19.1.1变量与函数(第2课件)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
系式分别为:
究 (1)s=60t;(2)y=10x;(3)S=πr²;(4)y=5-x.
问题2:在上面的4个问题中,是哪一个量随哪一个量的变化而 变化?当一个变量取定一个值时,另一个变量的值是唯一确定 的吗?
问题3:在上面的4个问题中,两个变量之间的对应关系有什么 共同特征?请你再举出一些对应关系具有这种共同特征的例子.
甲车的运动时间为x(h),甲、乙两车相距为y(km).
(1)写出表示y与x的函数关系的来自百度文库子;
(2)指出自变量x的取值范围;
(3)当甲车行驶1h时,两车相距多远?
(4)求当两车相距50 km时,甲车行驶的时间 .
八年级下册 数学 第19单元
兴城市初中数学教研团队
19.1 (2) 变量与函数
执教教师:辽工大附中 雷明
活动一:创设情境
问 问题1:在上一节课“活动二”的问题(1)~(4)中,是否都

存在两个变量?请你用所学知识写出能表示同一个问题中的两 个变量之间对应关系的式子.
探 问题(1)~(4)中都存在两个变量,表示两个变量之间的关

汽车油箱有汽油50 L,如果不再加油,那么油箱

中的油量y(单位:L)随行驶路程 x(单位:km) 的增加而减少,平均油耗为0.1L/km.

(1)写出表示y与x的函数关系的式子;
(2)指出自变量x的取值范围;
(3)汽车行驶200 km时,油箱中还有多少汽油?
解:(1)关系式为:y=50-0.1x; (2) 0≤x≤500; (3)∵当x=200时,y=50-0.1×200=30, ∴汽车行驶200 km时,油箱中还有30L汽油.
(2)当0<x≤3和x>3时,y都是x的函数吗?为 什么?
解:(1)当0<x≤3时,y=8; 当x>3时,y=8+1.8(x-3)=1.8x+2.6. 当x=2时,y=8;x=6时,y=1.8×6+2.6=13.4. (2)当0<x≤3和x>3时,y都是x的函数,因为对于
x的每一个确定的值,y都有唯一确定的值与其对应.
活动四:辨析概念


问题4:下列曲线中,表示y不是x的函数是( ), 怎样改动这条曲线,才能使y是x的函数?
探 y
y
y
y

O
x
O
x
O
x
O
x
A
B
C
D
选B. 将第一象限或第三象限的曲线去掉等,只要满足“对 于x的每一个确定的值,y都有唯一确定的值与其对应”,都 能使y是x的函数.
活动五:运用概念

教材例1:
这两个变化都满足y随x的变化而变化,且当x取定一个值时,y都有唯一确定 的值与其对应.
活动三:形成概念

问题1:函数是反映一个变化过程中的两个变量之间的一种特殊对应
题 关系,请你根据上述6个问题中两个变量之间对应关系的共同特征,
用恰当的语言给函数下定义.

一般地,在一个变化过程中,如果有两个变量x和y,并且对于x的
活动六:升华概念
问 我市白天乘坐出租车收费标准如下:乘坐里程不超
过3公里,一律收费8元;超过3公里时,超过3公里
题 的部分,每公里加收1.8元;设乘坐出租车的里程为x 探 (公里)(x为整数),相对应的收费为y(元).
(1)请分别写出当0<x≤3和x>3时,表示y与x
究 的关系式,并直接写出当x=2和x=6时对应的y值;
活动三:形成概念


问题3:如何理解“对于x的每一个确定的值,y都有唯一确定 的值与其对应”这句话?请举例说明.

指明了变量x与y的对应关系可以是:“一对一”“二对

一”或“多对一”,如果是“一对多”的情况就不是函
数了.
问题4:函数值由谁来确定?怎样求函数值?
确定函数值必须是首先确定两个变量之间的对应关系, 然后确定自变量的值,根据对应关系确定函数值.

(1) y 2x 3
(2)
y
1 x 1
(3) y x 2

(1)、(2)中y是x的函数,因为对于x的每一个确定的值,y都有唯
一确定的值与其对应;(3)中,y不是x的函数,因为对于x的每一个

确定的值,y都有两个确定的值与其对应.将关系式改为 y x 2
或 y x 2 ,都能使y是x的函数.
以上四个变化过程中,两个变量之间的对应关系都满足: 对于一个变量取定一个值时,另一个变量就有唯一确定的 值与其对应.
活动二:再设情境
问 题 探 究
问题:分别指出思考(1)~(2)中所涉及的两个变量,在这两个变量 中,是哪一个量随哪一个量的变化而变化?两个变量之间的对应关系是 否与上面4个思考中对应关系的共同特征一致?
究 每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是
自变量(independent variable),y是x的函数(function).
问题2:在这个定义中,前提条件是什么?对应关系是什么?如何理 解“x的每一个确定的值”中的“确定”?x的取值有限制范围吗?
前提条件是:一个变化过程中只有两个变量;两个变量之间的 对应关系是“x的每一个确定的值,y都有唯一确定的值与其对 应”. “x的每一个确定的值”中的“确定”是指x的取值要符合 变化过程的实际意义.
作业布置
1.完成教材第75页练习第2题,习题19.1第1~5题及第10、11题.
2. 下列图形中的曲线不表示y是x的函数的是( )
y
y
y
y
Ox
O
x
O
x
O
x
A
B
C
D
3. 甲、乙两辆汽车分别从相距200 km的A、B两地同时出
发,相向而行,甲的平均速度为60 km/h,乙的平均速度
为 40 km/h,当甲乙两车相遇时,两车都停止运动,设
活动四:辨析概念 问 题
S=x²,S是x的函数,x是自变量;
探 究
y=0.1x,y是x的函数,x是自变量;
y = —1n0—6 ,y是n的函数,n是自变量;
v=10-0.05t,v是t的函数,t是自变量.
活动四:辨析概念

问题2:下列式子中的y是x的函数吗?为什么?若 y不是x的函数,怎样改变,才能使y是x的函数?
问题3:变量x与y的对应关系如下表所示:
x
1
4
9
16
25

y
±1 ±2 ±3 ±4 ±5

问:变量y是x的函数吗?为什么?若要使y是x的 函数,可以怎样改动表格?
y不是x的函数,因为对于x的每一个确定的值,y都有两个确定的值与 其对应. 要使y是x的函数,可以将表格中y的每一个值中的“±”改为 “+”或“-”.
相关文档
最新文档