高中数学:概率的意义 (16)

合集下载

新教材人教版高中数学必修第二册 第10章 10.3 频率与概率

新教材人教版高中数学必修第二册  第10章   10.3 频率与概率
栏目 导引
第十章 概 率
游戏公平性的标准及判断方法 (1)游戏规则是否公平,要看对游戏的双方来说,获胜的可能性 或概率是否相同.若相同,则规则公平,否则就是不公平的. (2)具体判断时,可以按所给规则,求出双方的获胜概率,再进 行比较.
栏目 导引
第十章 概 率
有一种游戏是这样的:在一 个大转盘上,盘面被均匀地分成 12 份,分别 写有 1~12 这 12 个数字(如图所示),其中 2, 4,6,8,10,12 这 6 个区域对应的奖品是文 具盒,而 1,3,5,7,9,11 这 6 个区域对应的奖品是随身听.游 戏规则是转盘转动后指针停在哪一格,则继续向前前进对应转 盘上数字的格数.例如:你转动转盘停止后,指针落在 4 所在 区域,则还要往前前进 4 格,到标有 8 的区域,此时 8 区域对 应的奖品就是你的,以此类推.请问:小明在玩这个游戏时, 得到的奖品是随身听的概率是多少?
P(A).我们称频率的这个性质为频率的稳定性.因此,我们可 以用频率 第十章 概 率
■名师点拨
频率与概率的区别与联系
名称
区别
联系
本身是随机的,在试验之前无法 (1)频率是概率的近似值,
确定,大多会随着试验次数的改 随着试验次数的增加,频 频率
变而改变.做同样次数的重复试 率会越来越接近概率
栏目 导引
第十章 概 率
随机事件概率的理解及求法 (1)理解:概率可看作频率理论上的期望值,它从数量上反映了 随机事件发生的可能性的大小.当试验的次数越来越多时,频 率越来越趋近于概率.当次数足够多时,所得频率就近似地看 作随机事件的概率. (2)求法:通过公式 fn(A)=nnA=mn 计算出频率,再由频率估算概 率.
栏目 导引
第十章 概 率

必修3第三章-概率-知识点总结和强化练习:

必修3第三章-概率-知识点总结和强化练习:

高中数学必修3 第三章 概率 知识点总结及强化训练一、 知识点总结3.1.1 —3.1.2随机事件的概率及概率的意义 1、基本概念:(1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件; (2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件;(4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件;(5)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A出现的次数nA 为事件A 出现的频数;称事件A 出现的比例fn(A)=n n A为事件A 出现的概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率fn(A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率。

(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA 与试验总次数n 的比值n n A,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。

我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。

频率在大量重复试验的前提下可以近似地作为这个事件的概率3.1.3 概率的基本性质 1、基本概念:(1)事件的包含、并事件、交事件、相等事件(2)若A ∩B 为不可能事件,即A ∩B=ф,那么称事件A 与事件B 互斥;(3)若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件;(4)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)2、概率的基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1; 2)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);3)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);4)互斥事件与对立事件的区别与联系,互斥事件是指事件A 与事件B 在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A 发生且事件B 不发生;(2)事件A 不发生且事件B 发生;(3)事件A 与事件B 同时不发生,而对立事件是指事件A 与事件B 有且仅有一个发生,其包括两种情形;(1)事件A 发生B 不发生;(2)事件B 发生事件A 不发生,对立事件互斥事件的特殊情形。

高中概率知识点总结

高中概率知识点总结

高中概率知识点总结高中概率知识点总结概率,又称或然率、机会率、机率(几率)或可能性,它是概率论的基本概念。

概率是对随机事件发生的可能性的度量,一般以一个在0到1之间的实数表示一个事件发生的可能性大小。

以下是小编整理的高中概率知识点总结,希望能够帮助到大家!高中概率知识点总结篇1一.算法,概率和统计1.算法初步(约12课时)(1)算法的含义、程序框图①通过对解决具体问题过程与步骤的分析(如,二元一次方程组求解等问题),体会算法的思想,了解算法的含义。

②通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程。

在具体问题的解决过程中(如,三元一次方程组求解等问题),理解程序框图的三种基本逻辑结构:顺序、条件分支、循环。

(2)基本算法语句经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句--输入语句、输出语句、赋值语句、条件语句、循环语句,进一步体会算法的基本思想。

(3)通过阅读中国古代中的算法案例,体会中国古代对世界发展的贡献。

3.概率(约8课时)(1)在具体情境中,了解随机事件发生的不确定性和频率的稳定性,进一步了解概率的意义以及频率与概率的区别。

(2)通过实例,了解两个互斥事件的概率加法公式。

(3)通过实例,理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。

(4)了解随机数的意义,能运用模拟(包括计算器产生随机数来进行模拟)估计概率,初步体会几何概型的意义(参见例3)。

(5)通过阅读材料,了解人类认识随机现象的过程。

2.统计(约16课时)(1)随机抽样①能从现实生活或其他学科中提出具有一定价值的统计问题。

②结合具体的实际问题情境,理解随机抽样的必要性和重要性。

③在参与解决统计问题的过程中,学会用简单随机抽样方法从总体中抽取样本;通过对实例的分析,了解分层抽样和系统抽样方法。

④能通过试验、查阅、设计调查问卷等方法收集数据。

(2)用样本估计总体①通过实例体会分布的意义和作用,在表示样本数据的过程中,学会列频率分布表、画频率分布直方图、频率折线图、茎叶图(参见例1),体会他们各自的特点。

安徽省铜陵市高中数学第三章《概率》概率的意义学案新人教A版必修3

安徽省铜陵市高中数学第三章《概率》概率的意义学案新人教A版必修3

概率的意义展示课〔时段:正课时间:40分钟〔自研〕+60分钟〔展示〕〕学习主题:一、正确理解概率的意义及应用,知道随机事件发生的可能性大小是由它自身决定的,而且是客观存在的;二、通过澄清日常生活中碰到的一些错误熟悉,正确理解概率的意义.【定向导学·互动展示·当堂反应】重点:概率的正确认识板书:板书呈现概率主题一、二相关知识点;展示知识点;③注重展示板书的规划;高二班组姓名:总分值:100分得分:考察内容:概率的意义考察主题:概率的正确熟悉考察形式:封锁式训练,导师不指导、不讨论、不剽窃. 温馨提示:本次训练时间约为40分钟,请同窗们认真审题,仔细答题,安静、自主的完成训练内容.根底稳固1.以下说法正确的选项是( )A.由生物学知道生男生女的概率均为1,一对夫妇生两个孩子,那么必然生一男一女2B.一次摸奖活动中中奖概率为1,那么摸5张票,必然有一张中奖5C.做7次抛硬币的实验,结果3次出现正面,因此,出现正面的概率是37D.在同一年诞生的367人中,至少有两人生日为同一天2.以下命题中,正确的个数是( )①13个人中至少有2人的生日是同一个月是必然事件;②为了解我班学生的数学成绩,从中抽取10名学生的数学成绩是整体的一个样本;③一名篮球运发动投篮命中概率为0.7,他投篮10次,必然会命中7次;④小颖在装有10个黑、白球的袋中,多次进展摸球实验,发现摸到黑球的频率在0.6周围波动,据此估量黑球约有6个.A. 1 B. 2 C. 3 D. 43.从12件同类产品中(其中10件正品,2件次品),任意抽取6件产品,以下说法中正确的选项是( )A.抽出的6件产品必有5件正品,1件次品B.抽出的6件产品中可能有5件正品,1件次品C.抽取6件产品时,逐个不放回地抽取,前5件是正品,第6件必是次品D.抽取6件产品时,不可能抽得5件正品,1件次品1,前4个病人都未治愈,那么第5个病人的治愈率为( )5A. 1 B. C. 0 D.5.抛掷一枚质地均匀的正方体骰子(六个面上别离写有1,2,3,4,5,6),假设前3次持续抛到“6点朝上〞,那么对于第4次抛掷结果的预测,以下说法中正确的选项是( )A.必然出现“6点朝上〞 B.出现“6点朝上〞的概率大于61C.出现“6点朝上〞的概率等于61 D.无法预测“6点朝上〞的概率6.同时向上抛掷100个质量均匀的铜板,落地时这100个铜板全都正面向上,那么这100个铜板更可能是下面哪一种情况( )A.这100个铜板两面是一样的B.这100个铜板两面是不一样的C.这100个铜板中有50个两面是一样的,另外50个两面是不一样的D.这100个铜板中有20个两面是一样的,另外80个两面是不一样的7.甲、乙两个气象台同时做天气预报,若是它们预报准确的概率别离为0.8与0.7,且预报准确与否彼此独立.那么在一次预报中这两个气象台的预报都不准确的概率是( )A. 0.06 B. 0.24 C8.在天气预报中,有“降水概率预报〞,例如,预报“明天降水概率为78%〞,这是指( )A.明天该地域有78%的地域降水,其他22%的地域不降水B.明天该地域降水的可能性大小为78%C.气象台的专家中,有78%的人以为会降水,另外22%的专家以为不降水D.明天该地域约有78%的时间降水,其他时间不降水“幸运观众〞答题有奖活动,参与者首先要求在四个答案中去掉了一个错误答案,那么他答中的概率是( )A. B. C. D. 110.一张圆桌旁有四个座位,A先坐下,如图,B选择其它三个座位中的一个坐下,那么A与B相邻的概率是( ) A. B. C. D.11.盒子里装有8个白球和假设干个黑球,通过实验知道摸出白球的概率为,那么盒子中装有( )个黑球.A. 8 B. 16 C. 24 D. 32二、填空题12.小明和小颖按如下规那么做游戏:桌面上放有5支铅笔,每次取1支或2支,最后取完铅笔的人获胜,你以为这个游戏规那么________.(填“公平〞或“不公平〞)13.我校的天气预报说:“明天的降雨概率是80%.按照这个预报,我以为明天下雨的可能性很大.这种说法________(是/否)正确.“本市明天降雨的概率是90%〞,对预测的正确理解是________.①本市明天将有90%的地域降雨;②本市明天将有90%的时间降雨;③明天出行不带雨具肯定会淋雨;④明天出行不带雨具可能会淋雨.15.某城市一日的天气预报为:多云转小雨,29℃~18℃,降水概率80%,这一天必然会下雨.这种推断________(是/否)正确.“五水共治〞决策.某广告公司用形状大小完全一样的材料别离制作了“治污水〞、“防洪水〞、“排涝水〞、“保供水〞、“抓节水〞5块广告牌,从中随机抽取一块恰好是“治污水〞广告牌的概率是________.17.从同一高度落下的图钉,落地后可能钉尖着地,也可能钉帽着地,通过实验发现钉尖着地的概率________钉帽着地的概率.(填“>〞、“<〞或“=〞)开展提升18.现共有两个卡通玩具,展展、宁宁、凯凯三个小朋友都想要.他们采取了这样的方式分派玩具,拿一个飞镖射向如下图的圆盘,假设射中区域的数字为1,2,3,那么玩具给展展和宁宁,假设射中区域的数字为4,5,6,那么玩具给宁宁和凯凯,假设射中区域的数字为7,8,那么玩具给展展和凯凯.试问这个游戏规那么公平吗?拓展提高19.一个不透明的布袋中装有红、白两种颜色的球假设干个,其中3个红球,它们除颜色外其余都一样,将它们搅匀后任意摸出一球,通过大量重复实验,发现摸出红球的频率稳定在0.75左右.(1)求布袋中白球的个数;(2)假设摸出1个球,记下颜色后就放回,并搅匀,再摸出1个球,请你用画树形图或列表的方式,求两次摸出的球恰好颜色不同的概率.。

高一数学概率的意义知识点

高一数学概率的意义知识点

高一数学概率的意义知识点概率是数学中一个非常重要的概念,它不仅仅存在于数学领域,还广泛应用于生活和各个领域中。

在高一数学学习中,我们将接触到一些基本的概率知识点,这些知识点的掌握对于我们理解和应用概率的意义非常重要。

1. 概率的基本定义和意义概率是指某一事件在所有可能事件中发生的可能性大小,它的取值范围在0到1之间。

当概率为0时,表示该事件不可能发生;当概率为1时,表示该事件一定会发生。

在生活中,我们经常使用概率来衡量一些事件发生的可能性,比如天气预报中说有80%的概率下雨,我们可以明确这种可能性的大小。

2. 试验和样本空间在概率计算中,我们需要进行一系列的试验,而试验的所有可能结果的集合称为样本空间。

比如掷硬币的试验,可能的结果为正面和反面,样本空间为{正面,反面}。

概率的计算需要基于清晰定义的样本空间,只有明确了试验的所有可能结果,才能计算出各个事件发生的概率。

3. 事件和事件的概率事件是指样本空间中的某个子集,表示我们感兴趣的某种结果。

比如在掷硬币的试验中,正面朝上可以看做一个事件。

概率可以通过计算事件中的元素个数与样本空间中元素个数的比值得到。

例如,正常掷一枚硬币出现正面的概率为1/2。

4. 互斥事件和包含事件互斥事件是指两个事件不可能同时发生的情况,例如掷一枚硬币出现正面和反面是互斥事件。

对于互斥事件A和B,它们的概率可以简单地相加得到总概率。

包含事件是指一个事件包含于另一个事件的情况,比如在一个班级中,A同学是数学课代表,B同学是班长,那么A同学也是班长这个事件包含了他是数学课代表这个事件。

对于包含事件A和B,它们的概率为P(A∪B)=P(A)+P(B)-P(A∩B)。

5. 条件概率条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。

表示为P(B|A),读作在事件A已经发生的情况下,事件B发生的概率。

条件概率的计算公式为P(B|A)=P(A∩B)/P(A)。

条件概率的概念在实际生活中有非常重要的应用,比如根据某人某个特定症状的发生概率来判断他是否患有某种疾病。

概率的意义

概率的意义
1 过试验和观察,可以发现出现各个面的可能性都应该是 , 6
10 从而连续10次出现1点的概率为( 1 ) 0.000000016538 ,这在
6
一次试验(即连续10次抛掷一枚骰子)中是几乎不可能发生
的.
Page 14
我们面临两种选择:
(1)这枚骰子质地均匀; 很显然大家选择第二种答案. 如果我们面临的是从多个可选答案中挑选正确答案的决策 问题,那么“使得样本出现的可能性最大”可以作为决策 的准则,这种判断问题的方法称为极大似然法. (2)这枚骰子质地不均匀
Page
15
公元1503年,北宋大将狄青,奉令征讨南方侬智高叛乱,他在 誓师时,当着全体将士的面拿出100枚铜钱说:“我把这100 枚铜钱抛向空中,如果落地后,100枚铜100枚铜钱当众抛出后,
竟然全部都是正面朝上.狄青又命军士取来100枚铁钉,把这 100枚铜钱钉在地上,派兵把守,任人观看.于是宋朝军心大 振,个个奋勇争先,而侬智高部下也风闻此事,军心涣散, 狄青终于顺利地平定了侬智高的叛乱. 请发表你对这件事的看法?
Page
19
降水概率的大小只能说明降水可能性的大小,概率值
越大只能表示在一次试验中发生的可能性越大.在一次试 验中“降水”这个事件是否发生仍然是随机的. 尽管明天下雨的可能性很大,但由于“明天下雨” 是随机事件,因此仍然有可能不下雨.
Page
20
遗传机理中的统计规律 孟德尔把黄色和绿色的豌豆杂交,第一年收获的豌豆 全是黄色的.第二年,当他把第一年收获的黄色豌豆再种下 时, 收获的豌豆既有黄色的又有绿色的.
最有可能是什么颜色的球?
红球.
Page
27
5.甲、乙两人进行比赛,比赛的规则是同时抛掷两枚质地 均匀的硬币,如果出现两次正面向上,那么甲得一分;如 果出现一次正面向上,一次反面向上,那么乙得一分,你 认为这种比赛规则公平吗? 同时抛掷两枚质地均匀的硬币,所有可能出现的结果 “正正”、“正反”、“反正”、“反反”四种,其中两

人教B版高中数学必修二课件 《统计与概率的应用》统计与概率名师优秀课件

人教B版高中数学必修二课件 《统计与概率的应用》统计与概率名师优秀课件
5.4 统计与概率的应用
第五章 统计与概率
考点 统计与概 率的意义 统计与概 率的应用
学习目标 通过实例进一步理解统计与 概率的意义及应用 能用统计与概率的知识解决 实际生活中的问题
核心素养 数学抽象 数学抽象、 数学运算
判断正误(正确的打“√”,错误的打“×”) (1)事件 A 发生的概率很小时,该事件为不可能事件.( × ) (2)某医院治愈某种病的概率为 0.8,则 10 个人去治疗,一定有 8 人能治愈.( × ) (3)平时的多次比赛中,小明获胜的次数比小华的高,所以这次 比赛应选小明参加.( √ )
解:可以提出如下 2 个方案(答案不唯一). (方案 1)在箱内放置 100 个乒乓球,其中 1 个为黄球,99 个为 白球.顾客一次摸出一个乒乓球,摸到黄球为中大奖,否则中 小奖. (方案 2)在箱内放置 25 个乒乓球,其中 3 个为黄球,22 个为白 球,顾客一次摸出 2 个乒乓球,摸到 2 个黄球中大奖,否则中 小奖.
的概率是多少?
【解】 用 A 表示事件“对这次调整表示反对”,B 表示“对 这次调整不发表看法”,由互斥事件的概率加法公式,得 P(A∪B)=P(A)+P(B)=13070+13060=17030=0.73,因此随机选取 一个被调查者,他对这次调整表示反对或不发表看法的概率是 0.73.
概率在决策问题中的应用 (1)由于概率反映了随机事件发生的可能性的大小,概率是频率 的近似值与稳定值,所以可以用样本出现的频率近似地估计总 体中该结果出现的概率. (2)实际生活与生产中常常用随机事件发生的概率来估计某个 生物种群中个别生物种类的数量、某批次的产品中不合格产品 的数量等.
概率在决策中的应用
某地政府准备对当地的农村产业结构进行调整,为此政

高中数学第十一章知识点复习总结(精华版)——概率

高中数学第十一章知识点复习总结(精华版)——概率

高中数学第十一章-概率考试内容:随机事件的概率.等可能性事件的概率.互斥事件有一个发生的概率.相互独立事件同时发生的概率.独立重复试验. 考试要求:(1)了解随机事件的发生存在着规律性和随机事件概率的意义.(2)了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。

(3)了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.(4)会计算事件在n 次独立重复试验中恰好发生κ次的概率.§11. 概率 知识要点1. 概率:随机事件A 的概率是频率的稳定值,反之,频率是概率的近似值.2. 等可能事件的概率:如果一次试验中可能出现的结果有年n 个,且所有结果出现的可能性都相等,那么,每一个基本事件的概率都是n1,如果某个事件A 包含的结果有m 个,那么事件A 的概率nm P(A)=. 3. ①互斥事件:不可能同时发生的两个事件叫互斥事件. 如果事件A 、B 互斥,那么事件A+B 发生(即A 、B 中有一个发生)的概率,等于事件A 、B 分别发生的概率和,即P(A+B)=P(A)+P(B),推广:)P(A )P(A )P(A )A A P(A n 21n 21+++=+++ .②对立事件:两个事件必有一个发生的互斥事件...............叫对立事件. 例如:从1~52张扑克牌中任取一张抽到“红桃”与抽到“黑桃”互为互斥事件,因为其中一个不可能同时发生,但又不能保证其中一个必然发生,故不是对立事件.而抽到“红色牌”与抽到黑色牌“互为对立事件,因为其中一个必发生.注意:i.对立事件的概率和等于1:1)A P(A )A P(P(A)=+=+.ii.互为对立的两个事件一定互斥,但互斥不一定是对立事件.③相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响.这样的两个事件叫做相互独立事件. 如果两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即P(A·B)=P(A)·P(B). 由此,当两个事件同时发生的概率P (AB )等于这两个事件发生概率之和,这时我们也可称这两个事件为独立事件.例如:从一副扑克牌(52张)中任抽一张设A :“抽到老K”;B :“抽到红牌”则 A 应与B 互为独立事件[看上去A 与B 有关系很有可能不是独立事件,但261P(B)P(A),215226P(B),131524P(A)=⋅====.又事件AB 表示“既抽到老K 对抽到红牌”即“抽到红桃老K 或方块老K”有261522B)P(A ==⋅,因此有)B P(A P(B)P(A)⋅=⋅.推广:若事件n 21,A ,,A A 相互独立,则)P(A )P(A )P(A )A A P(A n 21n 21 ⋅=⋅.注意:i. 一般地,如果事件A 与B 相互独立,那么A 与A B ,与B ,A 与B 也都相互独立. ii. 必然事件与任何事件都是相互独立的.互斥对立iii. 独立事件是对任意多个事件来讲,而互斥事件是对同一实验来讲的多个事件,且这多个事件不能同时发生,故这些事件相互之间必然影响,因此互斥事件一定不是独立事件. ④独立重复试验:若n 次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n 次试验是独立的. 如果在一次试验中某事件发生的概率为P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率:kn k k n n P)(1P C (k)P --=. 4. 对任何两个事件都有)()()()(B A P B P A P B A P ⋅-+=+第十二章-概率与统计考试内容:抽样方法.总体分布的估计. 总体期望值和方差的估计. 考试要求:(1)了解随机抽样了解分层抽样的意义,会用它们对简单实际问题进行抽样. (2)会用样本频率分布估计总体分布. (3)会用样本估计总体期望值和方差.§12. 概率与统计 知识要点一、随机变量.1. 随机试验的结构应该是不确定的.试验如果满足下述条件: ①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.它就被称为一个随机试验.2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a ,b 是常数.则b a +=ξη也是一个随机变量.一般地,若ξ是随机变量,)(x f 是连续函数或单调函数,则)(ξf 也是随机变量.也就是说,随机变量的某些函数也是随机变量.设离散型随机变量ξ可能取的值为: ,,,,21i x x xξ取每一个值),2,1(1 =i x 的概率i i p x P ==)(ξ,则表称为随机变量ξ的概率分布,简称ξ的121i 注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:]5,0[∈ξ即ξ可以取0~5之间的一切数,包括整数、小数、无理数.3. ⑴二项分布:如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是:kn k k n qp C k)P(ξ-==[其中p q n k -==1,,,1,0 ] 于是得到随机变量ξ的概率分布如下:我们称这样的随机变量ξ服从二项分布,记作ξ~B(n·p ),其中n ,p 为参数,并记p)n b(k;qp C k n k k n ⋅=-. ⑵二项分布的判断与应用.①二项分布,实际是对n 次独立重复试验.关键是看某一事件是否是进行n 次独立重复,且每次试验只有两种结果,如果不满足此两条件,随机变量就不服从二项分布.②当随机变量的总体很大且抽取的样本容量相对于总体来说又比较小,而每次抽取时又只有两种试验结果,此时可以把它看作独立重复试验,利用二项分布求其分布列.4. 几何分布:“k =ξ”表示在第k 次独立重复试验时,事件第一次发生,如果把k 次试验时事件A 发生记为k A ,事A 不发生记为q )P(A ,A k k =,那么)A A A A P(k)P(ξk 1k 21-== .根据相互独立事件的概率乘法分式:))P(A A P()A )P(A P(k)P(ξk 1k 21-== ),3,2,1(1 ==-k p q k 于是得我们称ξ服从几何分布,并记p q p)g(k,1k -=,其中 3,2,1.1=-=k p q5. ⑴超几何分布:一批产品共有N 件,其中有M (M <N )件次品,今抽取)N n n(1≤≤件,则其中的次品数ξ是一离散型随机变量,分布列为)M N k n M,0k (0CC C k)P(ξnNkn MN k M -≤-≤≤≤⋅⋅==--.〔分子是从M 件次品中取k 件,从N-M 件正品中取n-k 件的取法数,如果规定m <r 时0C rm=,则k 的范围可以写为k=0,1,…,n.〕 ⑵超几何分布的另一种形式:一批产品由 a 件次品、b 件正品组成,今抽取n 件(1≤n≤a+b ),则次品数ξ的分布列为n.,0,1,k CC C k)P(ξnba kn bk a =⋅==+-.⑶超几何分布与二项分布的关系.设一批产品由a 件次品、b 件正品组成,不放回抽取n 件时,其中次品数ξ服从超几何分布.若放回式抽取,则其中次品数η的分布列可如下求得:把b a +个产品编号,则抽取n 次共有nb a )(+个可能结果,等可能:k)(η=含kn k k n b a C -个结果,故n ,0,1,2,k ,)ba a (1)b a a (C b)(a ba C k)P(ηkn k k n nk n k k n =+-+=+==--,即η~)(b a a n B +⋅.[我们先为k 个次品选定位置,共k n C 种选法;然后每个次品位置有a 种选法,每个正品位置有b 种选法] 可以证明:当产品总数很大而抽取个数不多时,k)P(ηk)P(ξ=≈=,因此二项分布可作为超几何分布的近似,无放回抽样可近似看作放回抽样.二、数学期望与方差.n n 2211期望反映了离散型随机变量取值的平均水平.2. ⑴随机变量b a +=ξη的数学期望:b aE b a E E +=+=ξξη)( ①当0=a 时,b b E =)(,即常数的数学期望就是这个常数本身.②当1=a 时,b E b E +=+ξξ)(,即随机变量ξ与常数之和的期望等于ξ的期望与这个常数的和.③当0=b 时,ξξaE a E =)(,即常数与随机变量乘积的期望等于这个常数与随机变量期望的乘积.⑵单点分布:c c E =⨯=1ξ其分布列为:c P ==)1(ξ. ⑶两点分布:p p q E =⨯+⨯=10ξ,其分布列为:(p + q = 1)⑷二项分布:∑=⋅-⋅=-np q p k n k n k E k n k )!(!!ξ 其分布列为ξ~),(p n B .(P 为发生ξ的概率)⑸几何分布:pE 1=ξ 其分布列为ξ~),(p k q .(P 为发生ξ的概率) 3.方差、标准差的定义:当已知随机变量ξ的分布列为),2,1()( ===k p x P k k ξ时,则称+-++-+-=n n p E x p E x p E x D 2222121)()()(ξξξξ为ξ的方差. 显然0≥ξD ,故σξξσξ.D =为ξ的根方差或标准差.随机变量ξ的方差与标准差都反映了随机变量ξ取值的稳定与波动,集中与离散的程度.ξD 越小,稳定性越高,波动越小............... 4.方差的性质.⑴随机变量b a +=ξη的方差ξξηD a b a D D 2)()(=+=.(a 、b 均为常数) ⑵单点分布:0=ξD 其分布列为p P ==)1(ξ⑶两点分布:pq D =ξ 其分布列为:(p + q = 1)⑷二项分布:npq D =ξ ⑸几何分布:2p q D =ξ5. 期望与方差的关系.⑴如果ξE 和ηE 都存在,则ηξηξE E E ±=±)(⑵设ξ和η是互相独立的两个随机变量,则ηξηξηξξηD D D E E E +=+⋅=)(,)(⑶期望与方差的转化:22)(ξξξE E D -= ⑷)()()(ξξξξE E E E E -=-(因为ξE 为一常数)0=-=ξξE E .三、正态分布.(基本不列入考试范围)1.密度曲线与密度函数:对于连续型随机变量ξ,位于x 轴上方,ξ落在任一区间),[b a 内的概率等于它与x 轴.直线a x =与直线b x =(如图阴影部分)的曲线叫ξ的密度曲线,以其作为 图像的函数)(x f 叫做ξ的密度函数,由于“),(+∞-∞∈x ”是必然事件,故密度曲线与x 轴所夹部分面积等于1.2. ⑴正态分布与正态曲线:如果随机变量ξ的概率密度为:2221)(σσπ-=ex f . (σμ,,R x ∈为常数,且0 σ),称ξ服从参数为σμ,的正态分布,用ξ~),(2σμN 表示.)(x f 的表达式可简记为),(2σμN ,它的密度曲线简称为正态曲线.⑵正态分布的期望与方差:若ξ~),(2σμN ,则ξ的期望与方差分别为:2,σξμξ==D E . ⑶正态曲线的性质.①曲线在x 轴上方,与x 轴不相交. ②曲线关于直线μ=x 对称.③当μ=x 时曲线处于最高点,当x 向左、向右远离时,曲线不断地降低,呈现出“中间高、两边低”的钟形曲线.④当x <μ时,曲线上升;当x >μ时,曲线下降,并且当曲线向左、向右两边无限延伸时,以x 轴为渐近线,向x 轴无限的靠近.⑤当μ一定时,曲线的形状由σ确定,σ越大,曲线越“矮胖”.表示总体的分布越分散;σ越小,曲线越“瘦高”,表示总体的分布越集中.3. ⑴标准正态分布:如果随机变量ξ的概率函数为)(21)(22+∞-∞=- x ex x πϕ,则称ξ服从标准正态分布. 即ξ~)1,0(N 有)()(x P x ≤=ξϕ,)(1)(x x --=ϕϕ求出,而P (a <ξ≤b )的计算则是)()()(a b b a P ϕϕξ-=≤ .注意:当标准正态分布的)(x Φ的X 取0时,有5.0)(=Φx 当)(x Φ的X 取大于0的数时,有5.0)( x Φ.比如5.00793.0)5.0(=-Φσμ则σμ-5.0必然小于0,如图.⑵正态分布与标准正态分布间的关系:若ξ~),(2σμN 则ξ的分布函数通 常用)(x F 表示,且有)σμx (F(x)x)P(ξ-==≤ϕ.4.⑴“3σ”原则.假设检验是就正态总体而言的,进行假设检验可归结为如下三步:①提出统计假设,统计假设里的变量服从正态分布),(2σμN .②确定一次试验中的取值a 是否落入范围)3,3(σμσμ+-.③做出判断:如果)3,3(σμσμ+-∈a ,接受统计假设. 如果)3,3(σμσμ+-∉a ,由于这是小概率事件,就拒绝统计假设.⑵“3σ”原则的应用:若随机变量ξ服从正态分布),(2σμN 则 ξ落在)3,3(σμσμ+-内的概率为99.7% 亦即落在)3,3(σμσμ+-之外的概率为0.3%,此为小概率事件,如果此事件发生了,就说明此种产品不合格(即ξ不服从正态分布).S 阴=0.5S a =0.5+S。

高中数学知识点大全(完整版)

高中数学知识点大全(完整版)

高中数学知识点大全(完整版)1. 实数和复数:实数是数轴上的所有数,包括有理数和无理数;复数由实部和虚部组成,可以表示为a+bi的形式,其中a和b 为实数。

2. 幂和根:幂是指数运算,如a的n次幂表示为an;根是幂的逆运算,开x次方根表示为x√a。

3. 代数运算:加法、减法、乘法和除法是代数运算的基本运算,它们遵循相应的运算法则。

4. 贝叶斯定理:条件概率和全概率公式的应用,用于计算事件的概率。

5. 几何:包括平面几何和立体几何,涉及到图形的性质,如平行、垂直、相似、全等等。

6. 向量:具有大小和方向的量,在代数中用坐标表示,可以进行向量的加法、减法和数量乘法等运算。

7. 函数:函数是自变量与因变量之间的依赖关系,常见的函数有线性函数、二次函数、指数函数、对数函数等。

8. 三角函数:包括正弦、余弦、正切、余切等,广泛应用于几何、物理等领域。

9. 极限与连续性:极限是指当自变量趋近于某个特定值时,函数的变化趋势;连续性是指函数在其定义域上无断点。

10. 导数与微分:导数表示函数在某一点处的变化率,微分是导数的几何意义。

11. 积分与不定积分:积分表示函数在一定区间上的面积或曲线长度,不定积分是积分的逆运算。

12. 概率与统计:概率是描述随机事件发生的可能性,统计是收集、整理和分析数据的方法。

13. 矩阵与行列式:矩阵是一个按照一定规则排列的数的矩形阵列,行列式是矩阵的一种特殊表示形式。

14. 数列与数级数:数列是由一个或多个数按一定规律排列而成的序列,数级数是数列的无穷求和。

15. 数论:研究整数性质和整数之间的关系,包括质数、最大公约数、同余等。

16. 解析几何:利用坐标表示几何图形的性质和关系。

17. 空间几何:研究三维空间中图形的性质和关系。

18. 数学证明:用严密的推理和逻辑方法证明数学命题的正确性。

19. 数学建模:将实际问题转化为数学模型,利用数学方法进行求解和分析。

20. 科学计算:利用计算机和数值方法解决数学问题,如差值、插值、数值积分等。

高中数学第三章概率随机数的含义与应用EXCEL随机数据生成方法素材

高中数学第三章概率随机数的含义与应用EXCEL随机数据生成方法素材

3。

3 随机数的含义与应用EXCEL随机数据生成方法求教:我的电子表格中rand()函数的取值范围是-1到1,如何改回1到0回答:有两种修改办法:是[1-rand()]/2,或[1+rand()]/2。

效果是一样的,都可生成0到1之间的随机数电子表格中RAND()函数的取值范围是0到1,公式如下:=RAND()如果取值范围是1到2,公式如下:=RAND()*(2—1)+1RAND( )注解:若要生成a 与b 之间的随机实数:=RAND()*(b-a)+a如果要使用函数RAND 生成一随机数,并且使之不随单元格计算而改变,可以在编辑栏中输入“=RAND()”,保持编辑状态,然后按F9,将公式永久性地改为随机数。

示例RAND()介于0 到1 之间的一个随机数(变量)=RAND()*100 大于等于0 但小于100 的一个随机数(变量)excel产生60—70随机数公式=RAND()*10+60要取整可以用=int(RAND()*10+60)我想用excel在B1单元个里创建一个50-80的随机数且这个随机数要大于A1单元个里的数值,请教大家如何编写公式!整数:=ROUND(RAND()*(80-MAX(50,A1+1))+MAX(50,A1+1),0)无需取整数:=RAND()*(80—MAX(50,A1))+MAX(50,A1)要求:1,小数保留0。

12,1000-1100范围3,不要出现重复=LEFT(RAND()*100+1000,6)至于不许重复你可以设置数据有效性在数据—有效性设=countif(a:a,a1)=1选中a列设有效性就好了其他列耶可以急求excel随机生成数字的公式,取值要在38.90-44。

03之间,不允许重复出现,保留两位小数,不允许变藏=round(RAND()*5+38.9,2)公式下拉Excel随机数Excel具有强大的函数功能,使用Excel函数,可以轻松在Excel表格产生一系列随机数。

高一数学概率的意义

高一数学概率的意义

3.大千世界充满了随机事件,生活中 处处有概率.利用概率的理论意义,对各 种实际问题作出合理解释和正确决策, 是咒 喽,一掌枪托咒 喽……『彩风霜怪铅球宝典』!大师!大师!大师!”只见R.拉基希门童的身影射出一片紫红色金 辉,这时从天而降变态地出现了三飘厉声尖叫的紫宝石色光鲨,似怪影一样直奔暗紫色银辉而来……,朝着壮扭公主有着各种古怪想法的圆脑袋怪跃过来!紧跟着R. 拉基希门童也横耍着咒符像谷穗般的怪影一样向壮扭公主怪跃过来壮扭公主忽然弄了一个,爬熊袋鼠滚两千一百六十度外加鲨叫原木转十三周半的招数!接着又使了一 套,变体猴晕凌霄翻三百六十度外加疯转七百周的华丽招式……接着像暗紫色的双舌沙漠熊一样爆呼了一声,突然秀了一个俯卧疯耍的特技神功,身上猛然生出了七只 如同水牛一样的纯红色下巴……紧接着把结实丰满、有着无穷青春热情的胸部颤了颤,只见八道跃动的犹如菊花般的浓云,突然从憨直贪玩的圆脑袋中飞出,随着一声 低沉古怪的轰响,深黑色的大地开始抖动摇晃起来,一种怪怪的死人雀睡魔动味在奇特的空气中摇晃!最后耍起神盔模样的棕褐色短发一嗥,轻飘地从里面流出一道怪 影,她抓住怪影潇洒地一甩,一件怪兮兮、红晶晶的咒符¤雨光牧童谣→便显露出来,只见这个这件神器儿,一边蜕变,一边发出“哧哧”的仙音。……飘然间壮扭公 主发疯般地念起晕头晕脑的宇宙语,只见她饱满亮润如同红苹果样的脸中,狂傲地流出六组颤舞着¤飞轮切月斧→的光泡状的冰块,随着壮扭公主的摆动,光泡状的冰 块像野猪一样在食指出色地击打出阵阵光塔……紧接着壮扭公主又连续使出四百五十五道赤虎香蕉砸,只见她圆圆的极像紫金色铜墩般的脖子中,变态地跳出五片摇舞 着¤飞轮切月斧→的蝙蝠状的脚趾,随着壮扭公主的摇动,蝙蝠状的脚趾像地痞一样念动咒语:“原野咕唉嗟,肥妹咕唉嗟,原野肥妹咕唉嗟……¤雨光牧童谣→!! !!”只见壮扭公主的身影射出一片暗灰色流光,这时西北方向萧洒地出现了八道厉声尖叫的深灰色光鼠,似灵光一样直奔白象牙色妖影而去!,朝着R.拉基希门童 破烂的脑袋怪跃过去!紧跟着壮扭公主也横耍着咒符像谷穗般的怪影一样向R.拉基希门童怪跃过去随着两条怪异光影的瞬间碰撞,半空顿时出现一道紫玫瑰色的闪光 ,地面变成了鲜红色、景物变成了灰蓝色、天空变成了紫宝石色、四周发出了病态的巨响……壮扭公主有着各种古怪想法的圆脑袋受到震颤,但精神感觉很爽!再看R .拉基希门童淡红色奶糖一般的脖子,此时正惨碎成穿山甲样的浓绿色飞丝,急速射向远方,R.拉基希门童飞喊着疾速地跳出界外,高速将淡红色奶糖一般的脖子复 原,但元气

(2019新教材)人教A版高中数学必修第二册:频率与概率

(2019新教材)人教A版高中数学必修第二册:频率与概率

名称
区别
联系
本身是随机的,在试验之前无法 (1)频率是概率的近似值,
确定,大多会随着试验次数的改 随着试验次数的增加,频 频率
变而改变.做同样次数的重复试 率会越来越接近概率
验,得到的频率值也可能会不同 (2)在实际问题中,事件的
是一个[0,1]中的确定值,不随试 概率通常情况下是未知
概率
验结果的改变而改变
据此估计四天中恰有三天下雨的概率为( )
3
2
A.4
B.5
C.2410
D.1470
【解析】 在 40 组四位随机数中,0~5 的整数恰出现 3 次的
四位数有 16 组,故四天中恰有三天下雨的概率的估计值为1460=
25. 【答案】 B
应用随机数估计概率的步骤 (1)明确随机数的范围及数字与试验结果的对应关系. (2)产生随机数. (3)统计试验次数 N 及所求事件包含的次数 n. (4)计算Nn 便可.
(3)小概率(概率接近于 0)事件很少发生,但不代表一定不发生; 大概率(概率接近于 1)事件经常发生,但不代表一定发生. (4)必然事件 M 的概率为 1,即 P(M)=1;不可能事件 N 的概率 为 0,即 P(N)=0.
有以下说法: ①昨天没有下雨,则说明“昨天气象局的天气预报降水概率为 95%”是错误的; ②“彩票中奖的概率是 1%”表示买 100 张彩票一定有 1 张会 中奖; ③做 10 次抛硬币的试验,结果 3 次正面朝上,因此正面朝上的 概率为130; ④某厂产品的次品率为 2%,但该厂的 50 件产品中可能有 2 件 次品. 其中错误说法的序号是________.
下:
[11.5,15.5) 2 ;[15.5,19.5) 4 ;[19.5,23.5) 9;

【金版学案】2013-2014学年度高中数学 3.1.2 概率的意义同步辅导与检测课件 新人教A版必修

【金版学案】2013-2014学年度高中数学 3.1.2 概率的意义同步辅导与检测课件 新人教A版必修
解析:设水库中鱼的尾数为n,n是未知的,现在要 估计n的值,将n的估计值记作n.假定每尾鱼被捕的可能性 是相等的,从库中任捕一尾,
设事件 A={带有记号的鱼},易知 P(A)≈20n00① 第二次从水库中捕出 500 尾,观察其中带有记号 的鱼有 40 尾,即事件 A 发生的频数 m=40,由概率的 统计定义可知 P(A)≈54000② 由①②两式,得20n00≈54000, 解得 n≈25000,即 n=25000. 所以,估计水库中约有鱼 25000 尾.
(1)试验的基本事件; (2)事件“出现点数之和大于3”; (3)事件“出现点数相等”.
解析:(1)这个试验的基本事件为: (1,1),(1,2),(1,3),(1,4), (2,1),(2,2),(2,3),(2,4), (3,1),(3,2),(3,3),(3,4), (4,1),(4,2),(4,3),(4,4). (2)事件“出现点数之和大于3”包含以下13个基本事件: (1,3),(1,4),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3), (3,4),(4,1),(4,2),(4,3),(4,4). (3)事件“出现点数相等”包含以下4个基本事件: (1,1),(2,2),(3,3),(4,4).
答案:C
点评:本题易错选为A或B,其原因是错误理解 概率的意义,概率只是说明事件发生的可能性大小, 其发生具有随机性.
概率的简单应用
为了估计水库中鱼的尾数,可以使用以下的方 法:先从水库中捕出一定数量的鱼,例如2000尾,给每尾 鱼作上记号,不影响其存活,然后放回水库,经过适当时 间,让其和水库中其余的鱼充分混合,再从水库中捕出一 定数量的鱼,例如500尾,查看其中有记号的鱼,设有40 尾,试根据上述数据,估计水库内鱼的尾数.

中考数学专题训练第16讲统计与概率(解析版)

中考数学专题训练第16讲统计与概率(解析版)

统计与概率易错点梳理易错点01 调查方式的选择错误全面调查是对考查对象的全体调查.要求对考查范围内所有个体进行一个不漏的逐个准确统计.而抽样调查则只是对总体中的部分个体进行调查.以样本来估计总体的情况。

易错点02 对各种统计图的意义理解错误条形图能显示每组中的具体数据.注意各个小组不相连.扇形图能显示部分在总体中所占的百分比.注意不能直接判断具体数据的大小.折线图能显示数据的变化趋势.也能得到具体数据的大小.直方图能显示数据的分布情况.能得到每组数据的多少.注意各个小组无间隔。

易错点03 求中位数忘记排序求一组数据的中位数必须将数据按照由小到大(或由大到小)的顺序排列.然后再取中间一个数或中间两个数的平均数就是这组数据的中位数。

易错点04 不能正确计算方差方差是一组数据中各数据与它们的平均数的差的平方的平均数.即:ns 12=[21)(x x -+22)(x x -+……+2)(x x n -]。

易错点05 混淆确定性事件和随机事件的概念在一定条件下.有些事件必然会发生.这样的事件称为必然事件.有些事件必然不会发生.这样的事件称为不可能事件.必然事件与不可能事件统称确定事件.在一定条件下.可能发生也可能不发生的事件称为随机事件。

易错点06 混淆频率与概率频率和概率是两个不同的概念.事件的概率是一个确定的常数.而频率是不确定的.当试验次数较少时.频率的大小摇摆不定.当试验次数增大时.频率的大小波动变小.并逐渐稳定在概率附近。

易错点梳理考向01 数据的收集与整理例题1:(2021·辽宁凌海·九年级期中)如图①所示.一张纸片上有一个不规则的图案(图中画图部分).小雅想了解该图案的面积是多少.她采取了以下的办法:用一个长为5m.宽为3m 的长方形.将不规则图案围起来.然后在适当位置随机地向长方形区域扔小球.并记录小球在不规则图案上的次数(球扔在界线上或长方形区域外不计入试验结果).她将若干次有效试验的结果绘制成了图②所示的折线统计图.由此她估计此不规则图案的面积大约为( )A .6m 2B .5m 2C .4m 2D .3m 2【答案】A【思路分析】首先假设不规则图案面积为x .根据几何概率知识求解不规则图案占长方形的面积大小.继而根据折线图用频率估计概率.综合以上列方程求解. 【解析】解:假设不规则图案面积为x m 2. 由已知得:长方形面积为53⨯=15m 2.根据几何概率公式小球落在不规则图案的概率为:15x. 当事件A 试验次数足够多.即样本足够大时.其频率可作为事件A 发生的概率估计值.故由折线图可知.小球落在不规则图案的概率大约为0.4. 综上有:15x=0.4. 解得x =6. 故选:A .例题分析【点拨】本题考查几何概率以及用频率估计概率.并在此基础上进行了题目创新.解题关键在于清晰理解题意.能从复杂的题目背景当中找到考点化繁为简.创新题目对基础知识要求极高.例题2:(2021·内蒙古呼伦贝尔·中考真题)下列说法正确的是()A.在小明.小红.小月三人中抽2人参加比赛.小刚被轴中是随机事件B.要了解学校2000学生的体质健康情况.随机抽取100名学生进行调查.在该调查中样本容量是100名学生C.预防“新冠病毒”期间.有关部门对某商店在售口罩的合格情况进行抽检.抽检了20包口罩.其中18包合格.该商店共进货100包.估计合格的口罩约有90包D.了解某班学生的身高情况适宜抽样调查【答案】C【思路分析】根据随机事件的定义、样本容量的定义、用样本的率计算总体中该项的数量、全面调查的特点依次判断即可得到答案.【解析】解:在小明.小红.小月三人中抽2人参加比赛.小刚被轴中是不可能事件.故A选项不正确.要了解学校2000学生的体质健康情况.随机抽取100名学生进行调查.在该调查中样本容量是100.故B选项错误.预防“新冠病毒”期间.有关部门对某商店在售口罩的合格情况进行抽检.抽检了20包口罩.其中18包合格.故该口罩的合格率为90%.该商店共进货100包.估计合格的口罩约有90包.故C选项正确.了解某班学生的身高情况适宜全面调查.故D选项错误.故选:C.【点拨】此题考查语句判断.正确理解随机事件的定义、样本容量的定义、用样本的率计算总体中该项的数量、全面调查的特点是解题的关键.考向02 数据分析例题3:(2021·云南·昆明市第三中学模拟预测)垃圾分类是对垃圾进行有效处置的一种科学管理方式.是对垃圾收集处置传统方式的改革.甲乙两班各有40名同学参加了学校组织的2020年“生活垃圾分类回收”的考试.考试规定成绩大于等于96分为优异.两个班成绩的平均数、中位数、方差如表所示.则下列说法正确的是()参加人数平均数中位数方差甲40 95 93 5.1乙40 95 95 4.6AB.甲班成绩优异的人数比乙班多C.甲.乙两班竞褰成绩的众数相同D.小明得94分将排在甲班的前20名【答案】D【思路分析】分别根据方差的意义、中位数意义、众数的定义及平均数的意义逐一判断即可.【解析】A.乙班成绩的方差小于甲班成绩的方差.所以乙班成绩稳定.此选项错误.不符合题意.B.乙班成绩的中位数大于甲班.所以乙班成绩不低于95分的人数多于甲班.此选项错误.不符合题意.C.根据表中数据无法判断甲、乙两班成绩的众数.此选项错误.不符合题意.D.因为甲班共有40名同学.甲班的中位数是93分.所以小明得94分将排在甲班的前20名.此选项正确.符合题意.故选:D.【点拨】本题考查了平均数、中位数、方差及众数的概念.平均数、中位数及众数反映的是一组数据的平均趋势及水平.平均数与每个数据有关.方差反映的是一组数据的波动程度.在平均数相同的情况下.方差越小.说明数据的波动程度越小.也就是说这组数据更稳定.例题4:(2021·江苏洪泽·二模)实验中学选择10名青少年志愿者参加读书日活动.年龄如表所示:这10名志愿者年龄的众数和中位数分别是()年龄12 13 14 15人数 2 3 4 1【答案】C【思路分析】根据众数和中位数的意义求解.【解析】解:这10名志愿者年龄出现次数最多的是14.因此众数是14.将这10名志愿者年龄从小到大排列处在中间位置的两个数的平均数为13142=13.5.因此中位数是13.5.故选:C【点拨】本题考查众数和中位数的应用.熟练掌握众数和中位数的意义和计算方法是解题关键.考向03 概率例题5:(2021·云南省楚雄天人中学九年级期中)在一个不透明的纸箱中.共有15个蓝色、红色的玻璃球.它们除颜色外其他完全相同.小柯每次摸出一个球后放回.通过多次摸球试验后发现摸到蓝色球的频率稳定在20%.则纸箱中红色球很可能有()A.3个B.6个C.9个D.12个【答案】D【思路分析】根据利用频率估计概率得到摸到蓝色球的概率为20%.由此得到摸到红色球的概率=1-20%=80%.然后用80%乘以总球数即可得到红色球的个数.【解析】解:∵摸到蓝色球的频率稳定在20%.∴摸到红色球的概率=1-20%=80%.∵不透明的布袋中.有黄色、白色的玻璃球共有15个.∴纸箱中红球的个数有15×80%=12(个).故选:D.【点拨】本题考查了利用频率估计概率:大量重复实验时.事件发生的频率在某个固定位置左右摆动.并且摆动的幅度越来越小.根据这个频率稳定性定理.可以用频率的集中趋势来估计概率.这个固定的近似值就是这个事件的概率.例题6:(2021·福建省漳州第一中学九年级期中)我国古代有着辉煌的数学研究成果.其中《算经十书》是指汉、唐一千多年间的十部著名的数学著作.这些数学著作曾经是隋唐时代国子监算学科的教科书.十部书的名称是:《周髀算经》、《九章算术》、《海岛算经》、《张丘建算经》、《夏侯阳算经》、《五经算术》、《缉古算经》、《缀术》、《五曹算经》、《孙子算经》、《算经十书》标志着中国古代数学的高峰.《算经十书》这10部专著.有着十分丰富多彩的内容.是了解我国古代数学的重要文献.这10部专著中据说有6部成书于魏晋南北朝时期.其中《张丘建算经》、《夏侯阳算经》就成书于魏晋南北朝时期.某中学拟从《算经十书》专著中的魏晋南北朝时期的6部算经中任选2部作为“数学文化”进行推广学习.则所选2部专著恰好是《张丘建算经》、《夏侯阳算经》的概率为()A.13B.15C.115D.118【答案】C【思路分析】设六部成书于魏晋南北朝的算经分别用A、B、C、D、E、F表示.其中《张丘建算经》、《夏侯阳算经》分别用A、B表示,列树形图表示所有等可能性.根据概率公式即可求解.【解析】解:设六部成书于魏晋南北朝的算经分别用A、B、C、D、E、F表示.其中《张丘建算经》、《夏侯阳算经》分别用A、B表示.根据题意列树形图得由树形图得共有30种等可能性.其中两部专著恰好是A 、B 即《张丘建算经》、《夏侯阳算经》的有两种等可能性.∴所选2部专著恰好是《张丘建算经》、《夏侯阳算经》的概率为213015P ==. 故选:C【点拨】本题考查了列树形图求概率.根据题意分别用字母表示六种算经并正确列出树形图是解题关键.一、单选题1.在一个不透明的口袋中装有4个红球和若干个白球.他们除颜色外其他完全相同.通过多次摸球实验后发现.摸到红球的频率稳定在25%附近.则口袋中白球可能有( ) A .12个 B .14个 C .15个 D .16个【答案】A【解析】设白球有x 个.根据题意列出方程.4254100x =+. 解得x =12.经检验得x =12是原方程的解. 故选A .2.(2021·湖南·长沙市开福区青竹湖湘一外国语学校九年级期中)下列调查中.适合于采用普查方式的是( ) A .调查央视“五一晚会”的收视率 B .了解外地游客对兴城旅游景点的印象 C .了解一批新型节能灯的使用寿命 D .了解某航班上的乘客是否都持有“绿色健康码” 【答案】D【解析】A.调查央视“五一晚会”的收视率.适合抽样调查. B.了解外地游客对兴城旅游景点的印象.适合抽样调查. C.了解一批新型节能灯的使用寿命.适合抽样调查.微练习D.了解某航班上的乘客是否都持有“绿色健康码”.适合普查. 故选:D .3.(2021·江苏·连云港市新海实验中学二模)我校开展了“好书伴我成长”读书活动.为了解5月份九年级学生的读书情况.随机调查了九年级50名学生读书的册数.统计数据如下表所示.下列说法正确的是( )册数 0 1 2 3 4 人数 41216171A 【答案】B【解析】这组样本数据中.3出现了17次.出现的次数最多.∴这组数据的众数是3.将这组样本数据按从小到大的顺序排列.其中处于中间的两个数都是2.∴这组数据的中位数为2.观察表格.可知这组样本数据的平均数为: (0 × 4 + 1 × 12 + 2 × 16 + 3 × 17 + 4 ×1)÷50=9950. 这组数据的方差为:()()()()()22222140-1.98+121-1.98+162-1.98+173-1.98+4-1.9850⎡⎤⨯⨯⨯⨯⎣⎦ 2≠.故选:B .4.(2021·江苏新吴·二模)已知一组数据x 、y 、的平均数为3.方差为4.那么数据2x -.2y -.2z -的平均数和方差分别( )A .1.2B .1.4C .3.2D .3.4【答案】B【解析】由于数据x 、y 、z 的平均数为3.所以有x +y +z =9 则[]111(2)(2)(2)(6)31333x y z x y z -+-+-=++-=⨯= 由于数据x 、y 、z 的方差为4.即2221(3)(3)(3)43x y z ⎡⎤-+-+-=⎣⎦所以22222211(21)(21)(21)(3)(3)(3)433x y z x y z ⎡⎤⎡⎤--+--+--=-+-+-=⎣⎦⎣⎦即数据2x -.2y -.2z -的方差仍为4故数据2x -.2y -.2z -的平均数和方差分别为1和4 故选:B .5.(2021·黑龙江绥化·中考真题)近些年来.移动支付已成为人们的主要支付方式之一.某企业为了解员工某月,A B 两种移动支付方式的使用情况.从企业2000名员工中随机抽取了200人.发现样本中AB 、两种支付方式都不使用的有10人.样本中仅使用A 种支付方式和仅使用B 种支付方式的员工支付金额a (元)分布情况如下表: 支付金额a (元)01000a <≤ 10002000a <≤ 2000a >仅使用A 36人 18人 6人 仅使用B 20人28人2人①根据样本数据估计.企业2000名员工中.同时使用,A B 两种支付方式的为800人. ②本次调查抽取的样本容量为200人.③样本中仅使用A 种支付方式的员工.该月支付金额的中位数一定不超过1000元. ④样本中仅使用B 种支付方式的员工.该月支付金额的众数一定为1500元. 其中正确的是( ) A .①③ B .③④ C .①② D .②④【答案】A【解析】解:根据题目中的条件知:①从企业2000名员工中随机抽取了200人.同时使用,A B 两种支付方式的人为:20010(362018+28+6+2)=80--++(人).∴样本中同时使用,A B 两种支付方式的比例为:8022005=. ∴企业2000名员工中.同时使用,A B 两种支付方式的为:220008005⨯=(人).故①正确. ②本次调查抽取的样本容量为200.故②错误.③样本中仅使用A 种支付方式的员工共有:60人.其中支付金额在01000a <≤之间的有.36人.超过了仅使用A 种支付方式的员工数的一半.由中位数的定义知:中位数一定不超过1000元.故③是正确.④样本中仅使用B 种支付方式的员工.从表中知月支付金额在10002000a <≤之间的最多.但不能判断众数一定为1500元.故④错误.综上:①③正确.故选:A .6.为考察两名实习工人的工作情况.质检部将他们工作第一周每天生产合格产品的个数整理成甲.乙两组数据.如下表:甲 2 6 7 7 8 乙23488关于以上数据.下列说法正确的有()个.①甲、乙的众数相同.②甲、乙的中位数相同.③甲的平均数小于乙的平均数.④甲的方差小于乙的方差.A.1个B.2个C.3个D.4个【答案】A【解析】甲的众数为7.乙的众数为8.故①错误.甲的中位数为7.乙的中位数为4.故②错误.甲的平均数为15×(2+6+7+7+8)=6.乙的平均数为15×(2+3+4+8+8)=5.故③错误.甲的方差为15×[(2﹣6)2+(6﹣6)2+(7﹣6)2+(7﹣6)2+(8﹣6)2]=4.4.乙的方差为15×[(2﹣5)2+(3﹣5)2+(4﹣5)2+(8﹣5)2+(8﹣5)2]=6.4.甲的方差小于乙的方差.故④正确.故选:A.7.(2021·黑龙江松北·二模)两个不透明盒子里分别装有3个标有数字3.4.5的小球.它们除数字不同外其他均相同.甲、乙二人分别从两个盒子里摸球1次.二人摸到球上的数字之和为奇数的概率是()A.13B.23C.49D.59【答案】C【解析】解:画树状图如图:共有9种等可能的结果.甲、乙二人摸到球上的数字之和为奇数的结果有4种.∴甲、乙二人摸到球上的数字之和为奇数的概率为49.故选:C.8.有两把不同的锁和三把不同的钥匙.其中两把钥匙分别能打开这两把锁.第三把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁.一次打开锁的概率是()A.12B.13C.14D.23【答案】B【解析】解:列表得:锁1 锁2钥匙1 (锁1.钥匙1)(锁2.钥匙1)钥匙2 (锁1.钥匙2)(锁2.钥匙2)钥匙3 (锁1.钥匙3)(锁2.钥匙3)由表可知.所有等可能的情况有6种.其中随机取出一把钥匙开任意一把锁.一次打开锁的2种.则P(一次打开锁)=21=63.故选:B.9.(2021·山东南区·二模)一个口袋中有3个黑球和若干个白球.在不允许将球倒出来数的前提下.小明为估计其中的白球数.采用了如下的方法:从口袋中随机摸出一球.记下颜色.然后把它放回口袋中.摇匀后再随机摸出一球.记下颜色.再放回.不断重复上述过程.小明共摸了100次.其中80次摸到白球.根据上述数据.小明可估计口袋中的白球大约有()A.18个B.15个C.12个D.10个【答案】C【解析】解:由题可得:31008080-÷=12(个).故答案为:12.10.广东省2021年的高考采用“312++”模式:“3”是指语文、数学、外语3科为必选科目.“1”是指在物理、历史2科中任选1科.“2”是指在化学、生物、思想政治、地理4科中任选2科.若小红在“1”中选择了历史.则她在“2”中选地理、生物的概率是()A.16B.13C.14D.12【答案】A【解析】解:用树状图表示所有可能出现的结果如下:共有12种等可能的结果数.其中选中“地理”“生物”的有2种.则P(地理、生物)=2÷12=16.故选A.二、填空题11.(2021·北京丰台·二模)某单位有10000名职工.想通过验血的方式筛查出某种病毒的携带者.如果对每个人的血样逐一化验.需要化验10000次.统计专家提出了一种化验方法:随机地按5人一组分组.然后将各组5个人的血样混合再化验.如果混合血样呈阴性.说明这5个人全部阴性.如果混合血样呈阳性.说明其中至少有一个人呈阳性.就需要对这组的每个人再分别化验一次.假设携带该病毒的人数占0.05%.回答下列问题:(1)按照这种化验方法是否能减少化验次数________(填“是”或“否”).(2)按照这种化验方法至多需要________次化验.就能筛查出这10000名职工中该种病毒的携带者.【答案】是2025【解析】解:(1)第一轮化验10000名÷5=2000次<10000次故按照这种化验方法是能减少化验次数故答案为:是(2)按照这种方法需要两轮化验.第一轮化验2000次携带该病毒的人数=10000×0.05%=5人最多有5组需要进行第二轮化验一一化验需要5×5=25次化验一共进行2000+25=2025次化验.按照这种化验方法至多需要2025次化验.就能筛查出这10000名职工中该种病毒的携带者.故答案为:2025.12.某校组织了一次初三科技小制作比赛.有A、B、C、D四个班共提供了100件参赛作品.C班提供的参赛作品的获奖率为50%.其它几个班的参赛作品情况及获奖情况绘制在图1和图2两幅尚不完整的统计图中.则获奖率最高的班级是________.【答案】C班【解析】解:由统计图可得.A 班的获奖率为:1410035%100%()40%÷⨯⨯=.B 班的获奖率为:()11100135%20[]%20%100%44%÷⨯---⨯=.C 班的获奖率为50%.D 班的获奖率为:()810020%100%40%÷⨯⨯=.由上可得.获奖率最高的班级是C 班.故答案为:C 班. 13.(2021·内蒙古赛罕·二模)下列命题错误的序号是_________.①若1∠和2∠是同位角.则12∠=∠.②如果一个三角形的两条边和一个角与另一个三角形的两条边和一个角相等.那么这两个三角形全等.1x -.④某班投票选班长.小丽15票.小伟20票.小刚18票.这组数据的众数是20.⑤为排查肺炎疑似病人同机乘客的健康情况.应采用全面调查的方式进行. 【答案】①②③④【解析】解:①两直线平行时.同位角相等.不是所有互为同位角的两个角都相等.故此命题错误.②根据三角形全等的判定定理可知.当一个三角形的两个边和其夹角与另一个三角形的对应边角相等时.两个三角形才会全等.故此命题错误.③一般地.(0)a a ≥的式子叫作二次根式.需要10x -≥这个条件存在.题中没有.故此命题错误.④一组数据中出现次数最多的那个数据叫作这组数据的众数.故此命题错误.⑤排查所有同机乘客需要进行全面调查.故此命题正确.14.(2021·贵州铜仁·中考真题)若甲、乙两人射击比赛的成绩(单位:环)如下: 甲:6.7.8.9.10. 乙:7.8.8.8.9.则甲、乙两人射击成绩比较稳定的是______________(填甲或乙). 【答案】乙【解析】解:甲乙二人的平均成绩分别为:678910==85x ++++甲.78889==85x ++++乙.∴二人的方差分别为:()()()()()22222268788898108==25S -+-+-+-+-甲()()()()()22222278888888982==55S -+-+-+-+-乙. ∵22S S 乙甲>.乙的成绩比较稳定.故答案为:乙15.(2021·四川·成都绵实外国语学校九年级期中)小明为研究函数y =2x的图象.在﹣2、﹣1、1中任取一个数为横坐标.在﹣2、﹣1、2中任取一个数为纵坐标组成点P 的坐标.点P 在函数y =2x的图象上的概率是___.【答案】13【解析】解:列表如下:2-1-22- ()2,2--()2,1-- ()2,2-1-()1,2--()1,1--1,21()1,2-()1,1-1,2其中点P 在函数2y x=上的有()2,1--.()1,2--.1,2共3种. 所有点P 在函数y =2x 的图象上的概率是31=.93故答案为:1316.(2021·四川·成都嘉祥外国语学校九年级期中)有四张正面分别标有数字﹣4.﹣3.﹣2.1.的不透明卡片.它们除数字不同外其他全部相同.现将它们背面朝上.洗匀后从中抽取一张.将该卡片上的数字记为a .放回后洗匀.再从中抽取一张.将该卡片上的数字记为b .则a .b 使得二次函数y =x 2﹣(a +5)x +3当x ≤1时y 随x 的增大而减小.且一元二次方程(a +2)x 2+bx +1=0有解的概率为 ___. 【答案】516【解析】解:∵二次函数y =x 2﹣(a +5)x +3.二次项系数为1.大于0. ∴抛物线开口向上.对称轴为直线52a x +=. ∵要使得当x ≤1时.y 随x 的增大而减小. ∴应满足512a +≥. 解得:3a ≥-.∵一元二次方程(a +2)x 2+bx +1=0有解.∴20a +≠且()2420b a ∆=-+≥. ∴2a ≠-且()2420b a ∆=-+≥.∴由题意可知.a 仅能取-3或1.当3a =-时.()224324b b ∆=-⨯-+=+.∴b 取﹣4.﹣3.﹣2.1时.均满足0∆≥.当1a =时.()2241212b b ∆=-⨯+=-.∴仅有b 取﹣4时.满足0∆≥.综上分析.当3a =-时.b 取﹣4.﹣3.﹣2.1.满足题意.当1a =时.b 取﹣4满足题意.共有5种情况满足题意.∵由题意可得.两次抽取共有16种情况发生. ∴两次抽取后满足题意的概率为516P =. 故答案为:516. 三、解答题17.某校为了解本校初中学生体能情况.随机抽取部分学生进行了一次测试.并根据标准按测试成绩分成A .B .C .D 四个等级.绘制出以下两幅不完整的统计图.请根据图中信㿝解答下列问题:(1)本次抽取㐱加则试的学生为 人.扇形统计图中A 等级所对的圆心角是 度. (2)请补全条形统计图.(3)若该校初中学生有1200人.请估计该校学生体能情况成绩为C 等级的有多少人数? 【答案】(1)50.108.(2)画图见解析.(3)240人 【解析】解:(1)由B 类22人.占比44%.可得: 总人数为:2244%=50人.扇形统计图中A 等级所对的圆心角是30%360=108, 故答案为:50.108(2)C 类的人数有:501522310---=人. 补全图形如下:(3)该校初中学生有1200人.则该校学生体能情况成绩为C 等级的有:10120024050⨯=人. 答:该校初中学生有1200人.则该校学生体能情况成绩为C 等级的有240人. 18.甲、乙两名队员参加射击训练.每人射击10次.成绩分别如下:平均成绩 中位数 众数 方差甲 a 7 7 1.2 乙 7b8c根据以上信息.(1)填空:a = .b = .c = .(2)从平均数和中位数的角度来比较.成绩较好的是 .(填“甲”或“乙”) (3)若需从甲、乙两名队员中选择一人参加比赛.你认为选谁更加合适?请说明理由. 【答案】(1)7.7.5.4.2.(2)乙.(3)选择乙参加比赛.理由见解析 【解析】解:(1)甲的平均成绩为()()1115264728195122816971010a =⨯+⨯+⨯+⨯+⨯=++++= 乙的成绩从低到高排列为:3.4.6.7.7.8.8.8.9.10. 所以中位数()1787.52b =+= ()()()()()()()222222213747672773879710710c ⎡⎤=-+-+-+-+-+-+-⎣⎦=[]11691034910++++++ =4.2故答案为:7.7.5.4.2.(2)由表中数据可知.甲、乙平均成绩相等.乙的中位数7.5大于甲的中位数7.说明乙的成绩好于甲. 故答案为:乙.(3)选择乙参加比赛.理由:从平均数上看.甲、乙平均成绩相等.总分相等.从中位数上看乙的中位数和众数都大于甲.说明乙的成绩好于甲. 从方差上看乙的方差大于甲只说明乙的成绩没有甲稳定. 从众数看乙的众数是8.甲的众数是7.说明乙成绩要好些. 从折线图看.乙开始时发挥不好.后来乙的成绩呈上升趋势. 故应选乙队员参赛.19.(2021·四川达州·九年级期中)达州市红色旅游景点众多.例如罗江镇张爱萍故居.宣汉县红军公园、王维舟纪念馆.万源战史陈列馆等等.为了解初三学生对达州历史文化的了解程度.随机抽取了男、女各m 名学生进行问卷测试.问卷共30道选择题.现将得分情况统计.并绘制了如图不完整的统计图(数据分组为A 组:18x <.B 组:1822x ≤<.C 组:2226x ≤<.D 组:2630x ≤≤.x 表示问卷测试的分数).其中男生得分处于C 组的有14人.男生C 组得分情况分别为:22.22.22.22.22.23.23.23.24.24.24.25.25.25.男生、女生得分的平均数、中位数、众数(单位:分)如表所示:组别 平均数 中位数 众数 男 20 n22 女202320(1)求m .n 的值.(2)已知初三年级总人数为1800人.请估计参加问卷测试.成绩处于C 组的人数. (3)据了解男生中有两名同学得满分.女生中分数最高的两名同学分别是30分和29分.现从这四名同学中随机抽取两名参加全校总决赛.用树状图或列表的方法求恰好抽到两名男生的概率是多少?【答案】(1)50m =.25n =.见解析.(2)522人.(3)见解析.16【解析】解:(1)由题意得:1428%50m =÷=(人).男生成绩处在A 组的百分比=1-24%-46%-28%=2%.∴男生的中位数成绩为第25名与第26名成绩的平均成绩 ∵()502%24%12⨯+=(人). ∴男生中位数()2525225n =+÷=. 女生C 组人数502132015=---=(人). 条形图如图所示:(2)14151800522100+⨯=(人). 答:估计成绩处于C 组的人数约为522人. (3)如图所以恰好抽到两名男生的概率为:21126=. 20.现有两根长度分别为3cm 和4cm 的线段.同时.在一旁另有8根长度不等的线段.这些线段的长度分别与相应的卡片正面上标注的线段长一致.这8张卡片的背面完全相同.卡片正面上分别标注了2cm 3cm 3cm 4cm 4cm 5cm 6cm 6cm 、、、、、、、.把这8张卡片背面朝上.从中随机抽取一张卡片.以卡片上标注的数据对应的线段作为第三条线段的长度.回答以下问题:(1)“从中抽取的长度能够与3cm 和4cm 组成直角三角形”的概率为________. (2)求抽出的卡片上标注的数据对应的线段能够与3cm 和4cm 的线段组成等腰三角形的概率.(3)小红和小艺打算以取出一张卡片上标注的数据对应的线段能够与3cm 和4cm 组成三角形的周长的奇偶性作为游戏规则.若三角形周长为奇数.则小红胜.若三角形周长为偶数.则小艺胜.请问游戏公平吗?若公平.请说明理由.若不公平.请重新设计一个公平的游戏规则.【答案】(1)18.(2)12.(3)不公平.游戏规则改为:等腰三角形的周长为偶数.则小艺胜.等腰三角形周长为奇数.则小红胜【解析】解:(1)∵该三条线段组成的是直角三角形. ∴2234=5+22437-. ∴符合的卡片有标注5cm 的一张.∴“从中抽取的长度能够与3cm 和4cm 组成直角三角形”的概率为18.故答案为:18.(2)能构成等腰三角形的线段有3cm .3 cm .4 cm .4 cm 共四条.∴抽出的卡片上标注的数据对应的线段能够与3cm 和4cm 的线段组成等腰三角形的概率为4182=. (3)∵3+4=7.∴当抽到的线段为奇数即抽到3cm 、3cm 或5cm 时.三角形的周长为偶数.此时小艺胜的概率为38.当抽到的线段为偶数即抽到2cm 、4cm 、4cm 、6cm 或6cm 时.三角形的周长为奇数.此时小红胜的概率为58. ∴游戏不公平.游戏规则改为:等腰三角形的周长为偶数.则小艺胜.等腰三角形周长为奇数.则小红胜. 21.(2021·浙江·宁波市镇海蛟川书院九年级期中)A 、B 两人去九龙湖风景区游玩.已知每天某一时段开往风景区有三辆舒适程度不同的车.开过来的顺序也不确定.两人采取了。

概率的意义范文范文

概率的意义范文范文

概率的意义范文范文概率是概念化和量化不确定性的数学工具,是数学和统计学中的一个重要概念。

它在现代科学、工程、经济学等领域中有着广泛的应用。

概率的意义主要体现在以下几个方面。

首先,概率是描述随机现象发生可能性大小的一种度量。

随机现象是指在相同条件下,每次试验都可能出现不同结果的现象,如掷骰子、抛硬币等。

概率的值在0到1之间,其中0表示不可能事件,1表示必然事件。

根据概率的大小,我们可以对不同事件的发生进行排序和比较,从而更好地理解和解释随机现象。

其次,概率是一种预测和决策的工具。

在实际生活和工作中,我们常常需要根据已有的信息来预测未来事件的发生概率。

例如,在天气预报中,气象学家通过收集和分析大量的气象数据,利用概率模型来预测未来几天的天气情况。

在金融市场中,投资者也常常利用概率模型来判断不同投资方案的风险和回报。

通过合理地利用概率的概念和方法,我们可以更准确地预测和评估未来事件的可能性,从而作出更明智的决策。

此外,概率也是统计学中的一个重要概念。

统计学是一门研究如何收集、整理、分析和解释数据的学科。

而概率是统计学的基础,统计学的许多理论和方法都建立在概率的基础上。

例如,通过对一个总体中的随机抽样进行分析,我们可以利用概率方法来估计总体的一些参数值。

同时,概率还可以用于判断统计结果的可靠性和显著性。

在进行实证研究时,研究人员常常利用概率统计方法对数据进行检验,来验证研究假设的可行性。

总之,概率在现代科学和生活中有着广泛的应用,它是描述不确定性和随机性的重要工具。

概率的意义主要体现在度量随机现象发生可能性大小、预测和决策、统计学研究以及对世界本质的理解等方面。

通过合理运用概率的概念和方法,我们可以更好地认识和应对不确定性,从而提高科学研究的可信度和效果,以及在生活和工作中作出更明智的决策。

2020_2021学年高中数学第三章概率3.1.2概率的意义学案含解析新人教A版必修3

2020_2021学年高中数学第三章概率3.1.2概率的意义学案含解析新人教A版必修3

高中数学:3.1.2 概率的意义[目标] 1.通过实例,进一步理解概率的意义;2.会用概率的意义解释生活中的实例;3.了解“极大似然法”和遗传机理中的统计规律.[重点] 概率的意义及应用.[难点] 概率意义的理解.知识点一 概率的正确理解[填一填] 随机事件在一次试验中发生与否是随机的,但是随机性中含有规律性.认识了这种随机性中的规律性,就能使我们比较准确地预测随机事件发生的可能性.概率只是度量事件发生的可能性的大小,不能确定是否发生.[答一答]1.掷一枚均匀的硬币,正面向上的概率是12,那么在掷一百次试验中,是否一定有50次正面向上?提示:不一定,但正面向上的次数应是50次左右.知识点二 游戏的公平性[填一填]尽管随机事件发生具有随机性,但是当大量重复这一过程时,它又呈现出一定的规律性,因此利用概率知识可以解释和判断一些游戏规则的公平性、合理性.[答一答]2.在生活中,有时要用抽签的方法来决定一件事情,这样做是否公平呢?提示:我们看到在抽签时虽然有先有后,但每个抽签者中签的概率是相等的,也就是说,不会因为抽签的顺序影响其公平性.例如,在n 张相同的票中只有1张奖票,n 个人依次从中各抽1张,那么每个人抽到奖票的概率都是1n,也就是说,抽到奖票的概率与抽票的顺序无关.知识点三决策中的概率思想[填一填]如果我们面临的是从多个可选答案中挑选正确答案的决策任务,那么“使样本出现的可能性最大”可以作为决策的准则,这种判断问题的方法称为极大似然法,是决策中的概率思想.[答一答]3.如果掷一枚硬币100次,结果只有两次正面向上,如果只考虑硬币是否均匀,你的判断更倾向于什么?提示:更倾向于硬币不均匀.如果硬币是均匀的,那么出现正面向上或反面向上的次数应相差不大.知识点四天气预报的概率解释[填一填]天气预报的“降水概率”是随机事件的概率,是指明了“降水”这个随机事件发生的可能性的大小.[答一答]4.某地气象局预报说,明天本地降水概率为70%,请你结合概率的意义作出正确的解释.提示:“明天本地降水概率为70%”是指本地降水的可能性是70%,而不是本地70%的区域会降水.当然,降水是一个随机事件,随机事件在一定条件下可能发生,也可能不发生,因此降水概率为70%是指降水的可能性为70%,本地不一定下雨,也不一定不下雨.天气预报是气象专家根据观测到的气象资料和经验,经过分析推断得到的.如果本地不下雨,并不能说天气预报是错误的.知识点五试验与发现及遗传机理中的统计规律[填一填]概率知识在科学发展中起着非常重要的作用,奥地利遗传学家孟德尔利用杂交豌豆所做的试验中,得到了显性与隐性的比例接近31,分析找出了遗传规律,成为近代遗传学的奠基人.可见,利用概率统计知识,对数据加以分析,有时可以得到意想不到的结论.[答一答]5.孟德尔试验得到的显性与隐性的比例是多少?其遗传机理是什么?提示:当这两种豌豆杂交时,下一代是从父母辈中各随机地选取一个特征,于是第一代收获的豌豆的特征是Yy.以此类推,第二代收获的是YY ,Yy ,Yy ,yy ,如图,Y 是显性因子,y 是隐性因子,当显性因子与隐性因子组合时,表现出显性因子的特征,即YY ,Yy 呈黄色;当两个隐性因子组合时才表现隐性因子的特征,即yy 呈绿色.由于下一代的两个特征是从父母辈中各随机选取的,因此在第二代中的YY ,yy 出现的概率都是14,Yy 出现的概率是12,所以黄色豌豆(YY 或Yy)绿色豌豆(yy)≈3 1.类型一 概率的正确理解[例1] 下列说法正确的是( )A .由生物学知道生男生女的概率约为0.5,一对夫妇先后生两个小孩,则一定为一男一女B .一次摸奖活动中,中奖概率为0.2,则摸5张票,一定有一张中奖C .10张票中有1张奖票,10人去摸,谁先摸则谁摸到奖票的可能性大D .10张票中有1张奖票,10人去摸,无论谁先摸,摸到奖票的概率都是0.1[解析] 一对夫妇生两个小孩可能是(男,男),(男,女),(女,男),(女,女),所以A 不正确;中奖概率为0.2是说中奖的可能性为0.2,当摸5张票时,可能都中奖,也可能中一张、两张、三张、四张,或者都不中奖,所以B 不正确;10张票中有1张奖票,10人去摸,每人摸到的可能性是相同的,即无论谁先摸,摸到奖票的概率都是0.1,所以C 不正确,D 正确.[答案] D随机事件在一次试验中发生与否是随机的,但随机中含有规律性,而概率恰是其规律性在数量上的反映,概率是客观存在的,它与试验次数,哪一个具体的试验都没有关系,运用概率知识,可以帮助我们澄清日常生活中人们对一些现象的错误认识.[变式训练1] 每道选择题有4个选择支,其中只有1个选择支是正确的.某次考试共有12道选择题,某人说:“每个选择支正确的概率是14,我每题都选择第一个选择支,则一定有3题选择结果正确”这句话( B )A .正确B .错误C .不一定D .无法解释解析:解答一个选择题作为一次试验,每次试验选择的正确与否都是随机的,经过大量的试验其结果呈随机性,即选择正确的概率是14.做12道选择题,即进行了12次试验,每个结果都是随机的,不能保证每题的结果选择正确,但有3题选择结果正确的可能性比较大.同时也有可能都选错,亦或有2题,4题,甚至12个题都选择正确.类型二 游戏的公平性[例2] 有一个转盘游戏,转盘被平均分成10等份(如图),转动转盘,当转盘停止后,指针指向的数字即为转出的数字.游戏规则如下:两个人参加,先确定猜数方案,甲转动转盘,乙猜,若猜出的结果与转盘转出的数字所表示的特征相符,则乙获胜,否则甲获胜.猜数方案从以下三种方案中选一种:A .猜“是奇数”或“是偶数”B .猜“是4的整数倍数”或“不是4的整数倍数”C .猜“是大于4的数”或“不是大于4的数”请回答问题:(1)如果你是乙,为了尽可能获胜,你将选择哪种猜数方案,并且怎样猜?为什么?(2)为了保证游戏的公平性,你认为应选哪种猜数方案?为什么?(3)请你设计一种其他的猜数方案,并保证游戏的公平性.[解](1)可以选择B.猜“不是4的整数倍数”或C.猜“是大于4的数”.“不是4的整数倍数”的概率为810=0.8,“是大于4的数”的概率为610=0.6,它们都超过了0.5,故应可以尽可能地获胜.(2)为了保证游戏的公平性,应当选择A方案.方案A.猜“是奇数”或“是偶数”的概率均为0.5,因而该游戏是公平的.(3)可以设计为D.猜“是大于5的数”或“不是大于5的数”,也可以保证游戏的公平性(答案不唯一).利用概率的意义可以制定游戏的规则,在各类游戏中,如果每人获胜的概率相等,那么游戏就是公平的,这就是说游戏是否公平只要看获胜的概率是否相等.如体育比赛中决定发球权的方法应该保证比赛双方先发球的概率相等,这样才公平.再如每个购买彩票的人中奖的概率应是相等的,这样对每个人才是公平的.[变式训练2]元旦就要到了,某校将举行庆祝活动,每班派1人主持节目.高一(2)班的小明、小华和小利实力相当,又都争着要去,班主任决定用抽签的方式决定,机灵的小强给小华出主意,要小华先抽,说先抽的机会大,你是怎样认为的?说说看.解:其实抽签不必分先后,先抽后抽,中签的机会是一样的.我们取三张卡片,上面标上1、2、3,抽到1就表示中签,设抽签的次序为甲、乙、丙,则可以把情况填入下表:从上表可以看出:甲、乙、丙依次抽签,一共有六种情况,第一、二两种情况,甲中签;第三、五两种情况,乙中签;第四、六两种情况,丙中签.甲、乙、丙中签的可能性都是相同的,即甲、乙、丙的机会是一样的,先抽后抽,机会是均等的,不必争先恐后.类型三极大似然法的应用[例3]设有外形完全相同的两个箱子,甲箱有99个白球1个黑球,乙箱有1个白球99个黑球.今随机地抽取一箱,要从取出的一箱中抽取一球,结果取得白球.问这球从哪一个箱子中取出?[分析]由题目可获取以下主要信息:①已知试验的结果与试验过程大致情况;②由试验结果推断具体的试验过程.解答本题可利用极大似然法.[解]甲箱中有99个白球1个黑球,故随机地取出一球,得白球的可能性是99100.乙箱中有1个白球和99个黑球,从中任取一球,得到白球的可能性是1100.由此看到,这一白球从甲箱中抽出的概率比从乙箱中抽出的概率大得多.由极大似然法,既然在一次抽样中抽到白球,当然可以认为是由概率大的箱子中抽出的.所以我们作出统计推断该白球是从甲箱中抽出的.在一次试验中,概率大的事件比概率小的事件出现的可能性更大,这正是能够利用极大似然法来进行科学决策的理论依据.因此,在分析、解决有关试验问题时,要善于灵活地运用极大似然法这一思想方法来进行科学地决策.[变式训练3]深入研究之后,人们发现英文中各个字母被使用的频率相当稳定,例如,下面就是一份统计表.试举例说明这一研究的重要用途是什么?解:在英语中某些字母出现的频率远远高于另外一些字母,从表中我们可以看出,空格的使用频率最高,鉴于此,这一研究在键盘的设计、信息的编码、密码的破译等方面都是十分有用的.比如,人们在设计键盘时,在方便的地方安排使用频率较高的字母键,空格键不仅所占面积最大,而且放在使用最方便的位置.1.已知某种彩票中奖率为11 000,某人买了1 000份该彩票,则其( D ) A .一定中奖B .恰有一份中奖C .至少有一份中奖D .可能没有中奖解析:彩票中奖是一个随机事件,中奖率是中奖的可能性,并非一定中奖.2.下列说法一定正确的是( D )A .一名篮球运动员,号称“百发百中”,若他罚球三次,不会出现三投都不中的情况B .一个骰子掷一次得到2的概率是16,则掷6次一定会出现一次2 C .若买彩票中奖的概率为万分之一,则买一万张彩票一定会中奖D .随机事件发生的概率与试验次数无关3.某医院治疗某种疾病的治愈率为1‰ .在2008年医院收治的398个病人中,无一治愈,那么2009年该医院收治的第一个病人可能被治愈.(填“可能”或“不可能”)4.利用简单随机抽样的方法抽查了某校200名学生,其中戴眼镜的同学有123人,若在这个学校随机调查一名学生,则他戴眼镜的概率是0.615.解析:根据频率与概率的关系及概率的意义知,这名学生戴眼镜的概率为123200=0.615. 5.李东是高一(18)班的一名学生,该班有学生55人,在将要举行的“五四”晚会上,每班要随机抽一名同学作为嘉宾参与电视台节目录制,李东认为他被抽到的概率为155,你认为有道理吗?解:有道理,因为从55位同学中抽取一名同学作为嘉宾,这是一个随机事件,因此,李东被抽到的概率为155.——本课须掌握的两大问题1.概率是从数量上反映随机事件发生的可能性大小的一个数学概念.对大量重复试验来说存在的一种统计规律性,对单次试验来说,随机事件发生与否是随机的.2.生活中的概率(1)在各类游戏中,如果每人获胜的概率相等,那么游戏就是公平的,这就是说,游戏是否公平只要看每人获胜的概率是否相等即可.(2)正确理解随机事件概率的意义,掌握日常生活中偶然事件发生的规律,用概率的意义来解释一些日常生活中偶然事件即随机事件发生的概率,可以澄清日常生活中的一些错误认识.但是在用概率思想指导实践活动时,要注意概率是根据大量的随机试验得到的一个相应的期望值,它说明一个事件发生的可能性的大小,并不说明一个事件一定发生或一定不发生,因此应当抱着一种平常的心态对待它.(3)如果我们的判断结论能够使得样本出现的可能性最大,那么判断正确的可能性也最大,这种判断问题的方法称为极大似然法.。

高考数学一轮总复习课件:随机事件的概率

高考数学一轮总复习课件:随机事件的概率

学生中任抽1人,若抽得B的概率是0.4,则抽得C的概率是( A )
A.0.14
B.0.20
C.0.40
D.0.60
解析 本题考查互斥事件的概率.由于23人成绩为A,故抽到 C的概率为1-2530-0.4=0.14.
6.(2021·邢台市第二中学期末)如图所示,A,B,C表示3个
开关,若在某段时间内,它们正常工作的概率分别为0.9,0.8,
符号表示 ____B__⊇_A___
(或A⊆B)
___A_=__B____
A∪B (或A+B)
交事件 (积事件)
若某事件发生当且仅当_事__件__A_发__生__ 且__事__件__B__发__生___,则称此事件为事 A∩B(或 AB) 件 A 与事件 B 的_交__事__件__(或__积__事__件__)_
②甲、乙两人同在第3号车站下车的概率.
【解析】 ①用有序数对(x,y)表示甲在x号车站下车,乙 在y号车站下车,则甲下车的站号记为2,3,4,共3种结果,乙 下车的站号也是2,3,4,共3种结果.甲、乙两人下车的所有 可能结果有9种,分别为:(2,2),(2,3),(2,4),(3,2), (3,3),(3,4),(4,2),(4,3),(4,4).
(2)一枚均匀的正方体玩具的各个面上分别标以数字1,2, 3,4,5,6.将这个玩具向上抛掷1次,设事件A表示向上的一面 出现奇数点,事件B表示向上的一面出现的点数不超过3,事件C 表示向上的一面出现的点数不小于4,则( D )
A.A与B是互斥而非对立事件 B.A与B是对立事件 C.B与C是互斥而非对立事件 D.B与C是对立事件
则P(A)=0.6,P(B)=0.82,P(A+B)=0.96, 所以P(A·B)=P(A)+P(B)-P(A+B)=0.6+0.82-0.96= 0.46. 所以该中学既喜欢足球又喜欢游泳的学生数占该校学生总 数的比例为46%.故选C.

高中数学 第13章 概率 13.3 频率与概率学案 湘教版必修5-湘教版高二必修5数学学案

高中数学 第13章 概率 13.3 频率与概率学案 湘教版必修5-湘教版高二必修5数学学案

13.3 频率与概率1.通过实例了解模拟方法估计概率.2.理解频率、概率的意义.3.掌握用概率的意义解释生活中的实例.1.频率设Ω是某个试验的全集,A 是Ω的事件.在相同的条件下将该试验独立地重复N 次,我们称f N =N 次试验中A 发生的次数N是N 次独立重复试验中,事件A 发生的频率.2.频率和概率的关系在相同条件下,将一试验独立重复N 次,用f N 表示事件A 在这N 次试验中发生的频率.当N 增加时,f N 将在一个固定的数值p 附近波动.这个数值p 就是事件A 的概率P (A ),于是f N 是P (A )的估计.1.在掷一枚硬币的试验中,共掷了100次,“正面朝上”的频率为0.49,则共有“正面朝下”的次数为( )A .0.49B .49C .0.51D .51解析:选D.由100×0.49=49知,有49次“正面朝上”,有100-49=51(次)“正面朝下”. 2.某人抛掷一枚硬币100次,结果正面朝上有53次,设正面朝上为事件A ,则事件A 出现的频数为________,事件A 出现的频率为________.解析:由题意,试验次数n =100,事件A 出现的次数n A =53,即为频数,故事件A 出现的频率f n (A )=n A n =53100=0.53.答案:53 0.533.频率和概率有什么区别?解:(1)频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率. (2)频率本身是随机的,试验前不能确定. (3)概率是一个确定的数,是客观存在的.频率与概率的关系[学生用书P56]某公司在过去几年内使用某种型号的灯管1 000支,该公司对这些灯管的使用寿命(单位:时)进行了统计,但得到的统计表部分数据丢失,请补充完整,并回答问题.若灯管使用寿命不小于1 100小时为合格,求合格率. 【解】合格率=0.208+0.223+0.193+0.165+0.042=0.831.频率本身是随机变量,当n 很大时,频率总在一个稳定值附近左右摆动,这个稳定值就是概率.1.在进行n 次重复试验中,事件A 发生的频率为mn,当n 很大时,事件A 发生的概率P (A )与m n的关系是( )A .P (A )≈m nB .P (A )<m nC .P (A )>m nD .P (A )=m n解析:选A.对于给定的随机事件A ,事件A 发生的频率f n (A )随着试验次数的增加稳定于概率P (A ),因此可以用频率f n (A )来估计概率P (A ).即P (A )≈mn.概率的意义[学生用书P56]某种病治愈的概率是0.3,那么前7个人没有治愈,后3个人一定能治愈吗?如何理解治愈的概率是0.3?【解】 不一定.如果把治疗一个病人作为一次试验,“治愈的概率是0.3”指随着试验次数的增加,即治疗人数的增加,大约有30%的人能够治愈,对于一次试验来说,其结果是随机的,因此前7个病人没有治愈是可能的,对后3个人来说,其结果仍然是随机的,有可能治愈,也可能没有治愈.治愈的概率是0.3,指如果患病的人有1 000人,那么我们根据治愈的频率应在治愈的概率附近摆动这一前提,就可以认为这1 000个人中大约有300人能治愈.概率是用来度量随机事件发生的可能性大小的一个量,而实际结果是事件发生与不发生这两种情况中的一种.2.某一对夫妇生有两个孩子,若大孩子是女孩,则小的一定是男孩.这种说法对不对?为什么?解:不对.一对夫妇生一个孩子,是做一次试验,生男孩、女孩的概率都是12.生两个孩子相当于做两次试验,每一次试验生男孩、女孩的概率都是12.因此第二个孩子的性别可能是男,也可能是女.随机模拟方法[学生用书P57]某篮球爱好者做投篮练习,假设其每次投篮命中的概率是60%,那么在连续三次投篮中,三次都投中的概率是多少?【解】 我们通过设计模拟试验的方法来解决问题,利用计算机或计算器可以产生0到9之间的取整数值的随机数.我们用1,2,3,4,5,6表示投中,用7,8,9,0表示未投中,这样可以体现投中的概率是60%.因为是投篮三次,所以每三个随机数作为一组.例如:产生20组随机数: 812 932 569 683 271 989 730 537 925 834 907 113 966 191 432 256 393 027 556 755这就相当于做了20次试验,在这组数中,如果3个数均在1,2,3,4,5,6中,则表示三次都投中,它们分别是113,432,256,556,即共有4个数,我们得到了三次投篮都投中的概率近似为420=20%.用模拟试验来求概率的方法所得结果是不精确的,且每次模拟最终得到的概率值不一定是相同的.3.种植某种树苗,成活率是0.9,若种植这种树苗5棵,求恰有4棵成活的概率.解:利用计算器或计算机产生0到9之间取整数值的随机数,我们用0代表不成活,1至9的数字代表成活,这样可以体现成活率是0.9.因为是种植5棵,所以每5个随机数作为一组,可产生30组随机数.69801 66097 77124 2296174235 31516 29747 2494557558 65258 74130 2322437445 44344 33315 2712021782 58555 61017 4524144134 92201 70362 8300594976 56173 34783 1662430344 01117这就相当于做了30次试验,在这些数组中,如果恰有一个0,则表示恰有4棵成活,共有9组这样的数,于是我们得到种植5棵这样的树苗,恰有4棵成活的概率为930=30%.1.概率是一种可能性,它通过频率估算一个随机事件发生的可能性,可以看作频率理论上的期望值.2.用计算器或计算机产生整数值随机数的模拟试验,不仅可以用来求古典概型概率的近似值,还可以用来求一些非古典概型概率的近似值,但都要设计恰当的试验方案,并且使试验次数尽可能多,这样才与实际概率十分接近.(1)用随机模拟法抽取样本时,要注意:①编号必须正确,并且编号要连续;②正确地把握抽取的范围和容量.(2)利用计算机或计算器产生随机数时,需切实保证操作步骤与顺序的正确性,并且注意不同型号的计算器产生随机数的方法可能会不同,具体操作可参照其说明书.利用抽签法产生随机数时需保证任何一个数被抽到的机会均等.1.以下结论错误的有( )①如果一件事发生的机会只有十万分之一,那么它就不可能发生;②如果一件事发生的机会达到99.5%,那么它就必然发生;③如果一件事不是不可能发生的,那么它就必然发生;④如果一件事不是必然发生的,那么它就不可能发生.A.1个B.2个C.3个D.4个解析:选D.只要在试验中可能发生也可能不发生,就一定是随机事件,而与发生的可能性大小无关.2.通过模拟试验,产生了20组随机数:6830 3013 7055 7430 7740 4422 7884 26043346 09526807 9706 5774 5725 6576 5929 9768 60719138 6754如果恰有三个数在1,2,3,4,5,6中,则表示恰有三次击中目标,则四次射击中恰有三次击中目标的概率约为________.解析:本题无法用古典概型解决.因为表示三次击中目标分别是3013,2604,5725,6576,6754,共5个数.随机数总共有20个,所以所求的概率近似为520=25%.答案:25%3.样本容量为200的频率分布直方图如图所示.根据样本的频率分布直方图估计,样本数据落在[6,10)内的频数为________,数据落在[2,10)内的概率约为________.解析:由于组距为4,所以[6,10)内频率为0.32,所以频数为0.32×200=64.[2,10)内频率为0.08+0.32=0.4.答案:64 0.44.利用随机模拟的方法近似计算边长为2的正方形内切圆面积,并估计π的近似值. 解:用随机模拟的方法可以估算点落在圆内的概率,由几何概率公式可得点落在圆内的概率为S4,这样就可以计算圆的面积.利用圆面积公式可得S =πr 2=π,所以上面求得的S 的近似值即为π的近似值.于是,(1)利用计算机产生两组[0,1]上的均匀随机数,a 1=rand ,b 1=rand.(2)经过平移和伸缩变换,a =(a 1-0.5)*2,b =(b 1-0.5)*2,得到两组[-1,1]上的均匀随机数.(3)统计试验总次数N 和点落在圆内的次数N 1[满足a 2+b 2≤1的点(a ,b )数]. (4)计算频率N 1N,即为点落在圆内的概率的近似值. (5)设圆面积为S ,则由几何概型概率公式得P =S4.所以S 4≈N 1N,即S ≈4N 1N,即为正方形内切圆面积的近似值.又因为S =πr 2=π,所以π≈4N 1N,即为圆周率π的近似值.[A 基础达标]1.下列说法正确的是( )A .一个人打靶,打了10发子弹,有7发子弹中靶,因此这个人中靶的概率为710B .一个同学做掷硬币试验,掷了6次,一定有3次“正面朝上”C .某地发行福利彩票,其回报率为47%.有个人花了100元钱买彩票,则一定会有47元的回报D .大量试验后,可以用频率近似估计概率解析:选D.A 的结果是频率;B 错的原因是误解了概率是12的含义;C 错的原因是忽略了整体与部分的区别.2.某市的天气预报中有“降水概率预报”,例如预报“明天降水率为90%”,这是指( ) A .明天该地区约90%的时间会降水,其余时间不降水 B .明天该地区约90%的地方会降水,其他地方不降水 C .气象专家中,有90%认为明天会降水 D .明天该地区降水的可能性为90%解析:选D.“降水率为90%”只是说明降水的可能性很大,但不能理解成A ,B ,C.这体现了随机事件在一次试验中发生与否是随机的.3.若某个班级内有40名学生,抽10名学生去参加某项活动,每个学生被抽到的概率为14,则下列解释正确的是( )A .4个人中,必有1个被抽到B .每个人被抽到的可能性为14C .由于有被抽到与不被抽到两种情况,故不被抽到的概率为14D .以上说法都不正确解析:选B.显然C 、D 两个选项错误.A 选项错误的原因是忽略了是从整个班级内抽取,而不是仅从一部分中抽取,误解了前提条件和概率的意义.4.根据某市疾控中心的健康监测,该市在校中学生的近视率约为78.7%.某眼镜厂商要到一中学给近视学生配送滴眼液,每人一瓶,该校学生总数为600人,则眼镜商应带滴眼液的数目为( )A .600B .787C .不少于473D .不多于473解析:选C.由概率的意义,该校近视学生的人数约为78.7%×600=472.2,结合实际情况,应带滴眼液不少于473瓶.5.某市交警部门在调查一起车祸过程中,所有的目击证人都指证肇事车是一辆普通桑塔纳出租车,但由于天黑,均未看清该车的车牌号码及颜色,而该市有两家出租车公司,其中甲公司有100辆桑塔纳出租车,3 000辆帕萨特出租车;乙公司有3 000辆桑塔纳出租车,100辆帕萨特出租车,交警部门应认定肇事车为哪个公司的车辆较合理?( )A .甲公司B .乙公司C .甲、乙公司均可D .以上都对解析:选B.由题意得肇事车是甲公司的概率为131,是乙公司的概率为3031,由极大似然法可知认定肇事车为乙公司的车辆较为合理.6.在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的________,称事件A 出现的比例f n (A )=n A n为事件A 出现的________.解析:根据频数和频率的概念可得n A 为频数,f n (A )=n A n为频率. 答案:频数 频率 7.如图的矩形,长为5,宽为2,向矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为138颗.则可以估计出阴影部分的面积约为________.解析:矩形面积为5×2=10, 故阴影部分的面积约为138300×10=235.答案:2358.某家具厂为足球比赛场馆生产观众座椅.质检人员对该厂所生产的2 500套座椅进行抽检,共抽检了100套,发现有2套次品,则该厂所生产的2 500套座椅中大约有________套次品.解析:设有n 套次品,由概率的统计定义,知n 2 500=2100,解得n =50,所以该厂所生产的2 500套座椅中大约有50套次品.答案:509.某篮球运动员在最近几场大赛中罚球投篮的结果如下:投篮次数n 8 10 12 9 10 16 进球次数m 6 8 9 7 7 12 进球频率m n(1)(2)这位运动员投篮一次,进球的概率约是多少?解:(1)由公式可计算出每场比赛该运动员罚球进球的频率依次为68=34,810=45,912=34,79,710,1216=34.(2)由(1)知,每场比赛进球的频率虽然不同,但频率总是在34的附近摆动,可知该运动员进球的概率约为34.10.某活动小组为了估计装有5个白球和若干个红球(每个球除颜色外都相同)的袋中红球接近多少个,在不将袋中的球倒出来的情况下,分小组进行摸球试验,两人一组,共20组进行摸球试验.其中一位学生摸球,另一位学生记录所摸球的颜色,并将球放回袋中摇匀,每一组做400次试验,汇总起来后,摸到红球次数为6 000次.(1)估计从袋中任意摸出一个球,恰好是红球的概率; (2)请你估计袋中红球的个数. 解:(1)因为20×400=8 000, 所以摸到红球的频率为6 0008 000=0.75,因为试验次数很大,大量试验时,频率接近于理论概率,所以估计从袋中任意摸出一个球,恰好是红球的概率是0.75.(2)设袋中红球有x 个,根据题意得:xx +5=0.75,解得x =15,经检验x =15是原方程的解.所以估计袋中红球有15个.[B 能力提升]11.甲、乙两人做游戏,下列游戏中不公平的是( )A .抛掷一枚骰子,向上的点数为奇数则甲获胜,向上的点数为偶数则乙获胜B .同时抛掷两枚硬币,恰有一枚正面向上则甲获胜,两枚都正面向上则乙获胜C .从一副不含大小王的扑克牌中抽一张,扑克牌是红色的则甲获胜,扑克牌是黑色的则乙获胜D .甲、乙两人各写一个数字1或2,如果两人写的数字相同甲获胜,否则乙获胜解析:选B.B 中,同时抛掷两枚硬币,恰有一枚正面向上的概率为12,两枚都正面向上的概率为14,所以对乙不公平. 12.如图所示,在边长为2的正方形ABCD 中,E ,F ,G ,H 分别是正方形ABCD 四边中点,将均匀的粒子撒在正方形中,则粒子落在下列四个图中的阴影部分区域的概率分别是P 1,P 2,P 3,P 4,则P 1,P 2,P 3,P 4的大小关系是________.解析:由模拟法估计可知,四种情况的概率分别为:P 1=12×2222=12=P 4;P 2=π22=π4;P 3=4-14=34.所以P 1=P 4<P 3<P 2. 答案:P 1=P 4<P 3<P 213.某地区从某年起几年内考上大学的人数及其中的男生人数如表:(1)保留4位小数); (2)这一地区考上大学的学生是男生的概率约是多少? 解:(1)f 1=2 8835 544≈0.520 0.f 2=4 9709 607≈0.517 3,f 3=6 99413 520≈0.517 3, f 4=8 89217 190≈0.517 3. (2)估计这一地区考上大学的学生是男生的概率约为0.517 3.14.(选做题)某种心脏手术,成功率为0.6,现准备进行3例此种手术,试估计: (1)恰好成功1例的概率; (2)恰好成功2例的概率.解:利用计算器或计算机产生0到9之间取整数值的随机数,我们用0,1,2,3代表手术不成功,用4,5,6,7,8,9代表手术成功,这样可以体现成功的概率为0.6.因为做3例手术,所以每3个随机数作为一组.例如产生907,966,191,925,…,730,113,537,989共100组随机数.(1)若出现0,1,2,3中2个数的数组个数为N 1,则恰好成功1例的概率近似为N 1100. (2)若出现0,1,2,3中1个数的数组个数为N 2,则恰好成功2例的概率近似为N 2100.。

高中数学必修三第三章概率综合训练(含答案)

高中数学必修三第三章概率综合训练(含答案)

高中数学必修三概率综合训练一、单选题1.下列事件中,是随机事件的是()①从10个玻璃杯(其中8个正品,2个次品)中任取3个,3个都是正品;②同一门炮向同一个目标发射多发炮弹,其中50%的炮弹击中目标;③某人给其朋友打电话,却忘记了朋友电话号码的最后一个数字,就随意在键盘上按了一个数字,恰巧是朋友的电话号码;④异性电荷,相互吸引;⑤某人购买体育彩票中一等奖.A. ②③④B. ①③⑤C. ①②③⑤D. ②③⑤2.下列说法正确的是()A. 任何事件的概率总是在(0,1)之间B. 频率是客观存在的,与试验次数无关C. 随着试验次数的增加,频率一般会越来越接近概率D. 概率是随机的,在试验前不能确定3.气象台预报“本市明天降雨概率是70%”,下列说法正确的是()A. 本市明天将有70%的地区降雨B. 本市明天将有70%的时间降雨C. 明天出行带雨具的可能性很大D. 明天出行不带雨具肯定要淋雨4.从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是()A. “至少有一个红球”与“都是黑球”B. “至少有一个黑球”与“都是黑球”C. “至少有一个黑球”与“至少有1个红球”D. “恰有1个黑球”与“恰有2个黑球”5.已知事件A与事件B发生的概率分别为、,有下列命题:①若A为必然事件,则;②若A与B互斥,则;③若A与B互斥,则.其中真命题有()个A. 0B. 1C. 2D. 36.设函数,若从区间内随机选取一个实数,则所选取的实数满足的概率为()A. 0.5B. 0.4C. 0.3D. 0.27.如图,在矩形中,AB=4cm,BC=2cm,在图形上随机撒一粒黄豆,则黄豆落到阴影部分的概率是()A. B. C. D.8.掷一个骰子,出现“点数是质数”的概率是()A. B. C. D.9.抽查10件产品,设事件A:至少有2件次品,则A的对立事件为()A. 至多有2件次品B. 至多有1件次品C. 至多有2件正品D. 至多有1件正品10.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续的时间为50秒,若一行人来到该路口遇到红灯,则至少需要等待20秒才出现绿灯的概率为()A. B. C. D.11.在边长为4的正方形内随机取一点,该点到正方形的四条边的距离都大于1的概率是()A. B. C. D.12.掷一枚均匀的硬币两次,事件M:一次正面朝上,一次反面朝上;事件N:至少一次正面朝上,则下列结果正确的是()A. P(M)=,P(N)=B. P(M)=,P(N)=C. P(M)=,P(N)=D. P(M)=,P(N)=13.从12个同类产品(其中10个是正品,2个是次品)中任意抽取3个的必然事件是()A. 3个都是正品B. 至少有1个是次品C. 3个都是次品D. 至少有1个是正品14.设实数p在[0,5]上随机地取值,使方程x2+px+1=0有实根的概率为()A. 0.6B. 0.5C. 0.4D. 0.315.在区间[0,1]上随机取两个数x,y,记P为事件“x+y≤”的概率,则P=()A. B. C. D.16.在标准化的考试中既有单选题又有多选题,多选题是从A,B,C,D四个选项中选出所有正确的答案(正确答案可能是一个或多个选项),有一道多选题考生不会做,若他随机作答,则他答对的概率是()A. B. C. D.17.甲、乙两歼击机的飞行员向同一架敌机射击,设击中的概率分别为0.4,0.5,则恰有一人击中敌机的概率为()A. 0.9B. 0.2C. 0.7D. 0.518.某同学先后投掷一枚骰子两次,第一次向上的点数记为x,第二次向上的点数记为y,在直角坐标系xoy中,以(x,y)为坐标的点落在直线2x﹣y=1上的概率为()A. B. C. D.19.已知正方形ABCD的边长为2,H是边DA的中点.在正方形ABCD内部随机取一点P,则满足的概率为()A. B. C. D.20.袋中共有5个除颜色外完全相同的小球,其中1个红球,2个白球和2个黑球,从袋中任取两球,两球颜色为一白一黑的概率等于( )A. B. C. D.21.甲乙两人玩猜数字游戏,先由甲在心中任想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,且。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 概率
3.1 随机事件的概率
3.1.2 概率的意义
A 级 基础巩固
一、选择题
1.给出下列三个命题,其中正确命题的个数是( )
①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;
②做7次抛硬币的试验,结果3次出现正面,因此,出现正面的概率是37
; ③随机事件发生的频率就是这个随机事件发生的概率.
A .0
B .1
C .2
D .3
解析:①概率指的是可能性,错误;②频率为37
,而不是概率,故错误;③频率不是概率,错误.
★答案★:A
2.事件A 发生的概率接近于0,则 ( )
A .事件A 不可能发生
B .事件A 也可能发生
C .事件A 一定发生
D .事件A 发生的可能性很大
★答案★:B
3.一枚质地均匀的硬币如果连续抛掷100次,那么第99次出现反面朝上的概率是( ) A.1100 B.99100 C.12 D.199 解析:由于每次试验出现正、反面朝上的概率是相等的,均为12
. ★答案★:C
4.从一批电视机中随机抽出10台进行检验,其中有1台次品,则关于这批电视机,下列说法正确的是( )
A .次品率小于10%
B .次品率大于10%
C .次品率等于10%
D .次品率接近10%
解析:抽出的样本中次品的频率为110
,即10%,所以样本中次品率为10%,所以总体中次品率大约为10%.
★答案★:D
5.同时向上抛100个铜板,结果落地时100个铜板朝上的面都相同,你认为这100个铜板更可能是下面哪种情况( )
A.这100个铜板两面是一样的
B.这100个铜板两面是不同的
C.这100个铜板中有50个两面是一样的,另外50个两面是不相同的
D.这100个铜板中有20个两面是一样的,另外80个两面是不相同的
解析:落地时100个铜板朝上的面都相同,根据极大似然法可知,这100个铜板两面是一样的可能性较大.
★答案★:A
二、填空题
6.利用简单抽样法抽查某校150名男学生,其中身高为1.65米的有32人,若在此校随机抽查一名男学生,则他身高为1.65米的概率大约为________.(保留两位小数)
解析:所求概率为32
150
≈0.21.
★答案★:0.21
7.给出下列三个结论:
①小王任意买1张电影票,座号是3的倍数的可能性比座号是5的倍数的可能性大;
②高一(1)班有女生22人,男生23人,从中任找1人,则找出的女生可能性大于找出男生的可能性;
③掷1枚质地均匀的硬币,正面朝上的可能性与反面朝上的可能性相同.
其中正确结论的序号为________.
★答案★:①③
8.某地区牛患某种病的概率为0.25,且每头牛患病与否是互不影响的,今研制一种新的预防药,任选12头牛做试验,结果这12头牛服用这种药后均未患病,则此药________(填“有效”或“无效”).
解析:若此药无效,则12头牛都不患病的概率为(1-0.25)12≈0.032,这个概率很小,故该事件基本上不会发生,所以此药有效.
★答案★:有效
三、解答题
9.某转盘被平均分成10等份(如图所示),转动转盘,当转盘停止后,指针指向的数字即为转出的数字.游戏规则如下:两个人参加,先确定猜数方案,甲转动转盘,乙猜,若猜出的结果与转盘转出的数字所表示的特征相符,则乙获胜,否则甲获胜.猜数方案从以下两种方案中选一种:
A.猜“是奇数”或“是偶数”;
B.猜“是4的整数倍数”或“不是4的整数倍数”.
请回答下列问题:
①如果你是乙,为了尽可能获胜,你会选哪种猜数方案?
②为了保证游戏的公平性,你认为应选哪种猜数方案?
解:①为了尽可能获胜,乙应选择方案B,猜“不是4的整数倍数”,这是因为“不是4的
整数倍数”的概率为8
10
=0.8,超过了0.5,故为了尽可能获胜,选择方案B.
②为了保证游戏的公平性,应当选择方案A,这是因为方案A猜“是奇数”和“是偶数”的概率均为0.5,从而保证了该游戏的公平性.
10.社会调查人员希望从对人群的随机抽样调查中得到对他们所提问题诚实的回答,但是被采访者常常不愿意如实做出应答.
1965年Stanley·L.Warner发明了一种应用概率知识来消除这种不愿意情绪的方法.Warner 的随机化应答方法要求人们随机地回答所提问题中的一个,而不必告诉采访者回答的是哪个问题,两个问题中有一个是敏感的或者是令人为难的,另一个是无关紧要的,这样应答者将乐意如实地回答问题,因为只有他知道自己回答的是哪个问题.
假如在调查运动员服用兴奋剂情况的时候,无关紧要的问题是:你的身份证号码的尾数是奇数吗;敏感的问题是:你服用过兴奋剂吗.然后要求被调查的运动员掷一枚硬币,如果出现正面,就回答第一个问题,否则回答第二个问题.
例如我们把这个方法用于200个被调查的运动员,得到56个“是”的回答,请你估计这群运动员中大约有百分之几的人服用过兴奋剂.
解:因为掷硬币出现正面的概率是0.5,大约有100人回答了第一个问题,因为身份证号码尾数是奇数或偶数的可能性是相同的,因而在回答第一个问题的100人中大约有一半人,即50人回答了“是”,其余6个回答“是”的人服用过兴奋剂,由此我们估计这群人中大约有6%的
人服用过兴奋剂.
B 级 能力提升
1.蜜蜂包括小蜜蜂和黑小蜜蜂等很多种类.在我国的云南及周边各省都有分布.春暖花开的时候是放蜂的大好季节.养蜂人甲在某地区放养了9 000只小蜜蜂和1 000只黑小蜜蜂,养蜂人乙在同一地区放养了1 000只小蜜蜂和9 000只黑小蜜蜂.某中学生物小组在上述地区捕获了1只黑小蜜蜂.那么,生物小组的同学认为这只黑小蜜蜂是哪位养蜂人放养的比较合理( )
A .甲
B .乙
C .甲和乙
D .以上都对
解析:从养蜂人甲放的蜜蜂中,捕获一只小蜜蜂是黑小蜜蜂的概率为110
,而从养蜂人乙放的蜜蜂中,捕获一只小蜜蜂是黑小蜜蜂的概率为910
,所以,现在捕获的这只小蜜蜂是养蜂人乙放养的可能性较大.
★答案★:B
2.从某自动包装机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g).
492 496 494 495 498
497 501 502 504 496
497 503 506 508 507
492 496 500 501 499
根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5~501.5 g 之间的概率约为________.
解析:袋装食盐质量在497.5 g ~501.5 g 之间的共有5袋,所以其概率约为520
=0.25. ★答案★:0.25
3.设人的某一特征(眼睛的大小)是由他的一对基因所决定,以d 表示显性基因,r 表示隐性基因,则具有dd 基因的人为纯显性,具有rr 基因的人为纯隐性,具有rd 基因的人为混合性,纯显性与混合性的人都显露显性基因决定的某一特征,孩子从父母身上各得到一个基因,假定父母都是混合性,问:
(1)1个孩子由显性决定特征的概率是多少?
(2)“该父母生的2个孩子中至少有1个由显性决定特征”,这种说法正确吗?
解:父母的基因分别为rd ,rd.则孩子从父母身上各得一个基因的所有可能性为rr ,rd ,rd ,
dd ,共4种,故具有dd 基因的可能性为14,具有rr 基因的可能性也为14
,具有rd 基因的可能性为12
.
(1)1个孩子由显性决定特征的概率是34
. (2)这种说法不正确,2个孩子中每个由显性决定特征的概率均相等,为34
.。

相关文档
最新文档