19.1.1变量与函数(第2课件)
合集下载
《19.1 变量与函数》课件(含习题)
这里有变化的量吗?如 果有,是什么?它们之 间有什么关系?
讲授新课
一 函数的相关概念
情景一
想一想,如果你坐 在摩天轮上,随着 时间的变化,你离 开地面的高度是如 何变化的?
下图反映了摩天轮上的一点的高度h (m)与旋转时间t(min) 之间的关系.
(1)根据左图填表:
t/分 0 1 2 3 4 5 … h/米 3 10 37 45 37 11 … (2)对于给定的时间t ,相 应的高度h能确定吗?
方法 区分常量与变量,就是看在某个变化过程中,该 量的值是否可以改变,即是否可以取不同的值.
二 确定两个变量之间的关系
例3 弹簧的长度与所挂重物有关.如果弹簧原长为10cm, 每1千克重物使弹簧伸长0.5cm,试填下表:
重物的质量 1 2 3 4 5 (kg)
弹簧长度 (cm)
10.5 11
11.5 12 12.5
4x 8 0 x 2
(3) y x 3
x 3 0 x 3
(4) y x 1 1 1 x
x 1且 x 1
x 1 0
1 x 0
即 xx
1 1
... -1 0 1
5.我市白天乘坐出租车收费标准如下:乘坐里程不超过3公 里,一律收费8元;超过3公里时,超过3公里的部分,每公里 加收1.8元;设乘坐出租车的里程为x(公里)(x为整数), 相对应的收费为y(元).
4.收音机上的刻度盘的波长和频率分别是用米(m)和 千赫兹(kHz)为单位标刻的.下面是一些对应的数:
波长l(m) 300 500 600 1000 1500 频率 1000 600 500 300 200 f(khz)
你能发现每一组l,f 的值之间的关系吗?并指出变量与 常量.
讲授新课
一 函数的相关概念
情景一
想一想,如果你坐 在摩天轮上,随着 时间的变化,你离 开地面的高度是如 何变化的?
下图反映了摩天轮上的一点的高度h (m)与旋转时间t(min) 之间的关系.
(1)根据左图填表:
t/分 0 1 2 3 4 5 … h/米 3 10 37 45 37 11 … (2)对于给定的时间t ,相 应的高度h能确定吗?
方法 区分常量与变量,就是看在某个变化过程中,该 量的值是否可以改变,即是否可以取不同的值.
二 确定两个变量之间的关系
例3 弹簧的长度与所挂重物有关.如果弹簧原长为10cm, 每1千克重物使弹簧伸长0.5cm,试填下表:
重物的质量 1 2 3 4 5 (kg)
弹簧长度 (cm)
10.5 11
11.5 12 12.5
4x 8 0 x 2
(3) y x 3
x 3 0 x 3
(4) y x 1 1 1 x
x 1且 x 1
x 1 0
1 x 0
即 xx
1 1
... -1 0 1
5.我市白天乘坐出租车收费标准如下:乘坐里程不超过3公 里,一律收费8元;超过3公里时,超过3公里的部分,每公里 加收1.8元;设乘坐出租车的里程为x(公里)(x为整数), 相对应的收费为y(元).
4.收音机上的刻度盘的波长和频率分别是用米(m)和 千赫兹(kHz)为单位标刻的.下面是一些对应的数:
波长l(m) 300 500 600 1000 1500 频率 1000 600 500 300 200 f(khz)
你能发现每一组l,f 的值之间的关系吗?并指出变量与 常量.
人教版八年级数学下册说课课件-19.1.1 变量和函数(共16张PPT)
子表示 y ? y的值随x的值的变化而变化吗?
y = 10x
八年级 数学
第十九章 一次函数
19.1 变量与函数
19.1.1 变 量
活动二 问题(3) lián yī
你见过水中的涟漪吗?圆形水波慢慢地扩大,在这一过程 中,当圆的半径r 分别为10 cm,20 cm,30 cm 时,圆的面积S 分别为多少?S的值随r的值的变化而变化吗?
y= 5-x S = 60t y = 10x S= πr2
活动四:巩固练习
变量:月用水量x吨和月应交水费y元, 常量:自来水价4元/吨。
变量:通话时间t分钟和话费余额w元, 常量:通话费0.2元/分钟和存入话费30元。
变量:半径r和圆周长C 常量:圆周率π及计算公式中的数字2。
变量:第一个抽屉放书量x本和第二个抽屉放书量y本, 常量:书的总数10本。
当r=10cm时,S=400πcm2
当r=30cm时,S=900πcm2
圆面积S= πr2
题目中没有 特别要求时,
要保留π
S的值随r的值变化而变化吗?
八年级 数学
19.1 函数
第十九章 一次函数
19.1.1 变 量
活动二 问题(4)
用10 m 长的绳子围成一个长方形,当长方形的一边长x分
别为 3m,3.5m,4m,4.5m时,它的邻边长y分别为多少?y的值
随x
的值的变化而变化吗? 矩形的周长=(长+宽)×2
已知周长,如何去求长或宽呢?
矩形的宽=周长÷2-长
当x=3m时,y=2m 当x=3.5m时,y=1.5m
当x=4m时,y=1m
y= 5-x
活动二:创设情境-----新知探究
问题1:分别指出思考(1)~(4)的变化过程中所涉及的量, 在这些量中哪些量是发生了变化的?哪些量是始终不变的?
《变量与函数》课件PPT 2
辨一辨
指出下列变化过程中的变量和常量:
(1)某市的自来水价为4元/吨,现要抽取若干户 居民调查水费支出情况,记某户月用水量为 x 吨,月 应交水费为 y 元;
(2)某地手机通话费为0.2元/分,李明在手机话费 卡中存入30元,记此后他的手机通话时间为t 分,话 费卡中的余额为w 元;
(3)水中涟漪(圆形水波)不断扩大,记它的半 径为r,圆周长为C,圆周率(圆周长与直径之比)为 π;
变量与函数
(1)汽车以60 千米/时的速度匀速行驶,行驶时间 为t 小时,行驶路程为 s千米 .
数值不断变化的量 运动变化问题
数值固定不变的量
变量 常量
变量与函数
(2)每张电影票的售价为10 元,设某场电影售出x 张票,票房收入为y 元.
售出x张票,票房收入为y 元是变量 售价为10 元是常量
变量与函数
单值对应的关系 对于 x的每一个确定的值,y 都有唯一确定的值与其对应
观察思考 分析变化
(1)汽车以60 千米/时 的速度匀速行驶,行驶时间 为t 小时,行驶路程为 s千米 .
t是自变量 行驶时间 t/h 1 3 3.4 4 9 … 行驶路程s/km 60 180 204 240 540 …
s是t的函数
课后作业
作业:课堂10分钟.
单值对应的关系 对于 t 的每一个确定的值,s 都有唯一确定的值与其对应
观察思考 分析变化
(2)每张电影票的售价为10 元,设某场电影售出x 张票,票房收入为y 元.
x是自变量 售出票数 x /张 100 120 140 160 180 … 票房收入y/元 1000 1200 1400 1600 1800 …
八年级 下册
19.1 变量与函数(1)
19.1.1 变量与函数(第2课时)课件
(1)汽车以60 km/h 的速度匀速行驶,行驶的时 间为 t(单位:h),行驶的路程为 s(单位:km);
(2)多边形的边数为 n,内角和的度数为 y.
问题(1)中,t 取-2 有实际意义吗? 问题(2)中,n 取2 有意义吗?
根据刚才问题的思考,你认为函数的自变量可 以取任意值吗?
在实际问题中,函数的自变量取值范围往往是 有限制的,在限制的范围内,函数才有实际意义; 超出这个范围,函数没有实际意义,我们把这种自 变量可以取的数值范围叫函数的自变量取值范围.
例3:下列函数中自变量x的取值范围是什么?
(1)y 3x 1
(2)y 1 x2
x取全体实数
x 2x0-2
使函数解析式有意 义的自变量的全体.
(3)y x 5
x 5x05
(4) y x 2 x 1
x 2且x 1
x 1 0
x20
即 xx
1 2
... -2 -1 0
自变量的取值范围的求法
3.油箱中有油30L,油从管道中匀速流出,1h流完,则
油箱中剩余油量Q(L)与流出时间t(min)之间的
函数关系式是
Q
30
1 2
t
,自变量t的取值范围
是 0 t 60 .
4.某市乘坐出租车收费标准如下:乘坐里程不超 过3千米,收费8元;超过3千米时,超过3千米的 部分,每千米加收1.8元.设乘坐出租车的里程为x(公 里)(x为整数),相对应的收费为y(元). (1)请分别写出当0<x ≤3和x>3时,表示y与x 的关系式,并直接写出当x=2和x=6时对应的y值;
解:当0<x ≤3时,y=8; 当x>3时,y=8+1.8(x-3)=1.8x+2.6. 当x=2时,y=8;x=6时,y=1.8×6+2.6=13.4.
内蒙古鄂尔多斯市康巴什新区第二中学八年级数学下册 19.1.1 变量与函数(第2课时)课件 (新版)新人教版
做一做
例2 小明想用最大刻度为100℃的温度计测量食用 油的沸点温度(远高于100℃),显然不能直接测量, 于是他想到了另一种方法,把常温10℃的食用油放在锅 内用煤气灶均匀地加热,开始加热后,每隔10 s 测量一 次油温,共测量了4次,测得的数据如下:
时间t/s 油温w/℃
0 10
10 25
20 40
我市白天乘坐出租车收费标准如下:乘坐里程不超 过3公里,一律收费8元;超过3公里时,超过3公里的部 分,每公里加收1.8元;设乘坐出租车的里程为x(公里 )(x为整数),相对应的收费为y(元). (1)请分别写出当0<x≤3和x>3时,表示y与x的 关系式,并直接写出当x=2和x=6时对应的y值; (2)当0<x≤3和x>3时,y都是x的函数吗?为什 么? 解:(1)当0<x≤3时,y=8; 当x>3时,y=8+1.8(x-3)=1.8x+2.6. 当x=2时,y=8;x=6时,y=1.8×6+2.6=13.4. (2)当0<x≤3和x>3时,y都是x的函数,因为 对于x的每一个确定的值,y都有唯一确定的值与其对 应.
1 x 1
(3) y
x2
问
问题4:下列曲线中,表示y不是x的函数是( ) 题 ,怎样改动这条曲线,才能使y是x的函数? y y y y 探
究
O
x
O
x
O
x
O
x
ABLeabharlann CD选B. 将第一象限或第三象限的曲线去掉等,只要满足“对于x的 每一个确定的值,y都有唯一确定的值与其对应”,都能使y是x 的函数.
30 55
他测量出把油烧沸腾所需要的时间是160 s,这样就 可以确定该食用油的沸点温度.他是怎样计算的呢?
列表法、解析法
人教版八年级数学(下)课件:19_1_2 函数的图象(第2课时)
人教版 数学 八年级 下册
19.1 函数 19.1.2 函数的图象
(第2课时)
导入新知 在计算器上按照下面的程序进行操作:
输入x(任意一个数)
按键
× 2 + 5=
填表:
显示y(计算结果)
x 1 3 -4 y 7 11 -3
0 101 5 207
显示的数y是输入的数x的函数吗?为什么? 如果是,写出它的解析式. 是, y = 2x+5.
27千克
探究新知
考点 2 利用函数表达式解答实际问题 如图,要做一个面积为12 m2的小花坛,该花坛的一边长为 x m, 周长为 y m.
(1)变量 y 是变量 x 的函数吗?如果是,写出自变量的取值 范围;
(2)能求出这个问题的函数解析式吗?
解:(1)y 是 x 的函数,自变量 x 的取
值范围是x>0.
答:是, y=8+2(x-3) =2x+2
用函数解析 式来表示.
这里是怎样表 示所付费用y与 所走路程x的 函数关系的?
探究新知 问题3 如图是某地某一天的气温变化图.
这里是怎样表示气温T与 时间t之间的函数关系的?
(1)指出其中的两个变量是 气温T , 时间t .
用平面直 角坐标系 中的一个 图象来表 示的.
探究新知
其函数的图象如下:
y/m
5
5
4
B
3
3A 2
1
O
O
1
2
3
4
5
6
7
5
8
t/h
探究新知
(3)据估计这种上涨规律还会持续2 h,预测再过2 h水位高度
将达到多少m.
解:如果水位的变化规律不变,按上述函数预测,再持续2小
19.1 函数 19.1.2 函数的图象
(第2课时)
导入新知 在计算器上按照下面的程序进行操作:
输入x(任意一个数)
按键
× 2 + 5=
填表:
显示y(计算结果)
x 1 3 -4 y 7 11 -3
0 101 5 207
显示的数y是输入的数x的函数吗?为什么? 如果是,写出它的解析式. 是, y = 2x+5.
27千克
探究新知
考点 2 利用函数表达式解答实际问题 如图,要做一个面积为12 m2的小花坛,该花坛的一边长为 x m, 周长为 y m.
(1)变量 y 是变量 x 的函数吗?如果是,写出自变量的取值 范围;
(2)能求出这个问题的函数解析式吗?
解:(1)y 是 x 的函数,自变量 x 的取
值范围是x>0.
答:是, y=8+2(x-3) =2x+2
用函数解析 式来表示.
这里是怎样表 示所付费用y与 所走路程x的 函数关系的?
探究新知 问题3 如图是某地某一天的气温变化图.
这里是怎样表示气温T与 时间t之间的函数关系的?
(1)指出其中的两个变量是 气温T , 时间t .
用平面直 角坐标系 中的一个 图象来表 示的.
探究新知
其函数的图象如下:
y/m
5
5
4
B
3
3A 2
1
O
O
1
2
3
4
5
6
7
5
8
t/h
探究新知
(3)据估计这种上涨规律还会持续2 h,预测再过2 h水位高度
将达到多少m.
解:如果水位的变化规律不变,按上述函数预测,再持续2小
19-1-1第二课时变量与函数-八年级数学下册同步精品课件(人教版)
y,并且对于x的每一个确定的值,y都有唯一确定的
值与之对应.我们就说x是自变量, y是x的函数.如
果当x=a时y=b,那么b叫做当自变量为a时的函
数值.
课堂总结
判断函数
x 取一个确定的值, y 有唯一确定的值和
它对应.
课堂总结
解析式
像y=50-0.1x这样,用关于自变量的数
学式子表示函数与自变量之间的关系,
的变化而变化.
自变量 x,y是 x 的函数,y=0.1x
课堂练习
6.下列问题中哪些量是自变量,哪些量是自变量的函数?试写出函数的解析
式.
(3)秀水村的耕地面积是106 m3,这个村人均占有耕地面积y(单位:m2)随这个
村人数n的变化而变化.
自变量 n,y 是 n
106
的函数,y=
(4)水池中有水10L,此后每小时漏水0.05L,水池中的水量V(单位:L)随时
−1
x 为任意实数
x≠-1
x≥-3
x≥-4且x≠1
课堂练习
1.一个正方形的边长为5cm,它的各边边长减少xcm后,得到
的新正方形的周长为ycm,y与x的函数关系式为( A
A.Y=20-4x
B.Y=4x-20
C.Y=20-x D.以上都不对
2.在圆周长计算公式C=2πr中,对半径不同的圆,变量(
A.C,r
当x=200时,y=50-0.1×200=30
归纳小结
像y=50-0.1x这样,用关于自变量的数
学式子表示函数与自变量之间的关系,
是描述函数的常用方法.这种式子叫做函
数的解析式.
巩固练习
1.某中学的校办工厂现在年产值是15万元,计划今后每年增加
初中人教版数学八年级下册:19.1.1 第2课时 函 数 习题课件(含答案)
(2)求距地面 3 km 处的气温 T; (3)求气温为-6 ℃处距地面的高度 h. (2)当 h=3 时,T=24-6×3=6(℃). 答:距地面 3 km 处的气温 T 为 6 ℃. (3)当 T=-6 时,-6=24-6h,解得 h=5. 答:气温为-6 ℃处距地面的高度 h 为 5 km.
方法点拨:在实际问题中,要注意自变量的 取值要符合实际意义.
1.下列几个式子,其中 y 是 x 的函数的是( A )
A.y=2x
B.y2=2x
C.y=±2x D.|y|=2x
2.在函数关系式 y=1x2-1 中,当自变量 x=2-1 C.1 D.2
知识要点 1 函数的概念 函数:在一个变化过程中,有两个变量 x,y,
对于 x 的每一个确定的值,y 都有 唯一 确定的值 与它对应.x 是 自变量 ,y 是 x 的 函数 .
函数值:如果当 x=a 时,y=b,那么 b 叫做当自变 量的值为 a 时的 函数值 . 解题策略:判断变量 y 是否为变量 x 的函数,要抓 住三个特点:①在同一变化过程中;②有两个变量; ③本质上是一种对应关系,给定一个 x 的值,确定 唯一一个 y 的值;而对应 y 的一个值,自变量 x 的 取值不一定只有一个.
例 水箱内原有水 200 升,7:30 打开水龙头,以 2 升/分的速度放水,设经过 t 分钟时,水箱内存水 y 升. (1)求 y 关于 t 的函数关系式和自变量的取值范围; (2)7:55 时,水箱内还有多少水? (3)几点几分水箱内的水恰好放完?
分析:(1)根据水箱内还有的水等于原有水减去放 掉的水列式整理即可,再根据剩余水量不小于 0 列 不等式求出 t 的取值范围;(2)当 7:55 时,55- 30=25(分钟),将 t=25 代入(1)中的关系式即 可;(3)令 y=0,求出 t 的值即可.
19.1.1变量与函数.1.1常量与变量ppt公开课课件
(注:变量和常量是相对的)
2.若1吨民用自来水的价格为3.2元,则所交水费金额y(元)
与使用自来水的数量x(吨)之间的关系为_y__=__3_._2_x__,其 中变量是__y_,__x___,常量是__3_._2___.
知识点1:常量与变量判别
1、在面积S一定的ABC,若它的底边是a, 底边上的高是h,则在三角形的面积公式
a和h S 1 ah中,变量是 2
,常量是 1 和s 2
2、圆的周长公式C 2r(其中C为周长,r为半径)中,变量是
常量是 2和
r和c,
3、常量和变量是在“某一过程中”来研究、确定的,以S vt为例,若速度v固定,
v 则常量是
,变量是 s和h
想一想: 常量和变量是对某一变化过程来说的,
所挂重物
1
2
(kg)
受力后的弹
簧长度L 10.5 11
(cm)
3
4
5
11.5 12 12.5
m
10+0.5m
2.试用含m的式子表示L: L=_1__0_+_0__.5__m___
1.某市的自来水价为4元/t,现要抽取若干户居民调查水费支出 情况,记某户每月用水量为X t,月应交水费为y元。
y=4x
V 400h 高h(单位:cm)之间关系式__________
4.某种报纸的价格是每份0.4元,买x份报纸的总价为y元,先填写下表,再用 含x的式子表示y.
份数/份 1
2
3
4…
总价/元 0.4 0.8 1.2 1.6 …
x与y之间的关系式为__y_=___0__._4_x__.这个问题中,_0__._4是常量,x__,___y__是变量.
2.若1吨民用自来水的价格为3.2元,则所交水费金额y(元)
与使用自来水的数量x(吨)之间的关系为_y__=__3_._2_x__,其 中变量是__y_,__x___,常量是__3_._2___.
知识点1:常量与变量判别
1、在面积S一定的ABC,若它的底边是a, 底边上的高是h,则在三角形的面积公式
a和h S 1 ah中,变量是 2
,常量是 1 和s 2
2、圆的周长公式C 2r(其中C为周长,r为半径)中,变量是
常量是 2和
r和c,
3、常量和变量是在“某一过程中”来研究、确定的,以S vt为例,若速度v固定,
v 则常量是
,变量是 s和h
想一想: 常量和变量是对某一变化过程来说的,
所挂重物
1
2
(kg)
受力后的弹
簧长度L 10.5 11
(cm)
3
4
5
11.5 12 12.5
m
10+0.5m
2.试用含m的式子表示L: L=_1__0_+_0__.5__m___
1.某市的自来水价为4元/t,现要抽取若干户居民调查水费支出 情况,记某户每月用水量为X t,月应交水费为y元。
y=4x
V 400h 高h(单位:cm)之间关系式__________
4.某种报纸的价格是每份0.4元,买x份报纸的总价为y元,先填写下表,再用 含x的式子表示y.
份数/份 1
2
3
4…
总价/元 0.4 0.8 1.2 1.6 …
x与y之间的关系式为__y_=___0__._4_x__.这个问题中,_0__._4是常量,x__,___y__是变量.
19.1.1 变量与函数 课件(共16张PPT) 人教版初中数学八年级下册
(2)用关系式表示你猜想的变化规律,并指出关系式中的常量. 变化规律满足:y=280-x,关系式中的常量是:数字280.
当堂检测
指出下列问题中的变量和常量: (1)购买一些铅笔,单价为0.2元/支,记某同学购买铅笔 的数量为x支,应付的总价为y元;关系式为 y=0.2x 。 其中的变量是 x、y ,常量是 0.2 。
例3、根据销售记录,某型号的服装每天的售价x(元/件 )与当日的销售量y(件)的变化关系如下表:
每天的销售价 x(元/件) 200 190 180 170 160 150 140 …
每天的销售量 y(件) 80 90 100 110 120 130 140 …
(1)在这个变化过程中,有哪些变量?是哪一个量随 哪一个量的变化而变化?并指出其中的常量. 变量有:服装每天的售价x(元/件)和当日的销售量y(件), 当日的销售量y随服装每天的售价x的变化而变化.
t/h s/km
1 2345 60 120 180 240 300
在这个变化的过程中,行驶的 速度 60km/h 是固
定不变的,行驶的 路程s和时间t
是不断变化的.
路程s 着 时间t 的变化而变化.
试用含t的式子表示s 是__s_=6_0_t____
探究 (2)电影票售价为10元/张,第一场售出150张票,第二场售出205 张票,第三场售出310张票,三场电影的票房收入各多少元?设一场 电影售出x张票,票房收入y元. y的值随x的值的变化而变化吗?
x
a
图1
图2
瓶子或罐头盒等物体常如下图那样堆放,试确定瓶子总数 y与层数x之间的关系式.
x1 2 3 …
x
y 1 1+2 1+2+3 … 1+2+3+ …+x
当堂检测
指出下列问题中的变量和常量: (1)购买一些铅笔,单价为0.2元/支,记某同学购买铅笔 的数量为x支,应付的总价为y元;关系式为 y=0.2x 。 其中的变量是 x、y ,常量是 0.2 。
例3、根据销售记录,某型号的服装每天的售价x(元/件 )与当日的销售量y(件)的变化关系如下表:
每天的销售价 x(元/件) 200 190 180 170 160 150 140 …
每天的销售量 y(件) 80 90 100 110 120 130 140 …
(1)在这个变化过程中,有哪些变量?是哪一个量随 哪一个量的变化而变化?并指出其中的常量. 变量有:服装每天的售价x(元/件)和当日的销售量y(件), 当日的销售量y随服装每天的售价x的变化而变化.
t/h s/km
1 2345 60 120 180 240 300
在这个变化的过程中,行驶的 速度 60km/h 是固
定不变的,行驶的 路程s和时间t
是不断变化的.
路程s 着 时间t 的变化而变化.
试用含t的式子表示s 是__s_=6_0_t____
探究 (2)电影票售价为10元/张,第一场售出150张票,第二场售出205 张票,第三场售出310张票,三场电影的票房收入各多少元?设一场 电影售出x张票,票房收入y元. y的值随x的值的变化而变化吗?
x
a
图1
图2
瓶子或罐头盒等物体常如下图那样堆放,试确定瓶子总数 y与层数x之间的关系式.
x1 2 3 …
x
y 1 1+2 1+2+3 … 1+2+3+ …+x
人教版八年级下册数学第十九章《 19.1变量与函数》优课件(共28张PPT)
在问题三中,是否各有两个变量?同一 个问题中的变量之 间有什么联系?
问题三
在一根弹簧的下端挂重物,改变并记录重物的质量, 观察并记录弹簧长度的变化,探索它们的变化规律。如 果弹簧长原长为10cm,每1千克重物使弹簧伸长0.5cm,
怎样用含重物质量x(单位:kg)的式子表示受力后的
弹簧长度 L(单位:cm)?
八年级 数学
第十九章 一次函数
19.1.1变量与函数
解:∵花盆图案形如三角形,每边花有n个,总共有3n个, 其中重复了算3个。
∴ s 与 n 的函数关系式为: s = 3n-3
八年级 数学
第十九章 一次函数
19.1.1变量与函数 课堂练习(备用)
4、节约资源是当前最热门的话题,我市居民每月用电 不超过100度时,按0.57元/度计算;超过100度电时,其中不 超过100度部分按0.57元/度计算,超过部分按0.8元/度计算.
常量:在一个变化过程中,数值始终不变的量为常量。
请指出上面各个变化过程中的常量、变量。
八年级 数学
第十九章 一次函数
19.1 .1 变量与函数
探究:指出下列关系式中的变量与常量:
(1) y = 5x -6
6
(2) y= x
(3) y= 4x2+5x-7 (4) S = Лr2
巩固练习
• 填空:
• 1、计划购买50元的乒乓球,所能购买的总数
2.圆的周长公式C2r,这里的变量是 r和C ,常量
是 2 。
3.下列表格是王辉从4岁到10岁的体重情况
年龄(岁) 4 5 6 7 8 9
10 …
体重(千克)15.4 16.7 18.0 19.6 21.5 23.2 25.2 …
19.1.1变量与函数(第二课时)
变量与函数
变量与函数
(1)在一个变化过程 中
数值不发生变化的量 常量 数值发生变化的量 变量
(2)函数的定义:(包括y值的存在性和唯一性)
一般地,在一个变化过程中,如果有两个变量x与y, 并且对于x的每一个确定的值,y都有唯一确定的值与 其对应,那么我们就说x是自变量,y是x的函数。
(3)函数值的定义: 如果当x=a时y=b,那么b叫做当自变量的值为a时的 函数值
1.下列关系中,y不是x函数的是(
Байду номын сангаасD)
x A. y 2
B. y x
2
C. y x D. y x
A
y=2x+15
X≥1且为整数
x ≠ -1
3、等腰三角形ABC的周长为10, 底边BC长
为 y , 腰AB长为
x, 求:
(1)y关于 x 的函数解析式; (2)腰长AB=3时,底边的长. (3)自变量的取值范围;
3 x2
n 1
∴自变量 n 的取值范围: n≥1
解: 由n-1≥0得n≥1
解:由x+2 ≠ 0得 x≠-2 (4)h
∴自变量 n 的取值范围: x≠-2
1 k k 1
k≤1且k ≠-1
解:自变量的取值范围是:
1.求下列函数中自变量x的取值范围
(1)y= (3)y=
5x 7 2
;(2)y=x2-x-2; ;(4)y=
年份 1984 人口数(亿) 10.34
1989 1994
1999
11.06 11.76
12.52
是
(5)如图,是体检时的心电图,其中横坐标x表示 时间,纵坐标y表示心脏某部位的生物电流,它 们是两个变量,其中y是x的函数吗?
变量与函数
(1)在一个变化过程 中
数值不发生变化的量 常量 数值发生变化的量 变量
(2)函数的定义:(包括y值的存在性和唯一性)
一般地,在一个变化过程中,如果有两个变量x与y, 并且对于x的每一个确定的值,y都有唯一确定的值与 其对应,那么我们就说x是自变量,y是x的函数。
(3)函数值的定义: 如果当x=a时y=b,那么b叫做当自变量的值为a时的 函数值
1.下列关系中,y不是x函数的是(
Байду номын сангаасD)
x A. y 2
B. y x
2
C. y x D. y x
A
y=2x+15
X≥1且为整数
x ≠ -1
3、等腰三角形ABC的周长为10, 底边BC长
为 y , 腰AB长为
x, 求:
(1)y关于 x 的函数解析式; (2)腰长AB=3时,底边的长. (3)自变量的取值范围;
3 x2
n 1
∴自变量 n 的取值范围: n≥1
解: 由n-1≥0得n≥1
解:由x+2 ≠ 0得 x≠-2 (4)h
∴自变量 n 的取值范围: x≠-2
1 k k 1
k≤1且k ≠-1
解:自变量的取值范围是:
1.求下列函数中自变量x的取值范围
(1)y= (3)y=
5x 7 2
;(2)y=x2-x-2; ;(4)y=
年份 1984 人口数(亿) 10.34
1989 1994
1999
11.06 11.76
12.52
是
(5)如图,是体检时的心电图,其中横坐标x表示 时间,纵坐标y表示心脏某部位的生物电流,它 们是两个变量,其中y是x的函数吗?
人教版初中八年级下 19.1.2函数
时间t/s 油温w/℃ 0 10 10 25 20 40 30 55
请你按下面的问题进行思考: (2)能写出w 与t 的函数解析式吗?
小明想用最大刻度为100℃的温度计测量食用 油的沸点温度(远高于100℃),显然不能直接测量, 于是他想到了另一种方法,把常温10℃的食用油放在锅 内用煤气灶均匀地加热,开始加热后,每隔10 s 测量一 次油温,共测量了4次,测得的数据如下:
时间t/s 油温w/℃ 0 10 10 25 20 40 30 55
请你按下面的问题进行思考: (1)在这个测量过程中,锅中油的温度w 是加热时 间t 的函数吗?
小明想用最大刻度为100℃的温度计测量食用 油的沸点温度(远高于100℃),显然不能直接测量, 于是他想到了另一种方法,把常温10℃的食用油放在锅 内用煤气灶均匀地加热,开始加热后,每隔10 s 测量一 次油温,共测量了4次,测得的数据如下:
1 (5) y x 1 1 x
x4 ( 6) y 9 x
求下列函数中自变量x的取值范围:
(1) y=3x-1; (2) y=2x2+7; 1 (3) y= ; (4) y= x 2. x2
作业
• 必做:书81---83页 第1-----5题,10、11 题 • 能力培养51页1-----7 • 选作:能力培养52页8----10
6
(3)正多边形的内角和度数y随变数n的变化 情况. y= (n-2) ×180°
x
例1、求出下列函数中自变量的取值范围 (1)y=2x
3 ( 3) y x2
(2)
m n 1
1 k k 1
(4) h
求下列函数中自变量x的取值范围:
(1) y=3x-1; (2) y=2x2+7; 1 (3) y= ; (4) y= x 2. x2
请你按下面的问题进行思考: (2)能写出w 与t 的函数解析式吗?
小明想用最大刻度为100℃的温度计测量食用 油的沸点温度(远高于100℃),显然不能直接测量, 于是他想到了另一种方法,把常温10℃的食用油放在锅 内用煤气灶均匀地加热,开始加热后,每隔10 s 测量一 次油温,共测量了4次,测得的数据如下:
时间t/s 油温w/℃ 0 10 10 25 20 40 30 55
请你按下面的问题进行思考: (1)在这个测量过程中,锅中油的温度w 是加热时 间t 的函数吗?
小明想用最大刻度为100℃的温度计测量食用 油的沸点温度(远高于100℃),显然不能直接测量, 于是他想到了另一种方法,把常温10℃的食用油放在锅 内用煤气灶均匀地加热,开始加热后,每隔10 s 测量一 次油温,共测量了4次,测得的数据如下:
1 (5) y x 1 1 x
x4 ( 6) y 9 x
求下列函数中自变量x的取值范围:
(1) y=3x-1; (2) y=2x2+7; 1 (3) y= ; (4) y= x 2. x2
作业
• 必做:书81---83页 第1-----5题,10、11 题 • 能力培养51页1-----7 • 选作:能力培养52页8----10
6
(3)正多边形的内角和度数y随变数n的变化 情况. y= (n-2) ×180°
x
例1、求出下列函数中自变量的取值范围 (1)y=2x
3 ( 3) y x2
(2)
m n 1
1 k k 1
(4) h
求下列函数中自变量x的取值范围:
(1) y=3x-1; (2) y=2x2+7; 1 (3) y= ; (4) y= x 2. x2
19.1.1变量与函数(2)
分钟内完成P74练习第1、2题。
当堂练习
必做题
2.教材P81第1、2题。
选做题
教材P82第4、5题。
19.1.1
变量与函数(二)
学习目标
• 理解函数的概念
• 能准确的求出函数解析式,并能确 定自变量的取值范围
自学指导(一)
1. 回顾教材第71页4个问题并阅读P72“思考”以 下四段内容。归纳问题 (1)~(4)中分别有几个变 量?哪几个?同一题中这几个变量之间有什么 联系? 2.仔细阅读P73“思考”及以下三段内容,归纳 并掌握“自变量”“函数”“函数值”的概念。 (限时5分钟,看谁完成得又快又好)
自学指导(二)
1.仔细阅读P73例1及云图提示,思考y与x的函 数关系式应写成什么形式,本题中自变量 的范围是怎样确定的? 2.阅读P74练习上的最后一段,了解什么是函 数的解析式。 (限时4分钟,看谁完成得又快又好)
学以致用
1.下列变量y是否是自变量x的函数?为什么? (1)任意一个实数x,它的立方根为y. (2)任意一个正数x,它的平方根为y. (3)任意一个实数x,它的立方为y. (4)任意一个实数x,它的平方为y. 2.已知3x-y=2,如果把y看成x的函数,则函 数关系式为 .
当堂练习
必做题
2.教材P81第1、2题。
选做题
教材P82第4、5题。
19.1.1
变量与函数(二)
学习目标
• 理解函数的概念
• 能准确的求出函数解析式,并能确 定自变量的取值范围
自学指导(一)
1. 回顾教材第71页4个问题并阅读P72“思考”以 下四段内容。归纳问题 (1)~(4)中分别有几个变 量?哪几个?同一题中这几个变量之间有什么 联系? 2.仔细阅读P73“思考”及以下三段内容,归纳 并掌握“自变量”“函数”“函数值”的概念。 (限时5分钟,看谁完成得又快又好)
自学指导(二)
1.仔细阅读P73例1及云图提示,思考y与x的函 数关系式应写成什么形式,本题中自变量 的范围是怎样确定的? 2.阅读P74练习上的最后一段,了解什么是函 数的解析式。 (限时4分钟,看谁完成得又快又好)
学以致用
1.下列变量y是否是自变量x的函数?为什么? (1)任意一个实数x,它的立方根为y. (2)任意一个正数x,它的平方根为y. (3)任意一个实数x,它的立方为y. (4)任意一个实数x,它的平方为y. 2.已知3x-y=2,如果把y看成x的函数,则函 数关系式为 .
人教版变量与函数免费课件
展
1.阅读课本71页.找出下面问题中的常量和变量: (1)汽油的价格是7.4元/升,加油 x L,车主加油付油费 y 元. (2)小明看一本200 页的小说,看完这本小说需要t 天,平均每天所看的页数 为 n页. (3)用长为40 cm 的绳子围矩形,围成的矩形一边长为 x cm,其面积为 S cm2 . (4)圆形水波慢慢地扩大,在这一过程中,当圆的半径r,圆的面积S cm2 .
•
2.该 类 题 目 考 察学 生对文 本的理 解,在 一定程 度上是 在考察 学生对 这类题 型答题 思路。 因此一 定要将 这些答 题技巧 熟记于 心,才 能自如 运用。
•
3. 结 合 实 际 , 结合 原文, 根据知 识库存 ,发散 思维, 大胆想 象。由 文章内 容延伸 到现实 生活, 对现实 生活中 相关现 象进行 解释。 对人类 关注的 环境问 题等提 出解决 的方法 ,这种 题考查 的是学 生的综 合能力 ,考查 的是学 生对生 活的关 注情况 。
感谢观看,欢迎指导!
•
6.另 外 , 木 质 材料 受温度 、湿度 的影响 比较大 ,榫卯 同质同 构的链 接方式 使得连 接的两 端共同 收缩或 舒张, 整体结 构更加 牢固。 而铁钉 等金属 构件与 木质材 料在同 样的热 力感应 下,因 膨胀系 数的不 同,从 而在连 接处引 起松动 ,影响 整体的 使用寿 命。
•
4.做 好 这 类 题 首先 要让学 生对所 给材料 有准确 的把握 ,然后 充分调 动已有 的知识 和经验 再迁移 到文段 中来。 开放性 试题, 虽然没 有规定 唯一的 答案, 可以各 抒已见 ,但在 答题时 要就材 料内容 来回答 问题。
•
5.木 质 材 料 由 纵向 纤维构 成,只 在纵向 上具备 强度和 韧性, 横向容 易折断 。榫卯 通过变 换其受 力方式 ,使受 力点作 用于纵 向,避 弱就强 。
人教版八年级数学下册19.1.1变量与函数(2) 课件
等号右边是开偶次方的式子,自变量的取值
范围是使根号下的式子的值大于或等于0的实数,例如:
= − 3.
④.零次型
等号右边是自变量的零次幂或负整数次幂,
自变量的取值范围是使幂的底数不为0的实数,例如:
= 0.
新知探究
例5 汽车的油箱中有汽油50L,如果不再加油,那么油箱中的
油量y(单位:L)随行驶里程x(单位:km)的增加而减少,
的函数. 例如,问题1中的s=3t,问题2中的S=x(5-x)
如果当x=a时y=b,那么b叫做当自变量的值为a时
的函数值.
新知小结
2.判断一个关系是否是函数关系的方法
①看是否在一个变化过程中;
②看是否存在两个变量;
3个条件
缺一不可
③看每当变量确定一个值时,另外一个变量是否都有唯一
确定的值与之相对应.
平均耗油量为0.1L/km.
(1)写出表示y与x的函数关系的式子;
叫做函数的解析式
解:函数关系式为: y = 50-0.1x.
0.1x表示的意义是什么?
新知探究
(2)指出自变量x的取值范围;
解: 由x≥0及50-0.1x ≥0得
0 ≤ x ≤ 500.
汽车行驶里程,油箱中
的油量均不能为负数!
∴自变量的取值范围是
化;当一个变量确定时,另一个变量也随之确定.
新知探究
奥运会火炬手以3米/秒的速度
跑步前进传递火炬,传递路程为s
米,传递时间为t秒,怎样用含t的
式子表示 s?
新知探究
知识点 1
函数的有关概念
问题1 全运会火炬手以3米/秒的速度跑步前进传递火炬,传
递路程为s米,传递时间为t秒,填写下表:
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
甲车的运动时间为x(h),甲、乙两车相距为y(km).
(1)写出表示y与x的函数关系的式子;
(2)指出自变量x的取值范围;
(3)当甲车行驶1h时,两车相距多远?
(4)求当两车相距50 km时,甲车行驶的时间 .
活动六:升华概念
问 我市白天乘坐出租车收费标准如下:乘坐里程不超
过3公里,一律收费8元;超过3公里时,超过3公里
题 的部分,每公里加收1.8元;设乘坐出租车的里程为x 探 (公里)(x为整数),相对应的收费为y(元).
(1)请分别写出当0<x≤3和x>3时,表示y与x
究 的关系式,并直接写出当x=2和x=6时对应的y值;
(2)当0<x≤3和x>3时,y都是x的函数吗?为 什么?
解:(1)当0<x≤3时,y=8; 当x>3时,y=8+1.8(x-3)=1.8x+2.6. 当x=2时,y=8;x=6时,y=1.8×6+2.6=13.4. (2)当0<x≤3和x>3时,y都是x的函数,因为对于
x的每一个确定的值,y都有唯一确定的值与其对应.
系式分别为:
究 (1)s=60t;(2)y=10x;(3)S=πr²;(4)y=5-x.
问题2:在上面的4个问题中,是哪一个量随哪一个量的变化而 变化?当一个变量取定一个值时,另一个变量的值是唯一确定 的吗?
问题3:在上面的4个问题中,两个变量之间的对应关系有什么 共同特征?请你再举出一些对应关系具有这种共同特征的例子.
活动四:辨析概念 问 题
S=x²,S是x的函数,x是自变量;
探 究
y=0.1x,y是x的函数,x是自变量;
y = —1n0—6 ,y是n的函数,n是自变量;
v=10-0.05t,v是t的函数,t是自变量.
活动四:辨析概念
问
问题2:下列式子中的y是x的函数吗?为什么?若 y不是x的函数,怎样改变,才能使y是x的函数?
活动四:辨析概念
问
题
问题4:下列曲线中,表示y不是x的函数是( ), 怎样改动这条曲线,才能使y是x的函数?
探 y
y
y
y
究
O
x
O
x
O
x
O
x
A
B
C
D
选B. 将第一象限或第三象限的曲线去掉等,只要满足“对 于x的每一个确定的值,y都有唯一确定的值与其对应”,都 能使y是x的函数.
活动五:运用概念
问
教材例1:
这两个变化都满足y随x的变化而变化,且当x取定一个值时,y都有唯一确定 的值与其对应.
活动三:形成概念
问
问题1:函数是反映一个变化过程中的两个变量之间的一种特殊对应
题 关系,请你根据上述6个问题中两个变量之间对应关系的共同特征,
用恰当的语言给函数下定义.
探
一般地,在一个变化过程中,如果有两个变量x和y,并且对于x的
作业布置
1.完成教材第75页练习第2题,习题19.1第1~5题及第10、11题.
2. 下列图形中的曲线不表示y是x的函数的是( )
y
y
y
y
Ox
O
x
Байду номын сангаас
O
x
O
x
A
B
C
D
3. 甲、乙两辆汽车分别从相距200 km的A、B两地同时出
发,相向而行,甲的平均速度为60 km/h,乙的平均速度
为 40 km/h,当甲乙两车相遇时,两车都停止运动,设
八年级下册 数学 第19单元
兴城市初中数学教研团队
19.1 (2) 变量与函数
执教教师:辽工大附中 雷明
活动一:创设情境
问 问题1:在上一节课“活动二”的问题(1)~(4)中,是否都
题
存在两个变量?请你用所学知识写出能表示同一个问题中的两 个变量之间对应关系的式子.
探 问题(1)~(4)中都存在两个变量,表示两个变量之间的关
究 每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是
自变量(independent variable),y是x的函数(function).
问题2:在这个定义中,前提条件是什么?对应关系是什么?如何理 解“x的每一个确定的值”中的“确定”?x的取值有限制范围吗?
前提条件是:一个变化过程中只有两个变量;两个变量之间的 对应关系是“x的每一个确定的值,y都有唯一确定的值与其对 应”. “x的每一个确定的值”中的“确定”是指x的取值要符合 变化过程的实际意义.
题
(1) y 2x 3
(2)
y
1 x 1
(3) y x 2
探
(1)、(2)中y是x的函数,因为对于x的每一个确定的值,y都有唯
一确定的值与其对应;(3)中,y不是x的函数,因为对于x的每一个
究
确定的值,y都有两个确定的值与其对应.将关系式改为 y x 2
或 y x 2 ,都能使y是x的函数.
以上四个变化过程中,两个变量之间的对应关系都满足: 对于一个变量取定一个值时,另一个变量就有唯一确定的 值与其对应.
活动二:再设情境
问 题 探 究
问题:分别指出思考(1)~(2)中所涉及的两个变量,在这两个变量 中,是哪一个量随哪一个量的变化而变化?两个变量之间的对应关系是 否与上面4个思考中对应关系的共同特征一致?
题
汽车油箱有汽油50 L,如果不再加油,那么油箱
探
中的油量y(单位:L)随行驶路程 x(单位:km) 的增加而减少,平均油耗为0.1L/km.
究
(1)写出表示y与x的函数关系的式子;
(2)指出自变量x的取值范围;
(3)汽车行驶200 km时,油箱中还有多少汽油?
解:(1)关系式为:y=50-0.1x; (2) 0≤x≤500; (3)∵当x=200时,y=50-0.1×200=30, ∴汽车行驶200 km时,油箱中还有30L汽油.
问题3:变量x与y的对应关系如下表所示:
x
1
4
9
16
25
…
y
±1 ±2 ±3 ±4 ±5
…
问:变量y是x的函数吗?为什么?若要使y是x的 函数,可以怎样改动表格?
y不是x的函数,因为对于x的每一个确定的值,y都有两个确定的值与 其对应. 要使y是x的函数,可以将表格中y的每一个值中的“±”改为 “+”或“-”.
活动三:形成概念
问
题
问题3:如何理解“对于x的每一个确定的值,y都有唯一确定 的值与其对应”这句话?请举例说明.
探
指明了变量x与y的对应关系可以是:“一对一”“二对
究
一”或“多对一”,如果是“一对多”的情况就不是函
数了.
问题4:函数值由谁来确定?怎样求函数值?
确定函数值必须是首先确定两个变量之间的对应关系, 然后确定自变量的值,根据对应关系确定函数值.