一元一次不等式组的应用(方案设计)
用一元一次不等式(组)解决生活中的实际问题
用一元一次不等式(组)解决生活中的实际问题用一元一次不等式(组)解决生活中的实际问题,其主要步骤为:1、审题,设未知数;2、抓关键词,找不等关系;3、构建不等式(组)4、解不等式(组);5、根据题意,写出合理答案。
一、打折问题:例1,一双运动鞋的进价是200元,标价400元,商场要获得不低于120元的利润,问:最低可以打几折?解析:利润 = 售价-进价。
设可以打x折,则:400×0.1x-200≥120解之得,x≥8答:最低可以打8折。
二、赛球问题:例2,甲、乙两队进行足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分,两队一共比赛了12场,甲队保持不败,总得分超过26分,问:甲队至少胜了多少场?解析:甲队总得分= 甲队胜场的得分+甲队平场的得分。
设甲队胜了x场,则:3x+1×(12-x)>26解之得,x>7∴x的最小整数值是8 。
答:甲队至少胜了8场。
三、购买问题:例3,某种肥皂零售价每块2元,凡购买2块以上(包括2块),商场推出两种优惠销售办法。
第一种:一块肥皂按原价,其余按原价的七折销售;第二种:全部按原价的八折销售。
在购买的情况下,要使第一种方法比第二种方法得到的优惠多,最少需要买几块肥皂?解析:设需要买x块肥皂,第一种方法的购价为:2+2×0.7×(x-1)元,第二种方法的购价为:2×0.8 = 1.6元。
则:2+2×0.7×(x-1)<1.6解之得,x>3∴x的最小整数值是4 。
答:最少需要买4块肥皂。
四、分苹果问题:例4,把44个苹果分给若干名学生,若每人分苹果7个,则最后1名学生分得的苹果不足3个,求学生人数。
解析:最后1名学生分得的苹果数= 苹果总数-7(学生数-1),设学生人数为x 名,则:44-(x-1)×7>0 ①44-(x-1)×7<3 ②解之得,<x<∵x是整数,∴x=7答:学生人数是7人。
一元一次不等式(组)在生活中的应用
一元一次不等式(组)在生活中的应用
一元一次不等式(组)是小学数学中的一个重要内容,它在我们的日常生活中有很多应用。
以下是一些关于一元一次不等式(组)在生活中的应用:
购物打折:很多商场会举办打折活动,例如:打五折、打八折等。
我们可以用一元一次不等式来计算打折后商品的价格,帮助我们做出更明智的购物决策。
制定家庭预算:家庭预算可以帮助我们合理规划家庭收支,避免浪费。
在制定家庭预算时,我们可以使用一元一次不等式来计算各种开支和收入之间的关系,以及如何分配家庭预算。
健身计划:健身计划可以帮助我们制定科学合理的健身计划,达到健身的目的。
在健身计划中,我们可以用一元一次不等式来计算身体指标和目标之间的关系,例如:BMI指数和体重、身高之间的关系。
公交出行:公交车站的到达时间通常是不确定的,我们可以使用一元一次不等式来计算公交车的到达时间和出发时间之间的关系,以便更好地安排出行时间。
总之,一元一次不等式(组)在我们的日常生活中有很多应用。
它可以帮助我们计算各种事物之间的关系,从而更好地规划生活和工作。
人教版初中数学一元一次不等式教案范文优秀7篇
人教版初中数学一元一次不等式教案范文优秀7篇一元一次不等式教案篇一一、教学目标:(一)知识与能力目标:(课件第2张)1.体会解不等式的步骤,体会比较、转化的作用。
2.学生理解、巩固一元一次不等式的解法。
3.用数轴表示解集,加深对数形结合思想的进一步理解和掌握。
4.在解决实际问题中能够体会将文字语言转化成数学语言,学会用数学语言表示实际的数量关系。
(二)过程与方法目标:1.介绍一元一次不等式的概念。
2.通过对一元一次方程的解法的复习和对不等式性质的利用,导入对解不等式的讨论。
3.学生体会通过综合利用不等式的概念和基本性质解不等式的方法。
4.学生将文字表达转化为数学语言,从而解决实际问题。
5.练习巩固,将本节和上节内容联系起来。
(三)情感、态度与价值目标:(课件第3张)1.在教学过程中,学生体会数学中的比较和转化思想。
2.通过类比一元一次方程的解法,从而更好的掌握一元一次不等式的解法,树立辩证统一思想。
3.通过学生的讨论,学生进一步体会集体的作用,培养其集体合作的精神。
4.通过本节的学习,学生体会不等式解集的奇异的数学美。
二、教学重、难点:1.掌握一元一次不等式的`解法。
2.掌握解一元一次不等式的阶梯步骤,并能准确求出解集。
3.能将文字叙述转化为数学语言,从而完成对应用问题的解决。
三、教学突破:教材中没有给出解法的一般步骤,所以在教学中要注意让学生经历将所给的不等式转化为简单不等式的过程,并通过学生的讨论交流使学生经历知识的形成和巩固过程。
在解不等式的过程中,与上节课联系起来,重视将解集表示在数轴上,从而指导学生体会用数形结合的方法解决问题。
在研究中,鼓励学生用多种方法求解,从而锻炼他们活跃的思维。
四、教具:计算机辅助教学。
五、教学流程:(一)、复习:教学环节教师活动学生活动设计意图一元一次不等式教案篇二师:下面我们先看一下购物金额对选择哪家超市有何影响?请同学们根据老师给出的学习目标和问题,自学课文一三1页至一三2页例1上边的内容,要求独立或者小组合作,完成书上的问题(1)、(2),时间是10分钟。
人教版初中数学七年级下册9.2.2《一元一次不等式的应用》教案设计
课题:9.2实际问题与一元一次不等式教材:人教版义务教育课程标准实验教科书七年级下册【教学目标】:1、知识目标:能进一步熟练的解一元一次不等式,会从实际问题中抽象出数学模型,会用一元一次不等式解决简单的实际问题.2、能力目标:通过观察、实践、讨论等活动,积累利用一元一次不等式解决实际问题的经验,提高分类考虑、讨论问题的能力,感知方程与不等式的内在联系,体会不等式和方程同样都是刻画现实世界数量关系的重要模型3.情感目标:在积极参与数学学习活动的过程中,形成实事求是的态度和独立思考的习惯;学会在解决问题时,与其他同学交流,培养互相合作精神。
【重点难点】:重点:一元一次不等式在实际问题中的应用。
难点:在实际问题中建立一元一次不等式的数量关系。
关键:突出建模思想,刻画出数量关系,从实际中抽象出数量关系。
注意问题中隐含的不等量关系,列代数式得到不等式,转化为纯数学问题求解。
【教学过程】:创设情境,研究新知这个周末我们要去杜氏旅游渡假村,为此我们要做两个准备:先选择一家旅行社,然后购买一些必需的旅游用品。
在这个过程中,我们会碰到一些问题,看同学们能不能用数学知识来解决。
问题1:中国旅行社的原价是每人100元,可以给我们打7.7折;蓝天旅行社的原价和他们相同,但可以三人免费,并且其他人费用打8折;根据我们的实际情况,要选择哪一家比较省钱?(从生活中的问题入手,激发学生探究问题的兴趣,这是一个最优方案的选择问题,具有一定的开放性和探索性,解这类问题,一般要根据题目的条件,分别计算结果,再比较、择优。
本题通过问题设置,培养学生分析题意的能力,分析题中相关条件,找到不等关系。
让学生充分进行讨论交流,在活动中体会不等式的应用。
在分析问题的过程中运用了“求差值比较大小”这一方式,使学生又掌握了一种新的比较两个量之间大小的方式;同时体会到分类考虑问题的思考方式)观察探讨,实际操作选定了旅行社以后,咱们要去购物了,正好商店为了吸引顾客在举行优惠打折活动问题2:甲、乙两商店以同样价格出售同样的商品,并且又各自推出不同的优惠方案:甲店累计购买100元商品后,再购买的商品按原价的90%收费;在乙店累计购买50元商品后,再购买的商品按原价的95%收费.我们选择商店购物才获得更大优惠?分析:这个问题较复杂,从何处入手呢?甲商店优惠方案的起点为购物款达___元后;乙商店优惠方案的起点为购物款过___元后.启发提问:我们是否应分情况考虑?可以怎样分情况呢?(1)如果累计购物不超过50元,则在两店购物花费有区别吗?(2)如果累计购物超过50元,则在哪家商店购物花费小?为什么?关键是对于第二个问题的分类,鼓励学生大胆猜想,对研究的问题发表见解,进行探索、合作与交流,涌现出多样化的解题思路.教师及时予以引导、归纳和总结,让学生感知不等式的建模,在活动中体会不等式的实际作用。
浙教版数学八年级上册3章:《一元一次不等式组》参考教案
浙教版数学八年级上册3章:《一元一次不等式组》参考教案一. 教材分析《一元一次不等式组》是浙教版数学八年级上册第3章的内容,这部分内容是在学生已经掌握了不等式的基本性质和一元一次不等式的解法的基础上进行教学的。
通过这部分的学习,使学生能够理解不等式组的含义,掌握解一元一次不等式组的方法,提高学生解决实际问题的能力。
二. 学情分析学生在学习这部分内容时,已经有了一定的数学基础,但对于不等式组的解法可能会感到困惑。
因此,在教学过程中,需要关注学生的学习情况,针对学生的困惑进行讲解,帮助学生理解和掌握不等式组的解法。
三. 教学目标1.让学生理解不等式组的含义,掌握解一元一次不等式组的方法。
2.培养学生解决实际问题的能力,提高学生的数学思维能力。
3.培养学生合作学习、积极探究的学习习惯。
四. 教学重难点1.教学重点:让学生掌握解一元一次不等式组的方法。
2.教学难点:对于不等式组的解法的理解和应用。
五. 教学方法采用问题驱动法、案例分析法、合作学习法等教学方法,引导学生通过自主学习、讨论交流,掌握解一元一次不等式组的方法。
六. 教学准备1.准备相关的教学案例和练习题。
2.准备多媒体教学设备,制作课件。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾不等式的基本性质和一元一次不等式的解法,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过课件展示不等式组的含义和解法,让学生直观地感受不等式组的特点和解法。
3.操练(10分钟)学生分组进行讨论,每组解答一个不等式组,教师巡回指导,帮助学生解决解答过程中遇到的问题。
4.巩固(10分钟)学生独立完成一些关于不等式组的练习题,教师选取部分题目进行讲解,巩固学生对不等式组的解法的掌握。
5.拓展(10分钟)教师提出一些实际问题,引导学生运用不等式组的知识解决问题,提高学生的实际应用能力。
6.小结(5分钟)教师引导学生总结本节课所学的内容,加深学生对不等式组的解法的理解。
一元一次不等式组应用实例及答案
一元一次不等式组应用实例及答案本文介绍了一元一次不等式组的应用实例及其答案。
一元一次不等式组是用来解决不等式问题的数学工具。
它由多个一元一次不等式组成,其中每个不等式都含有一个未知数,并且未知数的指数为1。
应用实例下面是一些应用实例,展示了如何使用一元一次不等式组解决实际问题。
实例1:商店促销某商店打折销售苹果和橙子,苹果每个1元,橙子每个2元。
现有100元购物券,问最多可以购买多少个苹果和橙子?解析:设购买苹果的个数为x,购买橙子的个数为y。
根据题意,我们可以列出以下两个一元一次不等式:- 苹果总价为x元:1 * x ≤ 100- 橙子总价为2y元:2 * y ≤ 100接下来,我们可以求解这个不等式组,找到满足约束条件的x和y的取值范围。
实例2:生产计划某工厂有两个生产部门A和B,每天生产产品的数量不等。
已知部门A每天最多生产50个产品,部门B每天最多生产30个产品。
同时,工厂每天总共生产的产品数量不得超过80个。
问部门A和部门B每天生产的产品数量应如何分配,使得生产数量最大化?解析:设部门A每天生产的产品数量为x,部门B每天生产的产品数量为y。
根据题意,我们可以列出以下三个一元一次不等式:- 部门A每天最多生产50个产品:x ≤ 50- 部门B每天最多生产30个产品:y ≤ 30- 总产量不得超过80个产品:x + y ≤ 80通过求解这个不等式组,我们可以找到生产数量最大化时部门A和部门B每天生产的产品数量的合理分配方案。
答案实例1的答案:- 苹果总价不得超过100元:1 * x ≤ 100,解得x ≤ 100- 橙子总价不得超过100元:2 * y ≤ 100,解得y ≤ 50根据题意,购买苹果和橙子的个数必须是整数,所以最多可以购买的苹果个数为100个,最多可以购买的橙子个数为50个。
实例2的答案:- 部门A每天最多生产50个产品:x ≤ 50,解得x ≤ 50- 部门B每天最多生产30个产品:y ≤ 30,解得y ≤ 30- 总产量不得超过80个产品:x + y ≤ 80,解得x + y ≤ 80通过求解这个不等式组,我们可以得到合理的生产方案,例如部门A每天生产50个产品,部门B每天生产30个产品,总产量为80个产品。
一元一次不等式组教案
一元一次不等式组教案【篇一:《一元一次不等式组》教学设计】一元一次不等式组一、课表解读在初中数学课程标准,第三学段数与代数对一元一次不等式组部分是这样描述的:1.充分感受生活中存在着大量的不等式关系,了解不等式组的意义;2.会解简单的一元一次不等式组,并会用数轴确定解集。
二、教材分析1、教材的地位和作用《一元一次不等式组》的主要内容是一元一次不等式组的解法及其简单应用。
是在学习了有理数的大小比较、等式及其性质、一元一次方程的基础上,开始学习简单的数量之间的不等关系,进一步探究现实世界数量关系的重要内容,是继一元一次方程和二元一次方程组之后,又一次数学建模思想的学习,也是后继学习一元二次方程、函数及进一步学习不等式的重要基础,具有承前启后的重要作用。
《一元一次不等式组》是本章的最后一节,是一元一次不等式知识的综合运用和拓展延伸,是进一步刻画现实世界数量关系的数学模型,是下一节利用一元一次不等式组解决实际问题的关键。
2、教学目标设计依据《课程标准》对7—9年级《不等式》学段的目标要求和本班学生实际情况,特确定如下目标:1.通过实例体会一元一次不等式组是研究量与量之间关系的重要模型之一。
2.了解一元一次不等式组及解集的概念。
3.会利用数轴解较简单的一元一次不等式组。
4.培养学生分析、解决实际问题的能力。
5.通过实际问题的解决,体会数学知识在生活中的应用,激发学生的学习兴趣。
培养学生认真倾听,大胆回答,勤于思考、善于反思的良好学习习惯。
3、教学重点、难点:重点:理解一元一次不等式组的有关概念,会解简单的一元一次不等式组;难点:正确理解一元一次不等式组的解集。
三、学情分析1、学生特点从学生学习的心理基础和认知特点来说,学生已经学习了一元一次不等式,并能较熟练地解一元一次不等式,能将简单的实际问题抽象为数学模型,有一定的数学化能力。
但学生将两个一元一次不等式的解集在同一数轴上表示会产生一定的困惑。
这个年龄段的学生,以感性认识为主,并向理性认知过渡,所以,我对本节课的设计是通过两个学生所熟悉的问题情境,让学生独立思考,合作交流,从而引导其自主学习。
一元一次不等式(组)应用题及练习(含答案)
类型一例1.*校初三年级春游,现有36座和42座两种客车供选择租用,假设只租用36座客车假设干辆,则正好坐满;假设只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;36座客车每辆租金400元,42座客车每辆租金440元.(1)该校初三年级共有多少人参加春游"(2)请你帮该校设计一种最省钱的租车方案.【思路点拨】此题的关键语句是:"假设只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人〞.理解这句话,有两层不等关系.(1)租用36座客车*辆的座位数小于租用42座客车(*-1)辆的座位数.(2)租用36座客车*辆的座位数大于租用42座客车(*-2)辆的座位数+30.【答案与解析】解:(1)设租36座的车*辆.据题意得:3642(1)3642(2)30x xx x<-⎧⎨>-+⎩,解得:79xx>⎧⎨<⎩.由题意*应取8,则春游人数为:36×8=288(人).(2)方案①:租36座车8辆的费用:8×400=3200(元),方案②:租42座车7辆的费用:7×440=3080(元),方案③:因为42×6+36×1=288,所以租42座车6辆和36座车1辆的总费用:6×440+1×400=3040(元) .所以方案③:租42座车6辆和36座车1辆最省钱.练习一:1.将一筐橘子分给几个儿童,假设每人分4个,则剩下9个橘子;假设每人分6个,则最后一个孩子分得的橘子将少于3个,则共有_______个儿童,_______个橘子.2. 5.12四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作.拟派30名医护人员,携带20件行李〔药品、器械〕,租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.(1) 设租用甲种汽车*辆,请你设计所有可能的租车方案;(2) 假设甲、乙汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.类型二例2.*市局部地区遭受了罕见的旱灾,"旱灾无情人有情〞.*单位给*乡中小学捐赠一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.〔1〕求饮用水和蔬菜各有多少件?〔2〕现方案租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.〔3〕在〔2〕的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?解:〔1〕设饮用水有*件,蔬菜有y件,依题意,得320,80, x yx y+=⎧⎨-=⎩解得200,120.xy=⎧⎨=⎩所以饮用水和蔬菜分别为200件和120件.〔2〕设租用甲种货车m辆,则租用乙种货车(8-m)辆.依题意得4020(8)200,1020(8)120.m mm m+-≥⎧⎨+-≥⎩解得2≤m≤4.又因为m为整数,所以m=2或3或4.所以安排甲、乙两种货车时有3种方案.设计方案分别为:①2×400+6×360=2960〔元〕;②3×400+5×360=3000〔元〕;③4×400+4×360=3040〔元〕.所以方案①运费最少,最少运费是2960元.练习二:1.户种植的两类蔬菜的种植面积与总收入如下表:种植户种植A类蔬菜面积〔单位:亩〕种植B类蔬菜面积〔单位:亩〕总收入〔单位:元〕甲 3 1 12500乙 2 3 16500说明:不同种植户种植的同类蔬菜每亩平均收入相等.⑴求A、B两类蔬菜每亩平均收入各是多少元?⑵ *种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积〔两类蔬菜的种植面积均为整数〕,求该种植户所有租地方案.2、*公司为了更好得节约能源,决定购置一批节省能源的10台新机器。
一元一次不等式(组)在数学中的应用
一元一次不等式(组)在数学中的应用(一)北京市十七中 宋月娟研究课题:教学设计的有效性研究教学目标:经历与已有知识的沟通整合过程,归纳应用一元一次不等式(组)解决数学问题的方法。
通过一元一次不等式(组)应用的学习,体验不等式的应用价值。
通过本节课知识的整合,让学生逐步体会数学知识间的内在联系,逐步学会整合的学习方法教学重点:在不同知识内,列出一元一次不等式(组)解决问题。
教学难点:根据数学问题,列出不等式。
教学工具:多媒体教学方法:引导探究式教学过程:学生课前收集,目标中的综合性问题,准备课前展示,教师梳理 一、探究一: 不等式(组)在坐标系中的应用1、若点P (3x –9,1–x )是x 轴上的点,求点P 的坐标。
2、若点P (3x –9,1–x )是第三象限的点,求x 的范围。
3、若点P (3x –9,1–x )是第三象限的整数点,求点P 的坐标。
4、若点P (3x –9,1–x )在x 轴下方,y 轴右侧的点,求x 的范围。
说明:以题组让学生感悟坐标系中的相等关系和不等关系,引发学生用一元一次不等式组解决问题,体会学了不等式后数学知识的不断丰富。
二、探究二:不等式(组)在方程(组)中的应用5、已知关于x 的方程x -2k =0的解是非负数,求k 的取值范围;6、在关于x ,y 的方程组中,若方程组的解满足 x > y ,求m 的取值范围?说明:将方程(组)的解的不等关系情况呈现出来,启发学生将方程(组)适当变形,根据解的不等关系情况,列不等式(组)解决问题,培养学生的逻辑思维能力。
进一步体会学了不等式后数学知识的不断丰富。
三、探究三:不等式(组)在三角形中的应用7、三角形的三边长分别为5、a 、2,求a 的取值范围。
⎩⎨⎧-=+=+62y x 3m y 2x8、三角形的三边长分别为5、a 、2,当a 为奇数时,求三角形的周长.9、若等腰三角形的腰长为6,则它的底边长a 的取值范围是________10、已知等腰三角形的周长为15, 腰长为x(1)它的腰长的取值范围?(2)若它的边长都是整数,则不同的等腰三角形有几个?11、在三角形A B C 中,D 是B C 边上一动点,若∠B =80°,∠B A C =60°,∠A D C =X °, 则x 的取值范围是多少?说明:请学生列不等式(组)解决三角形的边角的不等关系, 问题11用几何画板课件辅助学生思考。
一元一次不等式组教学设计
一元一次不等式组教学设计一元一次不等式组教学设计(通用10篇)教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
下面是店铺收集整理的一元一次不等式组教学设计,希望大家喜欢。
一元一次不等式组教学设计篇1一、学习目标:1、了解一元一次不等式组的概念,理解一元一次不等式组的解集的意义,掌握求一元一次不等式组的解集的常规方法;2、经历知识的拓展过程,感受学习一元一次不等式组的必要性;3、逐步熟悉数形结合的思想方法,感受类比与化归的思想。
二、学习难点:1、重点:一元一次不等式组的解集和解法。
2、难点:一元一次不等式组解集的理解。
三、学习过程:问题情境:现有两根木条a和b,a长10 cm,b长3 cm。
如果再找一根木条。
,用这三根木条钉成一个三角形木框,那么对木条的长度有什么要求?如果设木条长x cm,那么x仅有小于两边之和还不够,仅有大于两边之差也不行,必须同时满足x10+3和x10—3。
类似于方程组引出一元一次不等式组的概念和记法。
探究新知:解下列不等式组解:解不等式(1),得x1,解不等式(2),得x—4。
在同一条数轴上表示不等式(1)、(2)的解集如图:所以,原不等式组的解是x1巩固新知:P140,1,P141,1归纳总结:不等式解集取值法则同大取大,同小取小,大小取中,矛盾无解。
若ab:①当时,•则不等式的公共解集为;②当时,不等式的公共解集为;③当时,不等式的公共解集为;④当时,不等式组。
作业:1、P141,22、解不等式组:(1);(2)(3);(4)3、若不等式组无解,求m的取值范围。
4、解不等式组,并将解集在数轴上表示出来。
5、解不等式组:(1);(2)6、解不等式:(1);(2)7、若关于x的不等式组的解集是,则下列结论正确的是()A、B、C、D、8、若方程组的解是负数,则的取值范围是()A、B、C、D、无解9、若,则x为()A、B、C、或 D、10、已知方程组的解为负数,求m的取值范围。
微专题六 一元一次不等式(组)的解法及其应用
B品牌运动服/件
30
累计采购款/元
10 200
(1)A,B两种品牌运动服的进货单价各是多少元?
解:(1)设 A,B 两种品牌运动服的进货单价分别为 x 元和 y 元.
根据题意,得
+ = ,
= ,
解得
= ,
+ = ,
∴A,B 两种品牌运动服的进货单价分别为 240 元和 180 元.
①有哪几种购买方案?
②若每包儿童口罩8元,每包成人口罩25元,哪种方案总费用最少?
解:(2)①设购买儿童口罩 m 包,则购买成人口罩(5-m)包.
+ (-) ≥ ,
根据题意,得
解得 2≤m≤3.
+ (-) ≤ ,
∵m 为整数,∴m=2 或 m=3.∴共有两种购买方案:
-
解不等式 x-4<
,得 x<2,
则不等式组的解集为-3≤x<2,
∴不等式组的所有负整数解为-3,-2,-1.
一元一次不等式的应用
6.某商城的运动服装专柜,对A,B两种品牌的运动服分两次采购试销后,效益可观,计划继续采购进行
销售.已知这两种服装过去两次的进货情况如表所示:
进货批次
第一次
A品牌运动服/件
故此商场至少需购进6件A种商品.
一元一次不等式组的应用
8.小明网购了一本课外书,同学们想知道书的价格,小明让他们猜.甲说:“至少25元”.乙说:“至多
22元,”丙说:“至多20元,”小明说:“你们三个人都说错了”.则这本书的价格x(元)所在的范围为(
)
B
A.20<x<22
B.22<x<25
一元一次不等式组的应用
一元一次不等式组的应用一元一次不等式组是数学中的重要知识点,也是我们日常生活中经常会遇到的问题。
它可以帮助我们解决许多实际问题,如生活中的购物、物品生产等方面。
下面我们就来具体了解一下一元一次不等式组的应用。
首先,让我们来看一个实际例子。
假设小明去商店买水果,他带了40元钱,他知道苹果和橙子的价格分别是每斤5元和每斤4元。
他想知道自己最多能买多少斤水果,以确保自己不会超出预算。
这个问题可以用一元一次不等式组来解决。
首先,我们设苹果的购买量为x斤,橙子的购买量为y斤。
根据题意,我们可以得到两个不等式:5x + 4y ≤ 40和x ≥ 0,y ≥ 0。
其中,5x + 4y ≤ 40表示所花费的钱不能超过40元,x ≥ 0和y ≥ 0表示水果的购买量必须是非负数。
接下来,我们来解决这个不等式组。
首先我们可以将不等式5x +4y ≤ 40转化为等式5x + 4y = 40。
根据一元一次方程的知识,我们可以求出一组解,即x = 8,y = 0。
这表示小明最多只能买8斤苹果而没有橙子,因为再多买的话就会超出预算了。
这个例子告诉我们,一元一次不等式组可以帮助我们在实际生活中解决预算等问题。
通过设定合理的不等式和约束条件,我们可以得出最理想的解决方案。
除了购物问题,一元一次不等式组还可以应用在许多其他方面。
比如,在物品生产方面,我们可以根据生产成本和销售价格来确定最适宜的生产量,以保证利润最大化。
在时间管理方面,我们可以根据工作时间和休息时间的约束条件,来平衡工作和生活的安排,以达到工作效率的最大化和身心健康的保持。
综上所述,一元一次不等式组是一个非常实用的数学工具,在我们的日常生活中应用广泛。
通过解决实际问题,它可以帮助我们做出理性的决策,提高生活质量和工作效率。
因此,掌握一元一次不等式组的应用是非常有指导意义和实际价值的。
希望大家能够认真学习并灵活运用这一知识点,为自己的生活和工作带来更多的便利和效益。
不等式(组)的应用——方案问题
不等式(组)的应用——方案问题一.解答题(共12小题)1.(2014•舟山)某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?2.(2014•台湾)小佳的老板预计订购5盒巧克力,每盒颗数皆相同,分给工作人员,预定每人分15颗,会剩余80颗,后来因经费不足少订了2盒,于是改成每人分12颗,但最后分到小佳时巧克力不够分,只有小佳拿不到12颗,但她仍分到3颗以上(含3颗).请问所有可能的工作人员人数为何?请完整写出你的解题过程及所有可能的答案.3.(2014•湘潭)某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A、B两种型号的污水处理设备共8台,具体情况如下表:A型B型价格(万元/台) 12 10月污水处理能力(吨/月) 200 160经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1380吨.(1)该企业有几种购买方案?(2)哪种方案更省钱,说明理由.4.(2014•南宁)“保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?5.(2014•福州)现有A,B两种商品,买2件A商品和1件B商品用了90元,买3件A商品和2件B商品用了160元.(1)求A,B两种商品每件各是多少元?(2)如果小亮准备购买A,B两种商品共10件,总费用不超过350元,但不低于300元,问有几种购买方案,哪种方案费用最低?6.(2014•齐齐哈尔)某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料,生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克,经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不超过9900元,且生产B产品不少于38件,问符合生产条件的生产方案有哪几种?(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,使生产这60件产品的成本最低?(成本=材料费+加工费)7.(2014•黄石)某校九(3)班去大冶茗山乡花卉基地参加社会实践活动,该基地有玫瑰花和蓑衣草两种花卉,活动后,小明编制了一道数学题:花卉基地有甲乙两家种植户,种植面积与卖花总收入如下表.(假设不同种植户种植的同种花卉每亩卖花平均收入相等)种植户玫瑰花种植面积(亩)蓑衣草种植面积(亩)卖花总收入(元)甲 5 3 33500乙 3 7 43500(1)试求玫瑰花,蓑衣草每亩卖花的平均收入各是多少?(2)甲、乙种植户计划合租30亩地用来种植玫瑰花和蓑衣草,根据市场调查,要求玫瑰花的种植面积大于蓑衣草的种植面积(两种花的种植面积均为整数亩),花卉基地对种植玫瑰花的种植给予补贴,种植玫瑰花的面积不超过15亩的部分,每亩补贴100元;超过15亩但不超过20亩的部分,每亩补贴200元;超过20亩的部分每亩补贴300元.为了使总收入不低于127500元,则他们有几种种植方案?8.(2014•开封二模)某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:甲乙进价(元/件)15 35售价(元/件)20 45(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.9.(2014•道里区三模)我市为创建全国卫生城市,有关部门计划购买甲、乙两种名贵树苗,栽种在入城大道的两侧,已知买甲种树苗、乙种树苗各1棵共需220元;买甲种树苗3棵,乙种树苗1棵共需420元,资料提示:甲、乙两种树苗的成活率分别为90%和95%.(1)购买两种树苗每棵各需多少元;(2)市相关部门研究决定:购买甲、乙两种树苗共800棵,购买树苗的钱数不得超过86500元,且这批树苗的成活率不低于92%,共有多少种购买方案?(3)直接写出最省钱的购买方案及此时买树苗的费用.10.(2014•昌宁县二模)某商店欲购进甲、乙两种商品,已知购进的甲商品的单价是乙商品的一半,进3件甲商品和1件乙商品恰好用200元,该商店决定用不少于6710元且不超过6810元购进这两种商品共100件.(1)求购进的这两种商品的单价.(2)该商店有哪几种进货方案?11.(2014•牡丹江一模)为响应“大课间”活动,某学校准备购买棒球和篮球共200个,已知棒球每个55元,篮球每个95元,学校计划至少投入资金18200元,但不多于18300元.(1)学校有多少种购买方案;(2)哪种购买方案使学校投入资金最少?(3)当学校按(2)的方案买回200个球在“大课间”投入使用后,学校领导根据实际情况发现还应同时购买足球和大绳若干,来补充“大课间”活动,所以又投入资金2880元,若每个足球80元,每条大绳30元,则在钱全部用尽的情况下有多少种购买方法,请直接写出购买方法的种数.12.(2014•濮阳一模)某中学计划购买A,B两种型号的课桌凳,已知一套A型课桌凳比一套B型课桌凳少40元,且购买5套A型和1套B型共需1000元.(1)购买一套A型课桌凳和一套B型课桌凳各需要多少元?(2)学校根据实际情况计划购买A,B两种型号的共100套,且购买课桌凳的总费用不超过18480元,并且购买A 型课桌凳的数量不能超过B型课桌凳数量的,求该校本次购买A型和B型课桌凳共有几种方案?哪种方案的总费用最低?不等式(组)的应用—-方案问题参考答案与试题解析一.解答题(共12小题)1.(2014•舟山)某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?考点:一元一次不等式组的应用;二元一次方程组的应用.专题:应用题.分析:(1)每辆A型车和B型车的售价分别是x万元、y万元.则等量关系为:1辆A型车和3辆B型车,销售额为96万元,2辆A型车和1辆B型车,销售额为62万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则根据“购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元”得到不等式组.解答:解:(1)每辆A型车和B型车的售价分别是x万元、y万元.则,解得.答:每辆A型车的售价为18万元,每辆B型车的售价为26万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则依题意得,解得2≤a≤3.∵a是正整数,∴a=2或a=3.∴共有两种方案:方案一:购买2辆A型车和4辆B型车;方案二:购买3辆A型车和3辆B型车.点评:本题考查了一元一次不等式组的应用和二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.2.(2014•台湾)小佳的老板预计订购5盒巧克力,每盒颗数皆相同,分给工作人员,预定每人分15颗,会剩余80颗,后来因经费不足少订了2盒,于是改成每人分12颗,但最后分到小佳时巧克力不够分,只有小佳拿不到12颗,但她仍分到3颗以上(含3颗).请问所有可能的工作人员人数为何?请完整写出你的解题过程及所有可能的答案.考点:一元一次不等式组的应用.分析:设该公司的工作人员为x人.则每盒巧克力的颗数是,根据不等关系:每人分12颗,但最后分到小佳时巧克力不够分,只有小佳拿不到12颗,但她仍分到3颗以上(含3颗),列不等式组.解答:解:设该公司的工作人员为x人.则,解得16<x≤19.因为x是整数,所以x=17,18,19.答:所有可能的工作人员人数是17人、18人、19人.点评:本题考查了一元一次不等式组的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.3.(2014•湘潭)某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A、B两种型号的污水处理设备共8台,具体情况如下表:A型B型价格(万元/台)12 10月污水处理能力(吨/月)200 160经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1380吨.(1)该企业有几种购买方案?(2)哪种方案更省钱,说明理由.考点:一元一次不等式组的应用.专题:应用题.分析:(1)设购买污水处理设备A型号x台,则购买B型号(8﹣x)台,根据企业最多支出89万元购买设备,要求月处理污水能力不低于1380吨,列出不等式组,然后找出最合适的方案即可.(2)计算出每一方案的花费,通过比较即可得到答案.解答:解:设购买污水处理设备A型号x台,则购买B型号(8﹣x)台,根据题意,得,解这个不等式组,得:2。
第21讲 一元一次不等式(组)的应用
第21讲 一元一次不等式(组)的应用教学目的1.进一步巩固一元一次不等式和一元一次不等式组的解法及它们的解集的意义,并会简单运用•2.会列不等式或不等式组解决一些典型的实际问题•典题精析【例1】当x 取何有理数时,代数式3221--x 的值不大于1? 【解法指导】从题目中找出不等关系来,并依此列出不等式,解此不等式即可求出本题所求“不大于”,即是小于或等于,类似的还有“不超过”、“不多于”、“顶多为”,另外,“不少于”、“不低于”、“至少为”等,即为“大于或等于”•解:依题意得12123x --≤ 去分母,得 3-2(x -2)≤6 去括号,得 3-2x +4≤6 合并同类项,得 -2x≤6-3-4 即 -2x≤-1 系数化为1,得 12x ≥ ∴ 当x 取值不小于12时,3221--x 的值不大于1• 变式练习01.如果2(1)3x --的值是非正数,则x 的取值范围是( ) A .x≤-1 B .x≥-1 C .x≥1 D .x≤102.当x 取何值时,代数式2x -5的值:⑴大于0? ⑵等于0? ⑶不大于-3?03.若代数式1132x x +--的值不小于16x -的值,求正整数x 的值• 【例2】(乐山)某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x 元;下午他又买了20斤,价格为每斤y 元•他以每斤2x y +元的价格卖完后,结果发现自己赔了钱,其原因是( ) A .x <y B .x >y C .x≤y D .x≥y【解法指导】若要比较两个有理数a 和b 的大小,有一种方法就是判断a -b 的值的正负:若a -b =0,则a =b ;若a -b <0,则a <b ,反之亦然•用这种方法比较两数大小,称之为作差比较法•本题实质就是比较30x +20y 与502x y +⋅的大小的问题,所谓“赔了钱”,就是进价3020502x y x y ++<⋅,也就是30205002x y x y ++-⋅<变形可得x >y ,故选B• 变式练习01.如果2213x x --比23-大,则x 的取值范围是( ) A .x >1 B .x <1 C .x≤1 D .x≠102.试比较两个代数式322x x x +-与31x -的大小•03.若代数式2321x x -+比231x x +-大,求x 的取值范围•【例3】某校餐厅计划购买12张餐桌和一批餐椅,从甲、乙两商场了解到统一餐桌每张均为200元,餐椅报价每把均为50元•甲商场称:每购买一张餐桌赠餐椅;乙商场称:所有的餐桌、餐椅均按报价的八五折销售,那么什么情况下到甲商场购买更优惠?什么情况下到乙商场购买更优惠?【解法指导】餐椅的购买数量是个变量,到哪个商场购买更优惠,取决于餐椅的数量多少•把餐椅数量设为x 把,到甲、乙两商场购买所需费用分别设为y 甲、y 乙,它们分别用含x 的式子表示,再比较y 甲、y 乙的大小即可,在求y 甲是,应注意x 减去12后,在乘以50,即y 甲=200×12+50(x -12);同理y 乙=(200×12+50x)×85%•解:设学校计划购买x 把餐椅,到甲、乙两商场购买所需费用分别为y 甲元、y 乙元•根据题意,得:y 甲=200×12+50(x -12),即y 甲=1800+50x ,y 乙=(200×12+50x)×85%,即8520402y x =+乙•①当y 甲<y 乙时,8518005020402x x +<+,解这个不等式,得x <32•即当购买的餐椅少于32把时,到甲商场购买更优惠•②当y 甲>y 乙时,8518005020402x x +>+, 解这个不等式,得x >32•即当购买的餐椅多于32把时,到乙商场购买更优惠 ③当y 甲=y 乙时,8518005020402x x +=+,解这个不等式,得x =32• 即当购买的餐椅等于32把时,到两家商场购买均可•变式练习01.某电信公司对电话缴费采取两种方式,一种是每月缴纳月租费15元,每通话1分钟0.20元;另一种是不交月租费,但每通话1分钟收话费0.30元•请问,用那种缴费方式比较合适?02.某单位计划在新年期间组织员工到某地旅游,参加旅游的人数估计为10~25人,甲、乙两家旅行社的服务质量相同,且报价都是每人200元•经协商,甲旅行社表示可以给予每位游客七五折优惠;乙旅行社表示可以免去一位游客的旅游费用,其余游客八折优惠,该单位选择哪一家旅行社支付的旅游费用较少? 03.(潍坊)某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱•供应这种纸箱有两种方案可供选择:方案一:从纸箱厂定制购买,每个纸箱价格为4元;方案二:由蔬菜加工厂朱琳机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取,工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需要成本费2.4元•⑴若需要这种规格的纸箱x 个,请用含x 的代数式表示购买纸箱的费用y 1(元)和蔬菜加工厂自己加工制作纸箱的费用y 2(元);⑵假设你是决策者,你认为应该选择哪种方案?并说明理由•【例4】(潍坊)为了美化校园环境,建设绿色校园,某学校准备对校园中30亩空地进行绿化•绿化采用种植草皮与种植树木两种方式,要求种植草皮与种植树木的面积都不少于10亩,并且种植草皮面积不少于种植树木面积的32,则种植草皮的最小面积是多少? 【解法指导】应用题中,要充分挖掘题目中所蕴含的不等关系,一个也不能遗漏,否则就会出错•注意到题中表示不等关系的关键词语“不少于”,这是列不等式的依据•显然,本题中有三个不等式关系:①种植草皮与种植树木的面积都不少于10亩;②种植草皮面积不少于种植树木面积的32,根据这三个不等关系可以求出种植草皮的面积的范围解:设种植草皮的面积为x 亩,则种植树木的面积为(30-x)亩,则有1030103(30)2xxxx-⎧⎪⎪⎨⎪⎪-⎩≥≥≥,解得18≤x≤20•故x的最小值为18答:种植草皮的最小面积为18亩•变式练习01.2007年某厂制定某种产品的年度生产计划,现有如下数据供参考:⑴生产此产品的现有工人为400人;⑵每名工人的年工时约计2200小时;⑶预测2008年的销售量在10万箱到17万箱之间;⑷每箱需用工4小时,需用料10千克;⑸目前村料1000吨,2007年还需用料1400吨,到2007年底可补充原料2000吨•试根据以上数据确定2008年可能生产的产量,并根据产量确定工人人数•02.某公司在下一年度计划生产出一种新型环保冰箱,下面是公司各部门提出的数据信息;人事部:明年生产工人不多于80人,每人每年工作时间2400h计算;营销部:预测明年年销量至少为10000台;技术部:生产1台电冰箱平均用12个工时,每台机器需要安装5个某种主要部件;供应部:今年年终库存主要部件1000件,明年能采购到这种主要部件80000件•根据上述信息,下一年度生产新型冰箱数量应该在什么范围内?【例5】“六一”儿童节前夕,某消防官兵了解到汶川地震灾区一帐篷小学的小朋友喜欢奥运福娃,就特意购买了一些送给这个小学的小朋友作为节日礼物•如果每班分10套,那么余5套;如果前面的班级每个班分13套,那么最后一个班虽然分得有福娃,但不足4套•问:该小学有多少个班级?奥运福娃共有多少套?【解法指导】抓住题中的关键词“虽然分有福娃,但不足4套”来建立不等式组,这是本题的关键所在•解:设该小学有x个班,则奥运福娃共有(10x+5)套,根据题意,得10513(1)410513(1)x xx x+<-+⎧⎨+>-⎩①②解①得x>143,解②得x<6•因为x只能取正整数,所以x=5,此时10x+5=55答:该小学有5个班级,奥运福娃共有55套•变式练习01.幼儿园有玩具若干份,分给小朋友,如果每个小朋友分3件,难么还剩59件;如果每个小朋友分5件,那么最后一个小朋友还少几件,这个幼儿园有多少玩具?有多少个小朋友?02.某校为了奖励在数学竞赛中获奖的学生,买了若干本课外读物准备送给他们•若每名学生送3本,则还余8本;若前面每名学生送5本,则最后一名学生得到的课外读物不足3本•设该校买了m本课外读物,有x名学生获奖,请你解答下列问题•⑴用含x的代数式表示m;⑵求出该校的获奖人数及所买的课外读物的本数•【例6】某工厂现有甲种原料360千克,乙种原料290千克,现计划用这两种原料生产A、B两种产品共50件,已知生产一件A产品需要甲种原料9千克,乙种原料3千克;生产一件B产品,需要甲种原料4千克,乙种原料10千克,则工厂安排A、B两种产品的生产件数,有哪几种方案?请你设计出来•【解法指导】此为典型的材料供应类设计方案的应用题,题中的不等关系不很明显,但经过认真分析,结合生活实际仍可挖掘出题中所蕴含的不等关系,即生产所使用的甲种原料总量不得超过360千克,乙原料总量不得超过290千克,据此可以列出两个一元一次不等式,从而组成一元一次不等式组•此类题的不等关系不十分显眼,发掘不等关系是解决此类题之关键所在•解:设安排生产A 种产品x 件,则生产B 种产品(50-x)件•根据题意,得36029094(50)310(50)x x x x +-⎧⎨+-⎩≤≤,解这个不等式组,得30≤x≤32• 因为x 需要取整数,所以x 可以取30、31、32,对应50-x 应取20、19、18•故可设计三种方案:A 种产品30件,B 种产品20件;A 种产品31件,B 种产品19件;A 种产品32件,B 种产品18件•变式练习01.近期以来,大蒜和绿豆的市场价格离奇攀升,网民戏称“蒜你狠”、“豆你玩”•以绿豆为例,5月上旬某市绿豆的市场价已达16元/千克•市政府决定采取价格临时干预措施,调进绿豆以平抑市场价格•经市场调研预测,该市每调进100吨绿豆,市场价格就下降1元/千克•为了既能平抑绿豆的市场价格,又要保护豆农的生产积极性,绿豆的市场价格控制在8元/千克到10元/千克之间(含8元/千克和10元/千克)•问调进绿豆的吨数应在什么范围内为宜?02.(深圳)迎接亚运,美化深圳,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A 、B 两种园艺找些共50个摆放在迎宾大道两侧•已知搭配一个A 种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B 种造型需甲种花卉50盆,乙种花卉90盆•⑴某校九年级⑴班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来;⑵若搭配一个A 种造型的成本是800元,搭配一个B 种造型的成本是960元,试说明⑴中哪种发案成本最低?最低成本是多少元?03.某校初三年级春游,现有36座和42座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;已知36座客车每辆租金400元,42座客车每辆租金440元.⑴该校初三年级共有多少人参加春游?⑵请你帮该校设计一种最省钱...的租车方案• 【例7】如果关于x 的不等式组0607x n x m -<-⎧⎨⎩≥的整数解仅为1,2,3,那么适合这个不等式组的整数对(m ,n)共有( )对A .49B .42C .36D .13【解法指导】本题属于“由不等式的解集中包含的整数解来确定字母系数的值”这类题,此类题首先根据不等式组的解集包含哪些整数来确定每个边界点的范围,据此求出符合条件的字母系数的值• 解:由此不等式组得到其解集是76x m n <≤ ∵此解集中仅含有整数1,2,3• ∴107m <≤,即70m <≤,且436n <≤ 即2418n <≤ 故m =1,2,3,4,5,6,7,n =19,20,21,22,23,24故符合此不等式组的整数对(m ,n)共有6×7=42对,即本题选B变式练习01.已知:关于x 的不等式组302x a b x -≥⎧⎪⎨<⎪⎩的整数杰有且仅有4个:-1,0,1,2,那么适合这个不等式组的所有可能的整数对(a ,b)共有多少个?巩固提高01.用不等式表示:⑴x与2的和小于5________________;⑵a与b的差是非负数_________________•02.若x<y,则x-y______y-2;5-x_______5-y;a2x_______a2y;-x3_____-y5;x(a2+1)______ y(a2+1)03.不等式组12305xx+>-⎧⎨⎩≤的解集是___________,其整数解是__________.04.关于x的不等式组320x ax->⎧⎨->⎩的整数解共有6个,则a的取值范围是.05.已知:三角形的两边为3和4,则第三边a的取值范围是_________________.06.若不等式(a-5)x>1的解集是x>1a-5,则a的取值范围是__________________.07.如果不等式组737x xx n+<-⎧⎨>⎩的解集是x>7,则n的取值范围是()A.n≥7B.n≤ C.n=7 D.n<708.若abcd>0,a+b+c+d>0,则a、b、c、d中负数的个数至少有()A.1个B.2个C.3个D.4个09.如果2(1)3x--是非正数,则x的取值范围是()A.x≤1B.x≥1C.x≥1 D.x≤110.已知:关于x的不等式组152x ax->-⎧⎨⎩≥无解,则a的取值范围是()A.a>3 B.a≥3C.0<a<3 D.a≤311.甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超过300元之后,超出部分按原价8折优惠;在乙超市累计购买商品超过200元后,超出部分按原价8.5折优惠,设顾客预计累计购物x元(x>300).⑴请用含x的代数式分别表示顾客在两家超市购物所需费用;⑵试比较顾客到哪家超市购物更优惠?说明你的理由.12.七⑵班共有50名学生,老师安排每人制作一件A型或B型的陶艺品,学校现有甲种制作材料36kg,乙种制作材料29kg,制作A、B两种型号的陶艺品用料情况如下表:⑴设制作B型陶艺品x件,求x的取值范围;⑵请你根据学校现有的材料分别写出七⑵班制作A型和B型陶艺品的件数•13.某校准备组织290名学生进行野外考察活动,行李共有100件,学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李•⑴设租用甲种汽车x辆,请你帮助学校设计所有可能的租车方案;⑵如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,那么请你帮助选择哪一种租车方案更节省费用•14.响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超过132000元•已知甲、乙、丙三种电冰箱的出厂价格分别为1200元/台、1600元/台、2000元/台•⑴至少购进乙种电冰箱多少台?⑵若要求甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?15.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆•经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李•⑴请你帮助学校设计所有可行的租车方案;⑵如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省•培优升级检测01.如果不等式组809x bx a-<-⎧⎨⎩≥的整数解仅为1,2,3,那么适合这三个不等式组的整数a、b的有序数对(a,b)共有()对•A.17 B.64 C.72 D.8102.设a、b、c的平均数为M,a与b的平均数为N,N与C的平均数为P,若a>b>c,则M与P的大小关系是()A.M=P B.M>P C.M<P D.不确定的03.a1、a2、…、a2004都是正数,如果M=(a1+a2+…+a2003)(a2+a2+…+a2004),N=(a1+a2+…+a2004)( a-2+a2+…+a2003),那么M、N的大小关系是()A.M>N B.M=N C.MN D.不确定的04.设23ama+=+,12ana+=+,1apa=+,若a<-3,则()A.m<n<p B.n<p<m C.p<n<m D.p<m<n05.已知:a、b、c、d都是整数,且a<2b,b<3c,c<4d,d<50,那么a的最大值是()A.1157 B.1167 C.1191 D.119906.已知关于x的不等式组4132x xx a+⎧>+⎪⎨⎪+<⎩的解集为x<2,那么a的取值范围是________________•07.正六边形轨道ABCDEF的周长为7.2米,甲、乙两只机器鼠分别冲A、C两点同时出发,均按A→B→C→D→E→F→A→…方向沿轨道奔跑,甲的速度为9.2厘米/秒,乙的速度为8厘米/秒,那么出发后经过_______秒钟时,甲、乙两只机器鼠第一次出现在同一条边上.08.为了保护环境,某企业决定购买10台污水处理设备•现有A、B两种型号的设备,其中每台的价格、月处理污水及年消耗费如下表.经计算,该企业购买设备的资金不高于105万元,请你设计,该企业购买方案有_______种.09.大、中、小三个正整数,大数与中数之和等于2003,中数减小数之差等于1000,那么这三个正整数的和为_____________.10.已知不等式ax+3≥0的正整数解为1,2,3,则a的取值范围是______•11.小慧上宝塔观光,他发现:若上了7阶楼梯时,剩下的楼阶梯数是已上的阶数的3倍多,若再多上15阶楼梯时,已上阶数是剩下的楼梯阶数的3倍多,那么,此宝塔的楼梯一共有多少阶•12.若正整数x<y<z,k为整数,且111kx y z++=,试求x、y、z的值•13.已知:a1+2a3≥3a2,a2+2a4≥3a3,a3+2a5≥3a4,…,a8+2a10≥3a9,a9+2a1≥3a10,a10+2a2≥3a1,且有a1+a2+a3+…+a10=100,求a1,a2,a3,…,a9,a10的值•。
(完整版)《一元一次不等式组的应用》典型例题
《一元一次不等式组的应用》典型例题例题1车站有待运的甲种货物1530吨,乙种货物1150吨,原计划用50节BA,两种型号的车厢将这批货物运至北京,已知每节A型货箱的运费为0.5万元,每节B型货箱的运费为0.8万元,甲种货物35吨和乙种货物15吨可装满一节A型货箱,甲种货物25吨和乙种货物35吨可装满一节B型货箱,按此要求安排BA,两种货箱的节数,共有哪几种方案?请你设计出来,并说明哪种方案的运费最少?例题2幼儿园大班分苹果,若每人分3个,则余8个,若前面每人分5个,则最后一个小朋友得到的苹果数不足3个,求有多少个小朋友和多少个苹果?例题3某班需要买一些笔记本和钢笔以表扬在数学竞赛中获奖的10名学生,已知笔记本的单价是3.5元,钢笔的单价是8元,且购买奖品的金额不超过70元.问至多能买几支钢笔?例题4某宾馆底楼客房比二楼少5间,某旅游团有48人,若全安排在底楼,每间4人,房间不够,每间5人,有房间没有住满,又若安排住二楼,每间3人,房间不够,每间4人,又有房间没有住满,问宾馆底楼有客房几间?例题5幼儿园有玩具若干件,分给小朋友,如果每人3件,那么还余59件,如果每人分5件,那么最后一个小朋友少几件,来这个幼儿园有多少玩具?多少个小朋友?例题6某工厂现有甲种原料360kg,乙种原料290kg,计划利用这两种原料生产A、B两种产品共50件.已知生产一件A种产品需甲种原料9kg、乙种原料3kg;生产一件B种产品需甲种原料4kg、乙种原料10kg.(1)设生产x件A种产品,写出x应满足的不等式组;(2)如果x是整数,有哪几种符合题意的生产方案?请你帮助设计.例题7一条铁路线上E,,A,,各站之间的路程如图所示,单位为千米.一BDC列火车7:30从A站开出,向E站行驶,行驶速度为80km/h,每站停车时间约4min,问这列火车何时行驶在D站与E站之间(不包括D站、E站)的铁路线上.例题8某自行车厂今年生产销售一种新自行车,现向你提供以下有关信息:(1)该厂去年已备有这种自行车的车轮10000只,车轮车间今年平均每月可生产车轮1500只,每辆自行车需装配2只轮;(2)该厂装配车间(自行车生产最后一道工序的生产车间)每月至少可装配这种自行车1000辆,但不超过1200辆;(3)今年该厂已收到各地客户订购这种自行车共14500辆的订货单;(4)这种自行车出厂销售单价为500元/辆.设该厂今年这种自行车的销售金额为a万元,请你根据上述信息,判断a的取值范围.例题9某园林的门票每张10元,一次使用.考虑人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种购买个人年票的售票方法(个人年票从购买日起,可供持票者使用一年).年票分C,三类:A,BA类年票每张120元,持票者进入园林时,无需再买门票;B类年票每张60元,持票者进入该园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需再购买门票,每次3元.(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出进入该园林的次数最多的购票方式.(2)求一年中进入该园林至少超过多少次时,购买A在年票比较合算.例题10有两个学生参加四次测验,他们的平均分数不同,但都是低于90分的整数.他们又参加了第五次测验,测验后他们的平均成绩都提高到90分.问在第五次测验时,这两个学生的分数各是多少?(满分100分,得分都是整数)例题11大小盒子共装球99个,每个大盒装12个,小盒装5个,恰好装完,盒子个数大于10,问:大小盒子各多少个?参考答案例题1 分析 这是一道方案设计优化问题,要将货物运至北京,车厢的总装载重量必须大于或等于货物的总量,由此可列不等式。
一元一次不等式组及应用教案
3、某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.
(1)降价前,甲乙两种药品每盒的出厂价格之和为6.6元.经过若干中间环节,甲种药品每盒的零售价格比出厂价格的5倍少2.2元,乙种药品每盒的零售价格是出厂价格的6倍,两种药品每盒的零售价格之和为33.8元.那么降价前甲、乙两种药品每盒的零售价格分别是多少元?
(2)降价后,某药品经销商将上述的甲、乙两种药品分别以每盒8元和5元的价格销售给医院,医院根据实际情况决定:对甲种药品每盒加价15%、对乙种药品每盒加价10%后零售给患者.实际进药时,这两种药品均以每10盒为1箱进行包装.近期该医院准备从经销商处购进甲乙两种药品共100箱,其中乙种药品不少于40箱,销售这批药品的总利润不低于900元.请问购进时有哪几种搭配方案?
⑴请直接写出y与x之间的函数关系式及自变量x的取值范围;
⑵若要使总耗资不超过15万元,有哪几种调运方案?
⑶怎样设计调运方案能使总耗资最少?最少耗资是多少万元?
课
后
作
业
1、20XX年8月,北京奥运会帆船比赛在青岛国际帆船中心举行,观看帆船比赛的船票分为两种:A种船票600/张,B种船票120/张.某旅行社要为一个旅行团代购部分船票,在购票费不超过5000元的情况下,购买A,B两种船票共15张,要求A种船票的数量不少于B种船票数量的一半,若设购买A种船票x张,请你解答下列问题:
⑴请你帮助学校设计所有可行的租车方案;
⑵如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?
华东师大版七年级下册数学:8.3一元一次不等式(组)的应用学案(2)(无答案)
一元一次不等式(组)的应用(2)一、学习目标:1、会分析应用题中各个量之间的关系。
2、会根据题意列出不等式组,并进行解答。
二、重点:会根据题意列出不等式组三、学习和探究:例题1:在保护地球爱护家园活动中,校团委把一批树苗分给初三(1)班同学去栽树种,如果每人分2棵,还剩42棵;如果前面每人分3棵,那么最后一人得道的树苗少于5棵(但至少分得一棵)。
(1)设初三(1)班有x名同学,则这批树苗有多少棵?(用含x的代数式表示)。
(2)初三(1)至少有多少名同学?最多有多少名?解:(1)(2)不等关系:变式:1、幼儿园把新购进的一批玩具分给小朋友,若每人3件,那么还剩59件,若每人5件,那么最后一个小朋友分到玩具,但不足4件。
这批玩具共有多少件?2、某校为了奖励在数学竞赛中获奖的学生,买了若干本课外读物准备送给他们。
如果每人送3本,则还余8本;如果前面每人送5本,则最后一人得到的课外读物不足3本。
设该校买了m x x本课外读物,有名学生获奖。
请解答下列问题:(1)用含的代数式表示m;(2)求出该校的获奖人数及所买课外读物的本数。
3、见教材53页练习第4题。
种产品共80件,生产一件A产品需要甲种原料5千克,乙种原料1.5千克,生产成本是120元,生产一件B产品,需要甲种原料2.5千克,乙种原料3.5千克,生产成本为200元。
(1)该化工厂现有的原料能否保证生产,若能的话,有几种生产方案,请设计出来。
(2)设生产A、B两种产品的总成本为y元,其中一种的件数为x,试用含x的代数式表示y,并说明(1)中哪种生产方案总成本最低,最低成本为多少?解:(1)不等关系:、(2)变式:1、某县为筹备20周年县庆,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A、B两种园艺造型50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需要甲种花卉50盆、乙种花卉90盆。
一元一次不等式教案(9篇)
一元一次不等式教案(9篇)我为你精心整理了9篇《一元一次不等式教案》的范文,但愿对你的工作学习带来帮助,希望你能喜欢!当然你还可以在搜索到更多与《一元一次不等式教案》相关的范文。
篇1:一元一次不等式教案实际问题与一元一次不等式教案教学目标1、会从实际问题中抽象出数学模型,会用一元一次不等式解决实际问题;2、通过观察、实践、讨论等活动,经历从实际中抽象出数学模型的过程,积累利用一元一次不等式解决实际问题的经验,渗透分类讨论思想,感知方程与不等式的内在联系;3、在积极参与数学学习活动的过程中,初步认识一元一次不等式的应用价值,形成实事求是的态度和独立思考的习惯。
教学难点弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式。
知识重点寻找实际问题中的不等关系,建立数学模型。
教学过程(师生活动)设计理念提出问题某学校计划购实若干台电脑,现从两家商店了解到同一型号的电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原报价收款,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.如果你是校长,你该怎么考虑,如何选择?(多媒体展示商场购物情景)通过买电脑这个学生非常熟悉的生活实例,引起学生浓厚的学习兴趣,感受到数学来源于生活,生活中更需要数学。
探究新知1、分组活动.先独立思考,理解题意.再组内交流,发表自己的观点.最后小组汇报,派代表论述理由.2、在学生充分发表意见的基础上,师生共同归纳出以下三种采购方案:(1)什么情况下,到甲商场购买更优惠?(2)什么情况下,到乙商场购买更优惠?(3)什么情况下,两个商场收费相同?3、我们先来考虑方案:设购买x台电脑,如果到甲商场购买更优惠.问题1:如何列不等式?问题2:如何解这个不等式?在学生充分讨论的基础上,教师归纳并板书如下:解:设购买x 台电脑,如果到甲商场购买更优惠,则6000+6000(1-25%)(x-1)<6000(1-20%)x去括号,得去括号,得:6000+4500x-45004<4800x移项且合并,得:-300x<1500不等式两边同除以-300,得:x<5答:购买5台以上电脑时,甲商场更优惠.4、让学生自己完成方案(2)与方案(3),并汇报完成情况.教师最后作适当点评.鼓励学生大胆猜想,对研究的问题发表见解,进行探索、合作与交流,涌现出多样化的解题思路.教师及时予以引导、归纳和总结,让学生感知不等式的建模。
一元一次不等式组教案6篇
一元一次不等式组教案6篇(实用版)编制人:__审核人:__审批人:__编制单位:__编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!一元一次不等式组教案6篇通过教案的内容是可以看出教师的教学能力的,教案是教师与学生和家长进行有效的沟通和交流,共同关注学生的学习进展,本店铺今天就为您带来了一元一次不等式组教案6篇,相信一定会对你有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次不等式组的应用(2)
1.某水果经销商收购苹果20吨,梨12吨,现计划租用甲、乙两种货车共8辆将它们全部运出,已知一辆甲种货车可装苹果4吨和梨1吨,一辆乙种货车可装苹果和梨各2吨.(1)经销商如何安排甲、乙两种货可一次性地将水果全部运出,有几种方案?
(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则经销商选择哪种方案才能使运输费用最少?最少是多少?
2.某城市平均每天需处理垃圾700吨,有甲和乙两个处理厂处理,已知甲每小时可处理垃圾55吨,需要费用550元,乙厂每小时可处理垃圾45吨,需要费用495元。
如果规定该城市每天用于处理垃圾的费用不得超过7370元,甲厂每天处理垃圾至少要多少小时?
3.某厂用甲、乙两种原料配制成某种饮料,已知这两种原料中的维生素C含量及每千克原料的价格如下表所示:
现配制这种饮料10kg,要求至少含有4200单位的维生素C,并要求购买甲、乙两种原料的费用不超过72元,请根据以上条件解答下列问题:
(1)设需用xkg甲种原料,写出x所满足的不等式组;
(2)若按上述条件购买甲种原料的质量为整kg数,有几种购买方案,请写出购买方案.
4.某校准备组织290名学生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.
(1)设租用甲种汽车x辆,请你帮助学校设计所有可能的租车方案;
(2)如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,请你选择最省钱的一种租车方案.
5.某县筹备20周年县庆,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A、B两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级一班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.
(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)问中哪种方案成本最低?最低成本是多少元?
6.某商场经销甲、乙两种商品,甲商品每件进价15元,售价20元.乙商品每件进价35元,售价45元.
(1)若该商场同时购进甲、乙两种商品共100件,恰好用去2700元,求能购进甲、乙两种商品各多少件?
(2)该商场为使甲、乙两种商品共100件的利润不少于750元,且不超过760元,请你帮助该商场设计相应的进货方案.。