(完整版)数轴上的动点问题
数轴的动点问题公式
数轴的动点问题公式
数轴的动点问题是指一个点在数轴上按一定规律运动的问题。
为了描述这个运动过程,我们可以使用公式来表示动点的位置。
假设数轴上的起点为0,动点在某个时刻的位置为x。
动点按照某个速度v向左或向右运动,那么在经过t单位时间后,动
点的位置可以用下面的公式表示:
x=x0+vt
其中,x0表示初始位置,v表示速度,t表示时间。
如果速
度为正,表示向右移动;如果速度为负,表示向左移动。
如果动点在数轴上做匀速直线运动,那么速度v是常数,这
时可以将公式简化为:
x=x0+vt
如果动点在数轴上做加速或减速运动,速度v是变化的,那
么我们需要根据具体的问题来确定速度v的表达式。
常见的加
速或减速运动可以用以下几种公式表示:
匀加速运动:v=v0+at,其中v0表示初始速度,a表示加
速度。
匀减速运动:v=v0at,其中v0表示初始速度,a表示减速度。
自由落体运动:h=h0+v0t+(1/2)gt^2,其中h0表示初始高度,v0表示初始速度,g表示重力加速度。
希望上述内容能够对您有所帮助!如有任何疑问,请随时向我提问。
数轴上的动点问题
数轴上的动点问题❖ 数轴上的动点问题,是很重要的一部分,但往往使学生感到很棘手.实际上,如果将动点问题“代数化”,“三招”就可轻松解决常见的问题.第一招:平移公式(平移规律)若数轴上点A 表示的数是a ,则当点A 向左平移t 个单位长度时表示的数为a t -;当点A 向右平移t 个单位长度时表示的数为a t +.简记为:左减右加.第二招:距离公式若数轴上,A B 两点表示的数分别是,a b ,则,A B 两点的距离AB a b =-.如果已知,A B 两点的位置关系,比如点A 在点B 的左边,则AB b a =-.第三招:中点公式若数轴上,A B 两点表示的数分别是,a b ,则线段AB 的中点表示的数是2a b + ❖ 常见题型:一、突破基础关—平移与距离数轴上点的平移和两点间的距离是数轴所有难点问题的突破口.点的平移是今后进一步研究动点问题的基础,两点间的距离则可以让学生感知数轴与线段之间的关系. 例1 请利用数轴回答下列问题:①如果点A 表示数3-,将点A 向右移动7个单位长度,那么终点B 表示的数是 ,A 、B 两点间的距离是 ;②如果点A 表示数3,将A 点先向左移动4个单位长度,那么终点B 表示的数是 ,A 、B 两点间的距离是 ;③如果点A 表示数3,将A 点先向左移动4个单位长度,再向右移动5个单位长度,那么终点B 表示的数是 ,A 、B 两点间的距离是 ;④一般地,如果A 点表示的数为a ,将A 点向右移动m 个单位长度,再向左移动n 个单位长度,请你猜想终点B 表示的数是 ,A 、B 两点间的距离是 .二、突破应用关—平移、距离、对称、旋转(滚动)1.平移平移是所有动点问题的灵魂所在,也是数轴问题研究的基石,所以我们在突破数轴难点时,有必要进行深层次的探究.例2如果将A点先向左移动4个单位长度,再向右移动5个单位长度,那么终点B表示的数是2,则起点A表示的数为 ,A、B两点间的距离是 .-.例3若AB为数轴上一线段,其中点A表示3,点B表示1①将线段沿着数轴左右平移,若平移后点A对应的数为5,则点B所对应的数是 ;-,则点A对应的数是 , AB的中点C对应的数②若平移后点B对应的数是4是 ;-,则A对应的数是 ,B对应的数③若平移后AB的中点C对应的数是1是 .2.距离距离是今后解决坐标系中数形结合问题的关键所在.在坐标系中,大多数问题归根结底是研究线段与线段之间的数量关系,也就是两点之间的距离.因此在初学数轴时,把水平距离问题理解透彻,对今后坐标系里几何问题的学习大有帮助.例4 数轴上有A、B两点,且A、B两点间的距离是3.①若A为原点,则点B表示的数是 ;②若点A表示的数是1,则点B表示的数是 ;③若点A表示的数是a,则点B表示的数是 ;例5数轴上有三点A、B、C,且A、B两点间的距离是3,B、C两点的距离是2,-,则点C表示的数是 .若A点表示的数为1-,C为例6 数轴上有三个点A、B、C,其中A点表示的数为1,B点表示的数为5数轴上的动点,若C到A的距离是C到B的距离的2倍,求此时C所表示的数是 .3.对称数轴上对称问题的关键是线段的中点.最简单的对称是相反数,它们关于原点对称,由此可把此类问题推广至一般,即关于数轴上任意点的对称.例7数轴上A、B两点表示的数为相反数,且AB的距离为5,点A在点B的右边,则A表示的数是 ,B表示的数是 .例8 将数轴沿着某一点A对折,使得1与6重合.①则A表示的数是 ;-重合的数是 ;②与10重合的数是 ;与3③若MN重合,且MN相距2015个单位长度(M在N的右边),则M表示的数是,N表示的数是 ;例9 数轴上有三个点A、B、C,其中A点表示的数为1,B点表示的数为一3,C为数轴上的动点,当A、B、C三个点中有一个点是另两个点的中点时,求此时C所表示的数.4.旋转(滚动)多边形的旋转问题或圆的滚动问题也是中考热点,实际在这类问题中也可以结合数轴来解答.例10 正方形ABCD在数轴上的位置如图5,点A、D对应的数分别为0和1,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B对应的数为1,则连续翻转2015次后,图5①数轴上数2015对应的点是 ;②连续翻转2015次后,数轴上数2014对应的点是 .例11 (1)如图6,数轴上有一半径为1的圆,起始点A与原点重合.若将圆沿着数轴-重合的,顺时针无滑动地滚动一周,点A所对应的数是 ;若起点A开始时是与2则圆在数轴上无滑动地滚动2周后点A表示的数是 .图6A B C D,(2)如图6所示,圆的周长为4个单位长度,在圆的4等分点处标上字母,,,-所对应的点重合,再让圆沿着数轴按逆先让圆周上字母A所对应的点与数轴上的数2-将与圆周上的字母重合.时针方向作无滑动滚动,那么数轴上的数2015三 、突破动点大题—试卷中经常出现的动点应用题解决此类问题的关键是确定动点表示的数,以及动点的运动方向.以下分为三类问题进行解析:1.方向不变例1 如图1,数轴上点B 表示的数是30,,P Q 两点分别从,O B 两点同时出发,分别以3单位/秒和2单位/秒的速度向右运动,运动时间为t 秒, M 为线段BP 上一点,且13PM PB =,N 为QM 的中点. (1)若12PB BQ =,求t 的值; (2)当t 的值变化时, NQ 的值是否发生变化?为什么?练习1:已知数轴上两点,A B 对应的数为-1 ,3,点P 为数轴上一动点,其对应的数为x .(1)数轴上是否存在点P ,使5PA PB +=?若存在,请求出x 的值;若不存在,请说明理由.(2)当点P 以每分钟1个单位长度的速度从O 点向右运动时,点A 以每分钟5个单位长度的速度向左运动,点B 以每分钟20个单位长度的速度向右运动.在运动的过程中,,M N 分别是,AP OB 的中点,AB OP MN-的值是否改变,为什么?,B点对应的数为练习2:如图,已知A、B分别为数轴上两点,A点对应的数为20100.(1)AB中点M对应的数;(2)现有一只电子蚂蚁甲从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁乙恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,求C点对应的数;(3)若当电子蚂蚁甲从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁乙恰好从A点出发,以4个单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D点相遇,求D点对应的数.练习3:已知数轴上两点A、B对应的数分别为—1,3,点P为数轴上一动点,其对应的数为x。
数轴上的动点问题专题(完整资料).doc
【最新整理,下载后即可编辑】数轴上的动点问题专题1.已知数轴上两点A、B对应的数分别为—1,3,点P为数轴上一动点,其对应的数为x。
⑴若点P到点A、点B的距离相等,求点P对应的数;⑵数轴上是否存在点P,使点P到点A、点B的距离之和为5?若存在,请求出x的值。
若不存在,请说明理由?⑶当点P以每分钟一个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度向左运动,点B以每分钟20个单位长度向左运动,问它们同时出发,几分钟后P点到点A、点B 的距离相等?2. 数轴上A点对应的数为-5,B点在A点右边,电子蚂蚁甲、乙在B分别以分别以2个单位/秒、1个单位/秒的速度向左运动,电子蚂蚁丙在A以3个单位/秒的速度向右运动。
(1)若电子蚂蚁丙经过5秒运动到C点,求C点表示的数;(2)若它们同时出发,若丙在遇到甲后1秒遇到乙,求B 点表示的数。
(3)在(2)的条件下,设它们同时出发的时间为t 秒,是否存在t 的值,使丙到乙的距离是丙到甲的距离的2倍?若存在,求出t 值;若不存在,说明理由。
3.已知数轴上有顺次三点A, B, C 。
其中A 的坐标为-20.C 点坐标为40,一电子蚂蚁甲从C 点出发,以每秒2个单位的速度向左移动。
(1)当电子蚂蚁走到BC 的中点D 处时,它离A,B 两处的距离之和是多少?(2)这只电子蚂蚁甲由D 点走到BA 的中点E 处时,需要几秒钟?(3)当电子蚂蚁甲从E 点返回时,另一只电子蚂蚁乙同时从点C 出发,向左移动,速度为秒3个单位长度,如果两只电子蚂蚁相遇时离B 点5个单位长度,求B 点的坐标4. 如图,已知A 、B 分别为数轴上两点,A 点对应的数为—20,B 点对应的数为100。
⑴求AB 中点M 对应的数;⑵现有一只电子蚂蚁P 从B 点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q 恰好从A 点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C 点相遇,求C 点对应的数;⑶若当电子蚂蚁P 从B 点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q 恰好从A 点出发,以4个单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D 点相遇,求D 点对应的数。
专题02 数轴上的四种动点问题
专题02 数轴上的四种动点问题【知识点梳理】1.数轴上两点间的距离数轴上A、B两点表示的数为分别为a、b,则A与B间的距离AB=|a-b|;2.数轴上点移动规律数轴上点向右移动则数变大(增加),向左移动数变小(减小);当数a表示的点向右移动b个单位长度后到达点表示的数为a+b;向左移动b个单位长度后到达点表示的数为a-b.类型一、求动点表示的数例.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移3个单位长度得到点C.若CO BO=,则a的值为()A.5-B.1-C.5-或1-D.3-【答案】C【解析】∵CO=BO,B点表示2,∴点C表示的数为±2,∴a=-2-3=-5或a=2-3=-1,故选:C.【变式训练1】在数轴上,点P从某点A开始移动,先向右移动5个单位长度,再向左移动4个单位长度,-,则点A表示的数是()最后到达1A.3B.1-C.2-D.6-【答案】C【解析】由题意可得:-1+4-5=-2,故选C.【变式训练2】如图,将一个半径为1个单位长度的圆片上的点A放在原点,并把圆片沿数轴滚动1周,点A到达点A¢的位置,则点A¢表示的数是_______;若起点A开始时是与—1重合的,则滚动2周后点A¢表示的数是______.【答案】2p 或2p - 41p -或41p --【解析】因为半径为1的圆的周长为2p ,所以每滚动一周就相当于圆上的A 点平移了2p 个单位,滚动2周就相当于平移了4p 个单位;当圆向左滚动一周时,则A'表示的数为2p -,当圆向右滚动一周时,则A'表示的数为2p ;当A 点开始时与1-重合时,若向右滚动两周,则A'表示的数为41p -,若向左滚动两周,则A'表示的数为41p --;故答案为:2p ①或2p -;41p -②或41p --.【变式训练3】已知数轴上点A 对应的数为6-,点B 在点A 右侧,且,A B 两点间的距离为8.点P 为数轴上一动点,点C 在原点位置.(1)点B 的数为____________;(2)①若点P 到点A 的距离比到点B 的距离大2,点P 对应的数为_________;②数轴上是否存在点P ,使点P 到点A 的距离是点P 到点B 的距离的2倍?若存在,求出点P 对应的数;若不存在,请说明理由;(3)已知在数轴上存在点P ,当点P 到点A 的距离与点P 到点C 的距离之和等于点P 到点B 的距离时,点P 对应的数为___________;【答案】(1)2;(2)①-1;②23-或10;(3)-8和-4【解析】(1)∵点A 对应的数为-6,点B 在点A 右侧,A ,B 两点间的距离为8,∴-6+8=2,即点B 表示的数为2;(2)①设点P 表示的数为x ,当点P 在点A 的左侧,PA <PB ,不符合;当点P 在A 、B 之间,x -(-6)=2-x +2,解得:x =-1;当点P 在点B 右侧,PA -PB =AB =8,不符合;故答案为:-1;②当点P 在点A 的左侧,PA <PB ,不符合;当点P 在A 、B 之间,x -(-6)=2(2-x ),解得:x =23-;当点P 在点B 右侧,x -(-6)=2(x -2),解得:x =10;∴P 对应的数为23-或10;(3)当点P 在点A 左侧时,-6-x +0-x =2-x ,解得:x =-8;当点P 在A 、O 之间时,x -(-6)+0-x =2-x ,解得:x =-4;当点P 在O 、B 之间时,x -(-6)+x -0=2-x ,解得:x =43-,不符合;当点P 在点B 右侧时,x -(-6)+x -0=x -2,解得:x =-8,不符合;综上:点P 表示的数为-8和-4.类型二、求动点的速度例.已知多项式2234x xy --的常数项是a ,次数是b ,且a ,b 两个数轴上所对应的点分别为A 、B ,若点A 、点B 同时沿数轴向正方向运动,点A 的速度是点B 的2倍,且3秒后,32OA OB =,求点B 的速度为( )A .34B .14 或 34C .14或32D .32【答案】C【解析】∵多项式x 3-3xy 2-4的常数项是a ,次数是b ,∴a=-4,b=3,设B 速度为v ,则A 的速度为2v ,3秒后点A 在数轴上表示的数为(-4+6v ),B 点在数轴上表示的数为3+3v ,且OB=3+3v当A 还在原点O 的左边时,OA=0-(-4+6v )=4-6v ,由32OA OB =可得3(46)332v v -=+,解得14v =;当A 还在原点O 的右边时,OA=(-4+6v )-0=6v-4,由32OA OB =可得3(64)332v v -=+,解得32v =.故B 的速度为14或32,选C.故答案为:C类型三、求动点运动的时间例.如图所示,A 、B 是数轴上的两点,O 是原点,AO=10,OB=15,点P 、Q 分别从A 、B 同时出发,点P 以每秒2个单位长度的速度沿数轴向左匀速运动,点Q 以每秒4个单位长度的速度沿数轴向左匀速运动,M 为线段AP 的中点,设运动的时间为t (t≥0) 秒,M 、Q 两点到原点O 的距离相等时,t 的值是()A .1t s =或252t s =B .2t s =或253t s =C .1t s =或253t s =D .2t s =或252t s =【答案】C【解析】∵O是原点,AO=10,OB=15,∴点A表示的数是-10,点B表示的数是15,∵点P以每秒2个单位长度的速度沿数轴向左匀速运动,M为线段AP的中点,∴OM=|-10-t|,∵点Q以每秒4个单位长度的速度沿数轴向左匀速运动,∴OQ=|15-4t|,∵M、Q两点到原点O的距离相等,∴|-10-t|=|15-4t|,∴-10-t=15-4t或-10-t=-(15-4t),解得:t=253或t=1,故选:C.【变式训练1】如图,点A在数轴上表示的数是16-,B在数轴上表示的数是8.若点A以6个单位长度/秒的速度向右匀速运动,同时点B以2个单位长度/秒的速度向左匀速运动,问:当8AB=时,运动时间为多少秒?()A.2秒B.13.4秒C.2秒或4秒D.2秒或6秒【答案】C【解析】设当AB=8时,运动时间为t秒,①当点A在点B的左边时,由题意得6t+2t+8=8-(-16),解得:t=2②当点A在点B的右边时,6t+2t=8-(-16)+8,解得:t=4.故选:C.【变式训练2】如图,数轴上的点O和点A分别表示0和10,点P是线段OA上一动点.点P沿O A O®®以每秒2个单位的速度往返运动1次,B是线段OA的中点,设点P运动时间为t秒(t不超过10秒).若点P在运动过程中,当2PB=时,则运动时间t的值为()A.32秒或72秒B.32秒或72秒或132或172秒C.3秒或7秒D.3秒或132或7秒或172秒【答案】B【解析】∵数轴上的点O和点A分别表示0和10,∴OA=10∵B是线段OA的中点,∴OB=AB=15 2OA=①当点P 由点O 向点A 运动,且未到点B 时,如下图所示,2PB =此时点P 运动的路程OP=OB -PB=3,∴点P 运动的时间为3÷2=32s ;②当点P 由点O 向点A 运动,且已过点B 时,如下图所示,2PB =此时点P 运动的路程OP=OB+PB=7,∴点P 运动的时间为7÷2=72s ;③当点P 由点A 向点O 运动,且未到点B 时,如下图所示,2PB =此时点P 运动的路程为OA +AP=OA +AB -PB=13,∴点P 运动的时间为13÷2=132s ;④当点P 由点A 向点O 运动,且已过点B 时,如下图所示,2PB =此时点P 运动的路程为OA +AP=OA +AB +PB=17,∴点P 运动的时间为17÷2=172s ;综上所述:当2PB =时,则运动时间t 的值为32秒或72秒或132或172秒故选B .【变式训练3】已知数轴上有,,A B C 三点,分别表示数24,10--,10,若两只电子蚂蚁甲、乙分别从,A C 两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒,(1)甲、乙两点在数轴上哪个点相遇?(2)多少秒后甲到,,A B C 三点的距离之和是40个单位长度?【答案】(1)-10.4;(2)2秒或5秒【解析】(1)设x 秒后甲与乙相遇,则4x +6x =34,解得x =3.4,4×3.4=13.6,-24+13.6=-10.4.故甲、乙在数轴上的-10.4相遇;(2)设y秒后甲到A,B,C三点的距离之和为40个单位,B点距A,C两点的距离为14+20=34<40,A点距B、C两点的距离为14+34=48>40,C点距A、B的距离为34+20=54>40,故甲应位于AB或BC之间.①AB之间时:4y+(14-4y)+(14-4y+20)=40解得y=2;②BC之间时:4y+(4y-14)+(34-4y)=40,解得y=5,综上:2秒或5秒后甲到,,A B C三点的距离之和是40个单位长度.类型四、综合问题例.如图,在数轴上点A、B表示的数分别为﹣2、4.(1)若点M到点A、点B的距离相等,那么点M所对应的数是 .(2)若点M从点B出发,以1个单位/秒的速度向左运动,同时点N恰好从点A出发,以2个单位/秒的速度向右运动,设M、N两点在数轴上的点E相遇,则点E对应的数是 .(3)若点D是数轴上一动点,当动点D到点A的距离与到点B的距离之和等于10时,则点D对应的数是 .(4)若点M从A点出发以每秒5个单位长度的速度沿数轴向右匀速运动,点N从B点出发以每秒4个单位长度的速度沿数轴匀速运动,设点M、N同时出发,运动时间为t秒,经过多少秒后,M、N两点间的距离为24个单位长度.【答案】(1)1;(2)2;(3)﹣4或6;(4)经过30秒或103秒后,M、N两点间的距离为24个单位长度【解析】(1)∵点A、B对应的数分别为﹣2、4,∴AB=4-(-2)=6,∵点M到点A、点B的距离相等,∴MA=3,∴点M对应的数是-2+3=1;故答案为:1;(2)t秒后,点M表示4﹣t,点N表示﹣2+2t,若两点相遇则4﹣t=﹣2+2t,解得t=2,4﹣2=2,所以点E对应的数是2.故答案为:2;(3)设点D对应的数是x,∵AB=6,∴点D不可能在线段AB上.①点D在A的左边时,DA=﹣2﹣x,DB=4﹣x,(﹣2﹣x)+(4﹣x)=10,解得x=﹣4;②点D在B的右边时,DA=2+x,DB=x﹣4,(2+x )+(x ﹣4)=10,解得x =6;故答案为:﹣4或6;(4)①若点N 向右运动,t 秒后,点M 对应的数是5t ﹣2,点N 对应的数是4+4t ,MN =|(5t ﹣2)﹣(4+4t )|=|t ﹣6|=24,解得t =30或﹣18(舍去);②若点N 向左运动,t 秒后,点M 对应的数是5t ﹣2,点N 对应的数是4﹣4t ,MN =|(5t ﹣2)﹣(4﹣4t )|=|9t ﹣6|=24,解得t =103或﹣2(舍去);答:经过30秒或103秒后,M 、N 两点间的距离为24个单位长度.故答案为:(1)1;(2)2;(3)﹣4或6;(4)经过30秒或103秒后,M 、N 两点间的距离为24个单位长度【变式训练1】已知若数轴上点A 、点B 表示的数分别为,a b ,则AB a b =-∣∣,线段AB 的中点表示的数为2a b+.如图,数轴上点A 表示的数为2-,点B 表示的数为8,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(0)t >.(1)填空:①,A B 两点间的距离AB =______,线段AB 的中点表示的数为_____;②用含t 的代数式表示:t 秒后,点P 表示的数为_______;点Q 表示的数为______.(2)求当t 为何值时,,P Q 两点相遇,并写出相遇点所表示的数.(3)若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN 的长.【答案】(1)①10,3;②-2+3t ,8-2t ;(2)t =2,4;(3)5【解析】(1)①AB =8-(-2)=10,AB 中点为282-+=3,故答案为:10,3;②t 秒后,点P 表示的数为-2+3t ,点Q 表示的数为8-2t ,故答案为:-2+3t ,8-2t ;(2)∵当P 、Q 两点相遇时,P 、Q 表示的数相等∴-2+3t =8-2t ,解得:t =2,∴当t =2时,P 、Q 相遇,此时,-2+3t =-2+3×2=4,∴相遇点表示的数为4;(3)∵点M 表示的数为()2233222t t-+-+=-,点N 表示的数为()8233322t t +-+=+,∴MN =333222t t æö+--ç÷èø=5.故答案为:(1)①10,3;②-2+3t ,8-2t ;(2)t =2,4;(3)5【变式训练2】如图,数轴上原点为O ,A ,B 是数轴上的两点,点A 对应的数是a ,点B 对应的数是b ,且a ,b 满足2(2)40a b -++=,动点M ,N 同时从A ,B 出发,分别以1个单位/秒和3个单位/秒的速度沿着数轴正方向运动,设运动时间为x 秒(x >0).(1)A 、B 两点间的距离是 ;动点M 对应的数是 (用含x 的代数式表示);动点N 对应的数是 ;(用含x 的代数式表示)(2)几秒后,线段OM 与线段ON 恰好满足3OM =2ON ?(3)若M ,N 开始运动的同时,R 从﹣1出发以2个单位/秒的速度沿着数轴正方向运动,当R 与M 不重合时,求MB NBRM-的值.【答案】(1)6,2x +,34x -;(2)143秒或29秒;(3)2或 2.-【解析】(1)∵a ,b 满足2(2)40a b -++=,∴a ﹣2=0,b +4=0,∴a =2,b =﹣4,∵点A 对应的数是a ,点B 对应的数是b ,AB =2﹣(﹣4)=6.当运动时间为x 秒时,动点M 对应的数是x +2,动点N 对应的数是3x ﹣4.故答案为:6;x +2;3x ﹣4.(2)由(1)中M ,N 所对的数得OM =x +2,ON =3x ﹣4,∵3OM =2ON , ∴|32|(2)34x x+=﹣,①3(2+x )=2(3x ﹣4),解得x =143;②3(2+x )=﹣2(3x ﹣4),解得x =29;综上,143或29秒后,线段OM 与线段ON 恰好满足3OM =2ON ;(3)由题意得动点R 所对的数为﹣1+2x ,|12)((|3||2)RM x x x +-+--==,(2)(4)6MB x x =+--=+,(43)(4)3NB x x =-+--=, ∴MB ﹣NB =6+x ﹣3x =6﹣2x ,∵2+x =﹣4+3x ,解得x =3,∴M 与N 相遇时时间为3s ,。
数轴动点问题公式
数轴动点问题公式
所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想数形结合思想转化思想
动点问题公式为:已知a点在数轴x1,b点在数轴的x2,a从a点出发,速度为v1,b从b点出发,速度为v2,则相遇时间t=|x1-x2|/(v1-v2)(v1与v2速度方向同向)。
比如:a点在数轴1的边线向右以1个单位每秒的速度向右运动,b点数轴10的边线以每秒2个单位每秒的速度向左运动,碰面时间t=|1-10|/(1-(-2))=3s。
解决动点问题的根本在于受力分析清楚。
力就是发生改变物体运动的原因,因此,必须化解各种运动参量。
只需要知道物体的受力,和动点的初始条件。
就可以列出牛顿运动方程来解决。
其中力对时间的分数(累积)就是动量的变化。
对加速度的分数(累积)就是动点能量的变化。
(完整版)数轴上的动点问题
数轴上的线段与动点问题一、与数轴上的动点问题相关的基本概念主要涉及以下几个概数轴上的动点问题离不开数轴上两点之间的距离.念:,=|a-b|1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值d右边点表示的数=也即用右边的数减去左边的数的差.即数轴上两点间的距离.—左边点表示的数÷2.中点坐标=(a+b)2.两点中点公式:线段AB因此向右运动的速点在数轴上运动时,由于数轴向右的方向为正方向,3.这样在起点的基础上加上点的度看作正速度,而向左运动的速度看作负速度.b,向左运动运动路程就可以直接得到运动后点的坐标.即一个点表示的数为a.a+bb;向右运动b个单位后所表示的数为个单位后表示的数为a—点分析数轴上点的运动要结合图形进行分析,4.数轴是数形结合的产物,. 在数轴上运动形成的路径可看作数轴上线段的和差关系数轴上的动点问题基本解题思路和方法:二、t.、表示出题目中动点运动后的坐标(一般用含有时间的式子表示)1t的式子表示). 根据两点间的距离公式表示出题目中相关线段长度 2、(一般用含有时间 3、根据题目问题中线段的等量关系(一般是和、差关系)列绝对值方程.4、解绝对值方程并根据实际问题验算结果.注:数轴上线段的动点问题方法类似AB两点对应数为-2、4,P为数轴上一动点,对应的数为x、已知数轴上1. 、 A B-2 -1 0 1 2 3 4(1) 若P为AB线段的三等分点,求P对应的数;(2)数轴上是否存在P,使P到A点、B点距离和为10,若存在,求出x;若不存在,说明理由.(3)若点A,点B和点P(点P在原点)同时向左运动,它们的速度分别为1,2,1个长度单位/分,则第几分钟时,P为AB的中点?2 ++|abb、|=0c满足(c2、已知:-5b)是最小的正整数,且,请回答问题a、=________ b=________,c,1)请直接写出a、b、c的值.a=________(、、、、,xPc所对应的点分别为AB为一动点,其对应的数为C)(2a,点b+5|. -1|+2|xx ≤2时),请化简式子:|x+1|-|x0≤点P在0到2之间运动时(即请问个单位长度的速度向左运动,点C分别以每秒1个单位和2(3)若点A、CA,之间的距离为1个单位长度?几秒时,、、个单位长度的速度向左1A(4)点A以每秒BC开始在数轴上运动,若点个单位长度的速度向右个单位长度和5和点运动,同时,点BC分别以每秒2之A 之间的距离表示为BC,点与点BCt运动,假设秒钟过后,若点B与点的变化而改变?若变化,tAB的值是否随着时间BC间的距离表示为AB.请问:-请说明理由;若不变,请求其值.2b满足,且a,A在数轴上对应的数为a,点B在数轴上对应的数为b2.如图,若点2 B0. 1)= A -+|a2|+(b的长;(1)求线段AB1的根,在数轴上是否存在2x+-x1=C(2)点在数轴上对应的数为x,且x是方程2 2. P 对应的数;若不存在,说明理由PB+=PC,若存在,求出点点P,使PA点左侧运动时,点在ANPB的中点为,当PM左侧的一点,)若(3P是APA的中点为,的值不变,其中只有一个结论正确,PM的值不变;②PN-+有两个结论:①PMPN.请判断正确结论,并求出其值3,=10cm(如图所示)=60cm,BCCB、,满足OA=20cm,AB如图,3、在射线OM上有三点A、CO 从点C出发在线段出发,沿OOM方向以1cm/s的速度匀速运动,点Q点P从点. 匀速运动,两点同时出发上向点OQ运动的速度;Q运动到的位置恰好是线段AB的三等分点,求点=2(1)当PAPB时,点、两点相距70cm3cm/s,Q运动的速度为经过多长时间P;Q2()若点AP?OB、.的值,求EABOPABP3()当点运动到线段上时,取和的中点F EF4。
七年级上册数轴动点问题
七年级上册数轴动点问题一、数轴动点问题基础知识1. 数轴的三要素原点、正方向和单位长度。
在数轴上,右边的数总比左边的数大。
2. 动点在数轴上的表示设动点表示的数为公式,如果动点从某一固定点公式出发,以速度公式向右运动,经过公式秒后,动点表示的数为公式;如果向左运动,则为公式。
二、典型例题及解析例1:已知数轴上点公式表示的数为公式,点公式表示的数为公式,点公式在数轴上,且公式,求点公式表示的数。
解析:设点公式表示的数为公式。
根据两点间距离公式,公式,公式。
因为公式,所以公式。
当公式时,方程无解。
当公式时,即公式。
移项可得公式。
公式,解得公式。
所以点公式表示的数为公式。
例2:数轴上点公式对应的数为公式,点公式对应的数为公式,点公式以公式个单位/秒的速度从点公式向右运动,同时点公式以公式个单位/秒的速度从点公式向左运动,设运动时间为公式秒。
(1)当公式时,求公式的长度。
(2)求当公式为何值时,公式。
解析:(1)当公式时:点公式从公式出发,速度为公式个单位/秒,向右运动公式秒后,点公式表示的数为公式。
点公式从公式出发,速度为公式个单位/秒,向左运动公式秒后,点公式表示的数为公式。
根据两点间距离公式,公式。
(2)公式,则公式。
经过公式秒后,点公式表示的数为公式,点公式表示的数为公式。
公式。
当公式时,即公式。
当公式时,公式,解得公式。
当公式时,公式,解得公式。
例3:数轴上有公式、公式两点,公式点对应的数为公式,公式点对应的数为公式,点公式从公式点出发,以每秒公式个单位长度的速度沿数轴向右运动,点公式从公式点出发,以每秒公式个单位长度的速度沿数轴向左运动,设点公式、公式同时出发,运动时间为公式秒。
(1)求当公式时,点公式、公式在数轴上对应的数分别是多少?(2)经过多少秒后,点公式、公式之间的距离为公式个单位长度?解析:(1)当公式时:点公式从公式出发,速度为公式个单位/秒,向右运动公式秒后,点公式对应的数为公式。
(完整版)初一数轴上的动点问题汇编
数轴上的动点问题最新版1.如图,已知数轴上两点A 、B 对应的数分别为-1,3,点P 为数轴上一动点,其对应的数为x 。
(1)数轴上是否存在点P ,使点P 在点A 、点B 的距离之和为5?若存在,请求出x 的值,若不存在,请说明理由;(2)当点P 以每分钟1个单位长度的速度从O 点向左运动时,点A 以每分钟5个单位长度的速度向左运动,点B 以每分钟20个单位长度的速度向左运动,问它们同时出发,几分钟时点P 到点A 、点B 的距离相等?(3)如图,若点P 从B 点出发向左运动(只在线段AB 上运动),M 为AP 的中点,N 为PB 的中点,点P在运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出MN 的长。
2.如图,A 、B 、C 是数轴上的三点,O 是原点, BO=3,AB=2BO ,5AO=3CO . (1)写出数轴上点A 、C 表示的数;图图图(2)点P 、Q 分别从A 、C 同时出发,点P 以每秒 2个单位长度的速度沿数轴向右匀速运动,点Q 以每秒6个单位长度的速度沿数轴向左匀速运 动,M 为线段AP 的中点,点N 在线段CQ 上,且 CN=CQ .设运动的时间为t (t >0)秒. ①数轴上点M 、N 表示的数分别是 (用含t 的 式子表示);②t 32为何值时,M 、N 两点到原点O 的距离相等?3.如图,数轴上有A 、B 、C 、D 四个点,分别对应数a 、b 、c 、d ,且满足a 、b 是方程的两根(),91x +=a b <与互为相反数。
2(16)c -20d -(1)求a 、b 、c 、d 的值;(2)若A 、B 两点以6个单位长度/秒的速度向右匀速运动,同时C 、D 两点以2个单位长度/秒的速度向左匀速运动,并设运动时间为t 秒。
问t 为多少时,A 、B 两点都运动在线段CD 上(不与C 、D 两个端点重合)?(3)在(2)的条件下,A 、B 、C 、D 四个点继续运动,当点B 运动到点D 的右侧时,问是否存在时间t ,使B 与C 的距离是A 与D 的距离的4倍,若存在,求时间t ,若不存在,请说明理由。
数轴动点问题公式
数轴动点问题公式数轴上的动点问题是数学中常见的一个问题类型。
在这类问题中,通常给出一个点在数轴上随时间变化的位置,然后要求求解该点的位置函数或速度函数等相关函数。
下面将分别介绍数轴动点问题的一般公式及求解方法。
一、数轴动点问题的一般公式假设点P在数轴上以时间t为自变量随时间变化,点P在数轴上的位置用变量x表示,即x=x(t)。
点P在时间t0时刻的位置为x0,则在t时刻的位置可以表示为x=x(t)=f(t)+x0,其中f(t)是关于t的函数,表示点P的位移。
二、数轴动点问题的求解方法1.求解位置函数:当给出点P在不同时刻的位置时,可以通过对位置函数的求解来求得该点在任意时刻的位置。
(1)如果已知点P在时间t1时刻的位置为x1,时间t2时刻的位置为x2,可以通过构建方程的方法求解位置函数。
设点P在时间t时刻的位置为x,则有x=f(t)+x1,x=f(t2)+x2、将这两个方程联立,消去f(t),得到x=(x2-x1)/(t2-t1)*(t-t1)+x1、这样就得到了点P在时间t时刻的位置函数x=f(t)。
(2)如果已知点P在时间t1时刻的位置为x1,速度为v1,点P在时间t2时刻的位置为x2,速度为v2,还可以通过使用速度函数的方法求解位置函数。
设点P在时间t时刻的速度为v,则有v = g(t),其中g(t)是点P的速度函数。
由于速度可以理解为位移对时间的导数,即v = dx / dt。
由此,可以得到dx = g(t) * dt,对上式两边同时积分,即得到x = ∫g(t) * dt + C,其中C是常数。
由于点P在时间t1时刻的位置为x1,可以得到∫ g(t) * dt + C = x1,再由点P在时间t2时刻的位置为x2,得到∫ g(t) * dt + C = x2、通过这两个方程可以解出C,从而得到函数x = f(t)。
2.求解速度函数:当给出点P在不同时刻的位置时,可以通过求解速度函数来确定点P在任意时刻的速度。
完整版)初一上数学线段动点问题
完整版)初一上数学线段动点问题数学的动点问题1.已知数轴上两点A、B对应的数分别为-1和3,点P为数轴上一动点,其对应的数为x。
1) 若点P到点A、点B的距离相等,求点P对应的数。
解:由于P到A和P到B的距离相等,因此P点在A和B的中垂线上,所以P对应的数为1.2) 数轴上是否存在点P,使点P到点A、点B的距离之和为5?若存在,求出x的值。
若不存在,请说明理由。
解:存在。
点P到点A、点B的距离之和为5的点P在A和B的连线上,且距离A点1.5个单位长度,距离B点3.5个单位长度,所以x的值为-1.5或3.5.3) 当点P以每分钟一个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度向左运动,点B以每分钟20个单位长度向左运动,问它们同时出发,几分钟后P点到点A、点B的距离相等?解:设P点向左运动t分钟,此时P点的坐标为-x,由于P点到A、B的距离相等,因此有方程|x+1|=|x-3|,解得x=-1.所以P点在数轴上的坐标为-1,此时P点到A、B的距离分别为2和4,距离B点的距离是距离A点的距离的两倍,因此P 点在B点的左侧,P点到B点的距离在不断减小,P点到A点的距离在不断增大。
设t分钟后P点到A、B的距离相等,此时P点的坐标为-x-t,解得t=2/23.2.数轴上点A对应的数是-1,B对应的数是1,一只小虫甲从点B出发沿着数轴的正方向以每秒4个单位长度的速度爬行至C点,再立即返回到A点,共用了4秒。
1) 求点C对应的数。
解:小虫甲从B到C再返回A的过程中,共经过的距离为4秒×4个单位长度=16个单位长度,因此C点对应的数为3.2) 若小虫甲返回到A点后作如下运动:第1次向右爬行2个单位长度,第2次向左爬行4个单位长度,第3次向右爬行6个单位长度,第4次向左爬行8个单位长度,…依次规律爬下去,求它第10次所停在点所对应的数。
解:小虫甲第1次向右爬行2个单位长度,到达点D,D点对应的数为3,第2次向左爬行4个单位长度回到点B,第3次向右爬行6个单位长度到达点E,E点对应的数为9,第4次向左爬行8个单位长度回到点A,第5次向右爬行10个单位长度到达点F,F点对应的数为21,以此类推,第10次停在点G,G点对应的数为-11.3) 若小虫甲返回到A后继续沿着数轴的负方向以每秒4个单位长度的速度爬行,这时另一只小虫乙从点C出发沿着数轴的负方向以每秒7个单位长度的速度爬行,设小虫甲爬行后对应的点为E,小虫乙爬行后对应的点为F。
数轴动点问题知识点及四大考法完整版 (2)
1、 动点三要素:① 起点:最初的位置② 方向:向右就加,向左就减③ 速度:=×速度时间运动距离位置公式:=±×位起点速度置时间例如:点A 在数轴上对应的数为1,沿数轴向右开始运动,速度为每秒2个单位,则t 秒后A 点对应的数为?解答:12t +练1点A 在数轴上对应的数为3,沿数轴向左开始运动,速度为每秒1个单位,则t 秒后A 点对应的数为______练2点A 在数轴上对应的数为2−,沿数轴运动,速度为每秒3个单位,则t 秒后A 点对应的数为______2、距离表示:距离右左①相对位置确定:=−②相对位置不确定:=距离右左左右=−−例1:点A在数轴上对应的数为1,点B在数轴上对应的点为3,则A、B之间的距离为多少?−=解答:312例2:点A在数轴上对应的点为1,点B在数轴上对应的点为x,则A、B之间的距离为多少?x−解答:1练1点A在数轴上对应的数为2−,点B在数轴上对应的点为4,则A、B之间的距离为_____练2点A在数轴上对应的数为a,点B在数轴上对应的点为b,则A、B之间的距离为_____3、 中点公式:已知A 在数轴上对应的数为a ,B 在数轴上对应的数为b ,则A 、B 的中点M 对应的数为2m a b +=中点公式进阶:已知A 在数轴上对应的数为a ,A 、B 的中点M 对应的数为m ,则B 在数轴上对应的数为2b a m =−例1:点A 为3,点B 为7−,则A 、B 的中点是多少?解答:()3227+−=−3、 中点公式:已知A 在数轴上对应的数为a ,B 在数轴上对应的数为b ,则A 、B 的中点M 对应的数为2m a b += 中点公式进阶:已知A 在数轴上对应的数为a ,A 、B 的中点M 对应的数为m ,则B 在数轴上对应的数为2b a m =− 练1点A 为10−,点B 为6,则A 、B 中点对应数为____ 练2点A 为10−,A 、B 中点为2,则点B 对应数为____考法1:相遇问题、相遇时,t是多少?相遇时P对应的数为多少?P Q考法2:距离问题当t为何值时,PQ之间的距离为6?考法3:定值问题若Q点运动方向改为向右,那么在运动过程中,PQ PA−是否为定值?考法4:中点问题若P Q、出发的同时,点M从原点出发,向右运动,速度为3个单位每秒,则t为何值时,P Q M、、中,任意一点是其余两点所连线段的中点?考法1:相遇问题P Q、相遇,t是多少?相遇时P对应的数为多少?分析:相遇表示同一时间到达同一位置,分别表示P、Q 位置,利用位置相等建方程即可解析:t秒后,点P位置为2t+,点Q位置为102t−P、Q相遇,则1202t t=+−解之得:83 t=248313+=,故相遇时,P点对应的数为143练习若P点运动方向改为向左,那么P Q、相遇时,t是多少?相遇时P对应的数为多少?考法2:距离问题当t为何值时,PQ之间的距离为6?分析:分别表示P、Q位置,再表示距离建方程,需注意的是P、Q相对位置不确定,故需加绝对值解析:t秒后,点P位置为2t+,点Q位置为102t−则()810223P ttQ t+=−−=−令386t−=,解之得:21433 t=或故21433t=或时,PQ之间的距离为6练习当t为何值时,PQ之间的距离为2?考法3:定值问题若Q点运动方向改为向右,那么在运动过程中,PQ PA−是否为定值?分析:分别表示PQ、P A的距离,再代入PQ PA−计算,看结果是否为定值即可,本题相对位置确定,故表示位置时,无需加绝对值解析:t秒后,点P为2t+,点Q为102t+,点A为2则()()++t t=−=+,22t10PQ t228=−=tPA+则88PQ PA t t−=+−=故PQ PA−为定值练习Q点运动方向仍为向右,BQ的中点记为M,则PM的长是否为定值?考法4:中点问题P Q 、出发同时,M 从原点出发,向右运动,速度为3个单位每秒,t 为何值时,P Q M 、、中任意一点是其余两点中点?分析:分别表示P 、Q 、M 的位置,再分三类讨论,每一类根据中点公式列方程即可解析:t 秒后,点P 为2t +,点Q 为102t −,点M 为3t①若P 为QM 中点,则310222t t t +=+−,6t = ②若Q 为PM 中点,则221230t t t +−+=,94t = ③若M 为PQ 中点,则232102t t t +=+−,127t = 练习考法4中,点P 方向改为向左,其余条件和问题均不变,则t 为何值?。
(完整)七年级数轴上的动点问题
数轴上的动点问题姓名:____________ 1.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合. 研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A,B两点之间的距离AB=|a-b|,线段AB的中点表示的数为【问题情境】如图,数轴上点A表示的数为-2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t > 0).【综合运用】(1)填空:①A、B两点间的距离AB= ________ ,线段AB的中点表示的数为 ___________ ;②用含t的代数式表示:t秒后,点P表示的数为 ________ ;点Q表示的数为_________(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;1(3)求当t为何值时,PQ= — AB ;2(4)若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.2•如图所示,在一条不完整的数轴上从左到右有点A、B、C,其中点A与点B的距离是2,记作AB=2,以下类同,BC=3,设点A , B , C所对应数的和是p.(1) ________________________________________ 若以B为原点,则点A所对应的数为,点C所对应的数为 _______________________________ , p的值为_______ ;若以C为原点,则p的值为___________ ;(2) ______________________________________ 若原点0在图中数轴上点C的右边,且CO=28,求p的值;在此基础上,将原点0 向右移动a (a> 0)个单位,则p的值为;(用含a的式子表示)(3)若原点O在点B与C之间,且CO=2,贝U p= _______ ;若原点O从点C出发沿着数轴向左运动,当p=5.5时,求CO的值.3Z ” —“「a J b °厂r _____________________ F 鼻~ B C七年级数学提优训练(二)3. 操作探究:已知在纸面上有一数轴(如图所示),操作一:(1)折叠纸面,使表示1的点与表示-1的点重合,则表示-3的点与表示 _________ 的点重合;操作二:(2)折叠纸面,使表示-1的点与表示3的点重合,回答以下问题:①表示5的点与表示数________ 的点重合;②若数轴上A、B两点之间距离为11,(A在B的左侧),且A、B两点经折叠后重合,求A、B 两点表示的数是多少.4•已知数轴上有A、B、C三点,分别表示有理数-26, -10, 10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)__________________________________________ 用含t的代数式表示P点对应的数: ;用含t的代数式表示点P和点C的距离:PC= ___________(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C 点后,再立即以同样的速度返回点 A ,①点P、Q冋时运动的过程中有处相遇,相遇时t=秒.P、Q两点间的距离. (友情提醒:注意考虑P、②在点Q开始运动后,请用t的代数式表示Q的位置)A P E工1c. J-26 ” .100105. 如图:在数轴上A点表示数a, B点示数b, C点表示数c, b是最小的正整数,且a、2b 满足|a+2|+ (c—7) =0.(1)a= _____ , b= _____ , c= _____ ;(2) ___________________________________________________ 若将数轴折叠,使得A点与C点重合,则点B与数_______________________________________ 表示的点重合;(3) ____________________________ 点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时, 点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC ,点B与点C 之间的距离表示为BC .则AB= _________ , AC= ____ , BC= .(用含t的代数式表示)(4)请问:3BC —2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变, 请求其值.6. 阅读:已知点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为|AB|=|a-b| .理解:(1)数轴上表示2和-3的两点之间的距离是__________ ;(2)数轴上表示x和-5的两点A和B之间的距离是 ___________ ;(3) _________________________________________________________ 当代数式|x —1|+| x+3|取最小值时,相应的x的取值范围是_______________________________ ;最小值是 _______ 应用:某环形道路上顺次排列有四家快递公司:A、B、C、D,它们顺次有快递车16辆,8辆,4辆,12辆,为使各快递公司的车辆数相同,允许一些快递公司向相邻公司调出,问共有多少种调配方案,使调动的车辆数最少?并求出调出的最少车辆数.七年级数学提优训练(二)1•如图1,点0为直线AB 上一点,过点 0作射线0C ,将一直角三角形的直角顶点放在 点0处,一边 0M在射线 0B 上,另一边 ON 在直线 AB 的下方.平分/ B0C ,问:直线 0N 是否平分/ A0C ?请说明理由;(2)若/ B0C=120 ° .将图1中的三角板绕点周,在旋转的过程中,第t 秒时,直线0N 恰好平分锐角/ A0C ,则t 的值为 ________________ .(直 接写出结果);(3) 在(2)的条件下,将图1中的三角板绕点 0顺时针旋转至图3,使0N 在/ A0C 的 内部,请探究:/ A0M 与/ N0C 之间的数量关系,并说明理由.3•如图1,已知线段AB=16cm ,点C 为线段AB 上的一个动点,点 D 、E 分别是AC 和BC 的中点. (1) 若点C 恰为AB 的中点,求DE 的长; (2) 若 AC=6cm ,求 DE 的长;(3) 试说明不论 AC 取何值(不超过 16cm ) , DE 的长不变;(4) 知识迁移:如图 2,已知/ A0B=130 °,过角的内部任一点 C 画射线0C ,若0D 、 0E 分别平分/ A0C 和/ B0C ,试说明/ D0E=65 °与射线 0C 的位置无关.(1)将图1中2,使一边 0M 在/ B0C 的内部,且恰好 0按每秒6°的速度沿逆时针方向旋转0逆时针旋转至图2•如图,/ AOB=120 °,射线0C从OA开始,绕点0逆时针旋转,旋转的速度为每分钟20° ;射线0D从0B开始,绕点0逆时针旋转,旋转的速度为每分钟5°, 0C和0D同时旋转,设旋转的时间为t (0<t w 15).(1)当t为何值时,射线0C与0D重合;(2)当t为何值时,射线0C丄0D;(3)试探索:在射线0C与0D旋转的过程中,是否存在某个时刻,使得射线0C, 0B 与0D中的某一条射线是另两条射线所夹角的角平分线?若存在,请求出所有满足题意的t的取值,若不存在,请说明理由.4. 已知0为直线AB上的一点,/ C0E是直角,0F平分/ A0E .(1)如图1,若/ C0F=28 °,则/ B0E= __________ ° ;(2)当射线0E绕点0逆时针旋转到如图2的位置时,(1)中/ B0E与/ C0F的关系是否仍然成立?如成立,请说明理由.(3)在图3中,若/ C0F=65 °,在/ B0E的内部是否存在一条射线0D ,使得2 / B0D+1/ A0F= - (/B0E- / B0D) ?若存在,请求出/ B0D的度数;若不存在,请说明理由.。
数轴上的动点问题
-2
4
AO
B
2、已知在数轴上有A,B两点,点A表示的数为-8,点B表示的数为4.动点P从数轴上点 A出发,以每秒2个单位长度的速度运动,同时动点Q从点B出发,以每秒1个单位长度的 速度,设运动时间为t秒。 (1)若点P向右运动,点Q向左运动,问多少秒后点P与Q相距2个单位长度? (2)若动点P、Q都向右运动,当点P与点Q重合时,P、Q两点停止运动. 当t为何值时,2OP-OQ=4?
数轴上的动点问题
学情交流
类型一、数轴上两点距离的应用
1、数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,也即用右边的数减去左 边的数的差。即数轴上两点间的距离=右边点表示的数-左边点表示的数。
类型一、数轴上两点距离的应用
2、
类型二、绝对值的处理策略
3、绝对值策略:对于两个动点P,Q,若点P,Q的左右位置关系不明确或有多种情况,可用 p,q两数差的绝对值表示P,Q两点距离,从而避免分复杂分类讨论
类型二、绝对值的处理策略
4、
类型三、小狗来回跑的问题
5、如何表示运动过程中的数:点在数轴上运动时,由于数轴向右的方向为正方向,因此 向右运动的速度看作正速度,而向左运动的速度看作负速度。这样在起点的基础上加上点 的运动路程就可以直接得到运动后点的坐标。即一个点表示的数为a,向左运动b个单位后 表示的数为a-b;向右运动b个单位后所表示的数为a+b。(简单说成左减右加)
作业:
3、已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为 x.点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个 单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不 停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?
初一数轴动点问题(有答案)
-1,点沿数轴匀速平移经过点K到达点C,所用时间是所对应的数.(1)若点P到点A,点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由;(3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?(1)若点P到点A、点B的距离相等,求点P对应数。
(3-(-1))/2=2 3-2=1 所以P=1.(2)|x-(-1)|+|x-3|=|x+1|+|x-3|=5 所以,存在,X=3.5或X=-1.5.(3)当点P以每分钟1个单位长的速度从O点向左运动时,点A以每分钟5个单位长的速度向左运动,点B以每分钟20个单位长的速度向左运动,问它们同时出发,几分钟后P点到点A、点B的距离相等?设时间是t. t分后,P是-1*t=-t,A是-1-5t,B是3-20t. |-t-(-1-5t)|=|-t-(3-20t)| |-t+1+5t |=|-t-3+20t| |4t+1|=|19t-3| 所以有: 4t+1=19t-3,解得t=4/15. 或者说4t+1=3-19t,得t=2/23 所以,出发的时间是2/23分或4/15分钟.4、在数轴上,点A表示的数是-30,点B表示的数是170.(1)求A、B中点所表示的数.(2)一只电子青蛙m,从点B出发,以4个单位每秒的速度向左运动,同时另一只电子青蛙n,从A点出发以6个单位每秒的速度向右运动,假设它们在C点处相遇,求C点所表示的数.(3)两只电子青蛙在C点处相遇后,继续向原来运动的方向运动,当电子青蛙m处在A点处时,问电子青蛙n处在什么位置?(4)如果电子青蛙m从B点处出发向右运动的同时,电子青蛙n也向右运动,假设它们在D点处相遇,求D点所表示的数.不得用于商业用途仅供个人参考仅供个人用于学习、研究;不得用于商业用途。
(完整版)数轴上的动点行程问题
数轴上的动点行程问题一.解答题(共12小题)1.如图,已知数轴上有A、B两点(点A在点B的左侧),且两点距离为6个单位长度,动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)图中如果点A、B表示的数是互为相反数,那么点A表示的数是;(2)当t=2秒时,点A与点P之间的距离是个长度单位;(3)当点A为原点时,点P表示的数是;(用含t的代数式表示)(4)当t=秒时,点P到点A的距离是点P到点B的距离的2倍.2.已知:线段AB=40cm.(1)如图1,点P沿线段AB自A点向B点以3厘米/秒运动,同时点Q沿线段BA自B点向A点以5厘米/秒运动,问经过几秒后P、Q相遇?(2)几秒钟后,P、Q相距16cm?(3)如图2,AO=PO=8厘米,∠POB=40°,点P绕着点O以20度/秒的速度顺时针旋转一周停止,同时点Q沿直线B自B点向A点运动,假若点P、Q两点能相遇,求点Q运动的速度.3.已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,点B的距离相等,求点P对应的数.(2)当点P以每秒5个单位长度的速度从O点向右运动时,点A以每秒5个单位长度的速度向右运动,点B以每秒4个单位长度的速度向右运动,问它们同时出发,几秒后P到点A、点B的距离相等?4.如图,射线OM上有三点A,B,C,满足OA=20cm,AB=60cm,BC=10cm,动点P从O点出发沿OM方向以每秒1cm的速度匀速运动;动点Q从点C出发,在线段CO上向点O匀速运动(点Q运动到点O时,立即停止运动),点P,Q 同时出发.(1)当点P与点Q都同时运动到线段AB的中点时,求点Q的运动速度;(2)若点Q运动速度为每秒3cm时,经过多少时间P,Q两点相距70m;(3)当PA=2PB时,点Q运动的位置恰好是线段AB的三等分,求点Q的速度.5.如图,数轴上两个动点A、B起始位置所表示的数分别为﹣8,4,A、B两点各自以一定的速度在数轴上运动,已知A点的运动速度为2个单位/秒.(1)若A、B两点同时出发相向而行,正好在原点处相遇,请直接写出B点的运动速度;(2)若A、B两点于起始位置按上述速度同时出发,向数轴正方向运动,几秒钟时两点相距6个单位长度?(3)若A、B两点于起始位置按上述速度同时出发,向数轴负方向运动,与此同时,C点从原点出发作同方向的运动,如果在运动过程中,始终有CA=2CB,求C点的运动速度.6.若A、B两点在数轴上所表示的数分别为a、b,则A、B两点间的距离可记为|a﹣b|:(1)如图:若A、B两点在数轴上所表示的数分别为﹣2、4,求A、B两点的距离为;(2)若A、B两点分别以每秒3个单位长度和每秒1个单位长度的速度同时沿数轴正方向运动,设运动时间为t秒,解答下列问题:①运动t秒后,A点所表示的数为,B点所表示的数为;(答案均用含t的代数式表示)②当t为何值时,A、B两点的距离为4?7.已知数轴上有A、B、C三点,分别表示有理数﹣26,﹣10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P点对应的数:;用含t的代数式表示点P和点C的距离:PC=(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A,①点P、Q同时运动运动的过程中有处相遇,相遇时t=秒.②在点Q开始运动后,请用t的代数式表示P、Q两点间的距离.(友情提醒:注意考虑P、Q的位置)8.已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上一动点,其对应的数为x.(1)若点P为AB的中点,直接写出点P对应的数;(2)数轴的原点右侧是否存在点P,使点P到点A、点B的距离之和为8?若存在,请求出x的值;若不存在,说明理由;(3)现在点A、点B分别以每秒2个单位长度和每秒0.5个单位长度的速度同时向右运动,同时点P以每秒6个单位长度的速度从表示数1的点向左运动.当点A与点B之间的距离为3个单位长度时,求点P所对应的数是多少?9.如图,点A、B分别表示的数是6、﹣12,M、N、P为数轴上三个动点,它们同时都向右运动.点M从点A出发,速度为每秒2个单位长度,点N从点B 出发,速度为点M的3倍,点P从原点出发,速度为每秒1个单位长度.(1)当运动3秒时,点M、N、P分别表示的数是、、;(2)求运动多少秒时,点P到点M、N的距离相等?10.已知数轴上点A、点B对应的数分别为﹣4、6.(1)A、B两点的距离是.(2)当AB=2BC时,求出数轴上点C表示的有理数;(3)点D以每秒10个单位长度的速度从点B出发沿数轴向左运动,点E以每秒8个单位长度的速度从点A出发沿数轴向左运动,点F从原点出发沿数轴向左运动,点D、点E、点F同时出发,t秒后点D、点E、点F重合,求出点F的速度.11.如图,已知数轴上有A、B、C三个点,它们表示的数分别是18,8,﹣10.(1)填空:AB=,BC=;(2)若点A以每秒1个单位长度的速度向右运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向左运动.试探索:BC﹣AB的值是否随着时间t的变化而改变?请说明理由;(3)现有动点P、Q都从A点出发,点P以每秒1个单位长度的速度向终点C 移动;当点P移动到B点时,点Q才从A点出发,并以每秒3个单位长度的速度向左移动,且当点P到达C点时,点Q就停止移动.设点P移动的时间为t 秒,试用含t的代数式表示P、Q两点间的距离.12.如图,AB=4,点O是线段AB上的点,点C,D分别是线段OA,OB的中点.(1)则CD=(直线写出答案);(2)若AB=m,点O是线段AB上的点,点C、D分别是线段OA、OB的中点,则CD=(说明理由);(3)若点O运动到AB的延长线上,(2)中的结论是否还成立,画出图形分析,并说明理由.。
数轴上的动点问题(解析版)—2024-2025学年七年级数学上册压轴题攻略(浙教版2024)
数轴上的动点问题目录解题知识必备..................................................................................................................................................1压轴题型讲练.. (2)类型一、点的运动时间问题 (2)类型二、单点的规律运动问题 (5)类型三、定值问题 (6)类型四、双点往返运动问题 (10)类型五、数轴的折叠问题................................................................................................................................15压轴能力测评(11题).. (20)1.数轴:规定了原点、单位长度、正方向的直线叫做数轴。
2.数轴的三要素:原点、正方向、单位长度3.任何有理数都可以用数轴上的点表示.4.数轴上的点表示的数从左到右依次增大;原点左边的数是负数,原点右边的数是正数.5.数轴上两点间的距离如图,A 、B 表示的数为a 、b ,则A 与B 间的距离AB=|a -b|;当a ,b 的大小已知时,“大减小(右减左)”,不知大小时,“绝对值”(两数差的绝对值).6.数轴上两点间中点表示的数如图,C 是AB 的中点,则C 表示的数x=2a b +;理由:AC=BC ,则x -a=b -x ,∴x=2a b +.7.数轴上点移动规律数轴上点向右移动则数变大(增加),向左移动数变小(减小);当数a表示的点向右移动b个单位长度后到达点表示的数为a+b;向左移动b个单位长度后到达点表示的数为a-b.例:P从A出发,以2个单位/秒速度向右运动,t秒后达到的点表示的数为:a+2t.数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系.类型一、点的运动时间问题例1.如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P 从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数是_______,点P表示的数是_______(用含t的代数式表示);(2)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发.求:当点P运动多少秒时,点P与点Q相遇?【答案】(1)―4;6―6t.(2)当点P运动5秒时,点P与点Q相遇.【分析】此题考查的知识点是两点间的距离及数轴,根据题意得出各线段之间的等量关系是解题关键.(1)由题意知OA=6,OB=AB―OA=10―6=4,因为B点在原点左边,从而得出数轴上点B表示的数;动点P从点A出发沿数轴向左匀速运动,根据题意则得出点P表示的数;(2)设P点运动t秒时追上点Q,根据题意列方程6t=10+4t,解得t值.【详解】(1)解:∵数轴上点A表示的数为6,∴OA=6,则OB=AB―OA=10―6=4,又∵点B在原点左边,∴数轴上点B所表示的数为―4;点P运动t秒的长度为6t,∵动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,∴P所表示的数为:6―6t.(2)设点P运动t秒时追上点Q,根据题意,得6t=10+4t,解得:t=5,答:当点P运动5秒时,点P与点Q相遇.变式1-1.已知数轴上有三个点A,B,C,点A表示的数是8,点B到点A的距离为12,点C到A点的距离为7.(1)点B表示的数为 ;(2)点C表示的数为 ;(3)若点A在点B右侧,动点R从点B以每秒2个单位长度的速度沿数轴向右匀速运动,动点P从点C以每秒1个单位长度的速度沿数轴向右匀速运动,点P,R同时出发,点R运动多少秒时追上点P?【答案】(1)20或―4(2)1或15(3)5秒或19秒【分析】(1)分点B在点A的左边和右边两种情况求解即可;(2)分点C在点A的左边和右边两种情况求解即可;(3)分点C表示1和15两种情况,然后分别求出路程差,再根据路程差列方程求解即可.【详解】(1)解:当点B在点A的左边,点B表示的数为8―12=―4;当点B在点A的右边,点B表示的数为8+12=20;综上,点B表示的数为20或―4.故答案为:20或―4.(2)解:当点C在点A的左边,点C表示的数为8―7=1;当点C在点A的右边,点C表示的数为8+7=15;综上,点C表示的数为1或15.故答案为:1或15.(3)解:设点R运动a秒时追上点P,当C表示1时,则BC的距离为1―(―4)=5,则有2a―a=5,解得:a=5;当C表示15时,则BC的距离为15―(―4)=19,则有2a―a=19,解得:a=19综上,点R运动多少秒时追上点P所需时间为5秒或19秒.答:点R运动5秒或19秒时追上点P.【点睛】本题主要考查了在数轴上表示数、数轴上的动点问题等知识点,掌握分类讨论思想是解答本题的关键.变式1-2.已知a、b为常数,且满足|a―12|+(b+20)2=0,其中a、b分别为点A、点B在数轴上表示的数,如图所示,动点E、F分别从A、B同时开始运动,点E以每秒6个单位向左运动,点F以每秒2个单位向右运动,设运动时间为t秒.(1)求a 、b 的值;(2)请用含t 的代数式表示点E 在数轴上对应的数为:______;点F 在数轴上对应的数为:______;(3)当E 、F 相遇后,点E 继续保持向左运动,点F 在原地停留4秒后向左运动且速度变为原来的5倍,在整个运动过程中,当E 、F 之间的距离为2个单位时,请求出运动时间t 的值.【答案】(1)a =12,b =―20(2)12―6t ,2t ―20(3)154,133,272,292【分析】本题主要考查了一元一次方程的应用,列代数式,(1)根据绝对值和平方式的非负性得出a 和b 的值即可;(2)根据点的运动得出代数式即可;(3)分四种不同情况进行分类讨论,根据路程=速度×时间,列方程求解即可.解题的关键是要运用分类讨论的思想.【详解】(1)解: ∵|a ―12|+(b +20)2=0,|a ―12|≥0,(b +20)2≥0,∴a ―12=0,b +20=0,∴a =12,b =―20;(2)解:由题意可知,E 点对应的数为:12―6t ,F 对应的数为―20+2t =2t ―20,故答案为:12―6t ,2t ―20;(3)解:在相遇前:t =[20―(―12)―2]÷(2+6)=154,设t ′时E 、F 相遇,即12―6t ′=2t ′―20;解得t ′=4,①当E 点在F 点左侧时,且F 点没动时,由题意可得,6(t ―4)=2,解得:t =133,②当E 点在F 点左侧时,且F 点已动时,6×(t ―4)―2×5×(t ―4―4)=2,解得:t =272,③当点E 在点F 右侧时,由题意2×5×(t ―4―4)―6×(t ―4)=2,解得:t =292,综上所述,符合条件的t 的值为:154,133,272,292.类型二、单点的规律运动问题例2.一个机器人从数轴原点出发,沿数轴正方向,以每前进3步后退2步的程序运动,设该机器人每秒钟前进或后退1步,并且每步的距离为1个单位长,x n 表示第n 秒时机器人在数轴上的位置所对应的数,给出下列结论(1)x 3=3;(2)x 5=1;(3)x 76>x 77;(4)x 103<x 104;(5)x 2018<x 2019其中,正确结论的个数是( )A .1个B .2个C .3个D .4个【答案】B【分析】机器人每5秒完成一个循环,每个循环前进1步,n÷5的整数值即前进的步数,余数是1,总步数加1,是2加2,是3加3,是4加2.【详解】依题意得:机器人每5秒完成一个前进和后退,即前5秒对应的数是1,2,3,2,1;根据此规律即可推导判断:(1)和(2),显然正确;(3)中,76÷5=15……1,故x76=15+1=16,77÷5=15……2,故x77=15+2=17,16<17,故错误;(4)中,103÷5=20……3,故x103=20+3=23,104÷5=20……4,故x104=20+2=22,23>22,故错误;(5)中,2018÷5=403……3,故x2018=403+3=406,2019÷5=403……4,故错误.故选:B .【点睛】本题考查的是归纳探索能力,确定循环次数和第n 次的对应数字是解题的关键.变式2-1.一动点p 从数轴上的原点出发,沿数轴的正方向以前进5个单位,后退3个单位的程序运动,已知p 每秒前进或后退1个单位.设x n 表示第n 秒点p 在数轴的位置所对应的数,如x 4=4,x 5=5,x 6=4,则x 2019为( )A .504B .505C .506D .507【答案】D【分析】先解出点P 每8秒完成一个循环,解出对应的数值,再根据规律推导出答案.【详解】解:依题意得,点P 每8秒完成一组前进和后退,前8个对应的数是1、2、3、4、5、4、3、2;9∼16对应的数是3、4、5、6、7、6、5、4;∵2019=8×252+3,故x 2019=252×2+3=507.故选:D .【点睛】此题主要考查了数轴上点对应数字的规律探索,弄清题中的基本循环规律是解本题的关键.变式2-2.如图,在纸面所在的平面内,一只电子蚂蚁从数轴上表示原点的位置O 点出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其移动路线如图所示,第1次移动到A 1,第2次移动到A 2,第3次移动到A 3,……,第n 次移动到A n ,则△O A 2A 2019的面积是( )A .504B .10092C .20112D .505【答案】B【分析】根据图可得移动4次完成一个循环,观察图形得出OA4n=2n ,处在数轴上的点为A4n 和A4n-1.由OA2016=1008,推出OA2019=1009,由此即可解决问题.【详解】解: 观察图形可知: OA4n=2n ,且点A4n 和点A4n-1在数轴上,又2016=504×4,∴A2016在数轴上,且OA2016=1008,∵2019=505×4-1,∴点A2019在数轴上,OA2019=1009,∴△OA2A2019的面积=12×1009×1=10092,故选:B .【点睛】本题考查三角形的面积,数轴等知识,解题的关键是学会探究规律,利用规律解决问题,属于中考常考题型.类型三、定值问题例3.如图:在数轴上A 点表示数―3,B 点表示数1,C 点表示数9.(1)若将数轴折叠,使得A 点与C 点重合,则点B 与______表示的点重合;(2)若点A 、点B 和点C 分别以每秒2个单位、1个单位长度和4个单位长度的速度在数轴上同时向左运动.①若t 秒钟过后,A ,B ,C 三点中恰有一点为另外两点的中点,求t 值;②当点C 在B 点右侧时,是否存在常数m ,使mBC ―2AB 的值为定值,若存在,求m 的值,若不存在,请说明理由.【答案】(1)5;(2)① t =1或4或16;②存在,m =―23.【分析】(1)求出AC 的长度和中点,然后求出中点到点B 的距离即中点到点B 的重合点的距离,即可求得点B 的重合点;(2)①分别以A、B、C为中点,列出方程求解即可;②使mBC―2AB的值为定值,列出等式中的含t项合并为0,从而求出m的值.【详解】(1)AC=9―(―3)=12,12÷2=6,∴AC的中点表示的数为:9―6=3,∵3―1=2,点B的重合点为3+2=5,故答案为:5;(2)解:①由题意可知,t秒时,点A所在的数为:―3―2t,点B所在的数为:1―t,点C所在的数为:9―4t,(1)若B为AC中点,,则1―t=(―3―2t)+(9―4t)2解得t=1;(2)若C为AB中点,,则9―4t=(―3―2t)+(1―t)2解得t=4;(3)若A为BC中点,,则―3―2t=1―t+9―4t2解得t=16;综上,当t=1或4或16时,A、B C②假设存在.∵C在B右侧,B在A右侧,∴BC=9―4t―(1―t)=8―3t,AB=1―t―(―3―2t)=t+4,∴mBC―2AB=m(8―3t)―2(t+4)=8m―8―(3m+2)t,当3m+2=0即m=―2时,3mBC―2AB=8×―8=―40,为定值,3使mBC―2AB的值为定值.故存在常数m=―23【点睛】此题考查了数轴上两点间距离,数轴上动点问题,一元一次方程的应用,解题的关键是能用两点间的距离公式列出方程.变式3-1.若点A在数轴上对应的数为a,点B在数轴上对应的数为b,我们把A、B两点之间的距离表示为AB,记AB=|a―b|,且a,b满足|a―1|+(b+2)2=0.(1)a=;b=;线段AB的长=;(2)点C在数轴上对应的数是c,且c与b互为相反数,在数轴上是否存在点P,使得PA+PB=PC?若存在,求出点P对应的数;若不存在,请说明理由;(3)在(1)、(2)的条件下,点A、B、C开始在数轴上运动,若点B以每秒1个单位长度的速度向左运动,同时点A和点C分别以每秒4个单位长度和9个单位长度的速度向右运动,t秒钟后,若点A和点C之间的距离表示为AC,点A和点B之间的距离表示为AB,那么AB―AC的值是否随着时间t的变化而变化?若变化,请说明理由;若不变,请求出AB―AC的值.【答案】(1)1,―2,3;(2)―3或―1;(3)AB―AC的值不随着时间t的变化而变化,值为2.【分析】(1)根据绝对值及平方的非负性,求出a,b的值,从而求出线段AB的长;(2)设P对应的数为y,再由PA+PB=PC,可得出点P对应的数;(3)根据A,B,C的运动情况即可确定AB,AC的变化情况,即可确定AB―AC的值.【详解】(1)∵|a―1|+(b+2)2=0,∴a―1=0,b+2=0,解得:a=1,b=―2,∴线段AB的长为:1―(―2)=3,故答案为:1,―2,3;(2)由(1)得:b=―2,∴c=2,设P对应的数为y,由图知:①P在A右侧时,不可能存在P点;②P在B左侧时,1―y―2―y=2―y,解得: y=―3,③当P在A、B中间时,3=2―y,解得: y=―1,故点P对应的数是―3或―1;(3)AB―AC的值不随着时间t的变化而变化,理由如下:t秒钟后,A点位置为:1+4t,∴B点的位置为: ―2―t,C点的位置为: 2+9t,∴AB=1+4t―(―2―t)=5t+3AC=2+9t―(1+4t)=5t+1,∴AB–AC=5t+3―(5t+1)=2,∴AB―AC的值不随着时间t的变化而变化,值为2.【点睛】此题考查了非负数的应用,数轴的应用,数轴上的距离,理解数轴上点的距离是解题的关键.变式3-2.如图,一个点从数轴上的原点开始,先向左移动4cm到达A点,再向右移动5cm到达B点,然后再向右移动3cm到达C点,数轴上一个单位长度表示1cm.(1)请你在数轴上标出A、B、C三点的位置,并填空:A表示的数为_______,B表示的数为_______,C表示的数为______.(2)把点A到点C的距离记为AC,则AB=_____cm,AC=______cm;(3)若点A从(1)中的位置沿数轴以每秒1cm匀速向右运动,经过多少秒使AC=3cm?【答案】(1)―4,1,4(2)5,8(3)5或11【分析】本题考查数轴上点的表示,数轴上两点间距离,数轴上动点问题.(1)根据题意利用观察即可得到本题答案;(2)根据题意利用两点间距离即可得到;(3)分情况讨论当点A在点C的左侧时和当点A在点C的右侧时,分别列式即可得到本题答案.【详解】(1)解:由题意得:A点对应的数为―4,B点对应的数为1,点C对应的数为4,点A,B,C在数轴上表示如图:A表示的数为―4,B表示的数为1,C表示的数为4,故答案为:―4,1,4;(2)解:∵A点对应的数为―4,B点对应的数为1,点C对应的数为4,∴AB=1―(―4)=5cm,AC=4―(―4)=8cm,故答案为:5,8;(3)解∶①当点A在点C的左侧时,设经过x秒后点A到点C的距离为3cm,由题意得:8―x=3,解得:x=5;②当点A在点C的右侧时,设经过x秒后点A到点C的距离为3cm,由题意得:x―8=3,解得:x=11,综上,经过5或11秒后点A到点C的距离为3cm.类型四、双点往返运动问题例4.如图,数轴上点A表示的数为―10,点B表示的数为20.点P从点O出发,以每秒1个单位长度的速度沿数轴正方向运动,点P出发的同时点Q从点A出发,以每秒2个单位长度的速度沿数轴正方向运动,设P、Q 两点运动的时间为t秒(t>0).(1)点P表示的数为________,点Q表示的数为________.(用含t的代数式表示)(2)当t=3,t=12时,分别求线段PQ的长.(3)当PQ=5时,求所有符合条件的t的值.(4)若点P一直沿数轴的正方向运动,点Q运动到点B时,立即改变运动方向,以原速度沿数轴的负方向运动,到达点A时,随即停止运动,在点Q的整个运动过程中,当PQ=8时,直接写出t的值.【答案】(1)t,―10+2t;(2)当t=3时,PQ=7;当t=12时,PQ=2;(3)t=5或t=15;(4)t=2或t=58.3【分析】本题主要考查了两点间的距离,数轴,一元一次方程的应用,解题的关键是熟记两点间的距离公式,找到等量关系.(1)根据点的运动方向列代数式即可求解;(2)先根据两点间的距离公式求出PQ,再把t值代入求解;(3)根据两点间的距离公式列方程求解;(4)根据t的取值范围,分类讨论,列方程求解.【详解】(1)解:点P表示的数为t,点Q表示的数为―10+2t,故答案为:t,―10+2t;(2)PQ=|t―(―10+2t)|=|10―t|,当t=3时,PQ=|10―3|=7,当t=12时,PQ=|10―12|=2;(3)由题意得:|10―t|=5,解得:t=5或t=15;(4)当0≤t≤15时,PQ=|10―t|=8,解得:t=2或t=18(不符合题意,舍去),当15<t≤30时,PQ=|t―[20―2(t―15)]|=|t―(50―2t)|=8,或t=14(不符合题意,舍去),解得:t=583综上所述,t =2或t =583.变式4-1.如图,O 是数轴的原点,A 、B 是数轴上的两个点,A 点对应的数是―1,B 点对应的数是8,C 是线段AB 上一点,满足AC BC =54.(1)求C 点对应的数;(2)动点M 从A 点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,当点M 到达C 点后停留2秒钟,然后继续按原速沿数轴向右匀速运动到B 点后停止.在点M 从A 点出发的同时,动点N 从B 点出发,以每秒1个单位长度的速度沿数轴匀速向左运动,一直运动到A 点后停止.设点N 的运动时间为t 秒.①当MN =4时,求t 的值;②在点M ,N 出发的同时,点P 从C 点出发,以每秒3个单位长度的速度沿数轴向左匀速运动,当点P 与点M 相遇后,点P 立即掉头按原速沿数轴向右匀速运动,当点P 与点N 相遇后,点P 又立即掉头按原速沿数轴向左匀速运动到A 点后停止.当PM =2PN 时,请直接写出t 的值.【答案】(1)4(2)①53或173;②t 的值为73或197或5.5【分析】(1)根据A 点,B 点对应的数,得到AB =9,根据AC 与BC 的比值,得到AC =5,BC =4,得到C 点对应的数是8―4=4;(2)①当M 、N 未相遇, M 表示的数是―1+2t , N 表示的数是8―t ,得到8―t ―(―1+2t)=4,解得t =53;当M 、N 相遇后,M 在BC 上运动,M 表示的数是4+2t ―52―2=2t ―5, N 表示的数是8―t ,得到2t ―5―(8―t)=4,解得t =173;②当P 与M 还未第一次相遇时,P 表示的数是4―3t ,M 表示的数是―1+2t ,N 表示的数是8―t ,得到4―3t ―(―1+2t)=2[8―t ―(4―3t)],解得t =―13,此种情况不存在;当P 与M 第一次相遇后,相遇后P 掉头按原速沿数轴向右匀速运动,在未遇到N 前,P 表示的数是(4―3×1)+3(t ―1)=3t ―2,得到3t ―2―(―1+2t)=2[8―t ―(3t ―2)],解得t =73;当P 与N 相遇后,未与M 第二次相遇时,P 表示的数是(8―2.5)―3(t ―2.5)=13―3t ,13―3t ―4=2[8―t ―(13―3t)],解得t =197;当P 与M 在点C 处第二次相遇后直到到达A 点前,P 表示的数是13―3t , M表示的数是4,得到4―(13―3t)=2[8―t ―(13―3t)],解得t =1,根据2.5<t ≤4.5,得到这种情况不存在;当P 运动到A 后,若N 为PM 的中点,此时PM =2PN ,―1+(2t ―5)=2(8―t),解得t =5.5.本题主要考查了数轴上动点问题,熟练掌握数轴上动点表示的数,两点间的距离公式,相遇与追及问题,列代数式,列方程,分类考虑动点的位置,是解题关键.【详解】(1)∵A 点对应的数是―1,B 点对应的数是8,∴AB =8+1=9,∵AC BC =54,∴AC =5,BC =4,∴C 点对应的数是8―BC =8―4=4,答:C 点对应的数是4;(2)①∵运动t 秒时,MN =4当M 、N 未相遇,则M 在AC 上运动,M 表示的数是―1+2t ,N 在BC 上运动,N 表示的数是8―t ,∴8―t ―(―1+2t)=4,解得t =53,当M 、N 相遇后,M 在BC 上运动,M 表示的数是4+2t ―52―2=2t ―5,N 在AC 上运动,N 表示的数是8―t ,∴2t ―5―(8―t)=4,解得t =173,综上所述,t 的值为53或173;②当P 与M 还未第一次相遇时,4―3t ,M 表示的数是―1+2t ,N 表示的数是8―t ,∵PM =2PN∴4―3t ―(―1+2t)=2[8―t ―(4―3t)],解得t =―13(舍去),此种情况不存在,由已知得,P 与M 在t =1时第一次相遇,相遇后P 掉头按原速沿数轴向右匀速运动,在未遇到N 前,P 表示的数是(4―3×1)+3(t ―1)=3t ―2,∴3t ―2―(―1+2t)=2[8―t ―(3t ―2)],解得t =73,由已知可知,当P 与M 在表示1的点处相遇,此时N 运动到表示7的点处,再经过7―13+1=1.5秒,即t =2.5时,P 与N 相遇,此时M 正好运动到C ,P 与N 相遇后又立即掉头按原速沿数轴向左匀速运动,未与M 第二次相遇,此时P 表示的数是(8―2.5)―3(t ―2.5)=13―3t ,∴13―3t ―4=2[8―t ―(13―3t)],解得t =197,当P 与M 在点C 处第二次相遇后直到到达A 点前,P 表示的数是13―3t ,M 在C 点处,M 表示的数是4,次情况2.5<t ≤4.5,∴4―(13―3t)=2[8―t ―(13―3t)],解得t =1,不合,∴这种情况不存在,当P 运动到A 后,若N 为PM 的中点,此时PM =2PN ,∴―1+(2t ―5)=2(8―t),解得t =5.5,综上所述,t 的值为73,或197,或5.5.变式4-2.已知数轴上有A 、B 、C 三个点,分别表示有理数―24、―10、10,动点P 从A 出发,以每秒1个单位长度的速度向终点C 移动,设移动时间为t 秒.若用PA ,PB ,PC 分别表示点P 与点A 、点B 、点C 的距离,试回答以下问题.(1)当点P 运动10秒时,PA =______,PB =______,PC =______;(2)当点P运动了t秒时,请用含t的代数式表示P到点A、点B、点C的距离:PA=______,PB=______,PC=______;(3)经过几秒后,点P到点A、点C的距离相等?此时点P表示的数是多少?(4)当点P运动到B点时,点Q从A点出发,以每秒3个单位长度的速度向C点运动,Q点到达C点后,再立即以同样速度返回,运动到终点A.在点Q开始运动后,P、Q两点之间的距离能否为4个单位长度?如果能,请直接写出点P表示的数;如果不能,请说明理由.【答案】(1)10,4,24;(2)t,|―14+t|,|―34+t|;(3)―7;(4)―5,―1,2.5,4.5.【分析】(1)根据题意求得t=10时,P点的位置,进而求得两点距离;(2)先表示出P点的位置表示的数,进而求得两点距离;(3)根据题意,列一元一次方程,解方程求解即可;(4)分Q点到达C点之前,和Q点到达C点之后,两种情形,根据两点距离为,建立一元一次方程解方程求解即可;此题考查了数轴上动点问题,数轴上两点距离问题,一元一次方程的应用,数形结合是解题的关键.【详解】(1)∵A、B、C三个点,分别表示有理数―24、―10、10,动点P从A出发,以每秒1个单位长度的速度向终点C移动,设移动时间为t秒,∴t=10时,P点表示的数为―24+10=―14,∴当P点运动10秒时,PA=|―14―(―24)|=10,PB=|―14―(―10)|=4,PC=|―14―10|=24,故答案为:10,4,24;(2)依题意,当P点运动了t秒时,则PA=t,点P表示的数为―24+t,∴PB=|―24+t―(―10)|=|―14+t|,PC=|―24+t―10|=|―34+t|,故答案为:t,|―14+t|,|―34+t|;(3)∵PA=PC,∴t=|―34+t|,即t=―34+t或―t=―34+t,解得:t=17,∴点P表示的数为―24+17=―7;(4)根据题意,设经过x秒后P、Q两点之间的距离为4个单位长度,P点运动到C点需要的时间为:20÷1=20(秒)①当Q点未到达C点,此时AQ =3x ,BP =x ,则Q 点表示的数为―24+3x ,点P 表示的数为―10+x ,则PQ =|―10+x ―(―24+3x)|=|14―2x|=4,即14―2x =4或14―2x =―4,解得:x =5或x =9,∴点表示的数为―5或―1;②当Q 点从C 点返回后,此时AQ =AC ―QC =|34―(3x ―34)|=|68―3x|,BP =x ,则Q 点表示的数为―24+68―3x =―3x +44,点P 表示的数为―10+x ,则PQ =|―10+x ―(―3x +44)|=|4x ―54|=4,即4x ―54=4或4x ―54=―4,解得x =292或x =252,∴点P 表示的数为4.5或2.5,综上所述,点P 表示的数为―5,―1,2.5,4.5.类型五、数轴的折叠问题例5.综合与探究数轴可以将数与形完美结合.请借助数轴,结合具体情境解答下列问题:(1)平移运动一机器人从原点O 开始,第1次向左跳1个单位,紧接着第2次向右跳2个单位,第3次向左跳3个单位,第4次向右跳4个单位,…,依此规律跳,当它跳完5次时,落在数轴上的点表示的数是 ;当它跳完2024次时,落在数轴上的点表示的数是 .(2)翻折变换①若折叠数轴所在纸条,表示―1的点与表示3的点重合,则表示5的点与表示 的点重合.②若数轴上D 、E 两点经折叠后重合,两点之间的距离为2024(D 在E 的左侧,且折痕与①折痕相同),则D点表示,E点表示.③一条数轴上有点M、N、P,其中点M、N表示的数分别是―17、8,现以点P为折点,将数轴向右对折,若点M对应的点M′落在点N的右边,并且线段M′N的长度为3,请直接写出点P表示的数.【答案】(1)―3;1012(2)①―3;②―1011;1013;③―3【分析】本题考查图形变化的规律,熟知折叠后能重合的两个点到折点的距离相等是解题的关键.(1)根据机器人的运动方式,依次求出每次跳完落在数轴上时所表示的数,发现规律即可解决问题.(2)根据折叠后重合的点到折点的距离相等即可解决问题.【详解】(1)解:根据机器人的运动方式可知,它跳完第1次时,落在数轴上的点表示的数是:―1;它跳完第2次时,落在数轴上的点表示的数是:1;它跳完第3次时,落在数轴上的点表示的数是:―2;它跳完第4次时,落在数轴上的点表示的数是:2;它跳完第5次时,落在数轴上的点表示的数是:―3;它跳完第6次时,落在数轴上的点表示的数是:3;…,由此可见,它跳完第2n次时,落在数轴上的点表示的数是n,它跳完第(2n―1)次时,落在数轴上的点表示的数是―n;当2n―1=5,即n=3时,―n=―3,所以它跳完第5次时,落在数轴上的点表示的数是―3;当2n=2024,即n=1012时,可得它跳完第2024次时,落在数轴上的点表示的数是1012;故答案为:―3,1012.(2)①由表示―1的点与表示3的点重合可知,―1+3=1,2则折点所表示的数为1.因为5―1=1―(―3),所以表示5的点与表示―3的点重合.故答案为:―3.②因为折痕与①的折痕相同,所以这次折叠的折点所表示的数也为1.又因为2024÷2=1012,1+1012=1013,1―1012=―1011,所以点D表示的数为―1011,点E表示的数为1013.故答案为:―1011,1013.③由折叠可知,MP=M′P,因为点M、N表示的数分别是―17、8,所以MN=8―(―17)=25.又因为点M′落在点N的右边,并且线段M′N的长度为3,所以MM′=25+3=28.因为28÷2=14,―17+14=―3,所以点P表示的数为―3.故答案为:―3.变式5-1.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示―10,点B 表示10,点C表示17,我们称点A和点C在“折线数轴”上相距27个单位长度.动点P,Q同时出发,点P从点A出发,以2个单位长度/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;动点Q从点C出发,以1个单位长度/秒的速度沿着“折线数轴”的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒,问:(1)动点P从点A运动至点C需要多少时间?(2)当P,Q两点相遇时,求出相遇点M所对应的数是多少?(3)当P,O两点在“折线数轴”上相距的长度与Q,B两点在“折线数轴”上相距的长度相等时,t的值为(直接写出结果).【答案】(1)18.5秒(2)143(3)3或6或9或18【分析】本题考查了数轴上两点之间距离,一元一次方程与路程问题的应用,读懂题意,找到等量关系,列出方程是解题的关键.,分段求出每段折线上的时间再求和即可;(1)根据时间=路程速度(2)P、Q两点相遇时,所用时间相等,根据等量关系建立一元一次方程;(3)根据P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等可以判断时间相等,根据等量关系建立一元一次方程,同时需要分情况讨论,即虽然PO=OP,但PO和OP不是同一条射线.【详解】(1)解:点P 从点 A 运动至 C 点需要的时间为:t=10÷2+10÷1+(17―10)÷2=18.5(秒).答:点P 从点 A 运动至 C 点需要的时间是18.5 秒;(2)解:由题可知,P,Q 两点相遇在线段OB上于M 处,设OM=x,则10÷2+x÷1=7÷1+(10―x)÷2,解得:x=143.∴OM=143表示P,Q 两点相遇在线段OB上于M 处,即相遇点M 所对应的数是143.(3)解:P、O 两点在数轴上相距的长度与Q、B 两点在数轴上相距的长度相等有 4 种可能:①当动点Q 在CB上,动点P在AO上时,则:7―t=10―2t,解得:t=3;②当动点Q 在CB上,动点P在OB上时,则:7―t=(t―5)×1,解得:t=6;③当动点Q 在BO上,动点P 在OB上时,则:2(t―7)=(t―5)×1,解得:t=9;④当动点Q 在OA上,动点P 在BC上时,则:(t―7―5)×1=2(t―5―10),解得:t=18.综上所述:t 的值为 3 或 6 或9或18.故答案为: 3 或 6 或9或18.变式5-2.七年级数学兴趣小组成员自主开展数学微项目研究,他们决定研究“折线数轴”.探索“折线数轴”:素材1 如图,将一条数轴在原点O,点B,点C处折一下,得到一条“折线数轴”.图中点A表示―9,点B表示12,点C表示24,点D表示36,我们称点A与点D在数轴上的“友好距离”为45个单位长度,并表示为AD=45.素材2 动点P从点A出发,以2个单位长度/秒的初始速度沿着“折线数轴”向其正方向运动.当运动到点O与点B之间时速度变为初始速度的一半.当运动到点B与点C之间时速度变为初始速度的两倍.经过点C后立刻恢复初始速度.问题解决:探索1 :动点P从点A运动至点B需要多少时间?探索2 :动点P从点A出发,运动t秒至点B和点C之间时,求点P表示的数(用含t的代数式表示);探索3 :动点P从点A出发,运动至点D的过程中某个时刻满足PB+PC=16时,求动点P运动的时间.【答案】探索1:P从点A运动至点B的时间为16.5秒;探索2:P表示的数为4t―54;探索3:动点P运动的时间是14.5秒或20.5秒.【分析】本题考查数轴上动点计算问题及数轴上两点间距离问题,解题的关键是理解题意并掌握相关的知识.探索1:根据时间=路程÷速度,即可求解;探索2:由探索1可得P在BC段运动时间为:(t―16.5)秒,进而得到BP=4t―66,结合点B表示12,即可求解;探索3:分两种情况:①当P在BO上时,②当P在CD上时,根据线段的和差以及时间=路程÷速度,即可求解.【详解】解:探索1:∵点A表示―9,点B表示12,∴OA=9,OB=12,∵P在AO段初始速度为2个单位长度/秒,P在OB段速度为初始速度的一半,∴P在OB段速度为1个单位长度/秒,∴P从点A运动至点B的时间为:92+121=16.5(秒);探索2:∵P的初始速度为2个单位长度/秒,P在BC段速度为初始速度的两倍,∴P在BC段速度为4个单位长度/秒,由探索1可得:P在BC段运动时间为:(t―16.5)秒,∴BP=4(t―16.5)=4t―66,∵点B表示12,∴P表示的数为:12+(4t―66)=4t―54;探索3:设t秒后PB+PC=16,①当P在BO上时,∵PB+PC=16,∴PB+(PB+BC)=16,∵BC=12,∴PB=2,∴PO=OB―BP=12―2=10,∵OA=9,∴t=92+101=4.5+10=14.5(秒);②当P在CD上时,。
专题02 数轴上的三种动点问题
专题02 数轴上的三种动点问题数轴的动点问题,无论在平时练习,还是月考,期中期末考试中属于压轴题的版块,其过程复杂,情况多变。
那么,本专题对其中常考的三种题型(求时间、求距离或者对应点、定值问题)做出详细分析与梳理。
【知识点梳理】1.数轴上两点间的距离数轴上A、B两点表示的数为分别为a、b,则A与B间的距离AB=|a-b|;2.数轴上点移动规律数轴上点向右移动则数变大(增加),向左移动数变小(减小);当数a表示的点向右移动b个单位长度后到达点表示的数为a+b;向左移动b个单位长度后到达点表示的数为a-b.类型一、求时间例1.如图在数轴上A点表示数a,B点表示数b,a、b满足|a+2|+|b﹣8|=0(1)点A表示的数为 ;点B表示的数为 ;(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B 处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),①当t=1时,甲小球到原点的距离= ;乙小球到原点的距离= ;当t=5时,甲小球到原点的距离= ;乙小球到原点的距离= ;②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请直接写出甲,乙两小球到原点的距离相等时经历的时间.CD=(单位长度)在数轴上,点A在数轴上表【变式训练1】如图,有两条线段,2AB=(单位长度),1示的数是-12,点D在数轴上表示的数是15.(1)点B在数轴上表示的数是______,点C在数轴上表示的数是______,线段BC的长=______;(2)若线段AB以1个单位长度秒的速度向右匀速运动,同时线段CD以2个单位长度秒的速度向左匀速运动.当点B与C重合时,点B与点C在数轴上表示的数是多少?(3)若线段AB以1个单位长度秒的速度向左匀速运动,同时线段CD以2个单位长度/秒的速度也向左匀速运动.设运动时间为t秒,当t为何值时,点B与点C之间的距离为1个单位长度?【变式训练2】如图,A,B两点在数轴上对应的数分别为a,b,且点A在点B的左侧,|a|=10,a+b=60,ab<0.(1)求出a,b的值;(2)现有一只蚂蚁P从点A出发,以每秒4个单位长度的速度向右运动,同时另一只蚂蚁Q从点B出发,以每秒2个单位长度的速度向右运动.①两只蚂蚁经过多长时间相遇?②设两只蚂蚁在数轴上的点C处相遇,求点C对应的数;③经过多长时间,两只蚂蚁在数轴上相距30个单位长度?【变式训练3】在数轴上,点A表示的数为a,点B表示的数为b,且|a+2|+(b﹣3)2=0.(1)a= ,b= ;(2)在(1)的条件下,点A以每秒0.5个单位长度沿数轴向左移动,点B以每秒1个单位长度沿数轴向右移动,两点同时移动,当点A运动到﹣4所在的点处时,求A、B两点间距离;(3)在(2)的条件下,现A点静止不动,B点沿数轴向左运动时,经过多长时间A、B两点相距3个单位长度?类型二、求距离或对应点例.如图所示,在数轴上点A表示的数是4,点B位于点A的左侧,与点A的距离是10个单位长度.(1)点B表示的数是,并在数轴上将点B表示出来.(2)动点P从点B出发,沿着数轴的正方向以每秒2个单位长度的速度运动.经过多少秒点P与点A的距离是2个单位长度?(3)在(2)的条件下,点P出发的同时,点Q也从点A出发,沿着数轴的负方向,以1个单位每秒的速度运动.经过多少秒,点Q到点B的距离是点P到点A的距离的2倍?【变式训练1】(知识储备)(1)数轴上点A表示的数为a,若向右移动m个长度单位后表示的数是;若向左移动n个长度单位后表示的数是.(2)在数轴上A点表示数a,B点示数b,A在B的右边,A、B两点间的距离等于a-b.(解决问题)已知数轴上两点A、B对应的数分别为﹣3、1,点P为数轴上一动点,其对应的数为x.(1)若点P到点A、点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为10?若存在,请求出x的值;若不存在,说明理由;(3)现在点A、点B分别以2个单位长度/秒和0.5个单位长度/秒的速度同时向右运动,点P以6个单位长度/秒的速度同时从原点向左运动.当点A与点B之间的距离为3个单位长度时,求点P所对应的数是多少?【变式训练2】我们知道,在数轴上,|a|表示数a表示的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上两个点A、B,分别用a,b表示,那么A、B两点之间的距离为:AB=|a﹣b|.利用此结论,回答以下问题:(1)数轴上表示1和4的两点的距离是 ,数轴上表示﹣1和﹣4的两点之间的距离是 .(2)|a﹣1|=2,则a= ,|a﹣1|+|a+3|=6,则a= .(3)当|a﹣1|+|a+3|取最小值时,此时符合条件的非负整数a是 .(4)如图,已知A,B分别为数轴上的两点,点A表示的数是﹣30,点B表示的数是50;现有一只蚂蚁P从点B出发,以每秒3个单位长度的速度沿数轴向左移动,同时另一只蚂蚁Q恰好从点A 出发,以每秒2个单位长度的速度沿数轴向右移动,设t秒后两只蚂蚁相距10个单位长度,求此时点P表示的数是多少?类型三、求定值例.已知若数轴上点A 、点B 表示的数分别为,a b ,则AB a b =-∣∣,线段AB 的中点表示的数为2a b +.如图,数轴上点A 表示的数为2-,点B 表示的数为8,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(0)t >.(1)填空:①,A B 两点间的距离AB =______,线段AB 的中点表示的数为_____;②用含t 的代数式表示:t 秒后,点P 表示的数为_______;点Q 表示的数为______.(2)求当t 为何值时,,P Q 两点相遇,并写出相遇点所表示的数.(3)若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN 的长.【变式训练1】如图,数轴上原点为O ,A ,B 是数轴上的两点,点A 对应的数是a ,点B 对应的数是b ,且a ,b 满足2(2)40a b -++=,动点M ,N 同时从A ,B 出发,分别以1个单位/秒和3个单位/秒的速度沿着数轴正方向运动,设运动时间为x 秒(x >0).(1)A 、B 两点间的距离是 ;动点M 对应的数是 (用含x 的代数式表示);动点N 对应的数是 ;(用含x 的代数式表示)(2)几秒后,线段OM 与线段ON 恰好满足3OM =2ON ?(3)若M ,N 开始运动的同时,R 从﹣1出发以2个单位/秒的速度沿着数轴正方向运动,当R 与M 不重合时,求MB NB RM-的值.【变式训练2】已知:b 是最小的正整数,且a 、b 满足()250c a b -++=,请回答问题:(1)请直接写出a 、b 、c 的值:a = ,b = ,c = .(2)在(1)的条件下数a ,b ,c 分别在数轴上对应的点A ,C 有两只电子蚂蚁甲、乙分别从A ,C 两点同时出发相向而行,甲的速度为2个单位/秒,乙的速度为4个单位/秒点,当两只电子蚂蚁在数轴上点M 处相遇时,求点M 表示的数.(3)在(1)的条件下,点a ,b ,c 分别对应点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动.同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t 秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:BC -AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.课后训练1.数学实验室:点A 、B 在数轴上分别表示有理数a 、b ,A 、B 两点之间的距离表示为AB ,在数轴上A 、B 两点之间的距离AB =|a ﹣b |.利用数形结合思想回答下列问题:(1)数轴上表示2和5的两点之间的距离是_____,数轴上表示1和-3的两点之间的距离是 ;(2)数轴上若点A 表示的数是x ,点B 表示的数是-2,若AB =2,那么x 为; (3)当x 是 时,代数式|2||1|5x x ++-=;(4)若点A 表示的数-1,点B 与点A 的距离是10,且点B 在点A 的右侧,动点P 、Q 同时从A 、B 出发沿数轴正方向运动,点P 的速度是每秒3个单位长度,点Q 的速度是每秒1个单位长度,求运动几秒后,PQ =1?(请写出必要的求解过程)2.已知数轴上A、B两点表示的数分别为a,b,且a,b满足|a+20|+(b-13)2=0,点C表示的数为16,点D 表示的数为-7.(1)A,C两点之间的距离为__________;(2)已知|m-n|可理解为数轴上表示数m、n的两点之间的距离.若点P在数轴上表示的数为x,则满足|x+2|+|x-3|=5的所有的整数x的和为_______________;满足|x+2|+|x-3|=9的x值为______________.(3)点A,B从起始位置同时出发相向匀速运动,点A的速度为6个单位长度/秒,点B的速度为2个单位长度/秒,当点A运动到点C时,迅速以原来的速度返回,到达出发点后,又折返向点C运动,点B运动至点D后停止运动,当点B停止运动时,点A也停止运动,求在此运动过程中,求A,B两点同时到达的点在数轴上表示的数.。
(完整版)七年级上数轴上动点问题(最新最全版)
-1-2-33210O B A P0123-3-2-1B A OA BCD备用图O 数轴上的动点问题最新版1.如图,已知数轴上两点A 、B 对应的数分别为-1,3,点P 为数轴上一动点,其对应的数为x 。
(1)数轴上是否存在点P ,使点P 在点A 、点B 的距离之和为5?若存在,请求出x 的值,若不存在,请说明理由;(2)当点P 以每分钟1个单位长度的速度从O 点向左运动时,点A 以每分钟5个单位长度的速度向左运动,点B 以每分钟20个单位长度的速度向左运动,问它们同时出发,几分钟时点P 到点A 、点B 的距离相等?(3)如图,若点P 从B 点出发向左运动(只在线段AB 上运动),M 为AP 的中点,N 为PB 的中点,点P 在运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出MN 的长。
2.如图,A 、B 、C 是数轴上的三点,O 是原点, BO=3,AB=2BO ,5AO=3CO . (1)写出数轴上点A 、C 表示的数;(2)点P 、Q 分别从A 、C 同时出发,点P 以每秒 2个单位长度的速度沿数轴向右匀速运动,点Q 以每秒6个单位长度的速度沿数轴向左匀速运 动,M 为线段AP 的中点,点N 在线段CQ 上,且 CN=32CQ .设运动的时间为t (t >0)秒. ①数轴上点M 、N 表示的数分别是 (用含t 的 式子表示); ②t 为何值时,M 、N 两点到原点O 的距离相等?3.如图,数轴上有A 、B 、C 、D 四个点,分别对应数a 、b 、c 、d ,且满足a 、b 是方程91x +=的两根(a b <),2(16)c -与20d -互为相反数。
(1)求a 、b 、c 、d 的值;(2)若A 、B 两点以6个单位长度/秒的速度向右匀速运动,同时C 、D 两点以2个单位长度/秒的速度向左匀速运动,并设运动时间为t 秒。
问t 为多少时,A 、B 两点都运动在线段CD 上(不与C 、D 两个端点重合)?(3)在(2)的条件下,A 、B 、C 、D 四个点继续运动,当点B 运动到点D 的右侧时,问是否存在时间t ,使B 与C 的距离是A 与D 的距离的4倍,若存在,求时间t ,若不存在,请说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数轴上的线段与动点问题
一、与数轴上的动点问题相关的基本概念
数轴上的动点问题离不开数轴上两点之间的距离.主要涉及以下几个概
念:
1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值d=|a-b|,
也即用右边的数减去左边的数的差.即数轴上两点间的距离=右边点表示的数—左边点表示的数.
2.两点中点公式:线段AB中点坐标=(a+b)÷2.
3.点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向左运动的速度看作负速度.这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标.即一个点表示的数为a,向左运动b 个单位后表示的数为a—b;向右运动b个单位后所表示的数为a+b.
4.数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系.
二、数轴上的动点问题基本解题思路和方法:
1、表示出题目中动点运动后的坐标(一般用含有时间t的式子表示).
2、根据两点间的距离公式表示出题目中相关线段长度(一般用含有时间t的式子表示).
3、根据题目问题中线段的等量关系(一般是和、差关系)列绝对值方程.
4、解绝对值方程并根据实际问题验算结果.
注:数轴上线段的动点问题方法类似
1、已知数轴上A、B两点对应数为-
2、4,P为数轴上一动点,对应的数为x.
-2 -1 0 1 2 3 4
(1) 若P为AB线段的三等分点,求P对应的数;
(2)数轴上是否存在P,使P到A点、B点距离和为10,若存在,求出x;若不存在,说明理由.
(3)若点A,点B和点P(点P在原点)同时向左运动,它们的速度分别为1,2,1个长度单位/分,则第几分钟时,P为AB的中点?
2、已知:b是最小的正整数,且a、b、c满足(c-5)2+|a+b|=0,请回答问题(1)请直接写出a、b、c的值.a=________,b=________,c=________ (2)a、b、c所对应的点分别为A、B、C,点P为一动点,其对应的数为x,点P在0到2之间运动时(即0≤x≤2时),请化简式子:|x+1|-|x-1|+2|x+5|.
(3)若点A、点C分别以每秒1个单位和2个单位长度的速度向左运动,请问几秒时,A,C之间的距离为1个单位长度?
(4)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.
2.如图,若点A在数轴上对应的数为a,点B在数轴上对应的数为b,且a,b满足|a+2|+(b-1)
2=0.
(1)求线段AB的长;
(2)点C在数轴上对应的数为x,且x是方程2x-1=1
2x+2的根,在数轴上是否存在
点P,使P A+PB=PC,若存在,求出点P对应的数;若不存在,说明理由.
(3)若P是A左侧的一点,P A的中点为M,PB的中点为N,当P点在A点左侧运动时,有两个结论:①PM+PN的值不变;②PN-PM的值不变,其中只有一个结论正确,请判断正确结论,并求出其值.
3、如图,在射线OM 上有三点A 、B 、C ,满足OA =20cm,AB =60cm ,BC =10cm (如图所示),点P 从点O 出发,沿OM 方向以1cm/s 的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发.
(1)当P A =2PB 时,点Q 运动到的位置恰好是线段AB 的三等分点,求点Q 运动的速度;
(2)若点Q 运动的速度为3cm/s,经过多长时间P 、Q 两点相距70cm ;
(3)当点P 运动到线段AB 上时,取OP 和AB 的中点E 、F ,求EF
AP OB 的值.。