《概率的意义》课件
人教A版高中数学必修3《三章 概率 3.1 随机事件的概率 3.1.2 概率的意义》示范课课件_18
![人教A版高中数学必修3《三章 概率 3.1 随机事件的概率 3.1.2 概率的意义》示范课课件_18](https://img.taocdn.com/s3/m/f2117de7960590c69ec37692.png)
【点评】在一次试验中,概率大的事件比概率 小的事件出现的可能性大的多,这正是能够利用极 大似然法来进行科学决策的理论依据.因此,在分 析、解决有关实际问题时,要善于灵活地运用极大 似然法这一思想方法来进行科学地决策.
成语“千载难逢”的意思是说某事:
发生的概率很小
四、天气预报的概率解释
为这次天气预报不准确?如何根据频 率与概率的关系判断这个天气预报是 否正确?
不能,概率为 90%的事件发生的可能性很大, 但“明天下雨”是随机事件,也有可能不发生. 收集近50年同日的天气情况,考察这一天下雨 的频率是否为 90%左右.
五、试验与发现
思考10:奥地利遗传学家孟德尔从 1856年开始用豌豆作试验,他把黄色和 绿色的豌豆杂交,第一年收获的豌豆都 是黄色的.第二年,他把第一年收获的 黄色豌豆再种下,收获的豌豆既有黄色 的又有绿色的.同样他把圆形和皱皮豌豆杂交,第一年 收获的豌豆都是圆形的.第二年,他把第一年收获的圆 形豌豆再种下,收获的豌豆却既有圆形豌豆,又有皱皮 豌豆.类似地,他把长茎的豌豆与短茎的豌豆杂交,第 一年长出来的都是长茎的豌豆. 第二年,他把这种杂交 长茎豌豆再种下,得到的却既有长茎豌豆,又有短茎豌 豆.试验的具体数据如下:
游戏公平性的标准及判断方法 (1)游戏规则是否公平,要看对游戏的双方
来说获胜的可能性或概率是否相同.若相同,则 规则公平,否则就是不公平的.
(2)具体判断时,可以求出按所给规则双方 的获胜概率,再进行比较.
三、决策中的概率思想
思考7:如果连续10次掷一枚骰子,结果 都是出现1点,你认为这枚骰子的质地是 均匀的,还是不均匀的?如何解释这种
个事件的概率最大__(_1_)____.
高三数学二轮复习建议——专题二:概率统计 PPT课件 图文
![高三数学二轮复习建议——专题二:概率统计 PPT课件 图文](https://img.taocdn.com/s3/m/b6cf835614791711cd791718.png)
目目 录录
CCOONNTTEENNTTSS
1 历年高考分析 22 重点、热点分析 3 复习目标、方案专题 4 命题预测、优题展示
一 高考试题分析
1.1 2012——2017年高考考查内容分析
2 道 小 题
1 道 大 题
年份 题号
理科 考查 内容
题号
文科 考查 内容
2017 年
2016 年 2015 年 2014 年 2013 年 2012 年
T1 9
相关系数、统计、均值、方差、3 σ原则、概率的意义
T14 二项式定理
2016 年
T4 几何概型
T3 古典概型
从文科高考试题看,解答题一般以工农业生产和生活中的实 频数分布、频率与概率、事件的
频数分布、频率与概率、事件的
T19 独立性、互斥事件、分布列、概 T19 独立性、互斥事件、分布列、概
√√
√
古典概型
几何概型 率 随机模拟
√√√ √ √
随机变量间的函数关系
√
√
二 重点、热点分析
重点、热点、规律方法(一)二项式定理
例
1.(1)(2017▪全国卷Ⅰ理科▪T6)
(1
1 x2
)(1
x)6
展开式中
x2
的系数为
A.15
B.20
C.30
D.35
(2)(2016▪全国卷Ⅰ理科▪T14) (2x x )5 的展开式中,x3 的系数是
T1 8
分步乘法计数原理、组合
正态分布、对立事件
T3
函数、频率与概率、分布列、期 望、方差、概率的意义
T 18
数字特征及其意义 几何概型
相关系数、统计、均值、方差、3 σ原则、概率的意义
《概率的意义》教案和教后反思
![《概率的意义》教案和教后反思](https://img.taocdn.com/s3/m/f924f1b2227916888586d7ac.png)
《概率的意义》教案【课题】25.1.2 概率的意义(第一课时)【教学目标】〈一〉知识与技能1.知道通过大量重复试验时的频率可以作为事件发生概率的估计值2.在具体情境中了解概率的意义〈二〉教学思考让学生经历猜想试验--收集数据--分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型.初步理解频率与概率的关系.〈三〉解决问题在分组合作学习过程中积累数学活动经验,发展学生合作交流的意识与能力.锻炼质疑、独立思考的习惯与精神,帮助学生逐步建立正确的随机观念.〈四〉情感态度与价值观在合作探究学习过程中,激发学生学习的好奇心与求知欲.体验数学的价值与学习的乐趣.通过概率意义教学,渗透辩证思想教育.【教学重点】在具体情境中了解概率意义.【教学难点】对频率与概率关系的初步理解【教具准备】壹元硬币数枚、图钉数枚、多媒体课件【教学过程】一、创设情境,引出问题提出问题:周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去.我很为难,真不知该把球给谁.请大家帮我想个办法来决定把球票给谁.(抓阄、抽签、猜拳、投硬币,……)学生肯定有许多较好的想法,在众多方法中推举出大家较认可的方法.如抓阄、投硬币追问,为什么要用抓阄、投硬币的方法呢?(这样做公平.能保证小强与小明得到球票的可能性一样大)在学生讨论发言后,教师评价归纳.用抛掷硬币的方法分配球票是个随机事件,尽管事先不能确定“正面朝上”还上“反面朝上”,但同学们很容易感觉到或猜到这两个随机事件发生的可能性是一样的,各占一半,所以小强、小明得到球票的可能性一样大.质疑:那么,这种直觉是否真的是正确的呢?引导学生以投掷壹元硬币为例,不妨动手做投掷硬币的试验来验证一下.说明:现实中不确定现象是大量存在的,新课标指出:“学生数学学习内容应当是现实的、有意义、富有挑战的”,设置实际生活问题情境贴近学生的生活实际,很容易激发学生的学习热情,教师应对此予以肯定,并鼓励学生积极思考,为课堂教学营造民主和谐的气氛,也为下一步引导学生开展探索交流活动打下基础.二、动手实践,合作探究1.教师布置试验任务.(1)明确规则.把全班分成10组,每组中有一名学生投掷硬币,另一名同学作记录,其余同学观察试验必须在同样条件下进行.(2)明确任务,每组掷币50次,以实事求是的态度,认真统计“正面朝上”的频数及“正面朝上”的频率,整理试验的数据,并记录下来..2.教师巡视学生分组试验情况.注意:(1).观察学生在探究活动中,是否积极参与试验活动、是否愿意交流等,关注学生是否积极思考、勇于克服困难.(2).要求真实记录试验情况.对于合作学习中有可能产生的纪律问题予以调控.3.各组汇报实验结果.由于试验次数较少,所以有可能有些组试验获得的“正面朝上”的频率与先前的猜想有出入.提出问题:是不是我们的猜想出了问题?引导学生分析讨论产生差异的原因.在学生充分讨论的基础上,启发学生分析讨论产生差异的原因.使学生认识到每次随机试验的频率具有不确定性,同时相信随机事件发生的频率也有规律性,引导他们小组合作,进一步探究.解决的办法是增加试验的次数,鉴于课堂时间有限,引导学生进行全班交流合作.4.全班交流.把各组测得数据一一汇报,教师将各组数据记录在黑板上.全班同学对数据进行累计,按照书上P140要求填好25-2.并根据所整理的数据,在25.1-1图上标注出对应的点,完成统计图表25-2想一想1(投影出示). 观察统计表与统计图,你发现“正面向上”的频率有什么规律?注意学生的语言表述情况,意思正确予以肯定与鼓励.“正面朝上”的频率在0.5上下波动.想一想2(投影出示)随着抛掷次数增加,“正面向上”的频率变化趋势有何规律?在学生讨论的基础上,教师帮助归纳.使学生认识到每次试验中随机事件发生的频率具有不确定性,同时发现随机事件发生的频率也有规律性.在试验次数较少时,“正面朝上”的频率起伏较大,而随着试验次数的逐渐增加,一般地,频率会趋于稳定,“正面朝上”的频率越来越接近0.5. 这也与我们刚开始的猜想是一致的.我们就用0.5这个常数表示“正面向上”发生的可能性的大小.说明:注意帮助解决学生在填写统计表与统计图遇到的困难.通过以上实践探究活动,让学生真实地感受到、清楚地观察到试验所体现的规律,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).鼓励学生在学习中要积极合作交流,思考探究.学会倾听别人意见,勇于表达自己的见解.为了给学生提供大量的、快捷的试验数据,利用计算机模拟掷硬币试验的课件,丰富学生的体验、提高课堂教学效率,使他们能直观地、便捷地观察到试验结果的规律性--大量重复试验中,事件发生的频率逐渐稳定到某个常数附近. n图25.1-1其实,历史上有许多著名数学家也做过掷硬币的试验.让学生阅读历史上数学家做掷币试验的数据统计表(看书P141表25-3).通过以上学生亲自动手实践,电脑辅助演示,历史材料展示, 让学生真实地感受到、清楚地观察到试验所体现的规律,大量重复试验中,事件发生的频率逐渐稳定到某个常数附近,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).同时,又感受到无论试验次数多么大,也无法保证事件发生的频率充分地接近事件发生的概率.在探究学习过程中,应注意评价学生在活动中参与程度、自信心、是否愿意交流等,鼓励学生在学习中不怕困难积极思考,敢于表达自己的观点与感受,养成实事求是的科学态度.5.下面我们能否研究一下“反面向上”的频率情况?学生自然可依照“正面朝上”的研究方法,很容易总结得出:“反面向上”的频率也相应稳定到0.5.教师归纳:(1)由以上试验,我们验证了开始的猜想,即抛掷一枚质地均匀的硬币时,“正面向上”与“反面向上”的可能性相等(各占一半).也就是说,用抛掷硬币的方法可以使小明与小强得到球票的可能性一样.(2)在实际生活还有许多这样的例子,如在足球比赛中,裁判用掷硬币的办法来决定双方的比赛场地等等.说明:这个环节,让学生亲身经历了猜想试验——收集数据——分析结果的探索过程,在真实数据的分析中形成数学思考,在讨论交流中达成知识的主动建构,为下一环节概率意义的教学作了很好的铺垫.三、评价概括,揭示新知问题1.通过以上大量试验,你对频率有什么新的认识?有没有发现频率还有其他作用?学生探究交流.发现随机事件的可能性的大小可以用随机事件发生的频率逐渐稳定到的值(或常数)估计或去描述.通过猜想试验及探究讨论,学生不难有以上认识.对学生可能存在语言上、描述中的不准确等注意予以纠正,但要求不必过高.归纳:以上我们用随机事件发生的频率逐渐稳定到的常数刻画了随机事件的可能性的大小.那么我们给这样的常数一个名称,引入概率定义.给出概率定义(板书):一般地,在大量重复试验中,如果事件A 发生的频率n m 会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率(probability ), 记作P (A )= p.注意指出:1.概率是随机事件发生的可能性的大小的数量反映.2.概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同.想一想(学生交流讨论)问题2.频率与概率有什么区别与联系?从定义可以得到二者的联系, 可用大量重复试验中事件发生频率来估计事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.说明:猜想试验、分析讨论、合作探究的学习方式十分有益于学生对概率意义的理解,使之明确频率与概率的联系,也使本节课教学重难点得以突破.为下节课进一步研究概率和今后的学习打下了基础. 当然,学生随机观念的养成是循序渐进的、长期的.这节课教学应把握教学难度,注意关注学生接受情况.四.练习巩固,发展提高.学生练习1.课本练习.1. 巩固用频率估计概率的方法.2.课本练习.2 巩固对概率意义的理解.教师应当关注学生对知识掌握情况,帮助学生解决遇到的问题.五.归纳总结,交流收获:1.学生互相交流这节课的体会与收获,教师可将学生的总结与板书串一起,使学生对知识掌握条理化、系统化.2.在学生交流总结时,还应注意总结评价这节课所经历的探索过程,体会到的数学价值与合作交流学习的意义.【作业设计】(1)完成习题25.1 2、4(2)课外活动分小组活动,用试验方法获得图钉从一定高度落下后钉尖着地的概率.教学反思:1.每次投硬币的过程都是一个随机事件,由于众多的偶然的因素的影响,每次测的的结果都具有偶然性。
九年级数学概率的意义1省公开课获奖课件市赛课比赛一等奖课件
![九年级数学概率的意义1省公开课获奖课件市赛课比赛一等奖课件](https://img.taocdn.com/s3/m/89a041900408763231126edb6f1aff00bed57024.png)
于是可得 0≤P(A) ≤1.
显然,必然事件旳概率是1,不可能事件 旳概率是0.
例1:对一批衬衫进行抽查,成果如下表:
抽取 50 件数n
100 200 500 800 1000
优等
品件 数m
42 88 176 445 724 901
优等
品频 0.84 0.88 0.88
率m/n
0.89 0.905 0.901
4.对某服装厂旳成品西装进行抽查,成果如下表:
抽检件数 100 200 300 400
正品 频数 97 频率
198 294 392
(1)请完毕上表
(2)任抽一件是次品旳概率是多少?
(3)假如销售1 500件西服,那么需要准备多少件正品 西装供买到次品西装旳顾客调换?
思索
大家试验,抛掷一种骰子,它落地时 向上旳旳数为1旳概率是多少?
复习:下列事件中哪些事件是随机事件?哪些 事件是必然事件?哪些是不可能事件?
⑴抛出旳铅球会下落 (2)某运动员百米赛跑旳成绩为2秒 (3)买到旳电影票,座位号为单号
(4)x2+1是正数
(5)投掷硬币时,国徽朝上
在一样条件下,随机事件可能发生,也可 能不发生,那么它发生旳可能性有多大呢? 这是我们下面要讨论旳问题。
பைடு நூலகம்
旳概率是多少?
0.5
(3)这射手射击1600次,击中靶心旳次数是 800 。
练习1.抛掷一只纸杯旳反复试验旳成果如下表:
抛掷次数 100 150 200 250 300
杯口 频数 20 36 50 60
朝上 频率 0.2 0.24 0.25
0.25
(1) 在表内旳空格初填上合适旳数
数学九年级上册第二十五章《概率初步》小结与复习(共27张PPT)
![数学九年级上册第二十五章《概率初步》小结与复习(共27张PPT)](https://img.taocdn.com/s3/m/6c091a970408763231126edb6f1aff00bfd57046.png)
B)
A.布袋中有2个红球和5个其他颜色的球
B.如果摸球次数很多,那么平均每摸7次,就有2次
摸中红球
C.摸7次,就有2次摸中红球
D.摸7次,就有5次摸不中红球
2.下列事件中是必然事件的是( D ) A.从一个装有蓝、白两色球的缸里摸出一个球,摸 出的球是白球 B.小丹的自行车轮胎被钉子扎坏 C.小红期末考试数学成绩一定得满分 D.将油滴入水中,油会浮在水面上
第二十五章 概率初步
小结与复习
复习目标
1.梳理本章的知识要点,回顾与复习本章知识. 2.巩固并能熟练运用列举法、列表法和树状图法求 概率.(重、难点) 3.能应用频率估计概率解决生活中的实际问题.
要点梳理
一、事件的分类及其概念
事件
不可能事件:必然不会发生的事件
随机事件:在一定条件下可能发生也可能不发生 的事件
考点二 概率的计算 例2 (1)一个口袋中装有3个红球,2个绿球,1 个黄球,每个球除颜色外其他都相同,搅匀后
1
随机地从中摸出一个球是绿球的概率是___3___.
(2)三张分别画有平行四边形、等边三角形、圆的 卡片,它们的背面都相同,现将它们背面朝上,
从中任取一张,卡片上所画图形恰好是中心对称 2
(2) 如果只考虑中奖因素,你将会选择去哪个超市购 物?说明理由.
(2) 选甲超市.理由如下: ∵P(甲)>P(乙), ∴选甲超市.
成活 数
47
235 369 662 1335 3203 6335 8073 12628
成活 频率
0.94
0.87 0.923 0.883 0.89 0.915 0.905 0.897 0.902
由此可以估计该种幼树移植成活的概率约为( C ) (结果保留小数点后两位)
华师版九年级数学上册作业课件(HS)第25 章 随机事件的概率 第1课时 概率及其意义
![华师版九年级数学上册作业课件(HS)第25 章 随机事件的概率 第1课时 概率及其意义](https://img.taocdn.com/s3/m/2b0562f66037ee06eff9aef8941ea76e58fa4a6b.png)
解:(1)∵成绩在80~90分(含80分,不含90分)的学生有3人,占抽查人 数的15%,∴被抽查的学生人数为3÷15%=20(人),则成绩在100~110 分的学生人数m=20-(2+3+7+3)=5 (2)这名学生成绩为优秀的概率为5+ 203 =25
(3)估计本次检测中该校初三年级数学成绩为优秀的人数为300×25 = 120(人)
5.(宜昌中考)在“践行生态文明,你我一起行动”主题有奖竞赛活动 中,903班共设置“生态知识、生态技能、生态习惯、生态文化”四个类 别的竞赛内容,如果参赛同学抽到每一类别的可能性相同,那么小宇 参赛时抽到“生态知识”的概率是( B ) A.12 B.14 C.18 D.116
6.(2020·恩施州)“彩缕碧筠粽,香粳白玉团”.端午佳节,小明妈妈 准备了豆沙粽2个、红枣粽4个、腊肉粽3个、白米粽2个,其中豆沙粽 和红枣粽是甜粽.小明任意选取一个,选到甜粽的概率是( D )
解:(1)根据题意,知白球有290×219 =10(个),红球和黑球总数为290 -10=280(个),设黑球有x个,则红球有(2x+40)个,∴x+2x+40= 280,解得x=80.故红球有2x+40=200(个) (2)80÷290=289 .答:从 袋中任取一个球是黑球的概率是289
14.(兰考期末)一个不透明的袋中装有5个黄球、13个黑球和22个红球, 它们除颜色外都相同. (1)求从袋中摸出一个球是黄球的概率; (2)现从袋中取出若干个黑球,并放入相同的数量的黄球,搅拌均匀后使 从袋中摸出一个是黄球的概率不小于,问至少取出了多少个黑球?
3≤k≤3中任取k值,则得到的函数是具有性质“y随x增加而增加”的
一次函数的概率为_5___. 12
13.(眉山中考)一个口袋中放有290个涂有红、黑、白三种颜色的质地 相同的小球.若红球个数是黑球个数的2倍多40个,从袋中任取一个
25.2.1 概率及其意义 华师大版数学九年级上册课件
![25.2.1 概率及其意义 华师大版数学九年级上册课件](https://img.taocdn.com/s3/m/7d0fe77466ec102de2bd960590c69ec3d5bbdbc4.png)
知识点 1 概率及其意义
知1-讲
1. 概率的定义:一个事件发生的可能性就叫做该事件的 概率.
2.概率公式:一般地,如果在一次试验中,有n种可能的 结果,并且它们发生的可能性都相等,事件A包含其
要点中精的析m:种用结公果式.P那(A么)=事件m A. 求发概生率的值概的率试P(验A)特=点mn :.
解:根据题意可得:阴影部分面积为52=25,
总面积为(3+4)2=49,
∴P(飞在阴影区域的概率是
25
.
49
知1-讲
归纳
知1-讲
对于飞镖投射阴影区域这类题的解法:首先根据题 意把数量关系用“图形”面积表示出来,用数形结合思 想解答.用阴影区域表示所求事件A,然后计算阴影区 域的面积在总面积中所占的比例,这个比例即事件A发 生的概率.
m
2.
n0≤ ≤1.
3. 2. 概率的取值范围:0≤P(A)≤1.
4. 3.三种事件的概率:当A是必然事件时,P(A)=1;
5. 当A是不可能事件时,P(A)=0;
6.
当A是随机事件时,P(A)满足0<P(A)<1.
知2-讲
【例3】 班级里有20位女同学和22位男同学,班上每位同 学的名字都被分别写在一张小纸条上,放入 一 个盒中搅匀.如果老师随机地从盒中取出1张纸条, 那么抽到男同学名字的概率大还是抽到女同学名 字的 概率大?
20 22 21
21 21
所以抽到男同学名字的概率大.
知2-讲
(来自教材)
知2-讲
【例4】 甲袋中放着22个红球和8个黑球,乙袋中放着200个 红球、80个黑球和10个白球.三种球除了颜色以外没 有任何其他区别.两袋中的球都已经各自搅匀. 从袋 中任取1个球,如果你想取出1个黑球,选哪个袋成 功的机会大呢?
高一数学必修3课件:3-1-2概率的意义
![高一数学必修3课件:3-1-2概率的意义](https://img.taocdn.com/s3/m/f41fa3c4da38376baf1fae8d.png)
30%,指随着试验次数增加,即治疗的病人数的增加,大约 有30%的人能够治愈.对于一次试验来说,其结果是随机 的,因此前7个病人没治愈是可能的,对后3个人来说其结果 仍然是随机的,即有可能治愈,也可能没有治愈.
第三章 3.1
3.1.2
成才之路 ·数学 ·人教A版 · 必修3
[规律]
治愈的概率是0.3,是指如果患病的人有1
第三章 3.1
3.1.2
成才之路 ·数学 ·人教A版 · 必修3
(2)某种病的治愈概率是0.3,那么,前7个人没有治愈, 后3个人一定能治愈吗?如何理解治愈的概率是0.3? [分析] 概率反映了事件发生可能性的大小.
第三章 3.1
3.1.2
成才之路 ·数学 ·人教A版 · 必修3
[解析]
如果把治疗一个病人作为一次试验,治愈率是
公元1053年,大元帅狄青奉旨,率兵征讨侬智高.出征 前,狄青拿出一百枚“宋元通宝”铜币,向众将士殷殷许 愿:“如果钱币扔在地上,有字的一面会全部向上,那么这 次出兵可以打败敌人!”在千军万马的注目之下,狄青将铜 币用力向空中抛去,奇迹发生了:一百枚铜币,枚枚向 上.顿时,全军欢呼雀跃,将士个个认定是神灵保佑,战争 必胜无疑.事实上,铜币正反面都是一样的!同学样想一 下,如果铜币正反面不一样,那么这一百枚铜币正面全部向 上的可能性大吗?
成才之路· 数学
人教A版 ·必修3
路漫漫其修远兮 吾将上下而求索
成才之路 ·数学 ·人教A版 · 必修3
第三章
概 率
第三章
概率
成才之路 ·数学 ·人教A版 · 必修3
第三章
3.1 随机事件的概率
第三章
概率
成才之路 ·数学 ·人教A版 · 必修3
人教B版高中数学必修二课件 《统计与概率的应用》统计与概率名师优秀课件
![人教B版高中数学必修二课件 《统计与概率的应用》统计与概率名师优秀课件](https://img.taocdn.com/s3/m/5d1fe127f68a6529647d27284b73f242326c3141.png)
第五章 统计与概率
考点 统计与概 率的意义 统计与概 率的应用
学习目标 通过实例进一步理解统计与 概率的意义及应用 能用统计与概率的知识解决 实际生活中的问题
核心素养 数学抽象 数学抽象、 数学运算
判断正误(正确的打“√”,错误的打“×”) (1)事件 A 发生的概率很小时,该事件为不可能事件.( × ) (2)某医院治愈某种病的概率为 0.8,则 10 个人去治疗,一定有 8 人能治愈.( × ) (3)平时的多次比赛中,小明获胜的次数比小华的高,所以这次 比赛应选小明参加.( √ )
解:可以提出如下 2 个方案(答案不唯一). (方案 1)在箱内放置 100 个乒乓球,其中 1 个为黄球,99 个为 白球.顾客一次摸出一个乒乓球,摸到黄球为中大奖,否则中 小奖. (方案 2)在箱内放置 25 个乒乓球,其中 3 个为黄球,22 个为白 球,顾客一次摸出 2 个乒乓球,摸到 2 个黄球中大奖,否则中 小奖.
的概率是多少?
【解】 用 A 表示事件“对这次调整表示反对”,B 表示“对 这次调整不发表看法”,由互斥事件的概率加法公式,得 P(A∪B)=P(A)+P(B)=13070+13060=17030=0.73,因此随机选取 一个被调查者,他对这次调整表示反对或不发表看法的概率是 0.73.
概率在决策问题中的应用 (1)由于概率反映了随机事件发生的可能性的大小,概率是频率 的近似值与稳定值,所以可以用样本出现的频率近似地估计总 体中该结果出现的概率. (2)实际生活与生产中常常用随机事件发生的概率来估计某个 生物种群中个别生物种类的数量、某批次的产品中不合格产品 的数量等.
概率在决策中的应用
某地政府准备对当地的农村产业结构进行调整,为此政
人教A版高中数学必修3《第三章 概率 3.1 随机事件的概率 3.1.2 概率的意义》_47
![人教A版高中数学必修3《第三章 概率 3.1 随机事件的概率 3.1.2 概率的意义》_47](https://img.taocdn.com/s3/m/e1c73ae7e53a580217fcfe44.png)
《概率的意义》教案1.知识与技能:(1)正确理解概率的意义;(2)利用概率知识正确理解现实生活中的实际问题;2.过程与方法:通过对现实生活中的“掷币”,“游戏的公平性”,、“彩票中奖”等问题的探究,感知应用数学知识解决数学问题的方法。
3.情感态度与价值观:通过对概率的实际意义的理解,体会知识来源于实践并应用于实践的辩证唯物主义观,进而体会数学与现实世界的联系。
二重点与难点:重点:对概率含义的正确理解及其在实际中的应用;难点:随机试验结果的随机性与规律性的联系。
三学法:试验观察自主探究四教学过程复习引入1.请大家回忆一下随机事件发生的概率的定义?2.频率与概率的有什么区别和联系?区别:联系:3、谁能说一说掷一枚质地均匀的硬币出现正面的概率为1/2的含义?学习新课要点诠释:①概率是频率的稳定值,而频率是概率的近似值;②频率和概率在试验中可以非常接近,但不一定相等;③概率是事件在大量重复实验中频率逐渐稳定到的值,即可以用大量重复实验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同,两者存在一定的偏差是正常的,也是经常的.【典型例题】(1)指出下列事件中,哪些是不可能事件?哪些是必然事件?哪1 若 a、b、c都是实数,则a(bc)=(ab)c;②没有空气,动物也能生存下去;③在标准大气压下,水在 90℃时沸腾;④直线 y=k(x+1)过定点(-1,0);⑤某一天内电话收到的呼叫次数为 0;⑥一个袋内装有形状大小完全相同的一个白球和一个黑球,从中任意摸出 1个球则为白球.【思路点拨】结合生活经验和所学知识进行判断.【答案与解析】①④是必然事件;②③是不可能事件;⑤⑥是随机事件.【总结升华】要准确掌握不可能事件、必然事件、随机事件的定义.举一反三【变式1】下列事件是必然事件的是( ).A.明天要下雨;B.打开电视机,正在直播足球比赛;C.抛掷一枚正方体骰子,掷得的点数不会小于1;D.买一张彩票,一定会中一等奖.【答案】C.【变式2】(2015•南岗区一模)同时抛掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,下列事件中的不可能事件是()A.点数之和小于4 B.点数之和为10C.点数之和为14 D.点数之和大于5且小于9【答案】C.解:因为同时抛掷两枚质地均匀的正方体骰子,正方体骰子的点数和应大于或等于2,而小于或等于12.显然,是不可能事件的是点数之和是14.C.在一个不透明的口袋中,装有10个除颜色外其它完全相同的球,5个红球,3个蓝球,2个白球,它们已经在口袋中搅匀了.下列事件中,哪些是必然发生的?哪些是不可能发生的?哪些是可能发生的?(1)从口袋中任取出一个球,它恰是红球;(2)从口袋中一次性任意取出2个球,它们恰好全是白球;(3)从口袋中一次性任意取出5个球,它们恰好是1个红球,1个蓝球,3个白球.【答案与解析】(1)可能发生,因为袋中有红球;(2)可能发生,因为袋中刚好有2个白球;(3)不可能发生,因为袋中只有2个白球,取不出3个白球.【总结升华】要了解并掌握三种事件的区别和联系.举一反三:【变式】甲、乙两人做掷六面体骰子的游戏,双方规定,若掷出的骰子的点数大于3,则甲胜,若掷出的点数小于3,则乙胜,游戏公平吗?若不公平,请你设计出一种对于双方都公平的游戏.【答案】不公平,小于3的点数有1、2,大于3的点数有4、5、6,因此,它们的可能性是不同的,所以不公平.可设计掷出的点数为偶数时甲胜,掷出的点数为奇数时乙胜.关于频率和概率的关系,下列说法正确的是()B. 当实验次数很大时,频率稳定在概率附近C. 当实验次数很大时,概率稳定在频率附近D. 实验得到的频率与概率不可能相等【思路点拨】对于某个确定的事件来说,其发生的概率是固定不变的,而频率是随着试验次数的变化而变化的.【答案】B.【解析】事件的概率是一个确定的常数,而频率是不确定的,当试验次数较少时,频率的大小摇摆不定,当试验次数增大时,频率的大小波动变小,并逐渐稳定在概率附近..如图所示,转盘停止后,指针落在哪个颜色区域的可能性大?为什在该区域的可能性也大.【答案与解析】落在黄色区域的可能性大.理由如下:由图可知:黄色占整个转盘面积的.【总结升华】计算随机事件的可能性的大小,根据不同题目的条件来确定解法,如面积法、数值法等.(2015春•江都市期末)“2015扬州鉴真国际半程马拉松”的赛事共A、“半程马拉松”、B、“10公里”、C、“迷你马拉松”.小明参加了该项赛事的志愿者服务工作,组委会随机将志愿者分配到三个项目组.(1)小明被分配到“迷你马拉松”项目组的概率为.(2)为估算本次赛事参加“迷你马拉松”的人数,小明对部分参赛选手作人数的概率为.(精确到0.1)②若本次参赛选手大约有30000人,请你估计参加“迷你马拉松”的人数是多少?【思路点拨】(1)利用概率公式直接得出答案;(2)①利用表格中数据进而估计出参加“迷你马拉松”人数的概率;②利用①中所求,进而得出参加“迷你马拉松”的人数.【答案与解析】解:(1)∵小明参加了该项赛事的志愿者服务工作,组委会随机将志愿者分配到三个项目组,“迷你马拉松”(2“迷你马拉松”人数的概率为:0.4;故答案为:0.4;②参加“迷你马拉松”的人数是:30000×0.4=12000(人).【总结升华】此题主要考查了利用频率估计概率:当大量重复试验时,频率会稳定在概率附近.正确理解频率与概率之间的关系是解题关键.举一反三(2)这个射手射击一次,击中靶心的概率约是多少(精确到0.1)?【答案】 (1)击中靶心的各个频率依次是:0.90,0.95,0.88,0.91,0.89,0.90.(2)这个射手击中靶心的概率约为0.9.课堂练习:五.课堂小结:本节课我们学习了哪些内容?你能具体总结一下吗?。
《概率》概率初步PPT免费课件
![《概率》概率初步PPT免费课件](https://img.taocdn.com/s3/m/9aee1bb3afaad1f34693daef5ef7ba0d4a736dcb.png)
为红、绿、黄三种.指针的位置固定,转动转盘后任
其自由停止,其中的某个扇形会恰好停在指针所指
的位置(指针指向两个图形的交线时,当作指向其右
边的图形).求下列事件的概率:
(1)指针指向红色;
1 4
(2)指针指向黄色或绿色.
3 4
探究新知
素养考点 4 利用概率解决实际问题
例4 如图是计算机中“扫雷”游戏的画面.在一个有9×9
字被抽取的可能性大小相等,所以我们可以用
1 5
表示每一个数
字被抽到的可能性大小.
探究新知
活动2 : 掷骰子 掷一枚骰子,向上一面的点数有6种可能,即1、2、
3、4、5、6.
因为骰子形状规则、质地均匀,又是随机掷出,所以每
种点数出现的可能性大小相等.我们用
1 6
表示每一种点数出现
的可能性大小.
探究新知
3
巩固练习
袋子里有1个红球,3个白球和5个黄球,每一个 球除颜色外都相同,从中任意摸出一个球,则
1
P(摸到红球)= 9 ;
1
P(摸到白球)= 3 ;
5
P(摸到黄球)= 9 .
探究新知
素养考点 3 简单转盘的概率计算
例3 如图所示是一个转盘,转盘分成7个相同的扇形, 颜色分为红黄绿三种,指针固定,转动转盘后任其自 由停止,某个扇形会停在指针所指的位置,(指针指 向交线时当作指向其右边的扇形)求下列事件的概率. (1)指向红色; (2)指向红色或黄色; (3)不指向红色.
巩固练习
掷一个骰子,观察向上的一面的点数,求下列事 件的概率: (1)点数为2; (2)点数为奇数; (3) 点数大于2小于5.
(1)点数为2有1种可能,因此P(点数为2)= 1 ; 6
人教A版高中数学必修3《第三章 概率 3.1 随机事件的概率 3.1.2 概率的意义》_1
![人教A版高中数学必修3《第三章 概率 3.1 随机事件的概率 3.1.2 概率的意义》_1](https://img.taocdn.com/s3/m/7bb8bf2dfc4ffe473268ab00.png)
概率的意义一、教材内容分析本节为人教版必修3第三章3.1随机事件的概率中的第二小节3.1.2概率的意义,通过本节的学习,学生能正确理解概率。
本节在内容和结构上起着承上启下的作用,乘上:通过了解概率的意义,明白概率与第二章统计的联系;启下:通过了解概率的重要性,引出后两节概率的计算。
二、教学目标1.知概念识与技能:正确理解概率的意义;了解概率在实际问题中的应用,增强学习兴趣;进一步理解概率统计中随机性与规律性的关系。
2.过程与方法:通过对生活中实际问题的提出,学生掌握用概率的知识解释分析问题,着重培养学生观察、比较、概括、归纳等思维能力,并进一步培养将实际问题转化为数学问题的数学建模思想。
3.情感态度与价值观:鼓励学生积极思考,激发学生对知识的探究精神和严肃认真的科学态度,激发学生的学习兴趣。
三、学情分析学生已经学习了3.1随机事件的概率再加上初中对概率的了解,所以学生的认知起点较高,理解本节内容不难。
作为新授课,学生对于概率在实际问题中的应用具有较高的学习兴趣,但是用概率的知识解释问题的能力仍需进一步提高。
教师在本节讲授需要注意理论联系实际,同时注意培养学生的科学素养。
四、教学重难点重点:概率的正确理解及在实际中的应用难点:实际问题中体现随机性与规律性之间的联系,如何用概率解释这些具体问题。
五、教学策略1.教学方法:讲授法,讨论法,引导探究法2.教学手段:多媒体教学工具六、教学过程学生——完成探究并且回答原因不公平,各班被选到概率不相等,其中7班被选中概率最大..2决策中的概率思想问题:如果连续10次掷一枚骰子,结果都是出现1点,你认为这枚骰子的质地均匀吗?为生产过程中发生小概率事件,我们有理由认为生产过程中出现了问题,应该立即停下生产进行检查。
3.天气预报的概率解释思考:某地气象局预报说,明天本地降水概率为70%。
你认为下面两个解释中哪一个能代表气象局的观点?教师、学生——归纳总结. 归纳提升:七、板书设计八、教学反思本节是培养学生对数学产生兴趣的关键一节,教师要紧抓理解概率的意义和培养学生的学习兴趣这两个任务进行教学,通过生日在同一天的探讨,“生日悖论”的提出和在实际问题中的应用,提高学生学习数学的兴趣,通过孟德尔的豌豆试验培养学生科学探究的意识,树立学生严谨的科学观. 该节课十分有创意,在教材内容的基础上作了适当的必要的扩展,激发学生兴趣,教学目的明确,方法得当,引导自主探究、合作交流完成任务,整个课堂效率非常高。
【随堂优化训练】2014年高中数学 3.1.3 概率的意义配套课件 新人教A版必修3
![【随堂优化训练】2014年高中数学 3.1.3 概率的意义配套课件 新人教A版必修3](https://img.taocdn.com/s3/m/a949270176c66137ee0619cd.png)
练习 2: 在一个试验模型中, 设 A 表示一个随机事件,A 表 示 A 的对立事件.以下给出了 3 个结论: ①P(A)=P( A ); ②P(A+ A )=1; ③若 P(A)=1, 则 P( A ) =0.
其中错误的结论共有( C )
A.3 个
C.1 个
B.2 个 D.0 个
【问题探究】
口袋里装有 1 个白球和 2 个黑球,除颜色外这 3 个球完全 相同,每次从中随机取出 1 个球,记下颜色,放回后,再取出
[方法· 规律· 小结]
1.要判断两个事件是互斥事件还是对立事件,需找出两个
事件包含的所有结果,分析它们之间能不能同时发生.在互斥的 前提下,看两事件是否非此即彼,一个不发生必有另一个发生,
进而可判断是否为对立事件.注意:对立事件是互斥事件的特例.
2.在利用概率加法公式求概率时,要正确审题,分析所考 察事件可拆分为哪几个互斥事件的并,其实质是要合理地按一 定标准对复杂事件进行分类. 3.当一个复杂事件包含的情形较多时,可先计算其对立事 件,再由公式 P(A)=1-P(B)计算.注意事件表达中含有“至少” 等逻辑量词的事件.
(2)在 5 件产品中有 2 件次品,从中任取 2 件,记事件 A 为 “所取的 2 件产品中最多有 1 件是次品”,事件 B 为“所取的 2 件产品中至少有 1 件是次品”,则事件 A 与事件 B 互为互斥 事件; (3)设 A,B 为两事件,则 P(A+B)≤P(A)+P(B). 解:(1)(2)为假命题,(3)为真命题.
练习 1:某射手一次射击中,击中 10 环、9 环、8 环的概 率分别是 0.24,0.28,0.19,则这射手在一次射击中至多 8 环的概 率是( D )
A.0.48
3.1.2概率的意义课件
![3.1.2概率的意义课件](https://img.taocdn.com/s3/m/633c4d80a0116c175f0e48f1.png)
关键是比较A发生的可能性和B发 生的可能性的大小。
这样的游戏公平吗?
尽管随机事件的发生具有随机性,但是当大量重复 这一过程时, 它又呈现出一定的规律性, 因此利用概率 知 识可以解释和判断一些游戏规则的公平性、合理性.
2、决策中的概率思想
思考:如果连续10次掷一枚色子,结果都是 出现1点,你认为这枚色子的质地均匀吗?为 什么?
如果我们面临的是从多个可选答案中挑选正确答案 的决策任务,那么“使样本出现的可能性最大 ” 可以作为决策的准则,这种判断问题的方法称为极 大似然法,是决策中的概率思想.
3、天气预报的概率解释
思考:某地气象局预报说,明天本地降水概率为 70%。 你认为下面两个解释中哪一个能代表气象局的观点 (1)明天本地有70%的区域下雨,30%的区域不下 雨; (2)明天本地下雨的机会是70%。 天气预报的“降水概率”是随机事件的概率,是指 明了“降水”这个随机事件发生的可能性的大小
随机事件在一次试验中发生与否是随机的,但是随 机性中含有 规律性.认识了这种随机性中的规律性,就 能使我们比较准确地预测随机事件发生的可能性 .概率只 是度量事件发生的可能性的 大小 ,不能确定事件是否一 定发生.
概率是事件本质属性,不随试验次数变化
二、概率在实际问题中的应用
1、游戏的公平性 2、决策中的概率思想
4、遗传机理中的统计规律
1、试验与发现
2、遗传机理中的统计规律
思考:按照遗传规律,第三年收获豌豆的 比例会是多少?
概率学的知识在科学发展中起着非常重要的作用, 例如,奥地利遗传学家孟德尔利用豌豆所做的试验,经 过长期观察得出了显性与隐性的比例接近 3:1 ,而对这 一规律进行深入研究,得出了遗传学中一条重要的统计 规律.
最新精选优质习题课件:25_1_2_概率
![最新精选优质习题课件:25_1_2_概率](https://img.taocdn.com/s3/m/591e47be33687e21ae45a94e.png)
栏目索引
例2 (2017四川眉山中考)一个口袋中放有290个涂有红、黑、白三种 颜色的质地相同的小球.若红球个数是黑球个数的2倍多40个.从袋中任 取一个球是白球的概率是 1 .
29
(1)求袋中红球的个数; (2)求从袋中任取一个球是黑球的概率.
25.1.2 概率
解析 (1)∵P(从袋中任取一个球是白球)=1 ,
3的倍数的概率是 ( )
1
1
3
2
A.10 B. 5 C.10 D. 5
答案 C ∵在标有1~10的号码的10支铅笔中,编号为3的倍数的有3种 情况(编号分别为3,6,9),∴抽到编号是3的倍数的概率是 3 ,故选C.
10
25.1.2 概率
栏目索引
2.(2018广东深圳南山期末)如图,有四张不透明的卡片,除正面的算式不
1
1
3
A.
4
B.
2
C. 4 D.1
答案 A ∵有四张形状、大小完全一致的卡片,其正反面上两点正好 关于y轴对称的只有第三张,∴从中随机抽取一张,其正反面上两点正好 关于y轴对称的概率是14 .故选A.
25.1.2 概率
栏目索引
2.(2018四川宜宾模拟)已知下列命题:①对顶角相等;②若a>b>0,则 1 < 1 ;
25.1.2 概率
知识点二 简单随机事件的概率的求法
栏目索引
3.(2018广西柳州中考)如图25-1-2-1,现有四张扑克牌:红桃A、黑桃A、 梅花A和方块A.将这四张牌洗匀后正面朝下放在桌面上,再从中任意抽 取一张牌,则抽到红桃A的概率为 ( )
图25-1-2-1
A.1
B. 1
4
1
C. 2
【金版学案】2013-2014学年度高中数学 3.1.2 概率的意义同步辅导与检测课件 新人教A版必修
![【金版学案】2013-2014学年度高中数学 3.1.2 概率的意义同步辅导与检测课件 新人教A版必修](https://img.taocdn.com/s3/m/5f0fce58caaedd3383c4d3c1.png)
设事件 A={带有记号的鱼},易知 P(A)≈20n00① 第二次从水库中捕出 500 尾,观察其中带有记号 的鱼有 40 尾,即事件 A 发生的频数 m=40,由概率的 统计定义可知 P(A)≈54000② 由①②两式,得20n00≈54000, 解得 n≈25000,即 n=25000. 所以,估计水库中约有鱼 25000 尾.
(1)试验的基本事件; (2)事件“出现点数之和大于3”; (3)事件“出现点数相等”.
解析:(1)这个试验的基本事件为: (1,1),(1,2),(1,3),(1,4), (2,1),(2,2),(2,3),(2,4), (3,1),(3,2),(3,3),(3,4), (4,1),(4,2),(4,3),(4,4). (2)事件“出现点数之和大于3”包含以下13个基本事件: (1,3),(1,4),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3), (3,4),(4,1),(4,2),(4,3),(4,4). (3)事件“出现点数相等”包含以下4个基本事件: (1,1),(2,2),(3,3),(4,4).
答案:C
点评:本题易错选为A或B,其原因是错误理解 概率的意义,概率只是说明事件发生的可能性大小, 其发生具有随机性.
概率的简单应用
为了估计水库中鱼的尾数,可以使用以下的方 法:先从水库中捕出一定数量的鱼,例如2000尾,给每尾 鱼作上记号,不影响其存活,然后放回水库,经过适当时 间,让其和水库中其余的鱼充分混合,再从水库中捕出一 定数量的鱼,例如500尾,查看其中有记号的鱼,设有40 尾,试根据上述数据,估计水库内鱼的尾数.
25.1.2概率 教学课件(共35张PPT)初中数学人教版九年级上册
![25.1.2概率 教学课件(共35张PPT)初中数学人教版九年级上册](https://img.taocdn.com/s3/m/0559cda80408763231126edb6f1aff00bfd57005.png)
=3=1. 因此P(点数为奇数)
(3)点数大于2且小于5有2种可能,即点数为3、4,因此
归纳总结
应用
求简单事件的概率的步骤:
1.判 断 :试验所有可能出现的结果必须是有限的,各种结果出现的 可能性必须相等;
2. 确定:试验发生的所有的结果数 n 和事件A 发生的所有结果数m;
3.计 算 :套入公式
计算 .
如图是一个可以自由转动的转盘,转盘分成7个大小相同的扇形, 颜色分为红、绿、黄三种颜色.指针的位置固定,转动的转盘停 止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两
个扇形的交线时,当作指向右边的扇形).求下列事件的概率: (1)指针指向红色; (2)指针指向红色或黄色; (3)指针不指向红色.
练习6 一个袋中装有4个红球,6个白球,8个黑球,每个球 除颜色外其余完全相同. (1)求从袋中随机摸出一个球是白球的概率; (2)从袋中摸出6个白球和a(a>2) 个红球,再从剩下的球中 摸出一个球. ①若事件“再摸出的球是红球”为不可能事件,求a 的 值 ; ②若事件“再摸出的球是黑球”为随机事件,求这个事件的概率.
1
A. 4
1
B.
2
3
C.
D.1
4
解 析:设小正方形的边长为1,则小猫最终停留
在黑色方砖上的概率是
; 故 选A.
练 习 3有一只小猫咪随机的走在如图所示的圆形地砖上,那么
它走在阴影区域上的概率是( B )(π 的 值 取 3 )
1
A. 6
1
B. 12
0
1
D. 10
高中数学 第5章 统计与概率 5.3 概率 5.3.4 频率与概率课件 b高一必修第二册数学课件
![高中数学 第5章 统计与概率 5.3 概率 5.3.4 频率与概率课件 b高一必修第二册数学课件](https://img.taocdn.com/s3/m/8c0afdb0e518964bce847ce3.png)
概率与频率的关系及求法
情
课
境 导
堂
【例 2】 下面的表中列出了 10 次抛掷硬币的试验结果,n 为 小
学
结
·
探 每次试验抛掷硬币的次数,m 为硬币正面向上的次数.计算每次试 提
新
素
知 验中正面向上的频率,并考察它的概率.
养
·
·
合
试验序号 抛掷次数(n) 正面向上次数(m) 正面向上的频率
素 养
·
·
合
则取到号码为奇数的频率是( )
课
作
探
A.0.53
究
B.0.5
时 分
层
释
C.0.47
D.0.37
作
疑
难
A [取到号码为奇数的频率是10+8+160+0 18+11=0.53.]
业 返
首
页
12/8/2021
第十二页,共四十三页。
·
情
课
境
堂
导
4.(一题两空)在一次掷硬币试验中,掷 30 000 次,其中有 14 984 小
情
课
境
[跟进训练]
导
堂 小
学
结
探
1.某商场设立了一个可以自由转动的转盘(如图
·
提
新
素
知 所示),并规定:顾客购物 10 元以上就能获得一次转
养
·
合 动转盘的机会,当转盘停止时,指针落在哪一区域就
课
作
探 可以获得相应的奖品,下表是活动进行中的一组统计
究
时 分
层
释 数据.
作
疑
业
难
·
返 首 页
《概率及其意义(第2课时)课件 (公开课获奖)2022年华师大版
![《概率及其意义(第2课时)课件 (公开课获奖)2022年华师大版](https://img.taocdn.com/s3/m/c4fc24b0a8956bec0975e3fd.png)
问:你能画出符合条件的直线吗?
A
E
相似三角形的判定方法
E
D
B
C
1、平行于三角形一边的直线和其他两边相交,所构成
的三角形与原三角形相似
2、有两角对应相等的两个三角形相似
如图,每个小正方形边长均为1,则下 列图中的三角形(阴影部分)与左图 中△ABC相似的是( B )
A
B
C
A.
B.
C.
D.
相似三角形的判定方法
如果重复投掷骰子很多次的话,那么实验中
掷“平得均“每6”6的次频有率1次会掷逐出渐‘稳6定’ 到”互16 相附矛近盾.吗这?与
课堂练习
投掷一个均匀的正八面体骰子,每个面上依次 标有1、2、3、4、5、6、7 和 8.
(1)掷得“7”的概率等于多少?这个数表示 什么意思?
(2)掷得的数不是“7”的概率等于多少?这 个数表示什么意思?
问题: 1、如果天气预报说:“明日降水的概率是 95%,那么你会带雨具吗?” 2、有两个工厂生产同一型号足球,甲厂产品 的次品率为,乙厂产品的次品率是.若两厂的 产品在价格等其他方面的条件都相同,你愿意 买哪个厂的产品?
知道了一件事情发生的概率,对我 们的工作和生活有很大的指导作用.
学习目标
1.通过实验,体会概率的意义。
事件结果的发生数
P= 所有均等出现的结果数
实验探究2
抛掷骰子,掷得“6”的概率
等于
1 6
表示什么意思?
实践和理论相结合的探究
1.已知掷得“6”的概率等于16 ,那么不是 “6”(也就是1~5)的概率等于多少呢?它 表示什么意义呢?这两个概率值有什么关系?
2.我们知道,掷得“6”的概率等于
部编人教高中数学必修3《概率 3.1.2 概率的意义》苏正颖教案PPT课件 一等奖新名师优质课比赛教学设计
![部编人教高中数学必修3《概率 3.1.2 概率的意义》苏正颖教案PPT课件 一等奖新名师优质课比赛教学设计](https://img.taocdn.com/s3/m/40b83e6016fc700abb68fce0.png)
3.1.2概率的意义凤台一中苏正颖一、教材分析(1)正确理解概率的含义。
在概率定义的基础上,从以下两个方面帮助学生正确理解概率的含义,澄清日常生活中遇到的一些错误认识:①试验:通过抛掷一枚质地均匀的硬币,解释正面朝上的概率为0.5含义,纠正“连续两次抛掷一枚质地均匀的硬币,一定是一次正面朝上,一次反面朝上”的错误认识;通过从盒子中摸球的试验,解释中奖概率为的含义,纠正“如果中奖率为 ,那么买1000张彩票一定能中奖”的错误认识。
②随机性与规律性:解释每次试验结果的随机性,多次试验结果的规律性,进一步说明频率与概率之间的区别。
(2)了解概率在实际问题中的应用。
①概率与公平性的关系:利用概率解释游戏规则的公平性,判断实际生活中的一些现象是否合理。
可以从正反两个方面举例让学生进行判断。
②概率与决策的关系:介绍统计中极大似然法思想的概率解释,并清楚它的概率基础:在一次试验中,概率大的事件发生的可能性大。
这种思想是“风险与决策”中经常使用的。
③概率与预报的关系:通过天气预报、地震预报、股票预报等实例,让学生了解概率在预报中的作用。
二、教学目标 1.从频率稳定性的角度,了解概率的意义. 2.学生经历试验,统计,分析,归纳,总结,进而了解并感受概率的定义的过程,引导学生从数学的视角,观察客观世界;用数学的思维,思考客观世界;以数学的语言,描述客观世界. 3.学生经历试验,整理,分析,归纳,确认等数学活动,感受数学活动充满了探索性与创造性,感受量变与质变的对立统一规律,同时为概率的精准,新颖,独特的思维方式所震撼.. 三、教学重点难点重点:概率的正确理解。
难点:用概率知识解决现实生活中的具体问题。
四、学情分析回忆上节课有关概率的定义,通过试验解释概率的含义,纠正日常生活中的一些错误认识,介绍概率与公平性、概率与决策、概率与预报方面的实例。
五、教学方法 1.举例法 2.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→布置预习六、课前准备 1.学生的学习准备:预习课本,初步把握概率的定义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随机性与规律性: 随机事件在一次试验中发生与否是随机 的,但随机性中含有规律性。认识了这种随 机性中的规律性,就能为我们比较准确的预 测随机事件发生的可能性。
问题2:有人说,中奖率为
1 1000
的彩票,买
1000张一定中奖,这种理解对吗?
说明:虽然中奖张数是随机的,但这种随机性中具 有规律性。随着试验次数的增加,即随着买的彩票
二、概率在实际问题中的应用
1、游戏的公平性
2、决策中的概率思想 3、天气预报的概率解释
1、游戏的公平性
(1)你有没有注意到在乒乓球、排球 等体育比赛中,如何确定由哪一方先发 球?你觉得对比赛双方公平吗? (2)你能否举出一些游戏不公平的例子, 并说明理由。
这样的游戏公平吗?
小军和小民玩掷色子是游戏,他们约定:两颗色子掷 出去,如果朝上的两个数的和是5,那么小军获胜,如果朝 上的两个数的和是7,那么小民获胜。这样的游戏公平吗? 事件:掷双色子
1 张数的增加,大约有 1000
的彩票中奖。实际上,买
1000
999 1000张彩票中奖的概率为 1 1000
0.6323。没有
一张中奖也是有可能的,其概率近似为0.3677。
问题3:随机事件发生的频率与概率的区别与 联系是什么?
概率与频率的关系:
(1)频率是概率的近似值,随着试验次数的增加, 频率会越来越接近概率。 (2)频率本身是随机的,在试验前不能确定。 (3)概率是一个确定的数,是客观存在的,与每次 试验无关。
A:朝上两个数的和是5 B:朝上两个数的和是7
关键是比较A发生的可能性和B发 生的可能性的大小。
这样的游戏公平吗?
1点 2点 3点 4点 5点 6点 1点 2点 2 3 3 4 4 5 5 6 6 7 7 8
3点
4点 5点 6点
4
5 6 7
5
6 7 8
6
7 8 9
7
8 9 10
8
9 10 11
9
10 11 12
1.概率的正确理解:
随机事件在一次实验中发生与否是随机的,但随机性中含有 规律性:即随着实验次数的增加,该随机事件发生的频率会越来 越接近于该事件发生的概率。
2.概率在实际问题中的应用:
(1)概率与公平性的关系:利用概率解释游戏规则的公平性,判 断实际生活中的一些现象是否合理。 (2)概率与决策的关系:在“风险与决策”中经常会用到统计中 的极大似然法:在一次实验中,概率大的事件发生的可能性大。 (3)概率与预报的关系:在对各种自然现象、灾害的研究过程中 经常会用到概率的思想来进行预测。 (4)遗传机理中的统计规律.
2、决策中的概率思想
思考:如果连续10次掷一枚色子,结果都是 出现1点,你认为这枚色子的质地均匀吗?为 什么?
3、天Байду номын сангаас预报的概率解释
思考:某地气象局预报说,明天本地降水概 率为70%。你认为下面两个解释中哪一个能 代表气象局的观点? (1)明天本地有70%的区域下雨,30%的 区域不下雨; (2)明天本地下雨的机会是70%。
3.1 随机事件的概率
3.1.2 概率的意义
一、概率的正确理解
问题1:有人说,既然抛掷一枚硬币出现正面的概率
为0.5,那么连续两次抛掷一枚质地均匀的硬币,一定 是一次正面朝上,一次反面朝上。
你认为这种想法正确吗?
让我们做一个抛掷硬币的试验,观察它落地时的情况: 每人各取一枚同样的硬币,连续两次抛掷,观察它 落地后的朝向,并记录下结果,填入下表。重复上 面的过程10次,把全班同学试验结果汇总,计算三 种结果发生的频率。
姓名 试验次数 两次正面朝上的 两次反面朝上 次数、比例 的次数、比例 一次正面朝上,一次反 面朝上的次数、比例
随着试验次数的增加,可以发现,“正面朝上、 反面朝上各一次”的频率与“两次均正面朝上”“两 次均反面朝上”的频率是不一样的,而且“两次均正 面朝上”“两次均反面朝上”的频率大致相等; “ 正面朝上、反面朝上各一次”的频率大于“两次均正 面朝上”(“两次均反面朝上”)的频率。 事实上, “两次均反面朝上”的概率为0.25, “两次均反面朝上”的概率也为0.25, “正面 朝上、反面朝上各一次”的概率为0.5 。