整式,分式,因式分解,二次根式解题技巧

合集下载

整式,分式,因式分解,二次根式解题技巧

整式,分式,因式分解,二次根式解题技巧

1.整式用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子叫代数式.单独的一个数或一个字母也是代数式.只含有数与字母的积的代数式叫单项式.注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如:b a 2314-这种表示就是错误的,应写成:b a 2313-.一个单项式中,所有字母的指数的和叫做这个单项式的次数.如:c b a 235-是六次单项式.几个单项式的和叫多项式.其中每个单项式叫做这个多项式的项.多项式中不含字母的项叫做常数项.多项式里次数最高的项的次数,叫做这个多项式的次数.单项式和多项式统称整式.用数值代替代数式中的字母,按照代数式指明的运算,计算出的结果,叫代数式的值.注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入(2)求代数式的值,有时求不出其字母的值,需要利用技巧,利用“整体”代入.2.同类项所含字母相同,并且相同字母的指数也分别相同的项叫做同类项.几个常数项也是同类项.注意:(1)同类项与系数大小没有关系;(2)同类项与它们所含字母的顺序没有关系.把多项式中的同类项合并成一项,叫做合并同类项.合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.去括号法则1:括号前是“+” ,把括号和它前面的“+”号一起去掉,括号里各项都不变号.去括号法则2:括号前是“-” ,把括号和它前面的“-”号一起去掉,括号里各项都变号.整式的加减法运算的一般步骤:(1)去括号;(2)合并同类项.同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.如:n m n m a a a +=⋅(n m ,都是正整数).幂的乘方法则:幂的乘方,底数不变,指数相乘.如:()mn n m a a =(n m ,都是正整数).积的乘方法则:积的乘方,等于把积的每一个因式分别乘方,再把所有的幂相乘.如:()n n n b a ab =(n 为正整数).单项式的乘法法则:单项式乘以单项式,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.注意:单项式乘以单项式的结果仍然是单项式.单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.如:()mc mb ma c b a m ++=++(c b a m ,,,都是单项式).注意:①单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同.②计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号.多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.注意:多项式与多项式相乘的展开式中,有同类项的要合并同类项.①平方差公式:22))((b a b a b a -=-+;②完全平方公式:2222)(b ab a b a ++=+,2222)(b ab a b a +-=-;③立方和公式:3322))((b a b ab a b a +=+-+④立方差公式:3322))((b a b ab a b a -=++-;⑤ac bc ab c b a c b a 222)(2222+++++=++.注意:公式中的字母可以表示数,也可以表示单项式或多项式.同底数幂的除法法则:同底数幂相除,底数不变,指数相减.如:n m n m a a a -=÷(n m ,为正整数,0≠a ).注意:10=a (0≠a );p a aa p p ,0(1≠=-为正整数). 单项式的除法法则:单项式相除,把系数和同底数幂分别相除,作为商的因式,对于只在被除式里面含有的字母,则连同它的指数作为商的一个因式.多项式除以单项式的运算法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.注意:这个法则的适用范围必须是多项式除以单项式,反之,单项式除以多项式是不能这么计算的3.因式分解把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.注意:(1)因式分解专指多项式的恒等变形,即等式左边必须是多项式.例如:23248a ab b a ⨯=;()111+=+a aa a 等,都不是因式分解. (2)因式分解的结果必须是几个整式的积的形式.例如:()c b a c b a ++=++222,不是因式分解.(3)因式分解和整式乘法是互逆变形.(4)因式分解必须在指定的范围内分解到不能再分解为止.如:4425b a -在有理数范围内应分解为:()()222255b a b a -+;而在实数范围内则应分解为:()()()b a b a b a 55522-++.1、提公因式法:如果多项式的各项都含有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.提公因式法的关键在于准确的找到公因式,而公因式并不都是单项式;公因式的系数应取多项式整数系数的最大公约数;字母取多项式各项相同的字母;各字母指数取次数最低的.2、运用公式法:把乘法公式反过来,可以把符合公式特点的多项式分解因式,这种分解因式的方法叫做运用公式法.平方差公式:()()b a b a b a -+=-22.完全平方公式:()2222b a b ab a +=++;()2222b a b ab a -=+-.立方和公式:()()2233b ab a b a b a +-+=+.立方差公式:()()2233b ab a b a b a ++-=-.注意:运用公式分解因式,首先要对所给的多项式的项数,次数,系数和符号进行观察,判断符合哪个公式的条件.公式中的字母可表示数,字母,单项式或多项式.3、分组分解法:利用分组来分解因式的方法叫做分组分解法.分组分解法的关键是合理的选择分组的方法,分组时要预先考虑到分组后是否能直接提公因式或直接运用公式.4、十字相乘法:()()()q x p x pq x q p x ++=+++2.5、求根法:当二次三项式c bx ax ++2不易或不能写成用公式法或十字相乘法分解因式时,可先用求根公式求出一元二次方程02=++c bx ax 的两个根21,x x ,然后写成:()()212x x x x a c bx ax --=++.运用求根法时,必须注意这个一元二次方程02=++c bx ax 要有两个实数根.因式分解的一般步骤是:(1)如果多项式的各项有公因式,那么先提取公因式;(2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的次数:二项式可以尝试运用公式法分解因式;三项式可以尝试运用公式法、十字相乘法或求根法分解因式;四项式及四项式以上的可以尝试分组分解法分解因式;(3)分解因式必须分解到每一个因式都不能再分解为止.4. 分式一般的,用B A ,表示两个整式,B A ÷就可以表示成B A 的形式.如果B 中含有字母,式子BA 就叫做分式.其中,A 叫做分式的分子,B 叫做分式的分母.分式和整式通称为有理式.注意:(1)分母中含有字母是分式的一个重要标志,它是分式与分数、整式的根本区别;(2)分式的分母的值也不能等于零.若分母的值为零,则分式无意义;(3)当分子等于零而分母不等于零时,分式的值才是零.把一个分式的分子与分母的公因式约去,把分式化成最简分式,叫做分式的约分.一个分式约分的方法是:当分子、分母是单项式时,直接约分;当分子、分母是多项式时,把分式的分子和分母分解因式,然后约去分子与分母的公因式.一个分式的分子和分母没有公因式时,叫做最简分式,也叫既约分式.把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母 分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示是:MB M A M B M A B A ÷÷=⨯⨯=(其中M 是不等于零的整式). 分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.如: BA B A B A B A --=--=--= 分式的系数化整问题,是利用分式的基本性质,将分子、分母都乘以一个适当的不等于零的数,使分子、分母中的系数全都化成整数.当分子、分母中的系数都是分数时,这个“适当的数”应该是分子和分母中各项系数的所有分母的最小公倍数;当分子、分母中各项系数是小数时,这个“适当的数”一般是n 10,其中n 等于分子、分母中各项系数的小数点后最多的位数.例、不改变分式的值,把下列各分式分子与分母中各项的系数都化为整数,且使各项系数绝对值最小. (1)b a b a 41313121-+;(2)22226.0411034.0y x y x -+. 分析:第(1)题中的分子、分母的各项的系数都是分数,应先求出这些分数所有分母的最小公倍数,然后把原式的分子、分母都乘以这个最小公倍数,即可把系数化为整数;第(2)题的系数有分数,也有小数,应把它们统一成分数或小数,再确定这个适当的数,一般情况下优先考虑转化成分数.解:(1)b a b a b a b a b a b a 344612413112312141313121-+=⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛+=-+; (2)()()()2222222222222222125568560253040100)6.025.0(1003.04.06.0411034.0y x y x y x y x y x y x y x y x -+=-+=⨯-⨯+=-+ 222212568yx y x -+=. 1、分式的乘除法则:分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子表示是:bd ac d c b a =⨯;bcad c d b a d c b a =⨯=÷. 2、分式的乘方法则:分式乘方是把分子、分母各自乘方.用式子表示是: n n nb a b a =⎪⎭⎫ ⎝⎛(n 为整数). 3、分式的加减法则:①同分母的分式相加减,分母不变,把分子相加减.用式子表示是:cb ac b c a ±=±; ②异分母的分式相加减,先通分,变为同分母的分式,然后再加减.用式子表示是:bdbc ad d c b a ±=±. 分式的混合运算关键是弄清运算顺序,分式的加、减、乘、除混合运算也是先进行乘、除运算,再进行加、减运算,遇到括号,先算括号内的. 例、计算78563412+++++-++-++x x x x x x x x . 分析:对于这道题,一般采用直接通分后相加、减的方法,显然较繁,注意观察到此题的每个分式的分子都是一个二项式,并且每个分子都是分母与1的和,所以可以采取“裂项法” . 解:原式7175********+++++++-+++-+++=x x x x x x x x ⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛++-⎪⎭⎫ ⎝⎛++-++=711511311111x x x x ⎪⎭⎫ ⎝⎛+-+-+-+=71513111x x x x ()()()()752312++-++=x x x x ()()()()()()()()7531312752++++++-++=x x x x x x x x ()()()()75316416+++++=x x x x x . 点评:本题考查在分式运算中的技巧问题,要认真分析题目特点,找出简便的解题方法,此类型的题在解分式方程中也常见到.5.二次根式 式子)0(≥a a 叫做二次根式,二次根式必须满足:①含有二次根号“” ;②被开方数a 必须是非负数.如5,2)(b a -,)3(3≥-a a 都是二次根式若二次根式满足:①被开方数的因数是整数,因式是整式;②被开方数中不含能开得尽方的因数或因式,这样的二次根式叫最简二次根式,如a 5,223y x +,22b a +是最简二次根式,而b a ,()2b a +,248ab ,x 1就不是最简二次根式.化二次根式为最简二次根式的方法和步骤:①如果被开方数是分数(包括小数)或分式,先利用商的算术平方根的性质把它写成分式的形式,然后利用分母有理化进行化简.②如果被开方数是整数或整式,先将它分解因数或因式,然后把能开得尽方的因数或因式开出来.几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫同类二次根式.注意:当几个二次根式的被开方数相同时,也可以直接看出它们是同类二次根式.如24和243一定是同类二次根式.合并同类二次根式就是把几个同类二次根式合并成一个二次根式.合并同类二次根式的方法和合并同类项类似,把根号外面的因式相加,根式指数和被开方数都不变.把分母中的根号化去,叫分母有理化.如=+131 )13)(13(13-+-2131313-=--=. 两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个代数式互为有理化因式.如1313-+和;2323-+和;a 和a ;a b a a b a -+和都是互为有理化因式.注意:二次根式的除法,往往是先写成分子、分母的形式,然后利用分母有理化来运算.如22133)7(32133)73)(73()73(3733)73(322+=-+=+-+=-=-÷. (1))0()(2≥=a a a . (2)⎩⎨⎧<-≥==.,)0()0(2a a a a a a (3))0,0(≥≥⋅=b a b a ab .(4))0,0(>≥=b a ba b a 二次根式的加减法法则:(1)先把各个二次根式化成最简二次根式;(2)找出其中的同类二次根式; (3)再把同类二次根式分别合并.二次根式的乘法法则:两个二次根式相乘,被开方数相乘,根指数不变.即:ab b a =⋅(0,≥b a ).此法则可以推广到多个二次根式的情况.二次根式的除法法则:两个二次根式相除,被开方数相除,根指数不变,即:b a ba=(0,0>≥b a ).此法则可以推广到多个二次根式的情况. 二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去掉括号).例1、计算:6321263212--+++--.分析:此题一般的做法是先分母有理化,再计算,但由于6321+--分母有理化比较麻烦,我们应注意到6321+--()()1312--=;()()13126321-+-=--+,这样做起来就比较简便. 解:6321263212--+++-- ()()()()1312213122-+---= ()()()()2131********+--++=()()131212++-+= ()132+= 232+=.例2、计算:()()()()751755337533225++++-+++-. 分析:按一般的方法做起来比较麻烦,注意题目的结构特点,逆用分式加、减法的运算法则“aba b b a ±=±11”进行变换,进而运用“互为相反数的和为零”的性质来化简. 解:()233525+-+=- ;()355737+-+=-,∴原式751751531531321+++-+++-+= 321+= 23-=.例3、已知273-=x ,a 是x 的整数部分,b 是x 的小数部分,求b a b a +-的值.分析:先将x 分母有理化,求出b a ,的值,再求代数式的值.解: 27273+=-=x , 又372<< ,54<<∴x .27427,4-=-+==∴b a . ()()()()()()272727762776274274-+--=+-=-+--=+-∴b a b a 31978-=. 二次根式的化简技巧一、 巧用公式法例1计算b a ba b a ba b a +-+-+-2 分析:本例初看似乎很复杂,其实只要你掌握好了公式,问题就简单了,因为a 与b 成立,且分式也成立,故有a >0,b >0,()0≠-b a 而同时公式:()b a -2=a 2-2ab +b 2,a 2-2b =()b a +()b a -,可以帮助我们将b ab a +-2和b a -变形,所以我们应掌握好公式可以使一些问题从复杂到简单。

因式分解方法技巧

因式分解方法技巧

因式分解方法技巧因式分解是将一个多项式分解成一系列乘积的形式,是代数学中的基本技巧之一、它在代数表达式简化、求函数零点、解方程等方面都起着重要的作用。

因式分解的方法有很多种,下面就来详细介绍几种常见的因式分解方法和技巧。

一、提取公因式法提取公因式是因式分解的最基本方法之一,它适用于多项式中存在公共因子的情况。

具体操作是将多项式中的公共因子提取出来,并将剩下的部分继续进行因式分解。

例如,对于多项式3x^2+6x,我们可以提取出公因式为3x,得到3x(x+2)。

这个公因式提取出来以后,剩下的部分就变成了一个一次因式。

二、配方法配方法是一种很有用的因式分解方法,利用它可以将一个二次多项式分解为两个一次因式的乘积。

具体操作是通过改变一些项的符号,使得多项式可以写成两个因式的平方差的形式。

例如,对于多项式x^2+6x+9,我们可以通过配方法将它分解为(x+3)^2、这里通过将第二项的6x分解成2个3x,然后加上一个9使得两个3x与9的乘积可以组成一个平方,从而得到了(x+3)^2三、特殊因式公式特殊因式公式是指那些经常用到的因式分解公式,掌握这些公式可以极大地简化因式分解的过程。

以下是一些常见的特殊因式公式:1.二次平方差公式:a^2-b^2=(a-b)(a+b)。

这个公式可以将一个二次差的形式分解为两个一次因式的乘积。

2. 二次立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2)。

这个公式可以将一个立方差的形式分解为两个一次因式的乘积。

3.平方差公式:a^2-b^2=(a-b)(a+b)。

这个公式可以将一个平方差的形式分解为两个一次因式的乘积。

4. 完全平方公式:a^2+2ab+b^2=(a+b)^2、这个公式可以将一个完全平方的形式分解为一个一次因式的平方。

四、长除法长除法是将一个多项式除以另一个一次因式的一种方法,通过长除法可以得到多项式的因式分解。

具体操作是将除数的首项与被除数的首项相除,然后将得到的商乘以除数,再将得到的乘积与被除数进行相减,重复这个过程直到无法继续相减为止。

中考数学考前满分计划:整式、分式、二次根式、因式分解(含解析)

中考数学考前满分计划:整式、分式、二次根式、因式分解(含解析)

○热○点○考○点○解○读一、整式1.单项式与多项式单独的一个数或一个字母也是单项式.2.合并同类项合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变,例如:合并同类项3x 2y 和4x 2y 为3x 2y +4x 2y =(3+4)x 2y =7x 2y .3.整式的运算(1)整式的加减运算实际就是合并同类项.(2)整式的乘法:()()a b m n am an bm bn ++=+++.(3)整式的除法:单项式除以单项式时,把系数、相同字母的幂分别相除,作为商的因式,对于只在被除式中含有的字母,则照抄下来;多项式除以单项式时,用多项式的每一项分别除以单项式,再把所得的商相加.(4)乘法公式①平方差公式:22()()a b a b a b +-=-.②完全平方公式:222()2a b a ab b ±=±+.4.幂的运算性质(1)同底数幂相乘法则:m n m n a a a +⋅=(,m n 为整数,0a ≠)(2)幂的乘方法则:()m n mn a a =(,m n 为整数,0a ≠)(3)积的乘方法则:()n n n ab a b =(n 为整数,0ab ≠)整式、分式、二次根式、因式分解常识必背语言叙述:两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.5.用十字相乘法分解因式利用十字相乘法分解因式,实质上是逆用(ax +b )(cx +d )乘法法则.它的一般规律是:(1)对于二次项系数为1的二次三项式,如果能把常数项q 分解成两个因数a ,b 的积,并且a +b 为一次项系数p ,那么它就可以运用公式(2)对于二次项系数不是1的二次三项式(a ,b ,c 都是整数且a ≠0)来说,如果存在四个整数,使,,且,那么.一个式子是分式需满足的三个条件:q px x ++2))(()(2b x a x ab x b a x ++=+++c bx ax ++22121,,,c c a a a a a =⋅21c c c =⋅21b c a c a =+1221c bx ax ++2))(()(2211211221221c x a c x a c c x c a c a x a a ++=+++=易错易混2.约分(1)分式约分时,要注意不注意符号导致的错误.(2)要注意约分不彻底导致的错误.(3)约分时需注意分式的分子、分母都是乘积形式时才能进行约分;分子、分母是多项式时,通常先将分子、分母分解因式,再约分.(4)约分的结果是整式或最简分式.(5)分式的约分是恒等变形,约分前后分式的值不变.3.分解因式要彻底.方法必知1.同类项(1)几个项是不是同类项,一看所含字母是否完全相同.二看相同字母的指数是否相同.“二同”缺一不可.(2)同类项与单项式的系数无关,与字母顺序无关,几个常数项也是同类项.(3)同类项不一定是两项,也可以是三项,四项……但至少为两项.2.合并同类项(1)合并同类项时,注意合并的只是系数,字母部分不变,不要漏掉.(2)合并同类项时,注意各项系数的符号,尤其系数为负数时,不要遗漏负号,同时不要丢项.(3)如果两个同类项的系数互为相反数,合并同类项的结果为0.3.整式的加减的最后结果的要求:(1)不能含有同类项,即要合并到不能再合并为止;(2)一般按照某一字母的降幂或升幂排列;(3)不能出现带分数,带分数必须要化为假分数.4.整式的化简求值(1)化简求值题一般先按整式的运算法则进行化简,然后再代入求值.(2)在求整式的值时,代入负数时应用括号括起来,作为底数的分数也应用括号括起来5.约分时需要注意的问题:(1)如果分子、分母中至少有一个是多顶式,就应先分解因式,然后找出分子、分母的公因式,再约分.(2)注意发现分式的分子和分母的一些隐含的公因式,如a﹣5与5﹣a表面虽不相同,但通过提取“﹣”可发现含有公因式(a﹣5).(3)当分式的分子或分母的系数是负数时,可利用分式的基本性质,把负号提到分式的前面.通分时确定了分母乘什么,分子也必须随之乘什么,要防止只对分母变形而忽略了分子,导致变形前后分式的值发生变化而出错.6.分式的混合运算,关键是弄清运算顺序,与分数的加、减、乘、除及乘方的混合运算一样,先算乘方,再算乘除,最后算加减,有括号要先算括号里面的,在运算过程中要注意正确地运用运算法则,灵活地运用运算律,使运算尽量简便.7.因式分解(1)因式分解是针对多项式而言的,一个单项式本身就是数与字母的积,不需要再分解因式;(2)因式分解的结果是整式的积的形式,积中几个相同因式的积要写成幂的形式;(3)因式分解必须分解到每一个因式都不能再分解为止;(4)因式分解与整式乘法是方向相反的变形,二者不是互为逆运算.因式分解是一种恒等变形,而整式乘法是一种运算.8.提公因式法(1)多项式的公因式提取要彻底,当一个多项式提取公因式后,剩下的另一个因式中不能再有公因式.(2)提公因式后括号内的项数应与原多项式的项数一样.(3)若多项式首项系数为负数时,通常要提出负因数.9.十字相乘法这类式子在许多问题中经常出现,其特点是:(1)二次项系数是1;(2)常数项是两个数之积;(3)一次项系数是常数项的两个因数之和.◇以◇练◇带◇学1.(鞍山)下列运算正确的是( )A .222(4)8ab a b =B .22423a a a +=C .642a a a ÷=D .222()a b a b +=+2.(攀枝花)我们可以利用图形中的面积关系来解释很多代数恒等式.给出以下4组图形及相应的代数恒等式:其中,图形的面积关系能正确解释相应的代数恒等式的有( )A .1个B .2个C .3个D .4个3.(邵阳)下列计算正确的是( )A .623a a a =B .235()a a =C .22()()a ba ba b a b +=+++D .01()13-=4.(内蒙古)下列运算正确的是( )A+=B .236()a a -=C .11223a a a+=D .21133b ab a b÷=5.(成都)若23320ab b --=,则代数式2222(1)ab b a ba a b---÷的值为 .6.x 的取值范围是 .7.(扬州)分解因式:24xy x -= .8.(内蒙古)分解因式:34x x -= .9.(盐城)先化简,再求值:2(3)(3)(3)a b a b a b +++-,其中2a =,1b =-.10.(滨州)先化简,再求值:22421()244a a a a a a a a -+-÷---+,其中a 满足211(6cos6004a a --⋅+︒=.1.(官渡区校级模拟)按一定规律排列的式子:a ,32a ,54a ,78a ,916a ,⋯,则第2024个式子为( )A .202320252a B .20244047(21)a -C .202340472a D .202440492a 2.(济南一模)下列运算正确的是( )A .22a b ab+=B .2222a b a b a b-=C .238()a a =D .84222a a a ÷=3.(金山区二模)单项式22a b -的系数和次数分别是( )A .2-和2B .2-和3C .2和2D .2和34.(龙岗区模拟)下列计算正确的是( )A .236a a a ⋅=B .2323a a a +=C .2234(3)218ab ab a b -⋅=-D .326(2)3ab ab b ÷-=-5.(中山市校级一模)下列各式从左到右的变形,因式分解正确的是( )A .2()a a b a ab+=+B .23()3a ab a a b +-=+-C .22282(4)ab a a b -=-D .228(2)(4)a a a a --=+-6.(钱塘区一模)下列因式分解正确的是( )A .241(41)(41)a a a -=+-B .225(5)(5)a a a -+=+-C .22269(3)a ab b a b --=-D .22816(8)a a a -+=-7.(新乡一模)化简2422a a a ---的结果是( )A .2a +B .2a -C .12a +D .12a -8.(东莞市校级模拟)分式23x x --的值为0时,x 的值是( )A .0x =B .2x =C .3x =D .2x =或3x =9.(碑林区校级一模)先化简,再求值:2[(2)(2)(2)](4)a b b a b a a --+-÷,其中12a =,2b =.10.(龙湖区校级一模)先化简,再求值:2344(111x x x x -+-÷++,其中3x =.1.按一定规律排列的单项式:3x ,54x -,79x ,916x -,⋯,第n 个单项式是( )A .1221(1)n n n x ---B .1221(1)n n n x ++-C .1221(1)(1)n n n x ---+D .1221(1)(1)n n n x ++-+2.下列运算正确的是( )A .22(4)16x x -=-B .325x y xy +=C .432x x x ÷=D .2224()xy x y =3.下列语句正确的是( )A .5-不是单项式B .a 可以表示负数C .25a b -的系数是5,次数是2D .221a ab ++是四次三项式4.下列因式分解正确的一项是( )A .222()x y x y +=+B .24(2)(2)x x x -=+-C .2221(1)x x x --=-D .242(2)xy x xy x +=+5.要使分式11x x -+有意义,则x 应满足的条件是( )A .1x ≠-B .1x ≠C .1x <-D .1x >-6.下列二次根式中,属于最简二次根式的是( )AB C D7.计算:0|1tan 60|(2024-︒+.8.先化简,再求值:2344(111x x x x -+-÷++,其中3x =.9.先化简,再求值:2(2)(4)a a a -++,其中a =.10.先化简,再求值:(2)(2)4()a b a b a a b -+--,其中2a =-,1b =.1.【答案】C【分析】根据积的乘方,合并同类项,同底数幂的除法法则,完全平方公式进行计算,逐一判断即可解答.【解答】解:A 、222(4)16ab a b =,故A 不符合题意;B 、22223a a a +=,故B 不符合题意;C 、642a a a ÷=,故C 符合题意;D 、222()2a b a ab b +=++,故D 不符合题意;故选:C .2.【答案】D【分析】观察各个图形及相应的代数恒等式即可得到答案.【解答】解:图形的面积关系能正确解释相应的代数恒等式的有①②③④,故选:D .3.【答案】D【分析】分别根据分式的加减法则、幂的乘方与积的乘方法则、零指数幂的运算法则对各选项进行逐一计算即可.【解答】解:A 、633a a a=,原计算错误,不符合题意;B 、236()a a =,原计算错误,不符合题意;C 、221()()a b a b a b a b+=+++,原计算错误,不符合题意;D 、01()13-=,正确,符合题意.故选:D .4.【答案】D【分析】根据二次根式的加法、幂的乘法与积的乘方以及分式的运算的计算方法解题即可.【解答】解:A +=≠B .2366()a a a -=-≠,故该选项不正确,不符合题意;C .11123222223a a a a a a+=+=≠,故该选项不正确,不符合题意;21131.333b a D ab a ab b b ÷=⨯=,故该选项正确,符合题意;故选:D .5.【答案】23.【分析】先根据分式的减法法则进行计算,再根据分式的除法法则把除法变成乘法,算乘法,最后代入求出答案即可.【解答】解:2222(1ab b a b a a b---÷2222(2)a ab b a b a a b--=⋅-222()a b a b a a b-=⋅-()b a b =-2ab b =-,23320ab b --= ,2332ab b ∴-=,223ab b ∴-=,∴原式23=.故答案为:23.6.【答案】3x >.【分析】根据记二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案.【解答】解:由题意得:30x ->,解得:3x >,故答案为:3x >.7.【分析】原式提取x ,再利用平方差公式分解即可.【解答】解:原式2(4)(2)(2)x y x y y =-=+-,故答案为:(2)(2)x y y +-8.【分析】应先提取公因式x ,再对余下的多项式利用平方差公式继续分解.【解答】解:34x x -,2(4)x x =-,(2)(2)x x x =+-.故答案为:(2)(2)x x x +-.9.【分析】依据题意,利用平方差公式和完全平方公式将原式进行化简,再将a ,b 的值代入计算即可求解.【解答】解:2(3)(3)(3)a b a b a b +++-2222699a ab b a b =+++-226a ab =+.当2a =,1b =-时,原式22262(1)=⨯+⨯⨯-812=-4=-.10.【答案】244a a -+,1.【分析】将括号里面通分运算,再利用分式的混合运算法则计算,结合负整数指数幂的性质、特殊角的三角函数值化简,整体代入得出答案.【解答】解:原式2421[(2)(2)a a a a a a a -+-=÷---224(2)(2)(1)[](2)(2)a a a a a a a a a a -+--=÷---22244(2)a a a a a a a ---+=÷-24(2)4a a a a a --=⋅-2(2)a =-244a a =-+, 211()6cos6004a a --⋅+︒=,2430a a ∴-+=,243a a ∴-=-,∴原式341=-+=.1.【答案】C【分析】由题目可得式子的一般性规律:第n 个式子为:1212n n a --⋅,当2024n =时,第2024个式子为:202340472a ⋅,即可得出答案.【解答】解:式子的系数为1,2,4,8,16, ,则第n 个式子的系数为:12n -;式子的指数为1,3,5,7,9, ,则第n 个式子的指数为:21n -,∴第n 个式子为:1212n n a --⋅,当2024n =时,第2024个式子为:202340472a ⋅,故选:C .2.【答案】B【分析】根据合并同类项法则、幂的乘方法则、单项式除以单项式法则分别判断即可.【解答】解:A 、2a 与b 不是同类项,不能合并,故此选项不符合题意;B 、2222a b a b a b -=,故此选项符合题意;C 、236()a a =,故此选项不符合题意;D 、84422a a a ÷=,故此选项不符合题意;故选:B.3.【答案】B【分析】数字与字母的积叫做单项式,其中数字因数叫做单项式的系数,所有字母的指数之和叫做单项式的次数;由此计算即可.【解答】解:单项式22a b -的系数和次数分别是2-和3,故选:B .4.【答案】D【分析】根据整式相关运算法则逐项判断即可.【解答】解:235a a a ⋅=,故A 错误,不符合题意;a 与22a 不能合并,故B 错误,不符合题意;2234(3)218ab ab a b -⋅=,故C 错误,不符合题意;326(2)3ab ab b ÷-=-,故D 正确,符合题意;故选:D .5.【答案】D【分析】根据因式分解的定义逐个判断即可.【解答】解:A .从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B .从左到右的变形不属于因式分解,故本选项不符合题意;C .22282(4)2(2)(2)ab a a b a b b -=-=+-,分解不彻底,从左到右的变形不属于因式分解,故本选项不符合题意;D .从左到右的变形属于因式分解,故本选项符合题意.故选:D .6.【答案】B【分析】根据平方差公式和完全平方公式逐个判断即可.【解答】解:A .241(21)(21)a a a -=+-,故本选项不符合题意;B .225(5)(5)a a a -+=+-,故本选项符合题意;C .22269(3)a ab b a b -+=-,故本选项不符合题意;D .22816(4)a a a -+=-,故本选项不符合题意;故选:B .7.【答案】A【分析】根据分式的加减法运算法则计算即可.【解答】解:2244(2)(2)22222a a a a a a a a a --+-===+----,故选:A .8.【分析】分式的值为零时:分子等于零且分母不为零.据此求得x 的值.【解答】解:依题意得:20x -=,解得2x =.经检验当2x =时,分母30x -≠,符合题意.故选:B .9.【答案】2a b -,1-.【分析】先利用平方差公式和完全平方公式进行计算,再根据多项式除以单项式的法则进行计算,最后把12a =,2b =代入计算即可.【解答】解:原式2222[44(4)](4)a ab b b a a =-+--÷2222(444)(4)a ab b b a a =-+-+÷2(84)(4)a ab a =-÷2a b =-,当12a =,2b =时,原式12212=⨯-=-.10.【答案】12x -,1.【分析】先算小括号里面的,然后算括号外面的,最后代入求值.【解答】解:原式213(2)()111x x x x x +-=-÷+++2211(2)x x x x -+=⋅+-12x =-,当3x =时,原式1132==-.1.【答案】B【分析】根据单项式的数字系数的符号,数字系数和指数的变化规律即可得出结果.【解答】解:在上述单项式中,可以发现:奇数项的数字系数的符号为正,偶数项的数字系数的符号为负,∴可得:第n 个单项式的数字系数的符号为:1(1)n --或1(1)n +-,单项式的数字系数为:1,4,9,16, ,∴第n 个单项式的数字系数为:2n ,单项式的指数为:3,5,7,9, ,∴第n 个单项式的指数为:21n +,∴第n 个单项式是1221(1)n n n x ++-,故选:B .2.【答案】D【分析】根据整式的运算法则逐项分析判断即可.【解答】解:A 、22(4)816x x x -=-+,原计算错误,不符合题意;B 、3x 与2y 不是同类项,不能合并,故原计算错误,不符合题意;C 、43x x x ÷=,原计算错误不符合题意;D 、2224()xy x y =,正确,符合题意;故选:D .3.【答案】B【分析】根据单项式的定义可判断A ,根据字母表示数的意义可判断B ,根据单项式系数和次数的定义可判断C ,根据多项式的项和次数的定义可判断D ,进而可得答案.【解答】解:A 、5-是单项式,故本选项错误,不符合题意;B 、a可以表示负数,故本选项正确,符合题意;C 、25a b -的系数是5-,次数是3,故本选项错误,不符合题意;D 、221a ab ++是二次三项式,故本选项错误,不符合题意;故选:B .4.【答案】B【分析】根据因式分解的定义进行判断即可.【解答】解:A 、222()x y x y +≠+不符合因式分解的定义,故本选项不符合题意;B 、24(2)(2)x x x -=+-符合因式分解的定义,且因式分解正确,故本选项符合题意;C 、2221(1)x x x --≠-,不符合因式分解的定义,故本选项不符合题意;D 、242(2)xy x x y +=+,原因式分解错误,故本选项不符合题意;故选:B .5.【分析】先根据分式有意义的条件列出关于x 的不等式,求出x 的取值范围即可.【解答】解:由题意,得10x +≠,解得1x ≠-,故选:A .6.【分析】直接利用最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式,进而得出答案.【解答】解:A =,不是最简二次根式,故此选项错误;B ,是最简二次根式,故此选项正确;C 2=,不是最简二次根式,故此选项错误;D =故选:B .7..【分析】根据二次根式的混合运算法则和零指数幂与特殊的三角函数值等知识点计算即可.【解答】解:原式11=---+11=-+=.8.【答案】12x -,1.【分析】先算小括号里面的,然后算括号外面的,最后代入求值.【解答】解:原式213(2)()111x x x x x +-=-÷+++2211(2)x x x x -+=⋅+-12x =-,当3x =时,原式1132==-.9.【答案】224a +,原式8=.【分析】先利用完全平方公式,单项式乘多项式的法则进行计算,然后把a 的值代入化简后的式子进行计算,即可解答.【解答】解:2(2)(4)a a a -++22444a a a a=-+++224a =+,当a =224224448=⨯+=⨯+=+=.10.【答案】24ab b -,原式9=-.【分析】先利用平方差公式,单项式乘多项式的法则进行计算,然后把a ,b 的值代入化简后的式子进行计算,即可解答.【解答】解:(2)(2)4()a b a b a a b -+--222444a b a ab=--+24ab b =-,当2a =-,1b =时,原式24(2)11819=⨯-⨯-=--=-.。

根式及其运算.

根式及其运算.

根式及其运算二次根式的概念、性质以及运算法则是根式运算的基础,在进行根式运算时,往往用到绝对值、整式、分式、因式分解,以及配方法、换元法、待定系数法等有关知识与解题方法,也就是说,根式的运算,可以培养同学们综合运用各种知识和方法的能力.下面先复习有关基础知识,然后进行例题分析.二次根式的性质:二次根式的运算法则:设a,b,c,d,m是有理数,且m不是完全平方数,则当且仅当两个含有二次根式的代数式相乘时,如果它们的积不含有二次根式,则这两个代数式互为有理化因式.例1 化简:法是配方去掉根号,所以因为x-2<0,1-x<0,所以原式=2-x+x-1=1.=a-b-a+b-a+b=b-a.说明若根式中的字母给出了取值范围,则应在这个范围内进行化简;若没有给出取值范围,则应在字母允许取值的范围内进行化简.例2 化简:分析两个题分母均含有根式,若按照通常的做法是先分母有理化,这样计算化简较繁.我们可以先将分母因式分解后,再化简.解法1 配方法.配方法是要设法找到两个正数x,y(x>y),使x+y=a,xy=b,则解法2 待定系数法.例4 化简:(2)这是多重复合二次根式,可从里往外逐步化简.分析被开方数中含有三个不同的根式,且系数都是2,可以看成解设两边平方得②×③×④得(xyz)2=5×7×35=352.因为x,y,z均非负,所以xyz≥0,所以xyz=35.⑤⑤÷②,有z=7.同理有x=5,y=1.所求x,y,z显然满足①,所以解设原式=x,则解法1 利用(a+b)3=a3+b3+3ab(a+b)来解.将方程左端因式分解有(x-4)(x2+4x+10)=0.因为x2+4x+10=(x+2)2+6>0,所以x-4=0,x=4.所以原式=4.解法2说明解法2看似简单,但对于三次根号下的拼凑是很难的,因此本题解法1是一般常用的解法.例8 化简:解(1)本小题也可用换元法来化简.解用换元法.解直接代入较繁,观察x,y的特征有所以3x2-5xy+3y2=3x2+6xy+3y2-11xy=3(x+y)2-11xy=3×102-11×1=289.例11 求分析本题的关键在于将根号里的乘积化简,不可一味蛮算.解设根号内的式子为A,注意到1=(2-1),及平方差公式(a+b)(a-b)=a2-b2,所以A=(2-1)(2+1)(22+1)(24+1)…(2256+1)+1=(22-1)(22+1)(24+1)(28+1)…(2256+1)+1=(24-1)(24+1)(28+1)(216+1)…(2256+1)+1=…=(2256-1)(2256+1)+1=22×256-1+1=22×256,的值.分析与解先计算几层,看一看有无规律可循.解用构造方程的方法来解.设原式为x,利用根号的层数是无限的特点,有两边平方得两边再平方得x4-4x2+4=2+x,所以x4-4x2-x+2=0.观察发现,当x=-1,2时,方程成立.因此,方程左端必有因式(x +1)(x-2),将方程左端因式分解,有(x+1)(x-2)(x2+x-1)=0.解因为练习1.化简:2.计算:3.计算:。

二次根式方程的解法

二次根式方程的解法

二次根式方程的解法二次根式方程是一种形式为ax^2 + bx + c = 0的二次方程,其中a、b、c为已知实数且a ≠ 0。

解二次根式方程的方法有多种,包括因式分解、配方法、求根公式等,下面将一一介绍这些解法。

1. 因式分解法当二次根式方程可以进行因式分解时,我们可以通过因式分解法求解。

例如,对于方程x^2 - 5x + 6 = 0,我们可以将其因式分解为(x - 2)(x - 3) = 0,然后令括号内的两个因式分别等于0,即可得到方程的解x = 2和x = 3。

2. 配方法当二次根式方程无法直接因式分解时,可以尝试使用配方法。

配方法的基本思想是通过将方程中的一项拆分为两个相同的项的和或差,从而使方程能够进行因式分解。

例如,对于方程x^2 + 6x + 8 = 0,我们可以将其配方为(x + 2)(x + 4) = 0,然后令括号内的两个因式分别等于0,即可得到方程的解x = -2和x = -4。

3. 求根公式求根公式是解二次根式方程最常用的方法之一,它可以直接求得方程的解。

二次根式方程的求根公式为x = (-b ± √(b^2 - 4ac)) / (2a),其中±表示两个解,√表示平方根。

通过代入方程的系数a、b、c,即可计算出方程的解。

需要注意的是,方程的解可能是实数或者复数,取决于判别式D = b^2 - 4ac的正负情况:如果D > 0,方程有两个不相等的实数解;如果D = 0,方程有两个相等的实数解;如果D < 0,方程有两个共轭复数解。

除了上述常用的解法,还有其他求解二次根式方程的方法,例如图像法、完全平方公式等。

这些方法在特定情况下可能更加简便有效。

但不管采用何种方法,解二次根式方程的关键是要找到方程的解,即找到使方程成立的x的值。

为了更好地理解和掌握解二次根式方程的方法,我们需要不断进行练习和实践。

在解题过程中,可以利用一些技巧,如观察方程的特征、化简方程等,以便更快地找到方程的解。

整式、分式、二次根式的性质和概念;

整式、分式、二次根式的性质和概念;

第五章整式、分式、二次根式得知识梳理1、整式得概念与指数:与统称为整式。

单项式包括: 、、 ;一个单项式中所有字母得叫做这个单项式得次数。

多项式:几个单项式得代数与多项式。

单项式中次数最得项就就是这个多项式得次数。

2、分式得概念与意义:一般地,形如式子,且B≠0叫做分式。

(1)、分式有意义得条件:(2)、分式无意义得条件:(3)、分式为0得条件:(4)、分式得基本性质:分式得分子与分母同时 (一个不等于0)得整式,分式得值不变。

(5)、约分:(6)、最简分式:一个分式得分子与分母没有公因式时,这种分式叫做最简分式。

(7)、通分:(8)、最简公分母:(9)、分母有理化:把分母中得根号化去,叫做分母有理化。

注意:分母有理化时,分子与分母需要同时乘分母得有理化因式。

3、二次根式得概念与意义:(1)、定义:形如(a≥0)得式子,叫做二次根式。

(2)、二次根式有意义得条件:二次根式无意义得条件:(3)、二次根式得性质:① =a(a≥0);②= =③= (a≥0, b≥0);④=( a≥0, b>0)。

(4)、最简二次根式:①中不含二次根式;②被开方数中不含能开得尽得因数或因式。

(5)、同类二次根式:最简二次根式后,被开方数相同,叫做同类二次根式。

知识点二:代数式得运算(一)、整式得加减运算(1)、同类项:(2)、合并同类项法则:(3)、去括号法则:(4)、整式得加减得实质就就是合并同类项。

(二)、整式得乘除(1)、同底数幂得乘法:a m·a n= ,底数不变,指数相加、(2)、幂得乘方与积得乘方:(a m)n= ,底数不变,指数相乘;(3)、(ab)n= ,积得乘方等于各因式乘方得积、(4)、单项式得乘法:系数相乘,相同字母 ,只在一个因式中含有得字母,连同指数写在积里、(5)、单项式与多项式得乘法:m(a+b+c)= ,用单项式去乘多项式得每一项,再把所得得积相加、(6)、多项式得乘法:(a+b)·(c+d)= ,先用多项式得每一项去乘另一个多项式得每一项,再把所得得积相加、(7)、乘法公式:平方差公式:(a+b)(a-b)= ,两个数得与与这两个数得差得积等于这两个数得平方差;完全平方公式:①(a+b)2= ,等于它们得 ,加上它们得积得2倍;② (a-b)2= ,等于它们得 ,减去它们得积得2倍; 十字相乘法:+(m+n)x+mn=( )( )(8)、同底数幂得除法:a m÷a n= ,底数不变,指数相减、(9)、零指数与负指数公式:a0= (a≠0); a-n= ,(a≠0)、注意:00,0-2无意义;(10).单项式除以单项式:(11).多项式除以单项式:★整式混合运算:先 ,后 ,最后 ,有括号先算括号内、★整式得化简:①合并到不能再合并;②首项不能为负数;★整式得因式分解(1)提共因式法:(2)公式法:(3)十字相乘法:(4)分组法,在循环运用“提十公分”法;(三)、分式得运算(1)、分式得加减法:①、同分母得分式相加减,分母 ,把分子相。

2023中考一轮复习:二次根式、整式与因式分解

2023中考一轮复习:二次根式、整式与因式分解

考点02二次根式、整式与因式分解【命题趋势】浙江中考中,对二次根式的考察主要集中在对其化简计算的应用,多以简答题17题形式考察,分值在3~9分,常和锐角三角函数、实数概念结合出题,属于中考必考题;偶尔也会以选择题或者填空题出现,考察二次根式有意义的条件,但几率较小。

整式这个考点一般会考学生对整式化简计算的应用,偶尔考察整式的基本概念,对整式的复习,重点是要理解并掌握整式的加减法则、乘除法则及幂的运算,难度一般不大。

因式分解作为整式乘法的逆运算,在浙江中考中占比不大,但是依然属于必考题,常以填空题第一题的形式出现,偶尔会出在选择题前5题内,而且一般只考察因式分解的前两步,拓展延伸部分基本不考,中考占分在3~4分【中考考查重点】一、二次根式的相关概念及性质;二、二次根式的运算;三、整式的加减;四、幂的运算五、整式的乘除六、因式分解考向一:二次根式的相关概念及性质1.平方根与立方根【同步练习】1.(2021秋•长清区期中)实数16的平方根是()A.8B.±8C.4D.±42.(2021秋•吴江区月考)已知一个数的平方根是±3,这个数是()A.﹣9B.9C.81D.3.(2021秋•奉化区期中)的算术平方根是()A.3B.﹣3C.﹣9D.94.(2021秋•鄞州区期中)下列各式中正确的是()A.﹣|﹣2|=2B.=±2C.=3D.(﹣5)2=255.(2021•青神县模拟)若+|2a﹣b+1|=0,则(b﹣a)2021=()A.﹣1B.1C.52021D.﹣520212.二次根式与最简二次根式【易错警示】【同步练习】1.(2021春•上虞区期末)当x=0时,二次根式的值等于()A.4B.2C.D.0 2.(2021秋•莲湖区期中)要使有意义,x的取值范围是()A.x≥3B.x≤3C.x>3D.x<33.(2021春•长沙月考)要使式子有意义,字母x的取值范围必须满足()A.x≥﹣3B.x>﹣3C .x≠﹣3D.x<﹣34.(2021秋•虹口区校级期中)下列二次根式中,最简二次根式是()A.B.C.D.5.(2021春•鼓楼区校级期中)当m=时,二次根式取到最小值.3.二次根式的性质【易错警示】【同步练习】1.(2021秋•长春期中)等于()A .9B .﹣9C .±9D .812.(2021秋•拱墅区期中)下列计算正确的是()A .B .C .D .3.(2021•休宁县模拟)观察下列各式:①=2;②=3;③=4;④=5.根据上面式子所呈现的规律,完成下列各题:(1)写出第⑤个式子:;(2)写出第n 个式子(n ≥1,且n 为整数),并给出证明.【同步练习】1.(2021秋•沙坪坝区校级期中)计算﹣的结果是()A .﹣B .3C .2D .﹣22.(2021春•官渡区期末)下列计算正确的是()A.B.C.D.3.(2021秋•南岗区校级期中)计算:=.4.(2021•路南区二模)已知×=4,则n=.5.(2021秋•余杭区期中)如图是单位长度为1的正方形网格,点A,B,C都在格点上,则点C到AB所在直线的距离为()A.B.C.D.6.(2021秋•朝阳区期中)一个长方体纸盒的体积为4dm3,若这个纸盒的长为2dm,宽为dm,则它的高为()A.1dm B.2dm C.2dm D.48dm7.(2021秋•龙华区校级期中)设x,y为实数,且y=6++,则|﹣x+y|的值是()A.1B.2C.4D.58.(2021秋•大邑县期中)计算:(1).(2).考向三:整式的加减1.整式的概念及注意事项:名称识别次数系数与项整式单项式①数与字母或字母与字母相乘组成的代数式;②单独的一个数或一个字母所有字母的指数的和系数:单项式中的数字因数多项式几个单项式的和次数最高项的次数项:多项式中的每个单项式【易错警示】【同步练习】1.(2021秋•荔湾区校级期中)下列各式﹣mn ,8,,x 2+2x +6,,,﹣a 中,整式有()A .4个B .5个C .6个D .7个2.(2021秋•福清市期中)单项式﹣4πxy 2的系数是()A .﹣4B .﹣4πC .4πD .43.(2021秋•铁西区期中)对于多项式﹣4x +5x 2y ﹣7,下列说法正确的是()A .一次项系数是4B .最高次项是5x 2yC .常数项是7D .是四次三项式4.(2021秋•萧山区期中)已知x ﹣3y =5,那么代数式8﹣3x +9y 的值是()A .3B .7C .23D .﹣72.整式的加减【易错警示】【同步练习】1.(2021秋•福清市期中)长方形的长为3x﹣2y,宽为y,则这个长方形的周长为()A.6x﹣y B.3x﹣y C.6x﹣2y D.3x﹣2y2.(2021秋•雁塔区校级期中)下列计算正确的是()A.3a+a=3a2B.5x﹣3y=2xyC.4x2y+xy2=5x2y D.﹣(ab3﹣1)=﹣ab3+13.(2021秋•东西湖区期中)如图,两个三角形的面积分别是9和7,对应阴影部分的面积分别是m和n,则m ﹣n等于()A.1B.2C.3D.不能确定4.(2021秋•溧阳市期中)当x=2,y=﹣1时,代数式x+2y﹣(3x﹣4y)的值是()A.﹣9B.9C.﹣10D.105.(2021秋•玉屏县期中)已知:M=3x2+2x﹣1,N=﹣x2﹣2+3x,求M+2N.幂的运算考向四:幂的运算【同步练习】1.(2021秋•荔湾区期中)计算x 2•x 3的结果是()A .x 6B .x 5C .x 4D .x 32.(2021秋•越秀区校级期中)若2m =5,2n =3,则2m +n 的值是()A .8B .9C .12D .153.(2021春•新化县期末)下列运算结果正确的是()A .105+103=108B .x 3•x 4=x 7C .﹣a •a 3=a 4D .﹣a •(﹣a )2=a 34.(2021春•拱墅区校级期中)下列运算结果错误的是()A .a 2•a 3=a 5B .(a 2)3=a 6C .a 4÷a 4=aD .(ab )3=a 3b 35.(2021秋•奉贤区期中)如果2n +2n +2n +2n =28,那么n 的值是.6.(2021秋•普陀区期中)用幂的形式表示结果:(﹣3)2×(﹣3)3×(﹣3)4=.考向五:整式的乘除1.平方根与立方根()()是正整数)且)>且都是正整数为正整数)都是正整数)都是正整数)p a aa a a n m n m a a a a nb a ab n m a a n m a a a p p n m n m n n n mn nm n m n m ,0(1)0(1,,,0((,(,(0≠=≠=≠=÷===∙--+【方法提示】【同步练习】1.(2021秋•黄埔区校级期中)下列运算正确的是()A.a3+a3=a6B.(a3)2=a6C.(ab)2=ab2D.2a5•3a5=5a52.(2021•榆阳区模拟)计算的结果是()A.4m2n6B.﹣m2n4C.m2n4D.﹣m5n43.(2021秋•青浦区月考)若(x﹣a)(x﹣b)=x2+kx+ab,则k的值为()A.a+b B.﹣a﹣b C.a﹣b D.b﹣a4.(2021秋•海淀区校级期中)如图,在长为3a+2,宽为2b﹣1的长方形铁片上,挖去长为2a+4,宽为b的小长方形铁片,则剩余部分面积是()A.6ab﹣3a+4b B.4ab﹣3a﹣2C.6ab﹣3a+8b﹣2D.4ab﹣3a+8b﹣25.(2021秋•襄汾县月考)我国南宋数学家杨辉所著的《详解九章算术》一书中,用如图的三角形揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律,根据“杨辉三角”请计算(a+b)6的展开式中从左起第四项的系数为()(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4…A.10B.15C.20D.256.(2021秋•铁西区期中)已知(a﹣b)2=6,(a+b)2=4,则a2+b2的值为.7.(2021秋•越秀区校级期中)计算:(1)a•(﹣3a2)+27a4b5÷3ab5;(2)(﹣2x3)2﹣3x2(x4﹣y2).8.(2021秋•龙凤区期中)计算:(1)a•a2•a3+(﹣2a3)2﹣a8÷a2;(2)20212﹣2020×2022;(3)先化简,再求值:[(x+3y)(x﹣3y)﹣(x﹣y)2]÷(﹣2y),其中|x+1|+y2﹣4y=﹣4.(4)已知x2﹣5x﹣4=0,求代数式(x+2)(x﹣2)﹣(2x﹣1)(x﹣2)的值.考向六:因式分解1.平方根与立方根1.(2021秋•朝阳区校级期中)下列各式中,从左到右的变形是因式分解的是()A.2a2﹣2a+1=2a(a﹣1)+1B.(x+y)(x﹣y)=x2﹣y2C.x2﹣4xy+4y2=(x﹣2y)2D.x2+1=x(x+)2.(2021春•靖边县期末)用提公因式法分解因式6xy+3x2y﹣4x2yz3时,提取的公因式是()A.xy B.2xz C.12xy D.3yz3.(2021春•白云区校级月考)计算结果为x2﹣5x+6的是()A.(x﹣1)(x+6)B.(x+1)(x﹣6)C.(x﹣2)(x﹣3)D.(x+2)(x+3)4.(2021秋•和平区校级期中)已知△ABC的三边长a,b,c满足(a﹣b)(c2﹣a2﹣b2)=0,则△ABC的形状是()A.等腰三角形或直角三角形B.等腰直角三角形C.等腰三角形D.直角三角形5.(2021秋•朝阳区校级月考)分解因式:1﹣m2=.6.(2021•泰兴市二模)分解因式:3a2﹣12的结果为.7.(2021春•碑林区校级月考)分解因式:a2﹣b2+ab2﹣a2b=.8.(2021春•渠县校级期末)分解因式(2x+1)2﹣x4=.1.(2012•宁波一模)当x=﹣2时,二次根式的值为()A.1B.±1C.3D.±32.(2021•金华模拟)代数式在实数范围内有意义时,x的取值范围为()A.x>﹣1B.x≥﹣1C.x≥﹣1且x≠0D.x≠03.(2021秋•萧山区期中)下列各式中,错误的是()A.B.(a﹣b)2=(b﹣a)2C.|﹣a|=a D.4.(2021秋•朝阳区校级期中)下列多项式不能用公式法因式分解的是()A.a2﹣8a+16B.a2+a+C.﹣a2﹣9D.a2﹣45.(2021秋•上城区校级期中)实数a、b在数轴上的位置如图所示,化简代数式,结果为()A.2a B.2b C.﹣2a D.26.(2021秋•西湖区校级期中)规定运算Δ:若a≥b,则aΔb=a﹣b+1;若a<b,则aΔb=a2+b,则(﹣2)Δ1的值为()A.﹣2B.3C.4D.57.(2021秋•普陀区校级月考)设P是关于x的四次多项式,Q是关于x的三次多项式,下列判断正确的是()A.P+Q是关于x的七次多项式B.P﹣Q是关于x的一次多项式C.P•Q是关于x的四次多项式D.P•Q是关于x的七次多项式8.(2021秋•拜泉县期中)若2n+2n=2,则n=()A.﹣1B.﹣2C.0D.9.(2021春•拱墅区校级期中)计算(﹣0.125)2021×26063=()A.1B.﹣1C.8D.﹣810.(2021•于洪区二模)因式分解:6ab﹣a2﹣9b2=.11.(2021春•温州期末)若x2﹣nx﹣6=(x﹣2)(x+3),则常数n的值是.12.(2021秋•下城区校级期中)单项式﹣的系数是,多项式3πab2+2a﹣35次数是.13.(2021春•拱墅区校级期中)若代数式ab(5ka﹣3b)﹣(ka﹣b)(3ab﹣4a2)的值与b的取值无关,则常数k的值.14.(2021秋•碑林区校级期中)计算:(1)|1﹣|+(﹣)﹣1﹣+(﹣π)0;(2)+9﹣+()2.15.(2021秋•越秀区校级期中)先化简,再求值:(x﹣2y)(x+2y)+(x+y)(x﹣4y),其中x=1,y=﹣2.16.(2021秋•西湖区校级期中)观察下列各式:=﹣1;=﹣;=﹣.(1)请根据以上规律,写出第4个式子:;(2)请根据以上规律,写出第n个式子:;(3)根据以上规律计算:的值.1.(2021·浙江杭州)下列计算正确的是()A.=2B.=﹣2C.=±2D.=±22.(2021·浙江金华)二次根式中,字母x的取值范围是.3.(2021·浙江丽水)要使式子有意义,则x可取的一个数是.4.(2021·浙江湖州)化简的正确结果是()A.4B.±4C.2D.±25.(2021·浙江衢州)若有意义,则x的值可以是.(写出一个即可)6.(2021·浙江温州)某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a元;超过部分每立方米(a+1.2)元.该地区某用户上月用水量为20立方米,则应缴水费为()A.20a元B.(20a+24)元C.(17a+3.6)元D.(20a+3.6)元7.(2021·浙江杭州)计算:2a+3a=.8.(2021·浙江丽水)计算(﹣a)2•a4的结果是()A.a6B.﹣a6C.a8D.﹣a89.(2021·浙江台州)下列运算中,正确的是()A.a2+a=a3B.(﹣ab)2=﹣ab2C.a5÷a2=a3D.a5・a2=a1010.(2021·浙江杭州)因式分解:1﹣4y2=()A.(1﹣2y)(1+2y)B.(2﹣y)(2+y)C.(1﹣2y)(2+y)D.(2﹣y)(1+2y)11.(2021·浙江宁波)分解因式:x2﹣3x=.12.(2021·浙江绍兴)分解因式:x2+2x+1=.13.(2021·浙江台州)因式分解:xy﹣y2=.14.(2021·浙江温州)分解因式:2m2﹣18=.15.(2021·浙江台州)计算:|﹣2|+﹣.16.(2021·浙江金华)计算:(﹣1)2021+﹣4sin45°+|﹣2|.17.(2021·浙江嘉兴)计算:2﹣1+﹣sin30°;18.(2021·浙江衢州)计算:+()0﹣|﹣3|+2cos60°.19.(2021·浙江宁波)计算:(1+a)(1﹣a)+(a+3)2.20.(2021·浙江金华)已知x=,求(3x﹣1)2+(1+3x)(1﹣3x)的值.1.(2021•温岭市一模)下列计算中,正确的是()A.a3÷a=3B.a+a2=a3C.(a3)2=a5D.a4•a2=a62.(2021•余杭区一模)式子在实数范围内有意义,则x的取值范围是.3.(2021春•上虞区期末)当x=0时,二次根式的值等于()A.4B.2C.D.04.(2021•滨江区一模)下列因式分解中正确的是()A.m2+n2=(m+n)(m﹣n)B.﹣3x﹣6=﹣3(x﹣2)C.a2﹣a=a(a﹣1)D.a2+a+1=a(a+1)+15.(2021秋•普陀区校级月考)若a,b满足b=﹣3,则平面直角坐标系中P(a,b)在第象限.6.(2021•滨江区一模)已知a+b=3,且a﹣b=﹣1,则a2+b2=.7.(2021春•绍兴一中月考)分解因式:(a+b)2﹣(a+b)=.8.(2021•宁波镇海月考)(a3)2+a2•a4等于()A.2a9B.2a6C.a6+a8D.a12 9.(2021春•杭州期末)若a=+1,b=﹣1,则a2﹣ab+b2=.10.(2021•庆元县模拟)计算:|﹣|+2﹣1+﹣2sin45°.11.(2021•镇海区模拟)计算:﹣﹣;12.(2021秋•龙岗区校级月考)计算:(1)×;(2)﹣﹣4.13.(2021•宁波模拟)化简:(x+3)2﹣2x(x﹣3);14.(2021•温州模拟)化简:(x﹣3y)2﹣x(x+6y).15.(2021•宁波模拟)化简:m(m+2)﹣(m﹣1)2.。

2017中考数学专题复习数与式因式分解+分式+二次根式

2017中考数学专题复习数与式因式分解+分式+二次根式

第四讲 因式分解【基础知识回顾】 一、因式分解的定义:1、把一个 式化为几个整式 的形式,叫做把一个多项式因式分解。

2、因式分解与整式乘法是运算,即:多项式 整式的积【名师提醒:判断一个运算是否是因式分解或判断因式分解是否正确,关键看等号右边是否为 的形式。

】 二、因式分解常用方法: 1、提公因式法:公因式:一个多项式各项都有的因式叫做这个多项式各项的公因式。

提公因式法分解因式可表示为:ma+mb+mc= 。

【名师提醒:1、公因式的选择可以是单项式,也可以是 ,都遵循一个原则:取系数的 ,相同字母的 。

2、提公因式时,若有一项被全部提出,则括号内该项为 ,不能漏掉。

3、提公因式过程中仍然要注意符号问题,特别是一个多项式首项为负时,一般应先提取负号,注意括号内各项都要 。

】 2、运用公式法:将乘法公式反过来对某些具有特殊形式的多项式进行因式分解,这种方法叫做公式法。

①平方差公式:a 2-b 2= , ②完全平方公式:a 2±2ab+b 2= 。

【名师提醒:1、运用公式法进行因式分解要特别掌握两个公式的形式特点, 找准里面的a 与b 。

如:x 2-x+14符合完全平方公式形式,而x 2- x+12就不符合该公式的形式。

】三、因式分解的一般步骤1、 一提:如果多项式的各项有公因式,那么要先 。

2、 二用:如果各项没有公因式,那么可以尝试运用 法来分解。

3、 三查:分解因式必须进行到每一个因式都不能再分解为止。

【名师提醒:分解因式不彻底是因式分解常见错误之一,中考中的因式分解题目一般为两步,做题时要特别注意,另外分解因式的结果是否正确可以用整式乘法来检验】 【重点考点例析】考点一:因式分解的概念对应训练1.(2015•河北)下列等式从左到右的变形,属于因式分解的是( ) A .a (x-y )=ax-ay B .x 2+2x+1=x (x+2)+1 C .(x+1)(x+3)=x 2+4x+3 D .x 3-x=x (x+1)(x-1) 考点二:因式分解例2 (2015•无锡)分解因式:2x 2-4x= . 例3 (2015•南昌)下列因式分解正确的是( ) A .x 2-xy+x=x (x-y ) B .a 3-2a 2b+ab 2=a (a-b )2 C .x 2-2x+4=(x-1)2+3 D .ax 2-9=a (x+3)(x-3) 例4 (2015•湖州)因式分解:mx 2-my 2.( )( )对应训练2.(2015•温州)因式分解:m2-5m= .3.(2015•西宁)下列分解因式正确的是()A.3x2-6x=x(3x-6)B.-a2+b2=(b+a)(b-a)C.4x2-y2=(4x+y)(4x-y)D.4x2-2xy+y2=(2x-y)24.(2015•北京)分解因式:ab2-4ab+4a= .考点三:因式分解的应用例5 (2015•宝应县一模)已知a+b=2,则a2-b2+4b的值为.对应训练5.(2015•鹰潭模拟)已知ab=2,a-b=3,则a3b-2a2b2+ab3= .【2016中考名题赏析】1.(2016•台湾)已知a、b、c 为三正整数,且a、b的最大公因子为12,a、c的最大公因子为18.若a介于50与100之间,则下列叙述何者正确?()A.8是a的因子,8是b的因子B.8是a的因子,8不是b的因子C.8不是a的因子,8是c的因子D.8不是a的因子,8不是c的因子2.(2016•自贡)把a2﹣4a多项式分解因式,结果正确的是()A.a(a﹣4)B.(a+2)(a﹣2)C.a(a+2)(a﹣2)D.(a﹣2)2﹣4 3.(2016•长春)把多项式x2﹣6x+9分解因式,结果正确的是()A.(x﹣3)2B.(x﹣9)2C.(x+3)(x﹣3)D.(x+9)(x﹣9)4.(2016•聊城)把8a3﹣8a2+2a进行因式分解,结果正确的是()A.2a(4a2﹣4a+1)B.8a2(a﹣1)C.2a(2a﹣1)2D.2a(2a+1)2 5.(2016•台湾)多项式77x2﹣13x﹣30可因式分解成(7x+a)(bx+c),其中a、b、c均为整数,求a+b+c之值为何?()A.0 B.10 C.12 D.226.(2016•滨州)把多项式x2+ax+b分解因式,得(x+1)(x﹣3)则a,b的值分别是()A.a=2,b=3 B.a=﹣2,b=﹣3 C.a=﹣2,b=3 D.a=2,b=﹣3【真题过关】一、选择题1.(2015•张家界)下列各式中能用完全平方公式进行因式分解的是()A.x2+x+1 B.x2+2x-1 C.x2-1 D.x2-6x+9 2.(2015•佛山)分解因式a3-a的结果是()A.a(a2-1)B.a(a-1)2C.a(a+1)(a-1)D.(a2+a)(a-1)3.(2015•恩施州)把x2y-2y2x+y3分解因式正确的是()A.y(x2-2xy+y2)B.x2y-y2(2x-y)C.y(x-y)2D.y(x+y)2二、填空题4.(2015•自贡)多项式ax2-a与多项式x2-2x+1的公因式是.5.(2015•太原)分解因式:a2-2a= .6.(2015•广州)分解因式:x2+xy= .7.(2015•盐城)因式分解:a2-9= .8.(2015•厦门)x2-4x+4=()2.第五讲分式【基础知识回顾】一、分式的概念若A,B表示两个整式,且B中含有那么式子就叫做分式【名师提醒:①若则分式AB无意义②若分式AB=0,则应且】二、分式的基本性质分式的分子分母都乘以(或除以)同一个的整式,分式的值不变。

实数、整式、分式及二次根式

实数、整式、分式及二次根式

专题一 实数一、考点扫描1、实数的分类:实数0⎧⎧⎪⎨⎨⎩⎪⎩正实数有理数或无理数负实数 2、实数和数轴上的点是一一对应的.3、相反数:只有符号不同的两个数互为相反数.若a 、b 互为相反数,则a+b=0,1-=ab (a 、b ≠0) 4、绝对值:从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a a a5、近似数和有效数字;6、科学记数法;7、整指数幂的运算:()()m m mmn n m n m n m b a ab a a a a a ⋅===⋅+,, (a ≠0) 负整指数幂的性质:p p p a a a ⎪⎭⎫ ⎝⎛==-11 零整指数幂的性质:10=a (a ≠0) 8、实数的开方运算:()a a a a a =≥=22;0)( 9、实数的混合运算顺序 *10、无理数的错误认识:⑴无限小数就是无理数如1.···(41 无限循环);(2(3(4)无理数是无限不循环小数,所以无法在数轴上表示出来,这种说法错误,每一个无理数在数轴上都有一*11、实数的大小比较:(1).数形结合法 (2).作差法比较 (3).作商法比较 (4).倒数法: 如6756--与 (5).平方法二、考点训练1、(2005、杭州,3分)有下列说法:①有理数和数轴上的点—一对应;②不带根号的数一定是有理数;③负数没有立方根;④-17 是17的平方根,其中正确的有( ) A .0个 B .1个 C .2个 D .3个2那么x 取值范围是( ) A 、x ≤2 B. x <2 C. x ≥2 D. x >23、-8) A .2 B .0 C .2或一4 D .0或-44、若2m -4与3m -1是同一个数的平方根,则m 为( ) A .-3 B .1 C .-3或1 D .-15、若实数a 和 b 满足 b=a+5 +-a-5 ,则ab 的值等于_______6、在 3 - 2 的相反数是________,绝对值是______.7、81 的平方根是( ) A .9 B .9 C .±9 D .±38、若实数满足|x|+x=0, 则x 是( ) A .零或负数 B .非负数 C .非零实数D.负数三、例题剖析1、设a= 3 - 2 ,b=2- 3 ,c = 5 -1,则a 、b 、c 的大小关系是( )A .a >b >cB 、a >c >bC .c >b >aD .b >c >a2、若化简|1-x|2x-5,则x 的取值范围是()A .X 为任意实数B .1≤X ≤4C .x ≥1D .x <43、阅读下面的文字后,回答问题:小明和小芳解答题目:“先化简下式,再求值:a=9时”,得出了不同的答案 ,小明的解答:原式1-a)=1,小芳的解答:原式= a+(a -1)=2a -1=2×9-1=17⑴___________是错误的;⑵错误的解答错在未能正确运用二次根式的性质:________4、计算:20012002=5、我国1990年的人口出生数为人。

高中数学21种解题方法与技巧全汇总

高中数学21种解题方法与技巧全汇总

高中数学21种解题方法与技巧全汇总01 解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。

具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。

②零点分段讨论法:适用于含一个字母的多个绝对值的情况。

③两边平方法:适用于两边非负的方程或不等式。

④几何意义法:适用于有明显几何意义的情况。

02 因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。

因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法03 配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。

配方法的主要根据有:04 换元法解某些复杂的特型方程要用到“换元法”。

换元法解方程的一般步骤是:设元→换元→解元→还元05 待定系数法待定系数法是在已知对象形式的条件下求对象的一种方法。

适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。

其解题步骤是:①设②列③解④写06 复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。

①因式分解型:(-----)(----)=0 两种情况为或型②配成平方型:(----)2+(----)2=0 两种情况为且型07 数学中两个最伟大的解题思路(1)求值的思路列欲求值字母的方程或方程组(2)求取值范围的思路列欲求范围字母的不等式或不等式组08 化简二次根式基本思路是:把√m化成完全平方式。

即:09 观察法10 代数式求值方法有:(1)直接代入法(2)化简代入法(3)适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。

11 解含参方程方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。

解含参方程一般要用‘分类讨论法’,其原则是:(1)按照类型求解(2)根据需要讨论(3)分类写出结论12 恒相等成立的有用条件(1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。

根式的运算技巧

根式的运算技巧

平方根与立方根一、知识要点1、平方根:⑴、定义:如果x2=a,则x叫做a的平方根,记作“a称为被开方数)。

⑵、性质:正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

⑶、算术平方根:正数a的正的平方根叫做a”。

2、立方根:⑴、定义:如果x3=a,则x叫做a”(a称为被开方数)。

⑵、性质:正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。

3、开平方(开立方):求一个数的平方根(立方根)的运算叫开平方(开立方)。

二、规律总结:1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1。

2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。

3≥0有意义的条件是a≥0。

4、公式:⑴2=a(a≥0(a取任何数)。

5、非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0(此性质应用很广,务必掌握)。

例1求下列各数的平方根和算术平方根(1)64;(2)2)3(-; (3)49151; ⑷ 21(3)-例2 求下列各式的值(1)81±; (2)16-; (3)259; (4)2)4(-.(5)44.1,(6)36-,(7)4925±(8)2)25(-例3、求下列各数的立方根:⑴ 343; ⑵ 10227-; ⑶二、巧用被开方数的非负性求值. 大家知道,当a ≥0时,a 的平方根是±a ,即a 是非负数.例4、若,622=----y x x 求y x 的立方根.练习:已知,21221+-+-=x x y 求y x 的值.三、巧用正数的两平方根是互为相反数求值.我们知道,当a ≥0时,a 的平方根是±a ,而.0)()(=-++a a例5、已知:一个正数的平方根是2a-1与2-a ,求a 的平方的相反数的立方根.练习:若32+a 和12-a 是数m 的平方根,求m 的值.四、巧解方程例6、解方程(1)(x+1)2=36 (2)27(x+1)3=64五、巧用算术平方根的最小值求值. 我们已经知道0≥a ,即a=0时其值最小,换句话说a 的最小值是零.例4、已知:y=)1(32++-b a ,当a 、b 取不同的值时,y 也有不同的值.当y 最小时,求b a的非算术平方根.练习:1、若一个数的平方根是8±,则这个数的立方根是( ).A .2B .±2C .4D .±42、144的算术平方根是 ,16的平方根是 ;3、若m 的平方根是51a +和19a -,则m = .4、327= , 64-的立方根是 ;5、7的平方根为 ,21.1= ;6、一个数的平方是9,则这个数是 ,一个数的立方根是1,则这个数是 ;7、平方数是它本身的数是 ;平方数是它的相反数的数是 ;8、当x= 时,13-x 有意义;当x= 时,325+x 有意义;9、若164=x ,则x= ;若813=n ,则n= ;10、若3x x =,则x= ;若x x -=2,则x ;11、15的整数部分为a,小数部分为b,则a=____, b=____12、解方程:0324)1(2=--x (2) 3125(2)343x -=-(3 ) 264(3)90x --= (4)31(1)802x -+=1323(2)0y z -++=,求xyz 的值。

初中数学 数与式 知识点 考点 思维导图 实数及其运算 整式 分式 二次根式

初中数学 数与式 知识点 考点 思维导图 实数及其运算 整式 分式 二次根式
分母为0;分式值为0的条件是分子等于0,但分母不等于0
分式的加减法/ 异分母的分式相加减,先通分,变成同分母的分
4、参数法∶当已经条件形如工-上=三,所要求值的代数式
是一个含x,y,z,a,b,c,而又不易化简的分式
时,通常设 艺-为=三*(k就是我们所说的参数),
分式
\式,然后相加减,b即 4d± 二b=dad ,bbdc_ adb±dbc
运算顺序
作商法 =1ea=b(a>0,b>0)
<1ea<b
(4) (ab)c=a(bc); n(5)a(b+c)=ab+ac
分级∶加减是一级运算,乘除是二级运算,乘方和开方是三级运算.
三级运算的顺序是三、二、一、(如果有括号,先算括号内的;如
果没有括号,在同一级运算中,要从左至右进行运算,无论何种
运算,都要注意先定符号后运算.)
学习误区
合并同类项
系数相加,所得的结果作为合并后的系数,字母和字母的指数 _不变叫做合并同类项.
整式的加减 就是合并同类项,遇到括号,一般先去掉括号,去 括号的方法是∶+(a+b-c)=a+b-c;-(a+b-c)=-a-b+c.
知能提升
整式有关概念
总并华结 梳知理识
整式 幂的运算法则 的运算 整式的乘法
中A,B,M/都是整式,特别要注意整式M的值不等于零.
2、分式的分子、分母与分式本身的符号,改变其中的任何
两个,分式的值不变如--=-为=号,再如一ba
知能提升
分式的概念
并总华结
知识
梳理
式子表述 告A部告告(u20,如为整式)
基本性质
同分母的分式相加减,分母不变,把分子相加减,
即号±8a±o,
3、分式有意义的条件是分母不为0;分式无意义的条件是

二次根式的运算技巧

二次根式的运算技巧

二次根式的运算技巧二次根式是指具有根号的形式,其中被开方数是一个含有字母或非完全平方数的算式。

在解题时,我们常常需要进行一系列的运算来简化和化简这些二次根式,使得它们更易于计算和操作。

以下是一些常用的二次根式的运算技巧:1. 合并同类项:这个技巧可以应用在二次根式加减法中。

当二次根式中的被开方数相同,我们可以将它们合并在一起,然后在根号外面的系数上进行加减运算。

例如:√3 + √3 = 2√3√2 - √2 = 02. 分解因式:这个技巧可以应用于二次根式乘法中。

我们可以将二次根式的因式分解为两个二次根式的乘积,然后再进行运算。

例如:√2 * √3 = √(2 * 3) = √63. 有理化分母:这个技巧可以应用于二次根式的除法中。

有理化分母是指将二次根式分母中的根号消去,通过将分子和分母同时乘以分母的共轭来实现。

例如:√3 / √2 = (√3 / √2) * (√2 / √2) = √(3 * 2) / 2 = √6 / 2 = √6 / 2 * √2 / √2 = √12 / 2√2 = √12 / 2 * √2 / 2 = √6 / 2 * √2 / 2 = (√6 * √2) / 4 = √12 / 4 = √34. 提取公因式:这个技巧可以应用于二次根式的乘法和除法中,在二次根式中找出可以提取出来的公因式来简化和化简计算。

例如:√8 + √18 = 2√2 + 3√2 = 5√25. 合并同底数:这个技巧可以应用于二次根式的乘法和除法中,当多个二次根式具有相同的底数时,我们可以将它们合并在一起,然后在根号外面的系数上进行运算。

例如:√2 * √3 + √2 * √5 = √(2 * 3) + √(2 * 5) = √6 + √106. 平方差公式:这个技巧可以应用于二次根式的乘法和除法中,对于两个二次根式a和b,我们可以利用平方差公式来计算它们的乘积或除法。

例如:(√a + √b) * (√a - √b) = a - b7. 平方和公式:这个技巧可以应用于二次根式的乘法和除法中,对于两个二次根式a和b,在某些情况下,我们可以利用平方和公式来计算它们的乘积或除法。

整式、分式、二次根式

整式、分式、二次根式

第二讲 整式、分式一、课标下复习指南 (一)代数式1.代数式用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,叫做代数式.单独一个数或表示数的字母也叫做代数式.2.求代数式的值用数值代替代数式里的字母,按照代数式指明的运算计算出结果,叫做求代数式的值. 3.代数式的分类(二)整式1.整式的有关概念(1)单项式及有关概念由数字和字母的积组成的代数式叫单项式,单独的一个数和单独的一个字母也叫单项式.单项式的数字因数叫做这个单项式的系数,所有字母的指数之和叫做这个单项式的次数.(2)多项式及有关概念几个单项式的和叫做多项式.在多项式中,每个单项式叫多项式的项,其中,不含字母的项叫做常数项.多项式里次数最高的项的次数叫多项式的次数.(3)同类项的概念 多项式中,所含字母相同,相同字母的指数也相同的项,叫做同类项.两个常数项也是同类项.2.整式的运算(1)整式的加减 ①合并同类项把多项式中的同类项合并成一项,即把它们的系数相加作为新的系数,而字母部分不变,叫做合并同类项.②添(去)括号法则如果括号前面是正号,括号里的各项都不变符号;如果括号前面是负号,括号里的各项都改变符号.③整式的加减几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接;然后去括号,合并同类项.(2)整数指数幂及其运算性质①整数指数幂正整数指数幂:⎪⎩⎪⎨⎧≥⋅⋅⋅⋅==),2(),1(为正整数个n n a a a a n aa n n零指数幂:10=a (a ≠0).负整数指数幂:n n aa 1=-(a ≠0,n 为正整数). ②整数指数幂的运算性质(以下四式中m ,n 都是整数) a m ·a n =a m +n : (a m )n =a mn ;(ab )m =a m ·b m . a m ÷a n =a m -n(a ≠0). (3)整式的乘法①单项式乘以单项式,把它们的系数、相同字母分别相乘;对于只在一个单项式里含的字母,连同它的指数作为积的一个因式.②单项式乘以多项式,根据分配律用这个单项式去乘多项式的每一项,再把所得的积相加.③多项式乘以多项式,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.④乘法公式:(a +b )(a -b )=a 2-b 2; (a ±b )2=a 2±2ab +b 2;常用的几个乘法公式的变形:a 2+b 2=(a +b )2-2ab =(a -b )2+2ab ;(a -b )2=(a +b )2-4ab .(4)整式的除法(结果为整式的)①单项式除以单项式,把系数、同底数幂分别相除,作为商的因式,只在被除式里含有的字母,连同它的指数也作为商的一个因式.②多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.3.因式分解的概念 (1)因式分解的概念把一个多项式化成几个整式的积的形式,叫做多项式的因式分解. 在因式分解时,应注意:①在指定数(有理数、实数)的范围内进行因式分解,一定要分解到不能再分解为止,若题目中没有指定数的范围,一般是指在有理数范围内因式分解.②因式分解后,如果有相同的因式,应写成幂的形式,并且要把各个因式化简,同时,每个因式的首项不含负号.③多项式的因式分解是多项式乘法的逆变形. (2)因式分解的方法 ①提公因式法:ma +mb +mc =m (a +b +c ). ②运用公式法: a 2-b 2=(a +b )(a -b ); a 2±2ab +b 2=(a ±b )2:*③十字相乘法:x 2+(a +b )x +ab =(x +a )(x +b ).④用一元二次方程求根公式分解二次三项式的方法:ax 2+bx +c =a (x -x 1)(x -x 2).(当b 2-4ac ≥0时,,2421a acb b x -+-=)2422aac b b x ---=(3)因式分解的步骤①多项式的各项有公因式时,应先提取公因式; ②考虑所给多项式是否能用乘法公式分解;③对于二次三项式,可先尝试用十字相乘法分解;④检查每一个因式是否都已分解彻底,是否符合要求.必要时,可用多项式的乘法运算从结果逆推回去,以检验因式分解所得结果是否正确. 4.分式(1)分式的有关概念①分式:若A 和B 均为整式(其中B 中含有字母),则形如BA的式子叫做分式. 注意 对于一个分式BA,字母的取值必须使分母B 的值不为零. ②最简分式:分子、分母没有公因式的分式叫做最简分式. 注意 关于分式概念的应用,一般有以下几种: 分式有意义⇔分母≠0; 分式无意义⇔分母=0;分式值为0⇔⎩⎨⎧≠=.0,0分母分子分式值为1⇔⎩⎨⎧==.0,分母分母分子分式值为正⇔分子、分母同号. 分式值为负⇔分子、分母异号.(2)分式的基本性质分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变.M B MA MB M A B A ÷÷=⨯⨯=(其中M 是不等于零的整式). (3)分式的运算①加减法:bd bc ad d c b a ±=±.特别地,当b =d 时,b c a b c b a ±=±. ②乘法:⋅=bdacd c b a . ③除法:bcadc d b a d c b a ==÷.(此法则将分式的除法转化为乘法). ④乘方:n nn b a ba =)((n 为正整数).二、例题分析例1 下列运算中,计算结果正确的个数是( ).(1)a 4·a 3=a 12;(2)a 6÷a 3=a 2;(3)a 5+a 5=a 10;(4)(a 3)2=a 9;(5)(-ab 2)2=ab 4;(6)⋅=-22212x x A .无 B .1个 C .2个 D .3个 解 A .说明 整数指数幂的运算性质是整式运算的基础,容易混淆.其原因是做题时不按性质做,而是跟着感觉走,必须培养良好的做题习惯.例2 如果关于x ,y 的单项式2ax my 与5bx 2m -3y 是同类项,(1)求(9m -28)2009的值;(2)若2ax m y +5bx 2m -3y =0,并且xy ≠0,求(2a +5b )2009的值. 解 ∵2ax m y 与5bx 2m -3y 是同类项, ∴2m -3=m .解得m =3. (1)(9m -28)2009=(9×3-28)2009=-1.(2)∵m =3,且2ax my +5bx 2m -3y =0, ∴2ax 3y +5bx 3y =0,即(2a +5b )x 3y =0. 又∵xy ≠0,∴2a +5b =0. ∴(2a +5b )2009=02009=0.说明 此题考查了同类项的概念,要注意同类项与单项式的系数无关.在合并同类项时,只要将它们的系数合并,而字母及字母的指数不变.例3 计算: (1);)3()41(212335a b a b a -⋅-÷ (2)(3xy 3-9x 4y 2)÷3xy -(x 2-2xy )·4x 2.解 (1)原式=23359)41(21a b a b a ⋅-÷.189)4(21242335b a a ba b a -=⋅-⨯=(2)原式=y 2-3x 3y -4x 4+8x 3y=y 2+5x 3y -4x 4.说明 正确运用幂的运算法则是进行幂的运算的关键.单项式相乘除时,要注意运算顺序,先做乘方,然后按从左到右的顺序做乘除法.例4 计算:(1)8x 2-(x -2)(3x +1)-2(x +1)(x -5); (2)(a +b -1)(a -b +1)-a 2+(b +2)2. 解 (1)原式=8x 2-(3x 2-5x -2)-2(x 2-4x -5) =8x 2-3x 2+5x +2-2x 2+8x +10 =3x 2+13x +12.(2)原式=[a +(b -1)][a -(b -1)]-a 2+(b +2)2 =a 2-(b -1)2-a 2+(b +2)2=(b +2)2-(b -1)2=(b +2+b -1)(b +2-b +1) =(2b +1)×3=6b +3.说明 在整式运算中,要注意:(1)灵活运用运算律、运算法则和乘法公式,寻找合理、简捷的运算途径;(2)利用乘法公式进行计算时,要分析式子的特点,正确选择公式,尤其要注意公式中字母的顺序及符号;(3)当几个多项式乘积前面出现负号时,处理负号的方法是可将负号视为(-1)先与其中的一个因式相乘,或将负号后面的多项式结合在一起先相乘,然后利用去括号法则去括号.例5 把下列各式分解因式:(1)6(a -b )2+8a (b -a ); (2)(x +y )2-4(x +y )+4; (3)16x 2-(x 2+4)2; (4).4412+-x 解 (1)原式=6(a -b )2-8a (a -b ) =2(a -b )[3(a -b )-4a ] =2(a -b )(3a -3b -4a ) =-2(a -b )(a +3b ).(2)原式=[(x +y )-2]2=(x +y -2)2. (3)原式=(4x )2-(x 2+4)2 =[4x +(x 2+4)][4x -(x 2+4)] =-(x 2+4x +4)(x 2-4x +4) =-(x +2)2(x -2)2.(4)原式)16(412--=x).4)(4(41-+-=x x说明 (1)分解因式必须进行到每一个因式都不能再分解为止(每个因式分别整理、化简后,一般要按降幂排列);(2)如果多项式最高次项的系数是负数,一般要提出负号,使括号内该项的系数是正数;(3)遇到有多项式乘方时,应注意下面的规律:(b -a )2k =(a -b )2k ;(b -a )2k +1=-(a -b )2k +1(k 为整数).(4)注意换元思想在因式分解中的应用:将题目中相同的代数式看成一个整体去提取公因式、运用乘法公式或进行十字相乘.例6 (1)当x 取何值时,分式6532+--x x x 无意义?(2)当x 取何值时,分式12922---x x x 有意义?值为零?解 (1)要使分式无意义,只需x 2-5x +6=0.解得x 1=2,x 2=3.∴当x =2或x =3时,分式无意义.(2)要使分式有意义,只要使x 2-x -12≠0,解得x ≠-3且x ≠4. ∴当x ≠-3且x ≠4时,分式有意义.要使分式的值为零,只⎪⎩⎪⎨⎧=/--=-.012,0922x x x解得⎩⎨⎧≠-=/-==.43,33x x x x 且或∴当x =3时,分式的值等于零.说明 (1)确定分式有无意义时,一定要对原分式进行讨论,而不能讨论化简后的分式;(2)只有当字母的取值使分子的值等于零且分母的值不等于零时,分式的值才等于零;(3)注意准确使用“或”和“且”字.例7 计算: (1)2121111x x x ++++-; (2)⋅--++--÷++-+296.4144222222x x x x x x x x x x 解 (1)原式212)1)(1(11x x x x x +++--++=)1)(1()1(2)1(21212222222x x x x x x +--++=++-= 414x-=. (2)原式.1)2)(2(.)2()2)(1(2--+++-=x x x x x x ⋅+++=++=-++1961)3()2)(1()3(222x x x x x x x x说明 对异分母的分式相加减时,一般先通分,变为同分母的分式,然后再加减.对于某些具体的分式运算也可以采取一些特殊的方法,如(1)题采用逐步合并的方法.对于分子、分母都是多项式的分式进行乘除运算时,一定要先将每个多项式分解因式,然后将除法统一为乘法,最后再进行约分,如(2)题.对于运算结果,一般的,二次的多项式应乘开.例8 已知12-=a ,化简求值:⋅+-÷++--+-24)44122(22a a a a a a a a解法一 原式42])2(1)2(2[2-+⨯+--+-=a a a a a a a 41)212(-⨯+---=a a a a a ⋅+=-⨯+-=)2(141)2(4a a a a a a .122,12+=+∴-=a a ∴原式.1)12)(12(1=+-=解法二 由12-=a ,得21=+a ,平方,移项,可得a 2+2a =1.∴将原式化简为aa 212+后,立即得其值为1. 例9 已知x +y =-4,xy =-12,求+++11x y 11++y x 的值. 解 原式)1)(1()1()1(22+++++=y x x y=1121222++++++++y x xy x x y y1)(2)(22)(2++++++-+=y x xy y x xy y x 将x +y =-4,xy =-12代入上式,∴原式⋅-=+--+-⨯++-=153414122)4(224)4(2说明 求代数式的值的问题,一般先将所求代数式进行化简,然后利用已知条件求值.在使用条件时有三种方式:(1)将已知条件直接代入计算;(2)将已知条件变形后再代入计算;(3)将已知条件整体代入再计算求值.例10 已知321=+xx ,求441x x +的值.解 2)1(122244-+=+xx x x2]2)32[(2]2)1[(2222--=--+=xx=102-2=98.说明 此题是反复运用完全平方公式把所求代数式变形,使问题得解. 三、课标下新题展示例11 在解题目“当x =1949时,求代数式x x x x x x x 122444.222-+-÷-+-+1的值.”时,聪聪认为x 只要任取一个使原式有意义的值代入都有相同结果.你认为他说得有道理吗?请说明理由.解 聪聪说得有道理.∵原式11)2(2.)2)(2()2(2+--+-+-=xx x x x x x ,1111=+-=xx ∴只要使原式有意义,无论x 取何值,原式的值都相同,为常数1.例12 某种长途电话的收费方式如下:接通电话的第=分钟收费a (a <8)元,之后的每=分钟收费b 元.如果某人打该长途电话被收费8元钱,则此人打长途电话的时间是( ).A .ba-8分钟 B .b a +8分钟 C .bba +-8分钟D .bba --8分钟解 C .说明 用代数式表示实际问题中的数量关系,是一类常见的考题.二次根式一、课标下复习指南 (一)二次根式的有关概念 1.二次根式形如)0(≥a a 的式子叫做二次根式. 2.最简二次根式(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式. 满足上述两个条件的二次根式叫做最简二次根式. (二)二次根式的主要性质1.)0(≥a a 是一个非负数; 2.);0()(2≥=a a a 3.⎩⎨⎧<-≥==);0(),0(||2a a a a a a4.);0,0(≥≥⋅=b a b a ab5.);0,0(>≥=b a ba ba6.若a >b ≥0,则.b a > (三)二次根式的运算1.二次根式的加减二次根式加减时,先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.2.二次根式的乘除二次根式相乘除,把被开方数相乘除,根指数不变. *3.分母有理化把分母中的根号化去,分式值不变,叫做分母有理化.常用的二次根式的有理化因式: (1)a 与a 互为有理化因式;(2)b a +与b a -,一般的,b c a +与b c a -互为有理化因式;(3)b a +与b a -,一般的,b d a c +与b d a c -互为有理化因式. 二、例题分析例1 当x 为何值时,下列代数式有意义? .1)2(;322)1(232x x x x x -+----解 (1)欲使3222---x x x 有意义,只要使⎩⎨⎧=/--≥-.032,022x x x 即⎩⎨⎧≠-=/≥.31,2x x x 且 解得x ≥2且x ≠3. ∴当x ≥2且x ≠3时,3222---x x x 有意义.(2)欲使231x x -+-有意义,只要使-x 2≥0,解得x =0. ∴当x =0时,231x x -+-有意义.说明 代数式有意义的条件:分式有意义的条件是分式的分母不为零;二次根式有意义的条件是被开方数为非负数;由实际意义得到的代数式还要符合实际意义.例2 化简:(1);14962123xx x x x -+ *(2)已知1<x <2,化简122+-x x .442x x +-+ 解 (1)原式x x x x x x 4221-+=x x 23-=(2)∵1<x <2,∴x -1>0,2-x >0. 224412x x x x +-++-∴22)2()1(x x -+-==|x -1|+|2-x |=(x -1)+(2-x )=1.说明 (1)二次根式的化简要考虑最简二次根式的两个条件,根号内是多项式时,要考虑是否是完全平方式;(2)化简2a 时,要考虑字母a 的取值范围;(3)在二次根式运算中,根号外的因式可以平方后作为被开方数的因式移进根号内,从而使运算简化.例3 计算:(1);22)8321464(÷+- (2)+⋅-+-5()625()2332(202.)6219 解 (1)原式22)262264(÷+-=.232+=(2)原式=5)(625[()1861212(-++-62561230)625()]6219-+-=-⋅+.61435-=说明 整式和分式的运算性质在二次根式的运算中同样适用,乘法公式、分配律、约分等都有可能简化运算过程,要根据式子的结构特征灵活使用.例4 已知xy =3,求yxyx y x+的值. 分析 因为xy =3,所以x ,y 同正或同负,要分情况讨论. 解 当x >0,y >0时, 原式.322==+=xy xy xy 当x <0,y <0时,原式.322-=-=--=xy xy xy 综上可知,原式.32±= 三、课标下新题展示例5 若n 20是整数,则满足条件的最小正数n 为( ). A .2B .3C .4D .5解 D .说明 对于二次根式的性质:||);0()(22a a a a a =≥=,会有多种形式进行考查,要熟练掌握.例6 对正实数a ,b ,定义,*b a ab b a +-=若4*x =44,则x 的值是______. 解 依题意,得.4444=+-x x 整理,得.484=+x x 变形,得.4912)(2=++x x.49)1(2=+∴x71=+∴x 或,71-=+x 6=x 或8-=x (舍). ∴x =36.经检验,x =36是原方程的解. ∴x 的值是36.说明 此题考查了阅读理解能力、完全平方公式、二次根式的性质、配方法解方程,是一道代数综合题,要求每个基本知识点都熟练掌握.四、课标考试达标题(一)选择题1.下列各式中正确的是( ). A .-2(a -b )=-2a -b B .(-x )2÷x 3=xC .xyz ÷(x +y +z )=yz +xz +xyD .(-m -n )(m -n )=n 2-m 2 2.下列等式中不成立的是( ).A .y x y x y x -=--22 B .y x yx y xy x -=-+-222 C .y x yxyx xy -=-2 D .xyx y y x x y 22-=-3.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式.....,如a +b +c 就是完全对称式.下列三个代数式:①(a -b )2;②ab +bc +ca ;③a 2b +b 2c +c 2a .其中是完全对称式的是( ). A .①②B .①③C .②③D .①②③ 4.用配方法将代数式a 2+4a -5变形,结果正确的是( ). A .(a +2)2-1B .(a +2)2-5C .(a +2)2+4 D .(a +2)2-95.已知411=-b a ,则ab b a b ab a 7222+---的值等于( ).A .6B .-6C .152D .72-(二)填空题6.某公司2009年5月份的纯利润是a 万元,如果每个月纯利润的增长率都是x ,那么预计7月份的纯利润将达到______万元(用代数式表示). 7.多项式9x 2+1加上一个单项式后,使它能成为一个整式的完全平方,那么加上的单项式可以是______ (填上一个正确的即可).8.若2x=3,4y=5,则2x -2y的值为______. 9.观察下面的单项式:x ,-2x 2,4x 3,-8x 4,…根据你发现的规律,写出第7个式子是______.10.已知),3,2,1()1(12=+=n n a n , b 1=2(1-a 1),b 2=2(1-a 1)(1-a 2),…,b n =2(1-a 1)(1-a 2)…(1-a n ),则通过计算推测出b n 的表达式为b n =______.(用含n 的代数式表示) (三)解答题 11.求63)(41)(21ba b a b a b a --++++-的值,其中|a -1|=-(b +2)2.12.在实数范围内分解因式:(1)4x 4-1;(2)x 2+2x -5.13.观察下列等式:,322322,211211-=⨯-=⨯=.,433433 -=⨯(1)猜想并写出第n 个等式;(2)证明你写出的等式的正确性.14.按下列程序计算,把答案填写在表格内,然后看看有什么规律,想想为什么会有这个规律?(1)填写表内空格:(2)发现的规律是:(3)用简要的过程证明你发现的规律.(一)选择题1.在根式⑤④③②①;2;15;;5223ab a a -2;12a a ⑥中,最简二次根式是( ).A .②③⑤B .②③⑥C .②③④⑥D .①③⑤⑥2.如果最简根式ab b -3和22+-a b 是同类二次根式,那么a 、b 的值分别是( ).A .a =0,b =2B .a =2,b =0C .a =-1,b =1D .a =1,b =-23.下列各式中,运算正确的是( ). A .553322=+ B .236=÷ C .632=D .12233=-(二)填空题4.当x 满足______条件时,32++-x x在实数范围内有意义. 5.若式子|2|)1(2-+-x x 化简的结果为2x -3,则x 的取值范围是______. 6.已知x 为整数,且满足32≤≤-x ,则x =______.7.观察下列各式:=+=+412,312311514513,413=+…请你将发现的规律用含自然数n 的等式表示出来______.(n ≥1)(三)解答题 8.计算:.)2(xy yxxyxy ⋅+-9.化简:.)23(36329180-++--10.先化简,再求值:423)225(--÷---a a a a ,其中.33-=a。

人教版五四《轴对称,整式乘除因式分解,分式,二次根式》全册知识点

人教版五四《轴对称,整式乘除因式分解,分式,二次根式》全册知识点

整式乘除及因式分解知识点归纳:1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。

如:bc a 22-的系数为2-,次数为4,单独的一个非零数的次数是0。

2、多项式:几个单项式的和叫做多项式。

多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。

如:122++-x ab a ,项有2a 、ab 2-、x 、1,二次项为2a 、ab 2-,一次项为x ,常数项为1,各项次数分别为2,2,1,0,系数分别为1,-2,1,1,叫二次四项式。

3、整式:单项式和多项式统称整式。

注意:凡分母含有字母代数式都不是整式。

也不是单项式和多项式。

5n m ,都是正整数)逆运算为:同底数幂相乘,底数不变,指数相加。

注意底数可以是多项式或单项式。

________3=⋅a a ;________32=⋅⋅a a a 532)()()(b a b a b a +=+∙+,6n m ,幂的乘方,底数不变,指数相乘。

如:10253)3(=-23326)4()4(4==_________)(32=a ;_________)(25=x ;())()(334a a =7、积的乘方法则:n 是正整数)积的乘方,等于各因数乘方的积。

如:(523)2z y x -=5101555253532)()()2(z y x z y x -=∙∙∙-________)(3=ab ;________)2(32=-b a ;________)5(223=-b a8n m a ,,0≠都是正整数,且)n m 同底数幂相除,底数不变,指数相减。

如:3334)()()(b a ab ab ab ==÷________3=÷a a ;________210=÷a a ;________55=÷a a91。

p a ,0≠是正整数),即一个不等于零的数的p -次方等于这个数的p 次方的倒数。

解答二次根式问题的几点注意

解答二次根式问题的几点注意

学习二次根式概念“四注意”一、注意:二次根式的定义(a≥0)叫做二次根式,理解这个概念时,要抓住三个要点:(1)从形式上看而次根式必须有二次根号3=,3显然就不是二次根式,因此,二次根式是指某种式子的“外在形态”.(2)被开方数a可以是数,也可以是但是,若a是数,则这个数必须是非负数;若a是代没有意义,故a≥0要抓住两个非负性:①被开方数a是非负数,即a≥0;≥0.(3)二次根式是一种代数式,二次根式是由于开平方运算得到的,当被开方数为常数时,它是一个实数,能开得尽方的为有理数,不能开得尽方的为无理数。

当被开方数中含有字母时,它就是我们以后将要接触到的无理式,因此,虽说二次根式为代数式,但其可能为有理式,也可能为无理式,它是代数式中的一部分.二、注意:定义是判断一个式子是否为二次根式的依据,判断一个式子是不是二次根式,一定要紧扣定义,看所给的式子是否同时具备二次根式的两个特征:(1)带二次根号;(2)被开方数大于等于0,只要同时民主这两个7,它就是二次根x≥1)(x<0=就不是二次根式.三、注意:怎么确定二次根式中被开方数所含字母的取值范围由二次根式的定义可知,当a≥0a<0方数中字母的取值范围问题,的式子有意义,或无意义的条件,列出不等式,在实数范围内有意义,必须使3x-1≥0,即x≥13.确定自变量的取值范围是本节的重点也是难点,所以一定要高度重视,我们学过的内容不外乎以下几种类型:根据函数解析式确定自变量取值范围应从以下几个方面考虑:① 整式型:若函数解析式是整式时,则自变量取值范围为一切实数;② 分式型:若函数解析式是分式时,则分母不为零;③ 二次根式型:若函数解析式是二次根式时,则被开方数为非负数;④ 指数型:若函数解析式用零次幂表示时,则应考虑底数不为零;⑤ 综合型:若函数解析式是整式型、分式型、二次根式型、指数型的综合,则自变量取值范围是它们各自取值范围的公共部分.四、注意:二次根式的简单性质a ≥0)是一个非负数,又因为开平方运算与平方运算是互逆运算,因而有:2a =(a ≥0),由此可得二次根式的两个简单性质:(1a ≥0)是一个非负数;(2)2a =(a ≥0).是3的算术平方根,3的平方根,而222,(3==.二次根式的乘法运算应注意的问题(1)进行二次根式的乘法运算时,应尽量把被开方数进行因数分解或因式分解,不可机=a ≥0,b ≥0),盲目地把被开方数相乘.×3×3=.(2)进行二次根式的乘法运算时,不一定非得把二次根式先化成最简二次根式,然后再相乘,但最后结果必须是最简二次根式.例如,最好先把二次根式化成最简二次根式,再进行乘法计算,=153⨯=用乘法法则运算来得简便.2312(3)如果被开方数中含有小数,应把小数化成分数,然后再进行乘法运算,切不可直接就进行小数的乘法运算.(4)进行二次根式的乘法运算时,对于类似于多项式与多项式相乘的题型,要认真观察题目的结构特点,充分利用乘法公式简化计算过程.学习二次根式注意挖掘隐含条件0)a≥的式子叫二次根式,这里a≥0是二次根式的隐含条件,不可忽视.一、应用隐含条件确定字母的取值范围:例1.=,则a的取值范围是()A.0a≤B.0a<C.01a<≤D.0a>解析:,成立的条件是:0,0a b>≥,而且当0a≥a=;所以==10aa-⎧⎨⎩≥>,即01a<≤,故此应选C.温馨提示:在二次根式化简时一定要注意法则成立的条件,再有要注意分母不为0的条件制约.二0)a ≥非负性的应用例2.若20x y -=,则2()xy -的值为( ) A .64 B .64- C .16 D .16-解析:0)a ≥可以认为表示的是a2x y -表示绝对值,也是非负数,那么两个非负数的和为0,则么每个数应都是0,即2x y -=00=,所以2y =,24x y ==,因此2()xy -=2(42)-⨯=64,故选A .温馨提示0≥、a 0≥、2a 0≥,当这三者中两个或三个相加和为0时,应每个都等于0.0)a ≥,隐含条件a ≥0的应用.例3.已知x 、y为实数,且满足12y =求521x y +-解析:因为x 为实数,所以隐含着两个算术根都有意义,即被开方数均为非负数. 依题意得10210.2x x ⎧-⎪⎪⎨⎪-⎪⎩≥,≥解得:12x =,所以110022y =++=,又因为22211y y y -+-=()所以521x y +-=1152122⨯+⨯- 2 温馨提示a =0.例4.已知a解析: 由于a 为实数,被开方数均为非负数,所以2208400a a a ⎧+⎪-⎨⎪-⎩≥≥≥,由20a -≥可得a =0,.温馨提示:因为20a ≥,若要20a -≥,则a =0.在解这类问题时一定要深入的挖掘题目中字母的内在含义.二次根式的运算“四注意”二次根式的运算可以说是前面学过的二次根式乘法、除法及加减法运算法则的综合运用,也是本章内容的落脚点,是前面几节内容的总结,在进行二次根式的运算时,请同学们还要注意以下几点:一、注意运算顺序问题二次根式的运算顺序与实数中的运算顺序一样,先乘方,后乘除,最后加减,有括号的先算括号里面的.例1(2+.解:原式==33=.说明:计算时注意运算顺序,另外,除法没有分配律,(21+=就错了.二、注意运算法则问题在运算过程中,每个根式可以看作是一个“单项式”,多个不同类的二次根式可以看作“多项式”,因此实数运算中的运算律(分配律、结合律、交换律),所有的乘法公式(平方差公式、完全平方公式、立方和、立方差公式等)在二次根式的运算中仍然适用.例2. 计算:(2+3―6)(2―3―6).解:原式=〔(2―6)+3〕〔(2―6)―3〕=(2―6)2―(3)2=8―23―3=5―23.三、注意熟练进行二次根式计算和化简在理解二次根式基本概念基础上,掌握好二次根式的重要性质多做一些练习,就能达到熟练计算和化简二次根式的目的,除此之外还要掌握一些方法技巧.1.因式分解法例4.化简:y y++χχ+χχχy y y+2解:原式=y y ++χχ+()y y y +χχχ2=y y y +++χχχ2=y y ++χχ2)(=χ+y2.观察法 例5. 设等式y a a x a y a a x a -+-=-+-)()(在实数范围内成立,其中a ,x ,y 实数,则22223y xy x y xy x +--+的值为( ). 解:由二次根式定义知:a -y ≥0,x -a ≥0,a (x -a )≥0,a (y -a )≥0, ∴a ≥0且a ≤0∴a =0∴已知等式可化为o y x =-,∴x = -y . ∴222222)()(3y y y y y y ++----=223y y =31. 3.凑零法例6. 已知χ=132- 求2χ+1+χ的值. 解:由χ=132-=13+,得31=-χ,两边平方后整理得0222=--χχ,∴原式=34313003)22(2=+++==-+--χχχ.4.倒数法例7. 当32-=χ时,求代数式3)32()347(2++++χχ的值. 解:由32-=χ,得321+=χ,∴原式=323113113)32()32(2222+=++=+⋅+⋅=+++⋅+χχχχχχ.5.整体代入法例8. 已知2323-+=χ,2323+-=y ,求代数式22)()(y y y y +-++χχχχ的值. 解:由已知得625+=χ,625-=y ,∴10=+y χ,1=y χ, ∴原式=9910110110122-=-+. 6.换元法 例9.已知11122=-+-a b b a ,求22b a +的值. 解:设=-21a χ>0,则122χ=-a ,由已知得χb b a -=-112两边平方得222221χχb b b a a +-=-,)(212222χχ++--a b b a =0,0222=+-∴b b χχ,0)(2=-χb ,b =χ,b a =-∴21,122=+∴b a .四、探索与思考:1.(1)判断下列各式是否正确.你认为成立的,请在括号内打“∨”,不成立的打“×”. ①322322=+( ) ②833833=+( ) ③15441544=+( ) ④24552455=+( ) (2)你判断完以上各题之后,请猜测你发现的规律,用含n 的式子将其规律表示出来,并注明n 的取值范围: .(3)请用数学知识说明你所写式子的正确性.2.如图1,所示的集合中有5个实数,请计算其中的有理数的和与无理数的积的差.3.细心观察如图2,认真分析各式,然后解答问题.21)1(2=+ S 1=21; A 2 A 4 A 3 A 51 S 3 1 图131)2(2=+ S 2=22; 41)3(2=+ S 3=23…… (1)请用含有n (n 为正整数)的等式表示上述变化规律;(2)推算出OA 10的长.(3)求出210232221S S S S ++++ 的值.4.先将23222xx x x x -÷--化简,然后自选一个合适的x 值,代入化简后的式子求值. 答案与提示:1.答案为①∨②∨③∨④×.(2)、(3)略。

整式,分式,因式分解,二次根式解题技巧

整式,分式,因式分解,二次根式解题技巧

1.整式用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子叫代数式.单独的一个数或一个字母也是代数式.只含有数与字母的积的代数式叫单项式.注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如:ba 2314-这种表示就是错误的,应写成:b a 2313-.一个单项式中,所有字母的指数的和叫做这个单项式的次数.如:c b a 235-是六次单项式.几个单项式的和叫多项式.其中每个单项式叫做这个多项式的项.多项式中不含字母的项叫做常数项.多项式里次数最高的项的次数,叫做这个多项式的次数.2. n 都是正整数)..()n ab =再把注意:①单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同.②计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号.多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.注意:多项式与多项式相乘的展开式中,有同类项的要合并同类项. ①平方差公式:22))((b a b a b a -=-+;②完全平方公式:2222)(b ab a b a ++=+,2222)(b ab a b a +-=-;③立方和公式:3322))((b a b ab a b a +=+-+ ④立方差公式:3322))((b a b ab a b a -=++-;⑤ac bc ab c b a c b a 222)(2222+++++=++.注意:公式中的字母可以表示数,也可以表示单项式或多项式.同底数幂的除法法则:同底数幂相除,底数不变,指数相减.如:n m n m a a a -=÷(n m ,为正整数,0≠a ).注意:10=a (0≠a );p a aa p p ,0(1≠=-为正整数).单项式的除法法则:单项式相除,把系数和同底数幂分别相除,作为商的因式,对于只在被除式里面含有的字母,则连同它的指数作为商的一个因式.多项式除以单项式的运算法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.注意:这个法则的适用范围必须是多项式除以单项式,反之,单项式除以多项式是不能这么计算的 322a ⨯;1=+a a ,不是).123、分组分解法:利用分组来分解因式的方法叫做分组分解法.分组分解法的关键是合理的选择分组的方法,分组时要预先考虑到分组后是否能直接提公因式或直接运用公式.4、十字相乘法:()()()q x p x pq x q p x ++=+++2.5、求根法:当二次三项式c bx ax ++2不易或不能写成用公式法或十字相乘法分解因式时,可先用求根公式求出一元二次方程02=++c bx ax 的两个根21,x x ,然后写成:()()212x x x x a c bx ax --=++.运用求根法时,必须注意这个一元二次方程02=++c bx ax 要有两个实数根.因式分解的一般步骤是:(1)如果多项式的各项有公因式,那么先提取公因式;(2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的次数:二项式可以尝试运用公式法分解因式;三项式可以尝试运用公式法、十字相乘法或求根法分解因式;四项式及四项式以上的可以尝试分组分解法分解因式;(3)分解因式必须分解到每一个因式都不能再分解为止.4.分式一般的,用B A ,表示两个整式,B A ÷就可以表示成BA的形式.如果B 中含有字母,式子B A 就叫做分式.其中,A 叫做分式的分子,B 叫做分式的分母.分式和整式通称为有理式.注意:(1)分母中含有字母是分式的一个重要标志,它是分式与分数、整式的根本区别;(2)分式的分母的值也不能等于零.若分母的值为零,则分式无意义; (3)当分子等于零而分母不等于零时,分式的值才是零.把一个分式的分子与分母的公因式约去,把分式化成最简分式,叫做分式的约分.B A =这个“适解:(1)b a b a b a 34124131413132-=⨯⎪⎭⎫ ⎝⎛-⎭⎝=-; (2)()()()2222222222222222125568560253040100)6.025.0(1003.04.06.0411034.0y x y x y x y x y x y x y x y x -+=-+=⨯-⨯+=-+ 222212568yx y x -+=. 1、分式的乘除法则:分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子表示是:bd ac d c b a =⨯;bcadc d b a d c b a =⨯=÷. 2、分式的乘方法则:分式乘方是把分子、分母各自乘方.用式子表示是:n n nb a b a =⎪⎭⎫⎝⎛(n 为整数).3、分式的加减法则:①同分母的分式相加减,分母不变,把分子相加减.用式子表示是:cba cbc a ±=±; ②异分母的分式相加减,先通分,变为同分母的分式,然后再加减.用式子表示是:除运算,此类a 必①如果被开方数是分数(包括小数)或分式,先利用商的算术平方根的性质把它写成分式的形式,然后利用分母有理化进行化简.②如果被开方数是整数或整式,先将它分解因数或因式,然后把能开得尽方的因数或因式开出来.几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫同类二次根式. 注意:当几个二次根式的被开方数相同时,也可以直接看出它们是同类二次根式.如24和243一定是同类二次根式.合并同类二次根式就是把几个同类二次根式合并成一个二次根式.合并同类二次根式的方法和合并同类项类似,把根号外面的因式相加,根式指数和被开方数都不变.把分母中的根号化去,叫分母有理化.如=+131)13)(13(13-+-2131313-=--=. 两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个代数式互为有理化因式.如1313-+和;2323-+和;a 和a ;a b a a b a -+和都是互为有理化因式.注意:二次根式的除法,往往是先写成分子、分母的形式,然后利用分母有理化来运算.如22133)7(32133)73)(73()73(3733)73(322+=-+=+-+=-=-÷. (1))0()(2≥=a a a .(4)b a 号里的(例烦,解:6321263212--+++--232+=.例2、计算:()()()()751755337533225++++-+++-.分析:按一般的方法做起来比较麻烦,注意题目的结构特点,逆用分式加、减法的运算法则“aba b b a ±=±11”进行变换,进而运用“互为相反数的和为零”的性质来化简. 解:()233525+-+=- ;()355737+-+=-,∴原式751751531531321+++-+++-+=23-=.例3、已知273-=x ,a 是x 的整数部分,b 是x 的小数部分,求b a ba +-的值.分析:先将x 分母有理化,求出b a ,的值,再求代数式的值.解: 27273+=-=x , 又372<< , 54<<∴x .一、例1故有a 例2于是可以发现3+22=()221+,且()21363+=+,通过因式分解,分子所含的1+32-的因式就出来了。

整式、分式、二次根式

整式、分式、二次根式

中考总复习:整式与因式分解—知识讲解【知识梳理】考点一、整式1.单项式数与字母的积的形式的代数式叫做单项式.单项式是代数式的一种特殊形式,它的特点是对字母来说只含有乘法的运算,不含有加减运算.在含有除法运算时,除数(分母)只能是一个具体的数,可以看成分数因数.单独一个数或一个字母也是单项式.要点诠释:(1)单项式的系数是指单项式中的数字因数.(2)单项式的次数是指单项式中所有字母的指数和.2.多项式几个单项式的代数和叫做多项式.也就是说,多项式是由单项式相加或相减组成的.要点诠释:(1)在多项式中,不含字母的项叫做常数项.(2)多项式中次数最高的项的次数,就是这个多项式的次数.(3)多项式的次数是n次,有m个单项式,我们就把这个多项式称为n次m项式.(4)把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母降幂排列.把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母升幂排列.3.整式单项式和多项式统称整式.4.同类项所含字母相同,并且相同字母的指数也分别相同的项,叫做同类项.5.整式的加减整式的加减其实是去括号法则与合并同类项法则的综合运用.6.整式的乘除①幂的运算性质:②单项式相乘:两个单项式相乘,把系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式. ③单项式与多项式相乘: ④多项式与多项式相乘:平方差公式: 完全平方公式:⑤单项式相除:两个单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.⑥多项式除以单项式:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.考点二、因式分解 1.因式分解把一个多项式化成几个整式的积的形式,这样的式子变形叫做把这个多项式因式分解. 2.因式分解常用的方法(1)提取公因式法:)(c b a m mc mb ma ++=++ (2)运用公式法:平方差公式:))((22b a b a b a -+=-;完全平方公式:222)(2b a b ab a ±=+± (3)十字相乘法:))(()(2b x a x ab x b a x ++=+++(4)分组分解法:将多项式的项适当分组后能提公因式或运用公式分解. 3.因式分解的一般步骤(1)如果多项式的各项有公因式,那么先提公因式;(2)提出公因式或无公因式可提,再考虑可否运用公式或十字相乘法; (3)最后考虑用分组分解法及添、拆项法.【典型例题】类型一、整式的有关概念及运算若单项式是同类项,则的值是 .下列各式中正确的是( )A. B.a 2·a 3=a 6C.(-3a 2)3=-9a 6D.a 5+a 3=a 8【变式】下列运算正确的是 ( )A .B .C .D .【变式】下列运算中,计算结果正确的个数是( ).(1)a 4·a 3=a 12; (2)a 6÷a 3=a 2; (3)a 5+a 5=a 10; (4)(a 3)2=a 9; (5)(-ab 2)2=ab 4; (6) 利用乘法公式计算:(1)(2x-3y)(2x+3y) (2) (3a-6b)2(3)(a+b+c)2(4)(2a 2-3b 2+2)(2-2a 2+3b 2) (5)(m-3)(m+5)若多项式x 2+ax+8和多项式x 2﹣3x+b 相乘的积中不含x 2、x 3项,求(a ﹣b )3﹣(a 3﹣b 3)的值.如果a 2+ma+9是一个完全平方式,那么m=______. 已知 a+b=5,ab=3,求代数式的值 (1)a 2+b2(2) a ﹣b⋅=-22212x x已知25mx=,求6155m x -的值. 已知2a x =,3b x =.求32a b x +的值.类型二、因式分解因式分解(1)9x 2﹣81 (3)3x (a ﹣b )﹣6y (b ﹣a ) (4)6mn 2﹣9m 2n ﹣n 3.(4)(2x+y )2﹣(x+2y )2 (5)﹣8a 2b+2a 3+8ab 2. (6)多项式222225x xy y y -+++的最小值是____________.【变式】多项式的最小值是____________. 把3443ax by ay bx +++分解因式.【变式1】分解因式:22244a b ab c +--16x 2-(x 2+4)2;.4412+-x 22212-+-x x 4322+-x x 22233y xy y x x ++--类型三、因式分解与其他知识的综合运用已知a 、b 、c 是△ABC 的三边的长,且满足: a 2+2b 2+c 2-2b(a+c)=0,试判断此三角形的形状.【变式】已知,则xy= .【变式】若△ABC 的三边长分别为a 、b 、c ,且满足222166100a b c ab bc --++=, 求证:2a c b +=.【变式】已知,求的值. 【变式】【变式】321=+xx 441x x +0102622=+++-y y x x 的值,,求已知1013422+=+-x x x x 的值,,求代数式满足已知yx xy y x y x y x ++=++245,22中考总复习:分式与二次根式—知识讲解【知识网络】【考点梳理】考点一、分式的有关概念及性质1.分式设A、B表示两个整式.如果B中含有字母,式子就叫做分式.注意分母B的值不能为零,否则分式没有意义.2.分式的基本性质(M为不等于零的整式).3.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简.考点二、分式的运算1.基本运算法则分式的运算法则与分数的运算法则类似(1)加减运算(2)乘法运算(3)除法运算(4)乘方运算(b≠0)2.零指数.3.负整数指数4.分式的混合运算顺序先算乘方,再算乘除,最后加减,有括号先算括号里面的.5.约分把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.(公因式是分子、分母系数的最大公约数和相同字母最低次幂的积.)6.通分根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.确定最简公分母的方法:最简公分母的系数,取各分母系数的最小公倍数;最简公分母的字母,取各分母所有字母因式的最高次幂的积. 考点三、分式方程及其应用 1.分式方程的概念分母中含有未知数的方程叫做分式方程. 2.分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程. 3.分式方程的增根问题(1)增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根---增根;(2)验根:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解. 4.分式方程的应用考点四、二次根式的主要性质;2.;(0)||(0)a a a a a ≥⎧==⎨-<⎩;4. 积的算术平方根的性质:00)a b =≥≥,;5. 商的算术平方根的性质:00)a b =≥>,. 6.若0a b >≥>.考点五、二次根式的运算 1.二次根式的乘除运算(1)运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号. (3)乘法公式的推广:123123(0000)n n n a a a a a a a a a ⋅=⋅⋅⋅⋅≥≥≥≥,,,,2.二次根式的加减运算先化为最简二次根式,再类比整式加减运算,明确二次根式加减运算的实质; 3.二次根式的混合运算0(0)a ≥≥2(0)a a =≥二次根式的混合运算与整式、分式的混合运算有很多相似之处,整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用. 4.分母有理化把分母中的根号化去,分式的值不变,叫做分母有理化.两个含有二次根式的代数式相乘,若它们的积不含二次根式,则这两个代数式互为有理化因式. 常用的二次根式的有理化因式: (1(2)a a +-互为有理化因式;一般地a a +-(3. 【典型例题】类型一、分式的意义及性质使代数式有意义的的取值范围是( ) A. B. C.且 D.一切实数 【变式】当x 取何值时,分式12922---x x x 有意义?值为零?【变式】若分式mx x +-212不论x 取何实数总有意义,则m 的取值范围是 .类型二、分式的运算.31211222=⎪⎭⎫⎝⎛+-÷++-x x x x x x ,其中先化简,再求值:12-x xx 0≥x 21≠x 0≥x 21≠x【变式】化简:•..211-134422++⎪⎭⎫ ⎝⎛++÷++-x x x x x x x 化简:已知,求下列各式的值. (1); (2).【变式】已知求的值.已知求的值.14x x+=221x x +2421x x x ++111,a b a b +=+b a a b +,b c c a a b a b c+++==()()()abc a b b c c a +++【变式】已知求的值.类型四、分式方程及应用如果方程 有增根, 那么增根是 . a 为何值时,关于x 的分式方程会产生增根?【变式】a 为何值时,关于x 的分式方程的解为正数?为创建“国家卫生城市”,进一步优化市中心城区的环境,德州市政府拟对部分路段的人行道地砖、花池、排水管道等公用设施全面更新改造,根据市政建设的需要,须在60天内完成工程.现在甲、乙两个工程队有能力承包这个工程.经调查知道:乙队单独完成此项工程的时间比甲队单独完成多用25天,甲、乙两队合作完成工程需要30天,甲队每天的工程费用2500元,乙队每天的工程费用2000元.(1)甲、乙两个工程队单独完成各需多少天?(2)请你设计一种符合要求的施工方案,并求出所需的工程费用.111111111,,,6915a b b c a c +=+=+=abc ab bc ac++11322x x x-+=--223242ax x x x +=--+223242ax x x x +=--+【变式】莱芜盛产生姜,去年某生产合作社共收获生姜200吨,计划采用批发和零售两种方式销售.经市场调查,批发每天售出6吨.受天气、场地等各种因素的影响,需要提前完成销售任务.在平均每天批发量不变的情况下,实际平均每天的零售量比原计划增加了2吨,结果提前5天完成销售任务.那么原计划零售平均每天售出多少吨?甲.乙两人准备整理一批新到的实验器材.若甲单独整理需要40分钟完工:若甲.乙 共同整理20分钟后,乙需再单独整理20分钟才能完工.(1)问乙单独整理多少分钟完工?(2)若乙因工作需要,他的整理时间不超过30分钟,则甲至少整理多少分钟才能完工?【变式】小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x 千米/小时,根据题意,得( )A .B .C .D . 类型五、二次根式的定义及性质要使式子有意义,则a 的取值范围为 . 00253010(18060x x -=+)00253010(180x x -=+)00302510(18060x x -=+)00302510(180x x-=+)a a 2+若x-3+x-y+1=0,计算322x y+xy +4y . (1)当x 的值最小?最小值是多少? (2)的最小值是是整数,则若m m 128 .化简=-2)3(π .=++-+-1449622x x x x .)(30≤≥x2222,,)()()()(简是三角形的三边长,化已知a b c c a b c b a c b a c b a --+----++--类型六、二次根式的运算计算:1(46438)222-+÷; 328131126-+-;计算:.已知m 是的小数部分. 913x +(1)求m 2+2m+1的值; (2)求的值.的值。

二次根式解题方法与技巧

二次根式解题方法与技巧
2.化简
3. 化简
◆二次根式比较大小的技巧
一、根式变形
例1:比较6 与7 的大小
二、作差比较
例2:比较3- 与5-2 的大小
三、分母有理化
例3:比较 与 的大小
四、取倒数比较
例4:比较a= - 与b= - 的大小
与 - 的大小
◆二次根式求值常见方法
一、整体代入
二、 ≥0(a≥0)的应用
例4:若|a-2|+ +(c-4)2=0,则a-b+c=.
三、综合运用
例5:已知实数x,y,a满足: + = + ,试问长度分别为x,y,a的线段能否组成一个三角形?如果能,请求出该三角形的面积;如果不能,请说明理由。
跟踪练习:
1.已知a为实数,求代数式 - + 的值
2.若有理数x,y,z满足 + - =- (1+x),则(x-yz)3的值为多少?
A.x-1 B.1-x C.1 D.-1
2.已知|1- |=x,化简 +
◆二次根式的乘除运算技巧
一、巧算乘法
例1:计算 ×
将根系数与根系数相乘,二次根式与二次根式相乘,最后再化简。
二、巧变除为乘
例2:计算 .( ÷ )
三、巧约分
例3:计算(1) (2)
四、巧用倒数
例4:化简(4+ )2007(4- )2008
例9:化简
十、倒数法
例10:化简
十一、巧配方
例11:化简
十二、巧换元
例12:计算 -
解法一:设上式=X,先求出X2,再求了X;
解法二:原式= - =……=
小结:在进行二次根式运算时,如果按照常规方法运算量比较大,可根据算式的特点灵活选用合适的方法解题,可以化难为易,化繁为简,事半功倍。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.整式用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子叫代数式.单独的一个数或一个字母也是代数式.只含有数与字母的积的代数式叫单项式.注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如:b a 2314-这种表示就是错误的,应写成:b a 2313-.一个单项式中,所有字母的指数的和叫做这个单项式的次数.如:c b a 235-是六次单项式.几个单项式的和叫多项式.其中每个单项式叫做这个多项式的项.多项式中不含字母的项叫做常数项.多项式里次数最高的项的次数,叫做这个多项式的次数.单项式和多项式统称整式.用数值代替代数式中的字母,按照代数式指明的运算,计算出的结果,叫代数式的值.注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入(2)求代数式的值,有时求不出其字母的值,需要利用技巧,利用“整体”代入.2.同类项所含字母相同,并且相同字母的指数也分别相同的项叫做同类项.几个常数项也是同类项.注意:(1)同类项与系数大小没有关系;(2)同类项与它们所含字母的顺序没有关系.把多项式中的同类项合并成一项,叫做合并同类项.合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.去括号法则1:括号前是“+” ,把括号和它前面的“+”号一起去掉,括号里各项都不变号.去括号法则2:括号前是“-” ,把括号和它前面的“-”号一起去掉,括号里各项都变号.整式的加减法运算的一般步骤:(1)去括号;(2)合并同类项.同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.如:n m n m a a a +=⋅(n m ,都是正整数).幂的乘方法则:幂的乘方,底数不变,指数相乘.如:()mn n m a a =(n m ,都是正整数).积的乘方法则:积的乘方,等于把积的每一个因式分别乘方,再把所有的幂相乘.如:()n n n b a ab =(n 为正整数).单项式的乘法法则:单项式乘以单项式,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.注意:单项式乘以单项式的结果仍然是单项式.单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.如:()mc mb ma c b a m ++=++(c b a m ,,,都是单项式).注意:①单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同.②计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号.多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.注意:多项式与多项式相乘的展开式中,有同类项的要合并同类项.①平方差公式:22))((b a b a b a -=-+;②完全平方公式:2222)(b ab a b a ++=+,2222)(b ab a b a +-=-;③立方和公式:3322))((b a b ab a b a +=+-+④立方差公式:3322))((b a b ab a b a -=++-;⑤ac bc ab c b a c b a 222)(2222+++++=++.注意:公式中的字母可以表示数,也可以表示单项式或多项式.同底数幂的除法法则:同底数幂相除,底数不变,指数相减.如:n m n m a a a -=÷(n m ,为正整数,0≠a ).注意:10=a (0≠a );p a aa p p ,0(1≠=-为正整数). 单项式的除法法则:单项式相除,把系数和同底数幂分别相除,作为商的因式,对于只在被除式里面含有的字母,则连同它的指数作为商的一个因式.多项式除以单项式的运算法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.注意:这个法则的适用围必须是多项式除以单项式,反之,单项式除以多项式是不能这么计算的3.因式分解把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.注意:(1)因式分解专指多项式的恒等变形,即等式左边必须是多项式.例如:23248a ab b a ⨯=;()111+=+a aa a 等,都不是因式分解. (2)因式分解的结果必须是几个整式的积的形式.例如:()c b a c b a ++=++222,不是因式分解.(3)因式分解和整式乘法是互逆变形.(4)因式分解必须在指定的围分解到不能再分解为止.如:4425b a -在有理数围应分解为:()()222255b a b a -+;而在实数围则应分解为:()()()b a b a b a 55522-++.1、提公因式法:如果多项式的各项都含有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.提公因式法的关键在于准确的找到公因式,而公因式并不都是单项式;公因式的系数应取多项式整数系数的最大公约数;字母取多项式各项相同的字母;各字母指数取次数最低的.2、运用公式法:把乘法公式反过来,可以把符合公式特点的多项式分解因式,这种分解因式的方法叫做运用公式法.平方差公式:()()b a b a b a -+=-22.完全平方公式:()2222b a b ab a +=++;()2222b a b ab a -=+-.立方和公式:()()2233b ab a b a b a +-+=+.立方差公式:()()2233b ab a b a b a ++-=-.注意:运用公式分解因式,首先要对所给的多项式的项数,次数,系数和符号进行观察,判断符合哪个公式的条件.公式中的字母可表示数,字母,单项式或多项式.3、分组分解法:利用分组来分解因式的方法叫做分组分解法.分组分解法的关键是合理的选择分组的方法,分组时要预先考虑到分组后是否能直接提公因式或直接运用公式.4、十字相乘法:()()()q x p x pq x q p x ++=+++2.5、求根法:当二次三项式c bx ax ++2不易或不能写成用公式法或十字相乘法分解因式时,可先用求根公式求出一元二次方程02=++c bx ax 的两个根21,x x ,然后写成:()()212x x x x a c bx ax --=++.运用求根法时,必须注意这个一元二次方程02=++c bx ax 要有两个实数根.因式分解的一般步骤是:(1)如果多项式的各项有公因式,那么先提取公因式;(2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的次数:二项式可以尝试运用公式法分解因式;三项式可以尝试运用公式法、十字相乘法或求根法分解因式;四项式及四项式以上的可以尝试分组分解法分解因式;(3)分解因式必须分解到每一个因式都不能再分解为止.4. 分式一般的,用B A ,表示两个整式,B A ÷就可以表示成B A 的形式.如果B 中含有字母,式子BA 就叫做分式.其中,A 叫做分式的分子,B 叫做分式的分母.分式和整式通称为有理式.注意:(1)分母中含有字母是分式的一个重要标志,它是分式与分数、整式的根本区别;(2)分式的分母的值也不能等于零.若分母的值为零,则分式无意义;(3)当分子等于零而分母不等于零时,分式的值才是零.把一个分式的分子与分母的公因式约去,把分式化成最简分式,叫做分式的约分.一个分式约分的方法是:当分子、分母是单项式时,直接约分;当分子、分母是多项式时,把分式的分子和分母分解因式,然后约去分子与分母的公因式.一个分式的分子和分母没有公因式时,叫做最简分式,也叫既约分式.把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母 分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示是:MB M A M B M A B A ÷÷=⨯⨯=(其中M 是不等于零的整式). 分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.如: BA B A B A B A --=--=--= 分式的系数化整问题,是利用分式的基本性质,将分子、分母都乘以一个适当的不等于零的数,使分子、分母中的系数全都化成整数.当分子、分母中的系数都是分数时,这个“适当的数”应该是分子和分母中各项系数的所有分母的最小公倍数;当分子、分母中各项系数是小数时,这个“适当的数”一般是n 10,其中n 等于分子、分母中各项系数的小数点后最多的位数.例、不改变分式的值,把下列各分式分子与分母中各项的系数都化为整数,且使各项系数绝对值最小. (1)b a b a 41313121-+;(2)22226.0411034.0y x y x -+. 分析:第(1)题中的分子、分母的各项的系数都是分数,应先求出这些分数所有分母的最小公倍数,然后把原式的分子、分母都乘以这个最小公倍数,即可把系数化为整数;第(2)题的系数有分数,也有小数,应把它们统一成分数或小数,再确定这个适当的数,一般情况下优先考虑转化成分数.解:(1)b a b a b a b a b a b a 344612413112312141313121-+=⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛+=-+; (2)()()()2222222222222222125568560253040100)6.025.0(1003.04.06.0411034.0y x y x y x y x y x y x y x y x -+=-+=⨯-⨯+=-+ 222212568yx y x -+=. 1、分式的乘除法则:分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子表示是:bd ac d c b a =⨯;bcad c d b a d c b a =⨯=÷. 2、分式的乘方法则:分式乘方是把分子、分母各自乘方.用式子表示是: n n nb a b a =⎪⎭⎫ ⎝⎛(n 为整数). 3、分式的加减法则:①同分母的分式相加减,分母不变,把分子相加减.用式子表示是:cb ac b c a ±=±; ②异分母的分式相加减,先通分,变为同分母的分式,然后再加减.用式子表示是:bdbc ad d c b a ±=±. 分式的混合运算关键是弄清运算顺序,分式的加、减、乘、除混合运算也是先进行乘、除运算,再进行加、减运算,遇到括号,先算括号的. 例、计算78563412+++++-++-++x x x x x x x x . 分析:对于这道题,一般采用直接通分后相加、减的方法,显然较繁,注意观察到此题的每个分式的分子都是一个二项式,并且每个分子都是分母与1的和,所以可以采取“裂项法” . 解:原式7175********+++++++-+++-+++=x x x x x x x x ⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛++-⎪⎭⎫ ⎝⎛++-++=711511311111x x x x ⎪⎭⎫ ⎝⎛+-+-+-+=71513111x x x x ()()()()752312++-++=x x x x ()()()()()()()()7531312752++++++-++=x x x x x x x x ()()()()75316416+++++=x x x x x . 点评:本题考查在分式运算中的技巧问题,要认真分析题目特点,找出简便的解题方法,此类型的题在解分式方程中也常见到.5.二次根式 式子)0(≥a a 叫做二次根式,二次根式必须满足:①含有二次根号“” ;②被开方数a 必须是非负数.如5,2)(b a -,)3(3≥-a a 都是二次根式若二次根式满足:①被开方数的因数是整数,因式是整式;②被开方数中不含能开得尽方的因数或因式,这样的二次根式叫最简二次根式,如a 5,223y x +,22b a +是最简二次根式,而b a ,()2b a +,248ab ,x 1就不是最简二次根式.化二次根式为最简二次根式的方法和步骤:①如果被开方数是分数(包括小数)或分式,先利用商的算术平方根的性质把它写成分式的形式,然后利用分母有理化进行化简.②如果被开方数是整数或整式,先将它分解因数或因式,然后把能开得尽方的因数或因式开出来.几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫同类二次根式.注意:当几个二次根式的被开方数相同时,也可以直接看出它们是同类二次根式.如24和243一定是同类二次根式.合并同类二次根式就是把几个同类二次根式合并成一个二次根式.合并同类二次根式的方法和合并同类项类似,把根号外面的因式相加,根式指数和被开方数都不变.把分母中的根号化去,叫分母有理化.如=+131 )13)(13(13-+-2131313-=--=. 两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个代数式互为有理化因式.如1313-+和;2323-+和;a 和a ;a b a a b a -+和都是互为有理化因式.注意:二次根式的除法,往往是先写成分子、分母的形式,然后利用分母有理化来运算.如22133)7(32133)73)(73()73(3733)73(322+=-+=+-+=-=-÷. (1))0()(2≥=a a a . (2)⎩⎨⎧<-≥==.,)0()0(2a a a a a a (3))0,0(≥≥⋅=b a b a ab .(4))0,0(>≥=b a ba b a 二次根式的加减法法则:(1)先把各个二次根式化成最简二次根式;(2)找出其中的同类二次根式; (3)再把同类二次根式分别合并.二次根式的乘法法则:两个二次根式相乘,被开方数相乘,根指数不变.即:ab b a =⋅(0,≥b a ).此法则可以推广到多个二次根式的情况.二次根式的除法法则:两个二次根式相除,被开方数相除,根指数不变,即:b a ba=(0,0>≥b a ).此法则可以推广到多个二次根式的情况. 二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去掉括号).例1、计算:6321263212--+++--.分析:此题一般的做法是先分母有理化,再计算,但由于6321+--分母有理化比较麻烦,我们应注意到6321+--()()1312--=;()()13126321-+-=--+,这样做起来就比较简便. 解:6321263212--+++-- ()()()()1312213122-+---= ()()()()2131********+--++=()()131212++-+= ()132+= 232+=.例2、计算:()()()()751755337533225++++-+++-. 分析:按一般的方法做起来比较麻烦,注意题目的结构特点,逆用分式加、减法的运算法则“aba b b a ±=±11”进行变换,进而运用“互为相反数的和为零”的性质来化简. 解:()233525+-+=- ;()355737+-+=-,∴原式751751531531321+++-+++-+= 321+= 23-=.例3、已知273-=x ,a 是x 的整数部分,b 是x 的小数部分,求b a b a +-的值.分析:先将x 分母有理化,求出b a ,的值,再求代数式的值.解: 27273+=-=x , 又372<< ,54<<∴x .27427,4-=-+==∴b a . ()()()()()()272727762776274274-+--=+-=-+--=+-∴b a b a 31978-=. 二次根式的化简技巧一、 巧用公式法例1计算b a ba b a ba b a +-+-+-2 分析:本例初看似乎很复杂,其实只要你掌握好了公式,问题就简单了,因为a 与b 成立,且分式也成立,故有a >0,b >0,()0≠-b a 而同时公式:()b a -2=a 2-2ab +b 2,a 2-2b =()b a +()b a -,可以帮助我们将b ab a +-2和b a -变形,所以我们应掌握好公式可以使一些问题从复杂到简单。

相关文档
最新文档