器测量两个平衡面的 不平衡量,通过转速传感器测量转速和振动相 位。
26168.175
510.00375
峭度指标
3.185709
3.125752
3.323581
北京东方振动和噪声技术研究所
振动.应变.声学.冲击 全面解决方案
25
5.测试分析
(3)频域分析——齿轮箱二级行星级
北京东方振动和噪声技术研究所
振动.应变.声学.冲击 全面解决方案
26
5.测试分析

泵的震动原因及消除措施

泵的震动原因及消除措施

调整轴承间隙
根据需要调整轴承间隙, 确保轴承运行灵活,减少 摩擦。
使用低摩擦材料
考虑使用低摩擦系数的材 料来制造轴承和密封件, 以减少摩擦。
转子弯曲或轴系不对中的解决方法
校直转子
如发现转子弯曲,使用专业设备对转子进行校直,确保转子平直 。
调整轴系对中
使用对中工具对轴系进行对中调整,确保各轴之间的位置精度符 合要求。
更换弯曲的轴或转子
如无法修复弯曲的轴或转子,需更换新的轴或转子。
轴向力过大的解决方法
调整泵的装配
检查泵的装配是否正确, 如发现轴向力过大,重新 调整泵的装配,以减少轴 向力。
使用止推轴承
在泵的端部加装止推轴承 ,以承受轴向力。
使用平衡装置
在泵的吸入侧或排出侧加 装平衡装置,如平衡鼓或 平衡盘等,以平衡轴向力 。
针对以上原因,采取了以下措施 :对泵的旋转部分进行平衡测试 和调整;重新设计并安装底座, 采用更可靠的固定方式和材料。
4. 实施效果
经过改造和优化后,泵的震动现 象得到了有效控制,运行稳定, 没有再出现松动和泄漏的情况。
案例三:某石油企业泵的震动案例分析
1. 震动现象描述
2. 原因分析
3. 消除措施
泵的震动原因及消除措施
汇报人: 日期:
目录
• 泵的震动概述 • 泵的震动原因 • 泵的震动消除措施 • 泵的震动案例分析
01
泵的震动概述
泵震动定义
泵震动是指泵在运行 过程中产生的周期性 机械振动现象。
振动的幅度和频率对 泵的性能和稳定性产 生重要影响。
震动频率与泵的转速 、叶轮数等因素有关 。
汽蚀与泵的安装高度、泵的流量和叶轮结构有关。当泵的安 装高度过高或泵的流量过小,叶轮进口处压力降低,容易产 生汽蚀现象。此外,叶轮结构不合理也会影响汽蚀的产生。

水泵振动课件

水泵振动课件
利用传感器监测振动,通过算法控 制振动,如主动隔振、主动抑振等 。
案例分析
案例一
某化工厂水泵振动问题:该化工厂水泵在运行过程中出现强 烈振动,影响正常生产。经调查分析,发现是由于转动部件 不平衡引起的。通过更换高质量的转动部件,增加减震装置 ,成功解决了振动问题。
案例二
某污水处理厂水泵振动治理:该污水处理厂水泵在运行过程 中出现振动过大,导致设备损坏。通过采用主动控制技术, 实时监测和抑制振动,有效降低了水泵的振动水平,延长了 设备使用寿命。
效率下降
可能是由于叶轮磨损、密封失效或管 道阻力增大等原因,需要更换相应部 件或优化管道设计。
温度升高
可能是由于轴承润滑不良、冷却不足 或机械摩擦等原因,需要检查并改善 润滑和冷却系统。
01
水泵振动研究展望
研究方向
深入研究水泵振动产生机理
通过实验和理论分析,深入了解水泵振动产生的物理和机械过程 ,为优化设计提供依据。
水泵振动课件
THE FIRST LESSON OF THE SCHOOL YEAR
目录CONTENTS
• 水泵振动的基本概念 • 水泵振动检测技术 • 水泵振动的预防与控制 • 水泵振动的治理与维护 • 水泵振动研究展望
01
水泵振动的基本概 念
振动定义与分类
振动定义
振动是指物体在平衡位置附近进 行的往复运动。
水泵振动的危害
设备损坏
长期的水泵振动会导致设 备疲劳、磨损和裂纹,缩 短设备使用寿命。
运行不稳定
水泵振动会影响设备的正 常运行,导致流量和压力 波动,影响设备的性能和 效率。
安全风险
过大的水泵振动可能导致 设备损坏、泄漏和人员伤 亡等安全事故。
01

机械故障诊断案例分析

机械故障诊断案例分析

六、诊断实例例1:圆筒瓦油膜振荡故障的诊断某气体压缩机运行期间,状态一直不稳定,大部分时间振值较小,但蒸汽透平时常有短时强振发生,有时透平前后两端测点在一周内发生了20余次振动报警现象,时间长者达半小时,短者仅1min左右。

图1-7是透平1#轴承的频谱趋势,图1-8、图1-9分别是该测点振值较小时和强振时的时域波形和频谱图。

经现场测试、数据分析,发现透平振动具有如下特点。

图1-7 1*轴承的测点频谱变化趋势图1-8测点振值较小时的波形与频谱图1-9测点强振时的波形和频谱(1)正常时,机组各测点振动均以工频成分(143.3Hz)幅值最大,同时存在着丰富的低次谐波成分,并有幅值较小但不稳定的69.8Hz(相当于0.49×)成分存在,时域波形存在单边削顶现象,呈现动静件碰磨的特征。

(2)振动异常时,工频及其他低次谐波的幅值基本保持不变,但透平前后两端测点出现很大的0.49×成分,其幅度大大超过了工频幅值,其能量占到通频能量的75%左右。

(3)分频成分随转速的改变而改变,与转速频率保持0.49×左右的比例关系。

(4)将同一轴承两个方向的振动进行合成,得到提纯轴心轨迹。

正常时,轴心轨迹稳定,强振时,轴心轨迹的重复性明显变差,说明机组在某些随机干扰因素的激励下,运行开始失稳。

(5)随着强振的发生,机组声响明显异常,有时油温也明显升高。

诊断意见:根据现场了解到,压缩机第一临界转速为3362r/min,透平的第一临界转速为8243r/min,根据上述振动特点,判断故障原因为油膜涡动。

根据机组运行情况,建议降低负荷和转速,在加强监测的情况下,维持运行等待检修机会处理。

生产验证:机组一直平稳运行至当年大检修。

检修中将轴瓦形式由原先的圆筒瓦更改为椭圆瓦后,以后运行一直正常。

例2:催化气压机油膜振荡某压缩机组配置为汽轮机十齿轮箱+压缩机,压缩机技术参数如下:工作转速:7500r/min出口压力:1.OMPa 轴功率:1700kW 进口流量:220m3 /min 进口压力:0.115MPa转子第一临界转速:2960r/min1986年7月,气压机在运行过程中轴振动突然报警,Bently 7200系列指示仪表打满量程,轴振动值和轴承座振动值明显增大,为确保安全,决定停机检查。

机械故障诊断—Ch旋转机械的振动监测与诊断授课PPT

机械故障诊断—Ch旋转机械的振动监测与诊断授课PPT

旋转机械的故障可能导致生产 中断、设备损坏和安全事故。
振动监测与诊断的方法
振动监测是通过测量和分析设备 的振动信号来评估其运行状态的
方法。
振动诊断则是基于监测数据,通 过信号处理、特征提取和模式识 别等技术,对设备的故障进行诊
断和预测。
振动监测与诊断是实现旋转机械 故障预警和预防性维护的重要手
段。
基于人工智能的方法
神经网络
神经网络是一种模拟人脑神经元结构的计算模型,可以通过训练 学习识别出非线性、复杂的故障特征。
支持向量机
支持向量机是一种分类器,可以通过训练学习将正常状态和故障状 态进行分类和识别。
决策树
决策树是一种基于规则的分类器,可以通过训练学习将故障特征进 行分类和识别。
CHAPTER 05
CHAPTER 02
旋转机械的振动原理
旋转机械振动的类型
强迫振动
由外部周期性干扰力引起 的振动,如不平衡的转子 、不均匀的气流等。
自激振动
由机械内部某种自激力引 起的振动,如油膜振荡、 流体激振等。
随机振动
受到多种随机因素影响的 振动,如环境振动、地震 等。
旋转机械振动的产生原因
转子不平衡
转子质量分布不均匀, 导致转动时产生离心力
振幅
监测机械振动的幅度,判断机械运转的稳定 性。
相位
监测机械振动的相位,判断机械运转的协调 性。
振动监测的频率范围
低频
通常在10Hz以下,用于监测大 型旋转机械和往复机械的振动。
中频
通常在10Hz-1kHz之间,用于监 测大多数旋转机械的振动。
高频
通常在1kHz以上,用于监测精 密机械和高速旋转机械的振动。
基于模型的方法

振动常见问题和实例

振动常见问题和实例

实例1-4725RPM多级离心式给水泵加速度谱
加速度频谱图中7倍转速频率(动叶数量为7片)及其2、3倍频都很明 显,相比之下一倍转速处几乎可以忽略。使用加速度频谱容易导致忽 略转子平衡问题!
问题2
为什么电机的滚动轴承已经严重损坏,而瓦 振位移或者速度值仍然很小?应该采用什么 方法来早期发现滚动轴承的损坏?

答案2
通常电动机的壳体非常坚固厚重,所以其滚动轴承损 坏造成的常规振动位移和速度值增长很小。 对于电动机的滚动轴承应该采用gSE尖峰能量测试技 术来测试和早期发现滚动轴承的故障信号。
解释2
滚 动 轴 承 故 障 发 展 的 四 个 阶 段
第一阶段
只是 g SE有明显指示
第二阶段
g SE明显增大,开始出现轴 承零件共振频率并伴有1X转 速频率边带
实例5-低谱线数和高谱线数频谱对比
400线频谱图中显示频谱成份为 一倍频和二倍频,但是振动总值 不大,电机运行正常,无故障征 兆。
高谱线数的频谱图表明普通频谱图中 一倍频的一根谱线其实为三根谱线的 合成,左右两根高幅值边带表明电机 严重转子条故障。
问题5
使用动圈式速度传感器和压电晶体加速度型
传感器测试的振动频谱、波形有差异吗?如
齿轮啮合频率Fm=N0Z0 =N1 Z =4341.3赫兹
齿轮边带频率Fb=Fm±i N0或 Fm ±i N1
振动频谱中包含机器零部件的机械状态信息
电动机转子动平衡 电动机与大齿轮轴联轴器对中
齿轮箱
电机转速N0=1480转/分=24 . 6667赫兹 压缩机转速N1=6854 .7转/分=114 . 245赫兹
问题11
总线等通讯方式集成振动数据到DCS应用现状 和前景如何?

《随机振动分析基础》课件

《随机振动分析基础》课件
提高解决实际问题的能力
本课程注重理论与实践相结合,通过案例分析和 实验操作,培养学生解决实际随机振动问题的能 力。
培养跨学科的思维方式
通过本课程的学习,培养学生具备跨学科的思维 方式,能够综合运用多学科知识进行复杂工程问 题的分析和解决。
02
随机振动概述
随机振动定义
随机振动定义
随机振动是指一种具有随机特性的振动,其参数(如振幅、频率、相位等)在 一定的统计规律下变化。
03
随机振动理论基础
概率论基础
概率
描述随机事件发生的可能性,通常用0到1之间的实数 表示。
随机变量
表示随机事件的数值结果,可以是离散的也可以是连 续的。
概率分布
描述随机变量取值的可能性,常见的概率分布有正态 分布、泊松分布等。
随机过程基础
01
02
03
随机过程
由随机变量构成的序列或 函数,每个随机变量表示 某一时刻的状态。
传统振动分析方法的局限性
传统的确定性振动分析方法难以处理随机振动问题,需要 引入概率统计方法进行深入研究。
学科交叉的重要性
随机振动分析涉及到多个学科领域,如概率论、统计学、 结构动力学等,需要跨学科的知识和思维方式。
课程目的
1 2 3
掌握随机振动的基本概念和原理
通过本课程的学习,使学生了解随机振动的基本 概念、原理和分析方法,为后续的工程应用和研 究打下基础。
功率谱密度法
功率谱密度法是一种基于频域分 析的方法,用于研究随机振动信
号的频率特性。
它通过对随机振动信号进行频谱 分析,提取出信号的功率谱密度 函数,从而描述随机振动信号在
不同频率范围内的能量分布。
功率谱密度法在随机振动分析中 具有广泛的应用,可以用于研究 结构的振动模态、地震工程等领

第四章-机械振动

第四章-机械振动

x(m)
t
A
曲线2曲线1
-A
t
t
t2
t1
1
2
当:t t2 t1 0, 2 1 0
振动2比振动1超前
t(s)
§4.1 简谐振动
例1.如图的谐振动x-t 曲线,试求其谐振方程
解:由图知
x(m)
A 2m T 2s 2
可得: 2 T O
振动表达式为
1
2t (s)
x Acos( t )
dt 2 l
谐振方程为:
设 2 2T
ml
x Acos(t )
§4.2 简谐振动的实例分析
(5)U形管中液体无粘滞振荡
x x
l
为管内液体密度,
l为液体在管内的长度。
动力学方程为:
l
d2 dt
x
2
2gx
0
谐振方程为:
2 2g
l
x Acos(t )
§4.2 简谐振动的实例分析
(6)LC谐振电路
P sin m dv
dt
v l
P
sin 1 3 (小角度时)
6
g 0
l
令 2 g
l
2 0
结论: 小角度摆动时,单摆的运动是谐振动.
周期和角频率为:T 2 l
g
g
l
§4.2 简谐振动的实例分析
(2) 复摆(物理摆)
以物体为研究对象
设 角沿逆时针方向为正
mghsin JZ
10
即: Asin( ) 0 sin( ) 0
6
2
x
1
cos(
t 2 )(m)
10 6 3
§4.1 简谐振动

大学物理振动和波动ppt课件(2024)

大学物理振动和波动ppt课件(2024)
大学物理振动和波动 ppt课件
2024/1/28
1
目录
2024/1/28
• 振动基本概念与分类 • 波动基本概念与传播特性 • 振动与波动相互作用原理 • 光学中振动和波动现象解析 • 声学中振动和波动现象解析 • 总结与展望
2
01 振动基本概念与分类
2024/1/28
3
振动的定义及特点
振动的定义
振幅
声源振动的幅度用振幅表示,振幅越大,声音的 响度越大。
3
相位
声波在传播过程中,各质点的振动状态用相位描 述。相位差反映了声波在空间中的传播情况。
2024/1/28
25
室内声学环境评价指标体系
响度
音调
人耳对声音强弱的主观感受称为响度,与 声源的振幅和频率有关。
人耳对声音高低的主观感受称为音调,与 声源的频率有关。
物体在平衡位置附近所做的往复运动。
振动的特点
周期性、重复性、等时性。
2024/1/28
4
简谐振动与阻尼振动
2024/1/28
简谐振动
物体在回复力作用下,离开平衡位置 后所做的往复运动,其回复力与位移 成正比,方向相反。
阻尼振动
在振动过程中,由于摩擦、空气阻力 等因素,振幅逐渐减小的振动。
5
受迫振动与共振现象
传播途径控制
在噪声传播途径中采取措施,阻断或减弱噪声的传播。例如设置声屏 障、采用吸音材料等。
接收者防护
对受噪声影响的人员采取防护措施,如佩戴耳塞、耳罩等个人防护用 品。
案例分析
以某工厂噪声控制为例,通过采取上述综合措施,使工厂噪声降低到 国家标准以内,改善了工人的工作环境和周边居民的生活环境。
27

电厂转动设备振动讲解与案例分析ppt课件

电厂转动设备振动讲解与案例分析ppt课件
在低频范围内,振动强度与位移成正比;在中 频范围内,振动强度与速度成正比;在高频范 围内,振动强度与加速度成正比。
因为频率低意味着振动体在单位时间内振动的 次数少、过程时间长,速度、加速度的数值相 对较小且变化量更小,因此振动位移能够更清 晰地反映出振动强度的大小;而频率高,意味 着振动次数多、过程短,速度、尤其是加速度 的数值及变化量大,因此振动强度与振动加速
3
精品课件
专业术语解释
振幅:振幅是物体动态运动或振动的幅度。 振幅是振动强度和能量水平的标志,是评判机
器运转状态优劣的主要指标 峰峰值、单峰值、有效值 1. 振幅的量值可以表示为峰峰值(pp)、单峰
值(p)、有效值(rms)或平均值(ap)。 2. 峰峰值是整个振动历程的最大值,即正峰与
负峰之间的差值;
5
精品课件
专业术语解释
频率、周期 频率f是物体每秒钟内振动循环的次数,单位
是赫兹 [Hz]。 频率是振动特性的标志,是分 析振动原因的重要依据。 周期T是物体完成一个振动过程所需要的时间, 单位是秒 [s] 。 例如一个单摆,它的周期就是重锤从左运动到 右,再从右运动回左边起点所需要的时 间。 频率与周期互为倒数,f=1/T。 对旋转 6
精品课件
探讨课题:电厂转动设备振动案例讲解与分析 培训部门: 培 训 人: 培训日期:
1
精品课件
培训内容:
1、专业术语解释 2、振动的测量方法 3、振动的分类 4、常见引起振动故障的原因 5、案例讲解
2
精品课件
专业术语解释
1、机械振动 物体相对于平衡位置所作的往复运动称为机械 振动。简称振动。 例如,机器箱体的颤动、 管线的抖动、叶片的摆动等都属于机械振 动。 振动用基本参数、即所谓“振动三要素” — 振幅、频率、相位加以描述。

《振动分析案例》课件

《振动分析案例》课件
这些振动不仅会影响乘客的舒适度,还可能对航空器的结构造成损伤,影响飞行安 全。
因此,对航空器的振动进行分析和减振设计至关重要。
航空器的模态分析
01
模态分析用于确定航空器结构的固有频率和振型。
02
通过模态分析,可以了解航空器在不同频率下的振 动特性,为后续的减振设计提供依据。
03
模态分析通常采用有限元方法进行计算,需要建立 航空器的有限元模型。
制造业
用于检测生产线上各种机械设备的运行状态 ,提高生产效率。
交通运输
用于监测铁路、地铁、高速公路等基础设施 的振动情况,保障交通安全。
02
振动分析基础知识
振动的基本概念
振动
物体在平衡位置附近做周期性往复运动的过程。
振动频率
单位时间内振动循环的次数,表示振动物体往复 运动的快慢程度。
振动幅度
振动物体偏离平衡位置的最大距离,表示振动的 强弱程度。
采用有限元法对建筑结构进行模态分 析,得到了结构的固有频率和模态振 型。
模态分析结果
通过模态分析,发现该高层建筑的低 阶模态频率较低,容易受到外部激励 的影响。
建筑结构的振动响应分析
振动响应分析方法
采用时域法和频域法对建筑结构进行振动响应分析,得到了结构的位移、速度 和加速度响应。
振动响应分析结果
航空器的减振设计
01
根据模态分析的结果,可以针对性地进行航空器的减振设计。
02
常见的减振措施包括改变结构布局、增加阻尼材料、优化连接
方式等。
减振设计需要综合考虑性能、重量、成本等多方面因素,以达
03
到最优的设计效果。
THANKS。
具体控制策略
根据车辆模态分析结果,选择合适的控制方法,设计合理的控制装置和算法,实现对车辆振动的有效控制。例如 ,在悬挂系统、座椅等关键部位安装减震器、阻尼器等装置,优化车辆的动力学特性,提高乘坐舒适性和安全性 。

旋转机械振动分析案例

旋转机械振动分析案例

波形出现“削顶” 丰富的高次谐波
滚动轴承故障的振动诊断及实例
1. 滚动轴承信号的频率结构 滚动轴承主要振动频率有:
(1)通过频率 当滚动轴承元件出现局部损
伤时(如图中轴承的内外圈或 滚动体出现疲劳剥落坑),机 器在运行中就会产生相应的振 动频率,称为故障特征频率, 又叫轴承通过频率。
各元件的通过频率分别计算 如下:
测点A水平方向振动信号的频谱结构图
机械松动
地脚松动引起振动的方向特征及频率结构
实例 某发电厂1#发电机组,结构如图。
1-汽轮机 2-减速机 3-发电机 4-励磁机 ①-后轴承 ②-前轴承
汽轮机前后轴承振动值


um P-P
um P-PLeabharlann H8530
V
15
6
A
28
28
振动信号所包含的主要频率成分都是奇数倍转频,尤以3倍 频最突出。另外,观察其振动波形振幅变化很不规则,含有 高次谐波成分。根据所获得的信息,判断汽轮机后轴承存在 松动。
取正号,方向相反则取负f号b 。
fb

1 2
D d
f
r
[1

(
d D
)2
cos2

]
实例
一台单级并流式鼓风机,由30KW电动机减速后拖 动,电动机转速1480r/min,风机转速900r/min。两 个叶轮叶片均为60片,同样大小的两个叶轮分别装在两 根轴上,中间用联轴器链接,每轴由两个滚动轴承支承, 风机结构如图所示。
群,这是轴承元件的固有频率。图b是低频段的频谱, 图中清晰地显示出转速频率(15Hz),外圈通过频率 (61Hz),内圈通过频率(88Hz)及外圈通过频率的2 次、3次谐波(122Hz和183Hz),图c是加速度时域波 形 , 图上 显示出间 隔为 5.46ms的波峰 , 其频率亦 为 183Hz(1000÷5.46=183Hz),即为外圈通过频率的 三次谐波,与频谱图显示的频率相印证(见图4- 38b),据两个频段分析所得到的频率信息,判断轴承 外圈存在有故障,如滚道剥落、裂纹或其它伤痕。同时 估计内圈也有一些问题。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
要机器运行,这些激振力矩就存在强迫扭振就持续发生, 使得轴在运转时产生剧烈振动。
曲轴的破坏
曲轴按照激振的频率进行强制振动,当激振频率 与曲轴本身的固有频率相同时,就会产生共振。当 扭振应力超过轴系所能承受的应力时,曲轴将产生 断裂。
防止曲轴破坏 的解决办法
振动的利用
“振动利用工程学” 是20世纪后半期逐渐形成和发展起来的一 门新学科,振动利用工程的发展使世人瞩目。就振动机械来说, 目前已成功应用于工矿企业中的振动机器已发展到数百种之多, 在许多部门,如采矿、冶金、煤炭、石油化工、机械、电力、水 利、土木、建筑、建材、铁路、公路交通、轻工、食品和谷物加 工、农田耕作以及在人类日常生活过程中。
限制有害的振动,利用有益的振动
谢谢观看
机械振动的发展历史 振动带来的危害及其控制 振动的利用
振动是在日常生活和工程实际 中普遍存在的一种现象,也是整 个力学中最重要的研究领域之一。
机械振动的发展历史概述
人类对振动现象的认识有悠久的历史,早在公元前6世 纪,Pythagoras发现了较短的弦发出较高的音,将弦长缩短一 半可发出高一音阶的音符,战国时期的古人已定量地总结出 弦线发音与长度的关系,将基音弦长分为三等份,减去或增加 一份可确定相隔五度音程的各个音,公元前6世纪成书的 《旧约・约书亚记》记载共振现象,城墙在齐声呐喊中塌陷; 成书于战国时期的《庄子・徐无鬼》更明确记载了共振现象 “鼓宫宫动,鼓角角动,音律同矣”;成书于公元2~5世纪的 《犹太法典》第二章也描述一种共振象,“公鸡把头伸进空的
高架桥上的吸声屏障
高架桥上的吸声 与隔振组合屏障
在坦克炮塔内,陀螺仪、加速度计及角度传 感器不断地测定各种运动载荷,车载计算机根 据这些信息计算并发出抵消这些运动的控制指 令,通过伺服系统使炮塔相对于底盘水平转动、 火炮相对于炮塔高低俯仰,从而使坦克即使在 不断颠簸的运动中也能将火炮准确地对准目标。
机械振动,是指物体(系)在平衡位置(或平 均位置)附近来回往复的运动。
兴利除弊
●引起噪声污染;
●影响精密仪器设备的功能,降低机械加工 的精度和光洁度; ●消耗机械系统的能量,降低机器效率;
●使结构系统发生大变形而破坏,甚至造成 灾难性的事故,有些桥梁等建筑物就是由 于振动而塌毁;
●机翼的颤振、机轮的摆振和航空发动机的 异常振动,曾多次造成飞行事故;
振动切削
振动切削加工是在刀具或工件上附加一定可控的振动,使加 工过程变为间断、瞬间、往复的微观断续切削过程。振动切削 方法首先由日本宇都宫大学的隈部淳一郎教授于60年代提出的。 目前,在日本、中国、俄罗斯、德国、韩国、印度、美国、奥 地利、英国等开展了广泛的研究与生产应用。
振动切削原理
振动切削理论是在切削过程中加入了超声振动。由工业金刚石颗粒 制成的铣刀、钻头或砂轮,在加工过程中对零件表面进行20000次/秒的 连续敲击,即使是高硬材料,在如此高频的振动敲击下,一个很小的切削 力也可将其瓦解。振动切削机床的进给力还是很大的,因此在振幅的最高 点,附在刀具上的金刚石颗粒以撞击方式将零件表面材料以微小颗粒形式 分离出来。
因振动切削机理与普通切削不同,使其具有如下现象 及效果。
1)切削抗力显著降低。 2)加工精度明显提高。 3)切削温度显著降低。 4)切削过程比较顺利。 5)加工表面质量可以得到改善
采用刀具振动孔加工
超声纵振孔加工又可分为刀具振动和工件振动两类。虽然振动体不同, 但它们刀具与工件的相对振动都是轴向的,因此加工效果基本一致。超声 纵振孔加工的主要特点有:
●化飞机和车船的乘载条件,等等。
地震,群灾之首。 强烈的破坏性地震 瞬间将房屋、桥梁、 水坝等建筑物摧毁, 直接给人类造成巨 大的灾难,还会诱 发水灾、火灾、海 啸、有毒物质及放 射性物质泄漏等次 生灾害。
印度洋强震引发海啸席卷南亚东南亚
建造结构振动台模型试验
一种吸声型的声屏障结构
利用声屏障将声源 和保护目标隔开
①生产率高,特别对于难加工材料, 生产率比普通钻削高2~3倍;
②不需退刀排屑,易实现机械化; ③加工精度和表面质量的很大提高, 表面粗糙度值可达Ra0.8μm,而且不 出现毛刺; ④可降低切削温度。
超声诊断仪产生超声,并发射到人体内,在组 织中传播,遇到正常与有疾病的组织时,便会产 生反射与散射,仪器接到这种信号后,加以处理, 显示为波形、曲线或图像等,就可以供医生做判 断组织或器官健康与否的依据。
车载火炮稳定系统
振动引起的转子系统破坏
如果在加工时有强迫振动,又称为激励振动,它是由周期变 化的激振力所引起的,例如主轴回转不平衡、电机振动、传 动部件有缺陷,以及周围有振动源通过地基传给加工设备的 振动等,都会产生振纹。电机是主要动力源,也是振动源, 电机的振动对加工的影响很大。
汽车发动机的曲轴在工作时会发生 扭振现象,其内因是曲轴不仅自身 具有惯性,而且还有弹性,由此确 定了曲轴本身固有的自由扭转特性, 而其外因则是作用在曲轴上周期性 变化时的激振力矩,例如:大爆发 的活塞惯性力、曲柄连杆机构的惯 性力和重力、附件的不规则阻力矩 和外界作用力,这些力矩是曲轴产生扭振的能量来源,只
相关文档
最新文档