苏科版-数学-八年级上册-《函数》典型例题1
苏科版-数学-八年级上册-5.4一次函数的应用 同步练习(含答案)

4025x/小时0 3图5.4-4x图5.4-21300800图5.4-3 5.4一次函数的应用你乘坐过飞机吗?你知道航空公司对旅客所携带的行李是如何收费的吗?事实上,航空公司公司托运行李的费用与托运行李的重量之间也是一次函数关系,如图5.4-1是某航空公司托运行李的费用与托运行李的重量之间的关系图。
小明想乘坐这家航空公司的飞机去旅行,你能帮他算一下他最多可以免费携带多少千克的行李吗?解答:根据图象容易求出y 与x 之间的关系式为30600y x =-,要想免费携带行李,就是要使托运费为0,即0y =,此时20x =,也就是说小明最多可以免费携带20千克的行李.一、选择题1、一根弹簧的原长为12 cm ,它能挂的重量不能超过15 kg 并且每挂重1kg 就伸长12 cm ,写出挂重后的弹簧长度y (cm )与挂重x (kg )之间的函数关系式是( ) A 、y = 12 x + 12(0<x≤15) B 、y = 12 x + 12(0≤x <15)C 、y = 12 x + 12(0≤x≤15)D 、y = 12x + 12(0<x <15)2、如图5.4-2,是甲、乙两家商店销售同一种产品的销售价y (元)与销售量x (件)之间的函数图象.下列说法:①售2件时甲、乙两家售价一样;②买1件时买乙家的合算;③买3件时买甲家的合算;④买乙家的1件售价约为3元,其中正确的说法是( ) A .①② B .②③④ C .②③ D .①②③3、某公司市场营销人员的个人月收入与其月销售量成一次函数关系,其图象如图5.4-3所示,由图中所给的信息可知,营销人员没有销售量时的月收入是( ) A 、310元 B 、300元 C 、290元 D 、280元x/千克9006000 40 50图5.4-1二、填空题4、如图5.4-4,汽车油箱的余油量与行驶的时间的关系为一次函数,由图可知,汽车行驶的最长时间为_____.5、某食品厂向A 市销售面包,如果从铁路托运,每千克需运费0.58元;如果从公路托运,每千克需运费0.28元,另需出差补助600元。
八年级数学苏科版上册课时练第6单元《 6.3 一次函数的图像》(含答案解析)(2)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!课时练6.3一次函数的性质一、选择题1.当k>0时,正比例函数y=kx的图象大致是()A. B. C. D.2.已知正比例函数y=(m-1)x,若y随x增大而增大,则点(m,1-m)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,在矩形AOBC中,A(–2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为()A.–0.5B.0.5C.–2D.24.下列关于正比例函数y=-5x的说法中,正确的是()A.当x=1时,y=5B.它的图象是一条经过原点的直线C.y随x的增大而增大D.它的图象经过第一、三象限5.已知正比例函数y=kx(k≠0),函数值随x的增大而增大,则一次函数y=﹣kx+k的图象大致是()A. B. C. D.6.函数y=﹣2x+3的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限7.函数y=(m+1)x﹣(4m﹣3)的图象在第一、二、四象限,那么m的取值范围是()A.m<0.75B.-1<m<0.75C.m<﹣1D.m>﹣18.在平面直角坐标系中,若直线y=kx+b经过第一、三、四象限,则直线y=bx+k不经过...的象限是()A.第一象限B.第二象限C.第三象限D.第四象限9.某复印店复印收费y(元)与复印面数x(面)的函数图象如图所示,从图象中可以看出,复印超过100面的部分,每面收费()A.0.2元B.0.4元C.0.45元D.0.5元10.如图,点A的坐标为(﹣2,0),点B在直线y=x上运动,当线段AB最短时点B的坐标为()A.(0,0)B.(﹣1,﹣1)C.(,﹣)D.(﹣,﹣)二、填空题11.函数y=-7x的图象在第象限内,经过点(1,),y随x的增大而.12.正比例函数y=(m﹣2)x m的图象的经过第象限,y随着x的增大而.13.如果一次函数y=(m﹣2)x+m的函数值y随x的值增大而增大,那么m的取值范围是.14.函数y=﹣x+1的图象不经过第象限.15.已知点A(0,m)和点B(1,n)都在函数y=﹣3x+b的图象上,则m n.(在横线上填“>”、“<”或“=”)16.已知一次函数y=2x﹣b与两个坐标轴围成的三角形面积为9,则b=.三、解答题17.已知正比例函数图象上一个点A到x轴的距离为4,点A的横坐标为-2,请回答下列问题:(1)求这个正比例函数;(2)这个正比例函数图象经过哪几个象限?(3)这个正比例函数的函数值y是随着x的增大而增大?还是随着x的增大而减小?18.如图,已知四边形ABCD是正方形,点B,C分别在直线y=2x和y=kx上,点A,D是x轴上两点.(1)若此正方形边长为2,k=_______.(2)若此正方形边长为a,k的值是否会发生变化?若不会发生变化,请说明理由;若会发生变化,求出a的值.19.如图,在直角坐标系中,直线y=kx+4与x轴正半轴交于一点A,与y轴交于点B,已知△OAB的面积为10,求这条直线的解析式.20.已知一次函数y=﹣2x﹣2.(1)根据关系式画出函数的图象.(2)求出图象与x轴、y轴的交点A、B的坐标.(3)求A、B两点间的距离.(4)求出△AOB的面积.(5)y的值随x值的增大怎样变化?参考答案1.A2.D3.A4.B5.A6.B.7.C8.C9.B.10.B11.答案为:二、四;7;减小;12.答案为:二、四,减小;13.答案为:m>2;14.答案为:三.15.答案为:>.16.答案是:±6;17.解:(1)∵正比例函数图象上一个点A到x轴的距离为4,点A的横坐标为-2,∴点A的坐标为(-2,4)或(-2,-4).设这个正比例函数为y=kx,则4=-2k或-4=-2k,解得k=-2或k=2,故正比例函数为y=2x或y=-2x.(2)当y=2x时,图象经过第一、三象限;当y=-2x时,图象经过第二、四象限.(3)当y=2x时,函数值y是随着x的增大而增大;当y=-2x时,函数值y是随着x的增大而减小.18.解:(1)2/3∵正方形边长为2,∴AB=2.在直线y=2x中,当y=2时,x=1∴OA=1,OD=1+2=3∴C(3,2),将C(3,2)代入y=kx中,得2=3k,解得k=2/3.(2)k的值不会发生变化理由:∵正方形边长为a∴AB=a,在直线y=2x中,当y=a时,x=0.5a,∴OA=0.5a,OD=1.5a∴C(1.5a,a).将C(1.5a,a)代入y=kx中,得a=k×1.5a,解得k=2/3,∴k值不会发生变化.19.解:当y=0时,kx+4=0,解得x=﹣,则A(﹣,0),当x=0时,y=kx+4=4,则B(0,4),因为△OAB的面积为10,所以•(﹣)•4=10,解得k=﹣,所以直线解析式为y=﹣x+4.20.解:(1)如图:;(2)当y=0时,﹣2x﹣2=0,解得x=﹣1,即A(﹣1,0);当x=0时,y=﹣2,即B(0,﹣2);(3)由勾股定理得AB==;=×1×2=1;(4)S△AOB(5)由一次函数y=﹣2x﹣2的系数k=﹣2<0可知:y随着x的增大而减小.。
八年级数学上册第6章一次函数6-1函数第2课时函数的表示方法习题课件新版苏科版

x (s)之间的关系式,并写出 x 的取值范围.
1
2
3
4
5
6
7
8
9
10
11
12
解:由(1)可知点 P 运动的速度为
=2(cm/s),∴易得
GF = DE =2×(22-20)=4(cm),∴从点 A 到点 H 的
路程为20+10+20+4+4=58(cm),∴运动时间 x 的
范围为0≤ x ≤
式: y =2 x +20 .
所挂物体的质量x/kg
0
1
2
3
4
5
弹簧长度y/cm
20
22
24
26
28
30
1
2
3
4
5
6
7
8
9
10
11
12
7. 为了解某品牌轿车的耗油情况,将油箱加满后进行了耗油
试验,得到下表数据.
轿车行驶的路程s/km
0
100 200 300 400
…
油箱剩余油量Q/L
50
42
…
(1)该轿车油箱的容量为
解:(2)由题图可知,“加速期”结束时,小斌的速
度为10.4 m/s.
1
2
3
4
5
6
7
8
9
10
11
12
(3)根据如图提供的信息,给小斌提一条训练建议.
解:(3)由题图可知,小斌在80
米左右时速度下降明显,建议增
加耐力训练,提高成绩.(答案不
唯一)
1
2
3
4
5
6
7
8
一次函数、一元一次方程和一元一次不等式(基础作业)2022-2023学年苏科版数学八年级上册

6.6 一次函数、一元一次方程和一元一次不等式(基础作业)-苏科版八年级上册一.选择题1.一次函数y=kx+b的图象如图所示,则下列结论正确的是()A.k>0B.b=﹣1C.y随x的增大而增大D.当x>2时,kx+b<02.若一次函数y=kx+b的图象过点(﹣2,0)、(0,1),则不等式k(x﹣1)+b>0的解集是()A.x>﹣2B.x>﹣1C.x>1D.x>23.在平面直角坐标系xOy中,直线l1:y1=k1x+5与直线l2:y2=k2x的图象如图所示,则关于x的不等式k2x<k1x+5的解集为()A.x>﹣2B.x<﹣2C.x<3D.x>34.对于一次函数y=kx+b(k<0,b>0),下列的说法错误的是()A.y随着x的增大而减小B.点(﹣1,﹣2)可能在这个函数的图象上C.图象与y轴交于点(0,b)D.当时,y<05.一次函数y1=kx+3(k为常数,k≠0)和y2=x﹣3.当x<2时,y1>y2,则k取值范围()A.k≤﹣2B.﹣2≤k≤1且k≠0C.k≥1D.﹣2<k<1且k≠06.如图,已知一次函数y=mx+n的图象经过点P(﹣2,3),则关于x的不等式mx+n<3的解集为()A.x>﹣3B.x<﹣3C.x>﹣2D.x<﹣27.如图,直线l是函数y=x+3的图象.若点P(a,b)满足a<5,且b>x+3,则P 点的坐标可能是()A.(2,3)B.(3,5)C.(4,4)D.(5,6)8.定义max(a,b),当a≥b时,max(a,b)=a,当a<b时,max(a,b)=b;已知函数y=max(﹣x﹣3,2x﹣9),则该函数的最小值是()A.﹣9B.﹣3C.﹣6D.﹣59.已知函数y1=3x+1,y2=ax(a为常数),当x>0时,y1>y2,则a的取值范围是()A.a≥3B.a≤3C.a>3D.a<310.一次函数y=mx+n与y=ax+b在同一平面直角坐标系中的图象如图所示,根据图象有下列五个结论:①a>0;②n<0;③方程mx+n=0的解是x=1;④不等式ax+b>3的解集是x>0;⑤不等式mx+n≤ax+b的解集是x≤﹣2.其中正确的结论个数是()A.1B.2C.3D.4二.填空题11.已知一次函数y=mx+n与x轴的交点为(﹣5,0),则方程mx+n=0的解是.12.如图所示,一次函数y=kx+b的图象经过A(0,2)、B(4,0)两点,则不等式kx+b >0的解集是.13.如图,直线y=x+5与直线y=0.5x+15交于点A(20,25),则方程x+5=0.5x+15的解为.14.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③关于x 的方程kx﹣x=a﹣b的解是x=3;④当x<3时,y1>y2.则其中正确的序号有.15.对于平面直角坐标系xOy中第一象限内的点P(x,y)和图形W,给出如下定义:过点P作x轴和y轴的垂线,垂足分别为M,N,若图形W中的任意一点Q(a,b)满足a≤x 且b≤y,则称四边形PMON是图形W的一个覆盖,点P为这个覆盖的一个特征点.例:若M(1,3),N(4,3),则点P(5,4)为线段MN的一个覆盖的特征点.已知A(1,3),B(3,1),C(2.3),请回答下列问题:(1)在P1(3,3),P2(3,2),P3(1,2)中,是△ABC的覆盖特征点的是;(2)若在一次函数y=mx+5(m≠0)的图象上存在△ABC的覆盖的特征点,则m的取值范围是.三.解答题16.如图,一次函数y=kx+b的图象与x轴交于点B(2,0),与y轴交于点A(0,5),与正比例函数y=mx的图象交于点C,且点C的横坐标为(1)求一次函数y=kx+b和正比例函数y=mx的解析式;(2)结合图象直接写出不等式0<kx+b<mx的解集.17.小时在学习了一次函数知识后,结合探究一次函数图象与性质的方法,对新函数y=2﹣|x﹣1|及其图象进行如下探究.(1)自变量x的取值范围是全体实数,x与y的几组对应值如表:x…﹣3﹣2﹣1012345…y…﹣2﹣1m1210n﹣2…其中m=,n=.(2)请在给出的平面直角坐标系中画出该函数的图象,并结合图象写出该函数的一条性质:.(3)当时,x的取值范围为.18.如图,直线y=kx+b经过点A(﹣5,0),B(﹣1,4)(1)求直线AB的表达式;(2)求直线CE:y=﹣2x﹣4与直线AB及y轴围成图形的面积;(3)根据图象,直接写出关于x的不等式kx+b>﹣2x﹣4的解集.19.如图,已知直线l1:y1=2x+1与坐标轴交于A、C两点,直线l2:y2=﹣x﹣2与坐标轴交于B、D两点,两线的交点为P点.(1)求P点的坐标;(2)求△APB的面积;(3)利用图象求当x取何值时,y1>y2.20.如图,直线y=﹣x+1与x轴,y轴分别交于B,A两点,动点P在线段AB上移动,以P为顶点作∠OPQ=45°交x轴于点Q.(1)求点A和点B的坐标;(2)比较∠AOP与∠BPQ的大小,说明理由.(3)是否存在点P,使得△OPQ是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.。
2022-2023学年苏科版八年级数学上册《6-4用一次函数解决问题》解答题专题提升训练(附答案)

2022-2023学年苏科版八年级数学上册《6.4用一次函数解决问题》解答题专题提升训练(附答案)1.小明和爸爸进行登山锻炼,两人同时从山脚下出发,沿相同路线匀速上山,小明用8分钟登上山顶,此时爸爸距出发地280米,小明登上山顶立即按原路匀速下山,与爸爸相遇后,和爸爸一起以原下山速度返回出发地.小明、爸爸在锻炼过程中离出发地的路程y1(米),y2(米)与小明出发的时间x(分)的函数关系如图所示.(1)图中a=,b=;(2)小明上山的速度米/分;小明下山的速度米/分;爸爸上山的速度米/分.(3)小明的爸爸下山所用的时间.2.小李、小王两人从学校出发去图书馆,小李步行一段时间后,小王骑电动车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与小李出发时间t(分)之间的函数关系如图所示.(1)请直接写出小李、小王两人的前行速度;(2)请直接写出小李、小王两人前行的路程y1(米),y2(米)与小李出发时间t(分)之间的函数关系式;(3)求小王出发多长时间,两人的路程差为240米.3.小刚家、学校、图书馆依次在一条直线上,小刚骑自行车匀速从学校到图书馆,到达图书馆还完书后,再以相同的速度原路返回家中,小刚离家的距离y(m)与他所用的时间x(min)的函数关系如图所示.(1)求小刚从图书馆返回家的过程中,y与x之间的关系式;(2)小刚出发35分钟时,他离家有多远?4.如图,甲、乙两人分别从同一公路上的A、B两地同时出发骑车前往c地,两人行驶的路程y(km)与甲行驶的时间x(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)A、B两地相距km,乙骑车的速度是km/h;(2)求甲在0≤x≤6的时间段内的函数关系式;(3)在0≤x≤6的时间段内,当x(h)为何值时甲、乙两人相距5千米.5.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地.如图,线段OA 表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.请根据图象解答下列问题:(1)货车的速度是km/h;轿车提速后的速度是km/h;(2)轿车到达乙地后,货车距乙地千米;(3)线段CD对应的函数解析式为;(4)货车从甲地出发后小时与轿车相遇.6.某移动通讯公司开设了两类通讯业务,A类收费标准为不管通话时间多长,使用者都应缴50元月租费,然后每通话1分钟,付0.4元;B类收费标准为用户不缴月租费,每通话1分钟,付话费0.6元,若一个月通讯x分钟,两种方式的费用分别为y A和y B元.(1)分别写出y A,y B与x之间的函数关系式;(2)某人估计一个月内通话时间为300分钟,应选哪种移动通讯方式合算些?请书写计算过程;(3)李师傅用的是A卡,他计算了一下,若是用B卡,他本月的话费将会比现在多100元,请算一下本月李师傅实际的话费是多少元?7.已知A、B两地相距120km,甲、乙两人沿同一条道路从A地到B地.l1、l2分别表示甲、乙两人离开A地的距离S(km)与时间t(h)之间的关系.请根据图象填空:(1)大约在甲出发h后,两人相遇,这时他们离B地km;(2)甲的速度是km/h;乙的速度是km/h;(3)l1对应的表达式为:,l2对应的表达式为:.8.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.(1)甲车出发小时后,乙车才出发;(2)甲车的速度为km/h,乙车的速度为km/h;(3)甲、乙两车经过小时后第一次相遇;(4)当t为何值时,甲、乙两车相距20千米.(直接写出t的值)9.随着春节临近,某儿童游乐场推出了甲、乙两种消费卡,其中,甲为按照次数收费,乙为收取办卡费用以后每次打折收费.设消费次数为x时,所需费用为y元,且y与x的函数关系如图所示.根据图中信息,解答下列问题.(1)分别求出选择这两种卡消费时,y关于x的函数表达式;(2)求出入园多少次时,两者花费一样?费用是多少?(3)洋洋爸准备了240元,请问选择哪种划算?10.甲、乙两车从A地出发,沿同一路线驶向B地.甲车先出发匀速驶向B地,40min后乙出发,匀速行驶一段时间后,在途中的货站装货耗时半小时.由于满载货物,为了行驶安全,速度减少了50km/h,结果与甲车同时到达B地,甲乙两车距A地的路程y(km)与乙车行驶时间x(h)之间的函数图象如图所示.(1)a的值是,甲的速度是km/h.(2)求线段EF所表示的y与x的函数关系式;(3)若甲乙两车距离不超过10km时,车载通话机可以进行通话,则两车在行驶过程中可以通话的总时长为多少小时?11.某商品共200吨,经市场调查,可采用批发、零售、冷库储藏后销售三种方式,并且按这三种方式销售,计划每吨的平均售价及成本如下表:销售方式批发零售储藏后销售售价/(元/吨)300045005500成本/(元/吨)200030003500若经过一段时间,商品按计划全部售出获得的总利润为y(元),其中零售x(吨),且零售量是批发量的一半.(1)求y与x之间的函数关系式;(2)由于受条件限制,经冷库储藏售出的商品数量最多为80吨,求该生产基地按计划全部售完商品获得的最大利润.12.为了传承中华优秀传统文化,增强文化自信,某中学举办了以“争做时代先锋少年”为主题的演讲比赛,并为获奖的同学颁发奖品.张老师去商店购买甲、乙两种笔记本作为奖品,已知该商店甲种笔记本的单价为5元/个,乙种笔记本的单价为3元/个,张老师准备购买甲、乙两种笔记本共100个.因张老师购买的数量多,实际付款时按原价的九折付款.设张老师购买x个甲种笔记本,购买这两种笔记本所需费用为y元.(1)求y与x之间的关系式;(2)若本次购买甲种笔记本的数量不少于乙种笔记本数量的3倍,为了使所花费用最低,应如何购买?最低费用是多少元?13.“中国海带之乡”霞浦县今年又迎来一个丰收年.某海带养殖专业村为保障养殖户收益,联系了村海带加工厂,收购养殖户每天收割的鲜海带.该加工厂主要以加工干海带和盐渍海带两种方式处理每天收购的30吨鲜海带,工厂现有12名工人,每位工人在同一天中只能选择一种加工方式.若生产干海带,每人每天可加工2吨鲜海带,每吨可获利250元;若加工盐渍海带,每人每天可加工0.6吨鲜海带,每吨可获利600元;每天加工不完的鲜海带直接续给鲍鱼养殖场作饲料.若安排所有的工人都加工干海带,则加工厂当天可获利6300元.(1)求加工不完的鲜海带直接卖给鲍鱼养殖场作饲料,每吨可获利多少元;(2)根据市场销售情况,该加工厂决定生产干海带的人数不超过盐渍海带人数的2倍.问加工厂如何安排工人,可使每天生产的利润最大?最大利润是多少元?14.学校计划组织七年级学生到“万州三峡移民纪念馆”参加“追寻先辈足迹,传承三峡精神”的活动.在此活动中,若每位老师带队14名学生,则还有10名学生没有老师带队;若每位老师带队15名学生,就有一位老师少带6名学生.(1)参加此次活动的老师和学生各多少名?(2)现计划租用两种客车共8辆,一辆甲型客车可以载35人,租金400元,一辆乙型客车可以载30人,租金320元.计划此次活动的租金总费用不超过3000元,学校共有哪几种租车方案?最少租车费用是多少?15.一条笔直的公路上依次有A、B、C三地,甲车从A地驶往C地,乙车从A地驶往B地,两车同时出发并以各自的速度匀速行驶.乙车中途因汽车故障停下来修理,修好后立即以原速的两倍继续前进到达B地;如图是甲、乙两车与A地的距离y(千米)与出发时间x(小时)之间的大致图象.(1)求B、C两地之间的距离;(2)什么时候乙追上甲;(3)当两车相距40千米时,甲车行驶了多长时间.16.复课第一天,马小虎同学从家出发,骑车匀速前往学校上学,出发几分钟后,爸爸发现马小虎的健康卡落在家里,于是骑车沿相同的路线匀速去追马小虎.爸爸刚出发2分钟,马小虎也发现自己健康卡落在家里,立刻原路原速骑车返回,2分钟后马小虎遇到爸爸,爸爸把健康表给马小虎后立即原路原速返家中,马小虎继续原路原速赶往学校.马小虎与爸爸相距的路程y(米)与马小虎出发的时间x(分)之间的关系如图所示(爸爸给马小虎健康卡的时间忽略不计).(1)马小虎出发分钟后,爸爸追上他.(2)求马小虎骑车的速度.(3)若爸爸到家4分钟后,马小虎才到学校,求马小虎家到学校的路程.17.如图,直线与x轴、y轴分别交于A、B两点,OM⊥AB于点M,点P 为直线l上不与点A、B重合的一个动点.(1)求线段OM的长;(2)当△BOP的面积是3时,求点P的坐标;(3)当点P在线段AB上且△BOP的面积为3时,在x轴上是否存在点Q,使得△OPQ 是以OP为腰的等腰三角形,若存在,请直接写出Q点的坐标,若不存在,请说明理由.18.如图1,在平面直角坐标系中,一次函数y=3x+6分别与x轴和y轴交于点C和点B,已知A(6,0),(1)写出点B,点C的坐标和△ABC的面积;(2)直线l经过A、B两点,求直线AB的解析式;(3)点D是在直线AB上的动点,是否存在动点D,使得?若存在,求出点D的坐标;若不存在,请说明理由;(4)如图2,P为A点右侧x轴上的一动点,以P为直角顶点、BP为腰在第一象限内作等腰直角三角形△BPQ,连接QA并延长交y轴于点K.当P点运动时,K点的位置是否发生变化?如果不变,请求出它的坐标;如果变化,请说明理由.19.如图所示,在平面直角坐标系中,直线y=x+1与y=﹣x+3分别交x轴于点B和点C,点D是直线y=﹣x+3与y轴的交点.(1)求点B、C、D的坐标;(2)设M(x,y)是直线y=x+1上一点,当△BCM的面积为10时,求点M的坐标;(3)线段CD上是否存在点P,使△CBP为等腰三角形,如果存在,直接写出P点的坐标;如果不存在,请说明理由.20.问题提出:如图1,等腰Rt△ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过点A作AD ⊥ED于点D,过点B作BE⊥ED于点E,求证:△BEC≌△CDA;问题探究:如图2,在平面直角坐标系中,一次函数y=x+1与x轴交于点A,与y轴交于点B,以AB为腰在第二象限作等腰直角△ABC,∠BAC=90°,求点C的坐标;问题解决:古城西安已经全面迎来地铁时代!继西安地铁2号线于2011年9月16日通车试运行以来,共有八条线路开通运营,极大促进了西安市的交通运输,目前还有多条线路正在修建中.如图3,地铁某线路原计划按OA﹣AB的方向施工,由于在AB方向发现一处地下古建筑,地铁修建须绕开此区域.经实地勘测,若将AB段绕点A顺时针或逆时针方向旋转45°至AC或AD方向,则可以绕开此区域.已知OA长为1千米,以点O为原点,OA所在直线为x轴,1千米为单位长度,建立平面直角坐标系,且射线AB与直线y=﹣2x平行,请帮助施工队计算出AC和AD所在直线的解析式.参考答案1.解:(1)由图象可以得到,a=8,b=280,故答案为:8,280;(2)由图象可以得出爸爸上山的速度是:280÷8=35(米/分),小明上山的速度为:400÷8=50(米/分),小明下山的速度是:400÷(24﹣8)=25(米/分),故答案为:50,25,35;(3)∵小明从下山到与爸爸相遇用的时间是:(400﹣280)÷(35+25)=2分,∵小明与爸爸相遇后,和爸爸一起以原下山速度返回出发地,∴小明的爸爸下山所用的时间:24﹣8﹣2=14(分).故答案为:14.2.解:(1)由图象得出小李步行720米,需要9分钟,所以小李的运动速度为:720÷9=80(米/分),当第15分钟时,小王运动15﹣9=6(分钟),运动距离为:15×80=1200(m),∴小王的运动速度为:1200÷6=200(米/分);(2)根据题意得y1=80t,y2=200(t﹣9)=200t﹣1800;(3)当相遇前两人的路程差为240米时,得y1﹣y2=240,即80t﹣(200t﹣1800)=240,解得t=13,当相遇前两人的路程差为240米时,得y2﹣y1=240,即(200t﹣1800)﹣80t=240,解得t=17,∴小王出发13分钟或17分钟时,两人的路程差为240米.3.解:(1)由题意得,小刚家与学校的距离为3000m,小刚骑自行车的速度为:(5000﹣3000)÷10=200(m/min),小刚从图书馆返回家的时间:5000÷200=25(min),总时间:25+20=45(min),设小刚从图书馆返回家的过程中,y与x的函数表达式为y=kx+b,把(20,5000),(45,0)代入得:,解得,∴y=﹣200x+9000(20≤x≤45);(2)小刚出发35分钟时,即当x=35时,y=﹣200×35+9000=2000.答:他离家2000m.4.解:(1)由图象可得,A、B两地相距20km,乙骑车的速度是(30﹣20)÷2=10÷2=5(km/h),故答案为:20,5;(2)设甲在0≤x≤6时,y与x之间的函数关系式是y=kx,∵点(6,60)在该函数图象上,∴6k=60,解得k=10,即甲在0≤x≤6时,y与x之间的函数关系式是y=10x;(3)设乙在0≤x≤6时,y与x之间的函数关系式是y=ax+b,∵点(2,30),(6,50)在函数图象上,∴,解得,即乙在0≤x≤6时,y与x之间的函数关系式是y=5x+20;相遇之前两人相距5km,则(5x+20)﹣10x=5,解得x=3;相遇之后且甲到达C地之前相距5km,则10x﹣(5x+20)=5,解得x=5;答:当乙行驶3小时或5小时时甲、乙两人相距5千米.5.解:(1)货车的速度为300÷5=60(km/h);轿车提速后的速度为=110(km/h).故答案为:60,110;(2)从图象上看轿车比货车早0.5h到达乙地,∴轿车到达乙地后,货车距乙地有0.5×60=30(千米),故答案为:30;(3)设CD段函数解析式为y=kx+b(k≠0)(2.5≤x≤4.5).∵C(2.5,80),D(4.5,300)在其图象上,∴,解得,∴CD段函数解析式:y=110x﹣195(2.5≤x≤4.5),故答案为:y=110x﹣195;(4)设OA段函数解析式为y=mx,代入A(50,300),得5m=300,解得m=60,∴OA段函数解析式为y=60x;联立方程组,得,解得,故货车从甲地出发后3.9小时与轿车相遇.故答案为:3.9.6.解:(1)由题意可得,y A=0.4x+50,y B=0.6x;(2)当x=300时,y A=0.4×300+50=170,y B=0.6×300=180,∵170<180,∴某人估计一个月内通话时间为300分钟,应选A种移动通讯方式合算些;(3)设本月李师傅实际的话费是a元,,解得a=350,答:本月李师傅实际的话费是350元.7.解:(1)由图象可知,大约在甲出发3﹣2=1(h)后,两人相遇,这时他们离B地120﹣30=90(km);故答案为:1,90;(2)甲的速度是30÷(3﹣2)=30(km/h),乙的速度是30÷3=10(km/h),故答案为:30,10;(3)设l1对应的表达式为s=kt+b,将(3,30),(6,120)代入得:,解得,∴l1对应的表达式为:s=30t﹣60,设l2对应的表达式为s=k't,将(3,30)代入得:30=3k',解得k'=10,∴l2对应的表达式为s=10t,故答案为:s=30t﹣60,s=10t.8.解:(1)由图象可直接得出:甲车出发1小时后,乙车才出发;故答案为:1;(2)由图象可知,甲车的速度为240÷5=48(km/h),乙车的速度为240÷(4﹣1)=80(km/h);故答案为:48;80;(3)甲所在的直线为y=48x,乙所在的直线为:y=80x﹣80,令48x=80x﹣80,解得x=2.5,故答案为:2.5;(4)当乙车开始行驶前,令48x=20,解得x=,符合题意,当甲、乙两车相遇前,48x﹣(80x﹣80)=20,解得x=,符合题意,当甲、乙两车相遇后,80x﹣80﹣48x=20,解得x=,符合题意,当乙到达目的地后,48x+20=240,解得x=,符合题意.∴当t的值为或或或,甲、乙两车相距20千米.9.解:(1)设y甲=k1x,根据题意得4k1=80,解得k1=20,∴y甲=20x;设y乙=k2x+80,根据题意得:12k2+80=200,解得k2=10,∴y乙=10x+80;(2)解方程组解得:,∴出入园8次时,两者花费一样,费用是160元;(3)当y=240时,y甲=20x=240,∴x=12;当y=240时,y乙=10x+80=240,解得x=16;∵12<16,∴选择乙种更合算.10.解:(1)∵线段DE代表乙车在途中的货站装货耗时半小时,∴a=4+0.5=4.5(小时),∴甲车的速度==60(千米/小时);故答案为:4.5;60;(2)设乙开始的速度为v千米/小时,则4v+(7﹣4.5)(v﹣50)=460,解得v=90(千米/小时),∴4v=360,∴D(4,360),E(4.5,360),设直线EF的解析式为y=kx+b,把E(4.5,360),F(7,460)代入得:,解得,∴线段EF所表示的y与x的函数关系式为y=40x+180(4.5≤x≤7);(3)∵60×=40,∴C(0,40),设线段CF的解析式为y=kx+40,根据题意得:7k+40=460,解得k=60,∴线段CF的解析式为y=60x+40,∵甲乙两车距离不超过10km时,车载通话机可以进行通话,由,解得1≤x≤,由,解得≤x≤7,∴两车在行驶过程中可以通话的总时长为:(﹣1)+(7﹣)=(小时).11.解:(1)设零售x吨,则批发2x吨,储藏后销售(200﹣x﹣2x)吨,根据题意得:y=2x(3000﹣2000)+x(4500﹣3000)+(200﹣3x)(5500﹣3500)=﹣2500x+400000;即y=﹣2500x+400000;(2)∵冷库储藏售出的商品数量最多为80吨,∴200﹣3x≤80,∴x≥40,,∵y=﹣2500x+400000中,﹣2500<0,∴y的值随x的值增大而减小,∴当x=40时,y最大值=﹣2500×40+400000=300000(元);答:该生产基地按计划全部售完商品获得的最大利润为300000元.12.解:(1)设张老师购买x个甲种笔记本,则购买(100﹣x)个乙种笔记本,由题意可得:y=5×0.9x+3×0.9(100﹣x)=1.8x+270.即y与x之间的关系式为y=1.8x+270;(2)由(1)知:y=1.8x+270,∴y随x的增大而增大,∵甲种笔记本的数量不少于乙种笔记本数量的3倍,∴x≥3(100﹣x),解得x≥75.∴当x=75时,y取得最小值,此时y=405,100﹣x=25,答:购买75个甲种笔记本、25个乙种笔记本,所花费用最低,最低费用是405元.13.解:(1)设加工不完的鲜海带直接卖给鲍鱼养殖场作饲料,每吨可获利x元,根据题意得:12×2×250+(30﹣12×2)x=6300,解得x=50,答:加工不完的鲜海带直接卖给鲍鱼养殖场作饲料,每吨可获利50元;(2)设生产盐渍海带的m人,每天生产的利润是w元,则生产干海带的(12﹣m)人,∵生产干海带的人数不超过盐渍海带人数的2倍,∴12﹣m≤2m,解得m≥4,根据题意得:w=0.6m×600+2(12﹣m)×250+50[30﹣0.6m﹣2(12﹣m)]=﹣70m+6300,∵﹣70<0,∴当m=4时,w取最大值,最大值为﹣70×4+6300=6020(元),此时12﹣m=8,答:生产盐渍海带的4人,生产干海带的8人,可使每天生产的利润最大,最大利润是6020元.14.解:(1)设参加此次研学活动的老师有x人,学生有y人,依题意,得:,解得.答:参加活动的老师有16人,学生有234人;(2)设租甲种车型n辆,依题意得,解这个不等式组得:2≤n≤5.5,∵n为正整数,∴n=2,3,4,5,即学校共有一下四种租车方案:方案①:2辆甲车,6辆乙车;方案②:3辆甲车,5辆乙车;方案③:4辆甲车,5辆乙车;方案④:5辆甲车,3辆乙车;设租车费用为W元,则W=400n+320(8﹣n)=80n+2560,∵80>0,∴W随n的增大而增大,∴当n=2时费用最低,最少费用为W=160+2560=2720(元).答:学校共有四种租车方案,最少费用为2720元.15.解:(1)乙前面的速度为:100÷2=50(千米/小时),乙后来的速度为:50×2=100(千米/小时),BC=360﹣100﹣100×(4.8﹣2.8)=60(千米),答:B、C两地之间的距离为60千米;(2)甲的速度为:360÷6=60(千米/小时),设乙t小时追上甲,根据题意得60t=100+100(t﹣2.8),解得t=4.5,答:出发后4.5小时乙追上甲;(3)当0<x≤2时,两车距离小于40,①当2<x≤2.8时,设甲距离A地的距离y(千米)与出发时间x(小时)之间的关系式为y=k1x,代入(6,360)可得k1=60,∴y=60x,60x﹣100=40,解得x=;②当2.8<x≤4.8时,由(1)可得,A、B两地之间的距离为:360﹣60=300(km),设乙与A地距离与出发时间x之间的函数关系式为y=k2x+b,代入(2.8,100)和(4.8,300),得,解得,∴y=100x﹣180,解方程100x﹣180﹣60x=40得x=5.2(不合题意,舍去),解方程60x﹣(100x﹣180)=40得x=3.5;③当x>4.8时,解方程60x=360﹣20得x=.答:当两车相距40千米时,甲车行驶了小时或3.5小时或小时.16.解:(1)由题意可知,当y=0时,x=10,所以马小虎出发10分钟后,爸爸追上他.故答案为:10;(2)由题意得,2400÷6=400(米/分钟),即马小虎骑车的速度为400米/分钟;(3)∵由题意可知,相遇4分钟后,爸爸到家,∴相遇后马小虎又骑行了8分钟才到学校,2400+2×400﹣2×400+8×400=5600(米),答:马小虎家到学校的路程为5600米.17.解:(1)对于直线y=﹣x+3,令x=0,则y=3,令y=0,则﹣x+3=0,解得:x=4,∴点A、B的坐标分别是(4,0),(0,3),∴OA=4,OB=3,∴AB===5,∵S△OAB=AB•OM,∴OM=;(2)过P作PC⊥y轴于C,如图1,∴S△BOP=OB•PC=3,∴PC=2,∴点P的横坐标为2或﹣2,∴P(2,)或(﹣2,);(3)存在,理由如下:∵P点在线段AB上,∴P(2,),设Q(x,0),∴OP=,OQ=|x|,PQ=,当OP=OQ时,|x|=,解得x=或x=﹣,∴Q(,0)或(﹣,0);当OP=PQ时,=,解得x=0(舍)或x=4,∴Q(4,0);综上所述:Q点坐标为(,0)或(﹣,0)或(4,0).18.解:(1)对于y=3x+6,令x=0,则y=6,故点B(0,6),令y=3x+6=0,解得:x=﹣2,故点C(﹣2,0);则△ABC的面积=×AC×OB=×(6+2)×6=24;(2)设直线AB的表达式为y=kx+b(k≠0),则,解得:,故直线AB的表达式为y=x+6;(3)存在,理由:∵,∴|y D|=|y B|=3,即|x+6|=3,解得:x=3或9,故点D的坐标为(3,3)或(9,﹣3);(4)K点的位置不发生变化,理由:设点P的坐标为(t,0),过点Q作QH⊥x轴于点H,∵∠BPO+∠QPH=90°,∠PBO+∠BPO=90°,∴∠QPH=∠PBO,在Rt△BOP和Rt△PHQ中,,∴△BOP≌△PHQ(AAS),∴PH=BO=6,QH=OP=t,则点Q的坐标为(t+6,t),设直线AQ的表达式为y=mx+n,则,解得,故点K的坐标为(0,﹣6).19.解:(1)y=x+1中当y=0时,x=﹣1,∴B(﹣1,0),y=﹣x+3中y=0时,则x=4,x=0时,则y=3,∴C(4,0),D(0,3);(2)∵B(﹣1,0),C(4,0),∴BC=5,∵M(x,y),∴S△BCM=×5×|x+1|,∵△BCM的面积为10,∴×5×|x+1|=10,解得x=3或x=﹣5,∴M(3,4)或(﹣5,﹣4);(3)线段CD上存在点P,使△CBP为等腰三角形,理由如下:设P(t,﹣t+3)(0≤t≤4),∴BP=,CP=,当BC=BP时,=5,解得t=4(舍)或t=﹣(舍),∴此时不存在P点满足题意;当BC=CP时,=5,解得t=0或t=8(舍),∴P(0,3);当BP=CP时,=,解得t=,∴P(,);综上所述:P点坐标为(0,3)或(,).20.问题提出:证明:∵∠ACB=90°,∴∠ACD+∠BCE=90°,∵AD⊥ED,BE⊥ED,∴∠BEC=∠ADC=90°,∴∠BCE+∠CBE=90°,∴∠ACD=∠CBE,∵AC=BC,∴△BEC≌CDA(SAS);问题探究:解:过C点作CD⊥x轴交于点D,∵∠BAC=90°,CD⊥x轴,BO⊥x轴,AC=AB,由问题提出可得△CAD≌△ABO(SAS),∴CD=OA,AD=BO,∵y=x+1与x轴交于点A(﹣4,0),与y轴交于点B(0,1),∴AO=4,OB=1,∴C(﹣5,4);问题解决:解:设线段AB绕点A顺时针旋转后的线段为AC,绕A点逆时针旋转后的线段为AD,过点C作CN⊥x轴交于点N,过D点作DM⊥x轴交于点M,∵∠CAB=∠DAB=45°,∴∠CAD=90°,由问题提出可得△ACN≌△DAM(SAS),设C点坐标为(m,n),∴DM=AN,CN=AM,∵OA=1,∴A(﹣1,0),∴D(﹣n﹣1,m+1),∵射线AB与直线y=﹣2x平行,∴直线AB的解析式为y=﹣2x﹣2,连接CD交AB于点E,∵△ACD是等腰直角三角形,∴∠ADC=45°,∵∠BAD=45°,∴∠AED=90°,∴E是CD的中点,∴E(,),∴E点在直线AB上,∴=﹣2•﹣2,整理得n=3m+3,∴直线AC的解析式为y=3x+3,设y=m+1,x=﹣n﹣1,∴﹣x﹣1=3(y﹣1)+3,整理得y=﹣x﹣,∴直线AD的解析式为y=﹣x﹣.。
苏科版八年级上5.2一次函数(1)课件

(0≤x≤31)
m 28
3 x
牛刀小试
1.若函数y=(3-m) 数m的值是( ) A 7 B -7 C -3
x
m 2 8
是正比例函数,则常 D 3
m 28
2、.给出下列函数: (1)x+y=0 (2) y=x+2 (3) 3 y+3=3(x-1) (4) y=2x +1 (5) y= +2.其中 x 是一次函数的有( ) A 2个 B 3 个 C 4 个 D 5 个
判断下列函数是不是一次函数,如果 是一次函数,是不是正比例函数? 3 (1)y= 2 x-1 是一次函数,不是正比例函数
(2)y=3x2+2 (3)m=-5n (4)y=6 - 3x (5)y=2(t-5) (6)2y=x-1
不是一次函数 是一次函数, 是正比例函数 是一次函数,不是正比例函数 是一次函数,不是正比例函数 是一次函数,不是正比例函数
下列变化过程中,变量y是变量x的一次函数吗? 是正比例函数吗?
(1)长方形的长为常量a时,面积y与宽x之间的函数 关系; (2)如图,高速列车以200km/h的速度驶离A站,在 行驶过程中,这列火车离开A站的路程y(km)与行驶时 间x(h)之间的函数关系;
(3)如图,两地相距200km,一列火车从B地出发沿BC 方向以120km/h的速度行驶,在行驶过程中,这列火车 离A地的路程y(km)与行驶时间x(h)之间的函数关系。
A
ykm
A
200km
B
ykm
C
通过本节课的学习, 你有哪些收获?
典型例题分析
例1:已知函数 y (m 1) x m 1 (1)m取何值时,该函数是一次函数? (2) m取何值时,该函数是正比例函数?
苏科版八年级上册第6章一次函数知识点与典型例题及练习

一次函数知识要点与典型例题一、函数函数定义的:一般地,在一个变化过程中,如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数. 如果当x=a 时y=b ,那么b 叫做当自变量的值为a 时的函数值.变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
例:1.在匀速运动公式vt s =中,v 表示速度,t 表示时间,s 表示在时间t 内所走的路程,则变量是________,常量是_______.2.在圆的周长公式C=2πr 中,变量是________,常量是_________.函数概念注意(一)、注意理解“在一个变化过程中,有两个变量”自变量 因变量 例、在函数关系式中,自变量为________,常量为________,当x=3时,函数值y 为________.(二)、注意理解“x的每一个确定的值”自变量x 的取值不能使对应关系无意义,如y =11-x ,x 的取值不能为1;(三)、注意理解“x的每一个确定的值,y 都有唯一确定的值与其对应” 例: y = ±x, y______ x 的函数 (填 “是”或“不是”) (四)、注意正确判断“谁是谁的函数”通常,函数因变量写在等号左边。
例、下列等式中,y 是x 的函数的是( )A 、B 、C 、D 、(五)、注意正确确定“自变量的取值范围” 1、自变量的取值必须使含自变量的代数式有意义 (1)整式型:其自变量的取值范围是全体实数.例、函数y=3x+1,y=x 2+x -4中自变量x 的取值范围是______. (2)分式型:其自变量的取值范围是使得分母不为零的实数.例、函数y=12-x 中变量x 的取值范围是______.(3)二次根式型:其自变量的取值范围是使得被开方式为非负数的实数.例、函数y=1-x 中自变量x 的取值范围是______.(4)复合型:即自变量同时含有上述两种或三种情况时,自变量的取值范围是它们的公共解.例、函数y=32--x x 中自变量x 的取值范围是______.函数的三要素:自变量的取值范围、函数的取值范围和两个变量的对应关系【例题】:1.下列函数中,自变量x 的取值范围是x ≥2的是( )A .B .C .D .2.函数y =x 的取值范围是___________.3.已知函数221+-=x y ,当11≤<-x 时,y 的取值范围是 ( ) A.2325≤<-y B.2523<<y C.2523<≤y D.2523≤<y2、自变量的取值必须使实际问题有意义例、1、一个正方形的边长为3cm ,它的各边长减少xcm 后,所得新正方形的周长为ycm.则y 与x 的关系式为______, 自变量x 的取值范围是______ 0 < x < 3.2、.如果一个等腰三角形的周长为30,则底边长y 与腰长x 之间成一函数关系,y 与x 的关系式为______,自变量x 的取值范围是_________函数的图像一般分为三步:①列表;②描点;③连线.函数的表示方法函数有三种表示方法:(1)列表法;(2)图象法;(3)表达式法(也称关系式或解析式).二、一次函数的概念若两个变量x ,y 间的关系式可以表示成y = kx + b (k ,b 为常数,k ≠0)的形式,则称y 是x 的一次函数(x 为自变量,y 为因变量).特别地,当b = 0时,关系式变为y = kx ,称y 是x 的正比例函数. 〖注意〗:(1)一次函数y = kx + b (k ≠0)特征:① k ≠0 ②x 指数为1 ③ b 取任意实数(2)正比例函数y = kx (k ≠0)特征:①k ≠0 ② x 次数是1 ③常数项b = 0.(3)正比例函数是一次函数的特殊形式.【例题】:1.若函数()2322my m x -=-+是一次函数,则m=_______。
(典型题)初中数学八年级数学上册第四单元《一次函数》检测(答案解析)(1)

一、选择题1.当2x =-时,函数23y x =+的值等于( )A .1-B .0C .1D .72.一次函数21y x =-+上有两点()12,y -和()21,y ,则1y 与2y 的大小关系是( ) A .12y y >B .12y y <C .12y y =D .无法比较3.如图,在平面直角坐标系中,ABC ∆的顶点坐标分别为(1,1)A ,(3,1)B ,(2,2)C ,当直线3y kx =+与ABC ∆有交点时,k 的取值范围是( )A .2132k -≤≤- B .223k -≤≤- C .223k -<<-D .122k -≤≤-4.对于函数31y x =-+,下列结论正确的是( )A .它的图象必经过点(1,3)B .它的图象经过第一、三、四象限C .当x >0时,y <0D .y 的值随x 值的增大而减小5.如图,点A ,B ,C 在一次函数2y x m =-+的图象上,它们的横坐标依次为1-,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是( )A .1B .3C .3(1)m -D .3(2)2m - 6.弹簧大家了解吗?弹簧挂上物体后会伸长。
测得一弹簧的长度y (cm )与所挂的物体的重量x (kg )间有下面的关系: x 0 1 2 3 4 5 y1010.51111.51212.5下列说法不正确的是( )A .x 与y 都是变量,且x 是自变量,y 是因变量B.物体质量每增加1kg,弹簧长度y增加0.5cmC.y与x的关系表达式是y=0.5xD.所挂物体质量为7kg时,弹簧长度为13.5cm7.如图1,在矩形ABCD中,AB<BC,点E为对角线AC上的一个动点,连接BE,DE,过E作EF⊥BC于F.设AE=x,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的()A.线段BE B.线段EF C.线段CE D.线段DEx的函数的是()8.下列各图象中,y不是..A.B.C.D.9.如图,△ABC的顶点坐标分别为A(1,0),B(4,0),C(1,4),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为( )A .4B .8C .82D .1610.同一平面直角坐标系中,一次函数y mx n =+与y nx m =+(,m n 为常数)的图象可能是A .B .C .D .11.甲、乙两车从A 地出发,匀速驶向B 地.甲车以80/km h 的速度行驶1h 后,乙车沿相同路线行驶.乙车先到达B 地并停留1h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离()y km 与乙车行驶时间(h)x 之间的函数关系如图所示.下列说法:①乙车的速度是120/km h ;②150m =;③点H 的坐标是()7,80;④7.4n =其中说法正确的是( )A .①②③④B .①②③C .①②④D .①③④12.一蓄水池中有水350m ,打开排水阀门开始放水后水池的水量与放水时间有如下关系:放水时间/分 1 2 3 4 … 水池中水量/3m48464442…A .蓄水池每分钟放水32mB .放水18分钟后,水池中水量为314mC .蓄水池一共可以放水25分钟D .放水12分钟后,水池中水量为324m二、填空题13.为了提高居民的节水意识,今年调整水价,不仅提高了每立方的水价,还施行阶梯水价.图中的1l 和2l 分别表示去年和今年的水费y (元)和用水量x (3m )之间的函数关系图像.如果小明家今年和去年都是用水1503m ,要比去年多交水费________元.14.把一根长为20cm 的蜡烛,每分钟燃烧2cm ,蜡烛剩余长度y(cm)与燃烧时间t(分)之间的关系为_______(不需要写出自变量的取值范围).15.一列火车以100km /h 的速度匀速前进.则它的行驶路程s (单位:km )关于行驶时间t (单位:h )的函数解析式为_____. 16.已知()111,P y ,()222,P y 在正比例函数14y x =-的图象上,则1y ___________2y .(填“>”或“<”或“=”).17.甲、乙两地高速铁路建设成功,一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发,设普通列车行驶的时间为x (小时),两车之间的距离为y (千米),图中的折线表示y 与x 之间的函数关系,下列结论: ①甲、乙两地相距1800千米;②点B 的实际意义是两车出发后4小时相遇; ③动车的速度是280千米/小时; ④6,900.m n ==其中正确的是_______________________.(写出所有正确结论的序号)18.某书定价40元,如果一次购买20本以上,超过20本的部分打八折.试写出付款金额y (单位:元)与购书数量x (单位:本)之间的函数关系____.19.若长方形的周长为24cm ,一边为cm x ,面积为2cm y ,则y 与x 的关系式为y =__________.20.某通讯公司的4G 上网套餐每月上网费用y (单位:元)与上网流量x (单位:兆)的函数关系的图像如图所示.若该公司用户月上网流量超过500兆以后,每兆流量的费用为0.29元,则图中a 的值为__________.三、解答题21.如图,在平面直角坐标系中,()1,4A -,()3,3B -,()2,1C -.(1)已知111A B C △与ABC 关于x 轴对称,画出111A B C △(请用2B 铅笔将111A B C △描深);(2)在y 轴上找一点P ,使得PBC 的周长最小,试求点P 的坐标.22.甲船从A 港出发顺流匀速驶向B 港,乙船从B 港出发逆流匀速驶向A 港,甲船后面拖拽着一艘无动力小艇,行驶一段时间后,甲船发现拖拽小艇缆绳松了,小艇不知去向,立刻原路返回寻找,找到小艇后,继续拖拽小艇顺流驶向B港.已知小艇漂流的速度和水流速度相同;甲、乙两船在静水中的速度相同.甲、乙两船与A港的距离、与行驶时间之间的函数图象如图1所示.(1)求乙船在逆流中行驶的速度;(2)求甲船在逆流中行驶的路程;(3)求甲船到A港的距离y与行驶时间x之间的函数关系式;(4)甲船拖拽的小艇与A港的距离和经历的时间之间的函数图像如图2所示,求点C的坐标.23.甲、乙两家商场平时以同样价格出售相同的商品,元旦假期,甲、乙两家商场打折促销,甲商场所有商品按9折出售,乙商场对一次购物中超过100元后的价格部分打8折.(1)以x(单位:元)表示商品原价,y(单位:元)表示实际购物金额,分别就两家商场的让利方式写出y关于x的函数关系式;(2)小明需要购买原价为300元的商品,在元旦期间他去哪家商场购买更省钱?24.如图,直线l与x轴交于点A,与y轴交于点B(0,2).已知点C(﹣1,3)在直线l上,连接OC.(1)求直线l的解析式;(2)点P为x轴上一动点,若△ACP的面积与△AOB的面积相等,求点P的坐标.25.甲、乙两个探测气球分别从海拔5m和15m处同时出发,匀速上升60min.如图是甲、乙两个探测气球所在位置的海拔y(单位:m)与气球上升时间x(单位:min)的函数图象,已知甲气球的函数解析式为y=x+5(x≥0)(1)求乙气球在上升过程中y关于x的函数解析式;(2)当这两个气球的海拔高度相差15m时,求上升的时间.26.已知y 与2x -1成正比例,当x =3时,y =10. (1)求y 与x 之间的函数关系式; (2)当y =-2时,求x 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】把2x =-代入解析式即可. 【详解】解:把2x =-代入23y x =+得, 2(2)31y =⨯-+=-,故选:A . 【点睛】本题考查了求一次函数的函数值,解题关键是把自变量的值代入后能准确熟练计算.2.A解析:A 【分析】根据一次函数的增减性直接判断即可;或求出1y 、2y 的值,进行比较. 【详解】解:方法一:因为一次函数21y x =-+中的比例系数20-<, 所以y 随着x 的增大而减小, ∵-2<1, ∴12y y >;方法二:把x=-2或1分别代入21y x =-+得,15y =、21y =-,∴12y y >; 故选:A . 【点睛】本题考查了一次函数的增减性,解题关键是知道一次函数的增减性由比例系数k 决定,根据k 值可直接判断.3.B解析:B 【分析】把A 点和B 点坐标分别代入y=kx+3中求出对应的的值,即可求得直线y=kx+3与△ABC 有交点时k 的临界值,然后再确定k 的取值范围. 【详解】解:把A (1,1)代入y=kx+3得1=k+3,解得k=-2 把B (3,1)代入y=kx+3得1=3k+3,解得:k=23-所以当直线y=kx+3与△ABC 有交点时,k 的取值范围是223k -≤≤-. 故答案为B . 【点睛】本题考查了一次函数与系数的关系,将A 、B 点坐标代入解析式确定k 的边界点是解答本题的关键.4.D解析:D 【分析】根据一次函数图象上点的坐标特征对A 进行判断;根据一次函数的性质对B 、D 进行判断;利用x >0时,函数图象在y 轴的左侧,y <1,则可对C 进行判断. 【详解】A 、当1x =时,312y x =-+=-,则点(1,3)不在函数31y x =-+的图象上,所以A 选项错误;B 、30k =-<,10b =>,函数图象经过第一、二、四象限,所以B 选项错误;C 、当x >0时,y <1,所以C 选项错误;D 、y 随x 的增大而减小,所以D 选项正确. 故选:D . 【点睛】本题考查了一次函数的性质:k >0,y 随x 的增大而增大;k <0,y 随x 的增大而减小.由于y=kx+b 与y 轴交于(0,b ),当b >0时,直线与y 轴交于正半轴;当b <0时,直线与y 轴交于负半轴.5.B解析:B【分析】根据横坐标分别求出A,B,C的坐标,利用坐标的几何性质求面积即可.【详解】解:当x=-1时y=-2×(-1)+m=2+m,故A点坐标(-1,2+m);当x=0时,y=-2×0+m=m,故一次函数与y轴交点为(0,m);当x=1时,y=-2×1+m=-2+m,故B点坐标(1,-2+m);当x=2时,y=-2×2+m=-4+m,故C点坐标(2,-4+m),则阴影部分面积之和为1112m m22⨯⨯+-+×1×[m-(-2+m)]+12×1×[(-2+m)-(-4+m)]=1+1+1=3,故选B.【点睛】本题考查了一次函数的图像和性质,中等难度,利用坐标表示底和高是解题关键.6.C解析:C【分析】由表中的数据进行分析发现:物体质量每增加1kg,弹簧长度y增加0.5cm;当不挂重物时,弹簧的长度为10cm,然后逐个分析四个选项,得出正确答案.【详解】解:A、y随x的增加而增加,x是自变量,y是因变量,故A选项不符合题意;B、物体质量每增加1kg,弹簧长度y增加0.5cm,故B选项不符合题意;C、y与x的关系表达式是y=0.5x+10,故C选项符合题意;D、由C知,则当x=7时,y=13.5,即所挂物体质量为7kg时,弹簧长度为13.5cm,故D 选项不符合题意;故选:C.【点睛】本题考查了函数的概念,能够根据所给的表进行分析变量的值的变化情况,得出答案.7.D解析:D【分析】根据各个选项中假设的线段,可以分别由图象得到相应的y随x的变化的趋势,从而可以判断哪个选项是正确的.【详解】A、由图1可知,若线段BE是y,则y随x的增大先减小再增大,而由由大变小的距离小于由小变大的距离,在点A的距离是BA,在点C时的距离是BC,BA<BC,故选项A错误;B、由图1可知,若线段EF是y,则y随x的增大越来越小,故选项B错误;C、由图1可知,若线段CE是y,则y随x的增大越来越小,故选项C错误;D、由图1可知,若线段DE是y,则y随x的增大先减小再增大,而由由大变小的距离大于由小变大的距离,在点A的距离是DA,在点C时的距离是DC,DA>DC,故选项D正确;故选D.【点睛】本题考查动点问题的函数图象,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.8.B解析:B【分析】对于自变量x的每一个确定的值y都有唯一的确定值与其对应,则y是x的函数,根据函数的定义解答即可.【详解】根据函数的定义,选项A、C、D图象表示y是x的函数,B图象中对于x的一个值y有两个值对应,故B中y不是x的函数,故选:B.【点睛】此题考查函数的定义,函数图象,结合函数图象正确理解函数的定义是解题的关键. 9.D解析:D【解析】试题如图所示,当△ABC向右平移到△DEF位置时,四边形BCFE为平行四边形,C点与F点重合,此时C 在直线y=2x-6上,∵C(1,4),∴FD=CA=4,将y=4代入y=2x-6中得:x=5,即OD=5,∵A(1,0),即OA=1,∴AD=CF=OD-OA=5-1=4,则线段BC 扫过的面积S=S 平行四边形BCFE =CF•FD=16.故选D .10.B解析:B【分析】根据一次函数的图像即可求解判断.【详解】由A,C 图像可得函数y=mx+n 过一,二,三象限,故m >0,n >0,故y=nx+m 也过一,二,三象限,故A,C 错误;由B,D 图像可得函数y=mx+n 过一三四象限,故m >0,n <0,故y=nx+m 过一,二,四象限,故B 正确,D 错误;故选B.【点睛】此题主要考查一次函数的图像,解题的关键是熟知一次函数的性质.第II 卷(非选择题)请点击修改第II 卷的文字说明11.D解析:D【分析】根据乙追上甲的时间求出乙的速度可判断①,根据乙由相遇点到达B 点所用时间可确定m 的值,即可判断②,根据乙休息1h 甲所行驶的路程可判断③,由乙返回时,甲乙相距80km ,可求出两车相遇的时间即可判断④,【详解】解:由图象可知,乙出发时,甲乙相距80km ,2小时后,乙车追上甲.则说明乙每小时比甲快40km ,则乙的速度为120km/h .①正确;由图象第2﹣6小时,乙由相遇点到达B ,用时4小时,每小时比甲快40km ,则此时甲乙距离4×40=160km ,则m=160>150,②不正确;当乙在B 地停留1h 时,甲前进80km ,甲乙相距=160-80=80km ,时间=6+1=7小时,则H 点坐标为(7,80),③正确;乙返回时,甲乙相距80km ,到两车相遇用时80÷(120+80)=0.4小时,则n=7+0.4=7.4,④正确.所以正确的有①③④,故选D ,【点睛】本题考查通过分段函数图像解决问题,根据题意明确图像中的信息是解题关键, 12.D解析:D【分析】根据题意可得蓄水量为502y t =-,从而进行判断即可;【详解】设蓄水量为y 立方米,时间为t 分,则可得502y t =-, 蓄水池每分钟放水32m ,故A 不符合题意;放水18分钟后,水池中水量为35021814y m =-⨯=,故B 不符合题意; 蓄水池一共可以放水25分钟,故C 不符合题意;放水12分钟后,水池中水量为35021226y m =-⨯=,故D 符合题意;故答案选D .【点睛】本题主要考查了函数的表示方法,准确分析判断是解题的关键.二、填空题13.210【分析】根据函数图象中的数据可以求得x>120时l2对应的函数解析式从而可以求得x=150时对应的函数值由l1的图象可以求得x=150时对应的函数值从而可以计算出题目中所求问题的答案【详解】解解析:210【分析】根据函数图象中的数据可以求得x>120时,l 2对应的函数解析式,从而可以求得x=150时对应的函数值,由l 1的图象可以求得x=150时对应的函数值,从而可以计算出题目中所求问题的答案.【详解】解:设当x>120时,l 2对应的函数解析式为y=kx+b ,120480160720k b k b +=⎧⎨+=⎩ 解:6240k b =⎧⎨=-⎩故x>120时,l 2的函数解析式y=6k-240,当x=150时,y=6×150-240=660,由图象可知,去年的水价是480÷160=3(元/m 3),小明去年用水量150m 3,需要缴费:150×3=450(元),660-450=210(元),所以要比去年多交水费210元,故答案为:210【点睛】本题考查的是一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.14.y=20-2t 【分析】根据题意可得燃烧的长度为2tcm 根据题意可得等量关系:蜡烛剩余长度y=原长度-燃烧的长度根据等量关系再列出函数关系式即可【详解】由题意得:y=20−2t 故答案为y=20−2t 【解析:y=20-2t【分析】根据题意可得燃烧的长度为2tcm ,根据题意可得等量关系:蜡烛剩余长度y=原长度-燃烧的长度,根据等量关系再列出函数关系式即可.【详解】由题意得:y=20−2t ,故答案为y=20−2t.【点睛】本题考查函数关系式,解题的关键是准确获取题文信息.15.s =100t 【分析】利用路程=速度×时间用t 表示出路程s 即可【详解】解:根据题意得s =100t 故答案为s =100t 【点睛】本题考查了函数关系式:用来表示函数关系的等式叫做函数解析式也称为函数关系式注解析:s =100t【分析】利用路程=速度×时间,用t 表示出路程s 即可.【详解】解:根据题意得s =100t .故答案为s =100t .【点睛】本题考查了函数关系式:用来表示函数关系的等式叫做函数解析式,也称为函数关系式.注意:函数解析式是等式.函数解析式中,通常等式的右边的式子中的变量是自变量,等式左边的那个字母表示自变量的函数.16.【分析】根据正比例函数的增减性解答【详解】∵<0∴y 随着x 的增大而减小∵1<2∴>故答案为:>【点睛】此题考查了正比例函数的增减性:当k>0时y 随x 的增大而增大;当k<0时y 随x 的增大而减小熟练掌握解析:>【分析】根据正比例函数的增减性解答.【详解】 ∵14k =-<0, ∴y 随着x 的增大而减小,∵1<2,∴1y >2y ,故答案为:>.【点睛】此题考查了正比例函数的增减性:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小,熟练掌握正比例函数的增减性是解此题的关键.17.①②④【分析】根据题意和函数图像中的数据可以判断B点表示两车相遇的点C点表示动车先行到达终点D点表示列车达到终点进而求出动车和列车的速度再结合题中各数据逐个分析即可解答本题【详解】解:对于①:由图像解析:①②④【分析】根据题意和函数图像中的数据可以判断B点表示两车相遇的点,C点表示动车先行到达终点,D点表示列车达到终点,进而求出动车和列车的速度,再结合题中各数据逐个分析即可解答本题.【详解】解:对于①:由图像可知,甲、乙两地相距1800千米,故①说法正确;对于②:点B的实际意义是两车出发后4小时相遇,故②说法正确;对于③:C点表示动车先行到达终点,D点表示列车达到终点,普通列车的速度为:1800÷12=150(km/h),动车的速度为:(1800-150×4)÷4=300(km/h),故③说法错误;对于④:动车到达终点所需要的时间为1800÷300=6小时,故m=6,动车到达终点的6小时内,列车运行的路程为6×150=900km,此时n=1800-900=900,故④说法正确;故答案为:①②④【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,确定好B、C、D点各代表的含义,利用数形结合的思想解答.18.【分析】分类:当0≤x≤20用数量乘以单价得到付款金额y;当x>20用20的金额加上超过20本的金额得到付款金额【详解】解:当0≤x≤20y=40x;当x >20y=40×20+40×08(x-20)解析:40(020)32+160(20)x xyx x≤≤⎧=⎨>⎩【分析】分类:当0≤x≤20,用数量乘以单价得到付款金额y;当x>20,用20的金额加上超过20本的金额得到付款金额.【详解】解:当0≤x≤20,y=40x;当x>20,y=40×20+40×0.8(x-20)=32x+160;即y=() 40020 32160(20) x xx x⎧≤≤⎨+⎩>故答案为y=() 40020 32160(20)x xx x⎧≤≤⎨+⎩>.【点睛】本题考查了函数关系式:用来表示函数关系的等式叫做函数解析式,也称为函数关系式.注意:函数解析式是等式.函数解析式中,通常等式的右边的式子中的变量是自变量,等式左边的那个字母表示自变量的函数.19.【分析】首先利长方形周长公式表示出长方形的另一边长然后利用长方形的面积公式求解即可【详解】∵长方形的周长为24cm 其中一边长为xcm ∴另一边长为:(12-x )cm ∵长方形面积为∴y 与x 的关系式为y=解析:212x x -+【分析】首先利长方形周长公式表示出长方形的另一边长,然后利用长方形的面积公式求解即可.【详解】∵长方形的周长为24cm ,其中一边长为xcm ,∴另一边长为:(12-x )cm ,∵长方形面积为2cm y ,∴y 与x 的关系式为y=x(12−x)=-x 2+12x .故答案为:y=-x 2+12x【点睛】本题考查函数关系式,理解长方形的边长、周长以及面积之间的关系是关键.20.59【解析】由题意得解得a=59故答案为59解析:59【解析】 由题意得,300.29600500a -=-,解得a=59. 故答案为59. 三、解答题21.(1)答案见解析;(2)(0,95). 【分析】(1)分别作出ABC 三个顶点关于x 轴的对称点,再首尾顺次连接即可;(2)作点C 关于y 轴的对称点C ',再利用待定系数法求出BC '所在直线解析式,再令x =0,求出y ,即可求出P 点坐标.【详解】(1)如图所示111A B C △即为所求.(2)如图所示P 点即为所求,由对称可知,点C 关于y 轴的对称点C '的坐标为(2,1),设BC '所在直线解析式为y kx b =+,则3312k bk b=-+⎧⎨=+⎩,解得2595kb⎧=-⎪⎪⎨⎪=⎪⎩,即BC'所在直线解析式为2955y x=-+.当0x=时,95y=,即P点坐标为(0,95).【点睛】本题考查作图-轴对称变换以及利用待定系数法求一次函数解析式,解题的关键是掌握轴对称的定义和性质.22.(1)6/km h;(2)3km;(3)19(02)5630(2)215579()222x xy x xx x⎧⎪⎪⎪=-+<⎨⎪⎪-<⎪⎩;(4)3(2,27)2【分析】(1)由速度=路程÷时间列式求解;(2)因为甲船、乙船在逆流中行驶的速度相同,只需由图示得出甲船在逆流中行驶的时间.(3)观察图形,要分成3段讨论,每一段中已知两点,可用待定系数法确定一次函数的解析式.(4)根据等量关系:小艇脱离船中后,船顺流行驶的路程=船逆流行驶的路程+小艇漂流的路程,据此即可解答.【详解】解:(1)乙船在逆流中行驶的速度为6/km h.(2)甲船在逆流中行驶的路程为6(2.52)3()km⨯-=.(3)设甲船顺流的速度为/akm h ,由图象得23(3.5 2.5)24a a -+-=,解得9a =.当02x 时,19y x =,当2 2.5x 时,设116y x b =-+,把2x =,118y =代入,得130b =,1630y x ∴=-+,当2.5 3.5x 时,设129y x b =+,把 3.5x =,124y =代入,得27.5b =-,197.5y x ∴=-. 综上所述,19(02)5630(2)215579()222x x y x x x x ⎧⎪⎪⎪=-+<⎨⎪⎪-<⎪⎩; (4)水流速度为(96)2 1.5(/)km h -÷=,设甲船从A 港航行x 小时小艇缆绳松了. 根据题意,得9(2) 1.5(2.5)3x x -=-+,解得 1.5x =,1.5913.5⨯=,即小艇缆绳松了时甲船到A 港的距离为13.5km . ∴点C 坐标3(2,27)2. 【点睛】 此题为一次函数的应用,渗透了函数与方程的思想,要求学生要提高阅读理解水平,从中挖掘有用信息,记住船顺流航行的速度=船在静水中航行的速度+水流速度,船逆流航行的速度=船在静水中航行的速度-水流速度.23.(1)0.9y x 甲;(0100)0.820(100)x x y x x ⎧=⎨+>⎩乙;(2)乙商场. 【分析】(1)甲是单价的0.9倍,乙的需要分大于100和小于等于100两种情形计算;(2)分别代入两种表达式中计算,比较大小后,作出判断.【详解】解:(1)由题意得,0.9y x 甲, 当0100x 时,y x =乙,当100x >时,100(100)0.80.820y x x =+-⨯=+乙,由上可得,(0100)0.820(100)x x y x x ⎧=⎨+>⎩乙, (2)当300x =时,0.9300270,0.830020260y y =⨯==⨯+=甲乙此时,y y >甲乙所以,小明购买原价为300元的商品,在元旦期间,他去乙家商场购买更省钱.【点睛】本题考查了函数的表示方式,理解打折的意义,学会用分类思想表示是解题的关键. 24.(1)y =﹣x+2;(2)P (103,0)或(23,0). 【分析】(1)利用待定系数法求函数解析式;(2)先求出直线BC 与x 轴的交点坐标,然后设P (t ,0),根据三角形面积公式列方程求解.【详解】解:(1)设直线l 的解析式y =kx+b ,把点C (﹣1,3),B (0,2)代入解析式得, 23b k b =⎧⎨-+=⎩,解得12k b =-⎧⎨=⎩, ∴直线l 的解析式:y =﹣x+2;(2)把 y =0代入y =﹣x+2得﹣x+2=0,解得:x =2,则点A 的坐标为(2,0),∵S △AOB =12×2×2=2, ∴S △ACP =S △AOB =2,设P (t ,0),则AP =|t ﹣2|,∵12•|t ﹣2|×3=2,解得t =103或t =23, ∴P (103,0)或(23,0).【点睛】本题考查一次函数与几何图形,掌握一次函数的性质利用数形结合思想解题是关键.25.(1)y =12x+15(x≥0);(2)50min . 【分析】 (1)根据图象中坐标,利用待定系数法求解;(2)根据分析可知:当x 大于20时,两个气球的海拔高度可能相差15m ,从而列方程求解【详解】解:(1)设乙气球的函数解析式为:y =k x+b ,分别将(0,15),(20,25)代入,152520b k b=⎧⎨=+⎩, 解得:1215k b ⎧=⎪⎨⎪=⎩,∴乙气球的函数解析式为:y =12x+15(x≥0); (2)由初始位置可得:当x 大于20时,两个气球的海拔高度可能相差15m ,且此时甲气球海拔更高,甲气球的函数解析式为:y =x+5∴x+5﹣(12x+15)=15, 解得:x =50,∴当这两个气球的海拔高度相差15m 时,上升的时间为50min .【点睛】本题考查了一次函数的实际应用,解题的关键是结合实际情境分析函数图象. 26.(1)y =4x -2;(2)x =0.【分析】(1)根据正比例函数定义设设y=k(2x -1),将数值代入计算即可;(2)将y=-2代入(1)的函数解析式求解.【详解】解:(1)设y=k(2x -1),当x =3时,y =10,∴5k=10,解得k=2,∴y 与x 之间的函数关系式是y =4x -2;(2)当y=-2时4x -2=-2,解得x =0.【点睛】此题考查正比例函数的定义,求函数解析式,已知函数值求自变量,正确理解正比例函数的定义是解题的关键.。
苏科版-数学-八年级上册-如何用一次函数解决几何图形的面积问题?

初中-数学-打印版
如何用一次函数解决几何图形的面积问题?
如何用一次函数解决几何图形的面积问题?
难易度:★★★★
关键词:一次函数的图像
答案:
首先要根据题意画出草图,结合图形分析其中的几何图形,再求出相应的几何图形的面积。
【举一反三】
典例:如图,点A,B,C,D在一次函数y=-2x+m的图象上,它们的横坐标依次为-1,1,2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是()
A、1
B、3
C、3(m-1)
D、
思路导引:设AD⊥y轴于点D;BE⊥y轴于点E;BF⊥CF于点F,然后求出A、B、C、D、E、F、G各点的坐标,计算出长度,利用面积公式即可计算出.由题意可得:A点坐标为(-1,2+m),B点坐标为(1,-2+m),C点坐标为(2,m-4),D点坐标为(0,2+m),E点坐标为(0,m),F点坐标为(0,-2+m),G点坐标为(1,m-4).所以,DE=EF=BG=2+m-m=m-(-2+m)=-2+m-(m-4)=2,又因为AD=BF=GC=1,所以图中阴影部分的面积和等于 12×2×1×3=3.故选B.
标准答案:B
初中-数学-打印版。
苏科版-数学-八年级上册-如何利用分段函数解决一次函数实际问题?

初中-数学-打印版
如何利用分段函数解决一次函数实际问题?
如何利用分段函数解决一次函数实际问题?
难易度:★★★
关键词:分段函数
答案:
分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际。
【举一反三】
典例:将装有牛奶250毫升的玻璃杯放在已归零的磅秤上,测得重量为500千克.若喝掉一些牛奶后,以x毫升表示杯中牛奶的体积,y公克表示磅秤测得的重量,则下列哪一个图形可以表示x、y的关系()
A、B、C、D、
思路导引:本题考查一次函数的图象,注意本题中的y与x的变化关系与所隐含的条件.根据题意,首先计算可得玻璃杯的重量,进而由日常生活知识可得y与x之间的关系,分析选项可得答案.根据题意,将装有牛奶250毫升的玻璃杯放在已归零的磅秤上,测得重量为500公克;可得玻璃杯的重量为250公克,又有牛奶的体积与磅秤测得的重量成一次函数的关系;其图象为一条直线,且y随x增大而增大;分析可得答案为A.
标准答案:A
初中-数学-打印版。
苏科版数学八年级上册《平方根与算数平方根》典型例题

苏科版数学八年级上册《平方根与算数平方根》典型例题 重难点易错点辨析
的平方根是 .
考点:平方根与算术平方根
题二:已知()b c 2490++-=,求
考点:算术平方根的非负性
金题精讲
的平方根是 . 考点:算术平方根
题二:已知实数a 满足a a 2014-+,则a 22014-= . 考点:非负性
题三:一个数的平方根分别是5a +3和2a
3,则这个数为 . 考点:平方根的性质
题四: 1.162,
3.674≈≈,
考点:平方根的性质
思维拓展
题一:解方程:()x 221171--=.
考点:特殊的一元二次方程
平方根与算术平方根
讲义参考答案
重难点易错点辨析
题一:±2.题二:5.
金题精讲
题一:±2.题二:2015.题三:9.题四:367.4,±0.1162.
思维拓展
题一:7,5.。
苏科版八年级数学上册第六章《一次函数》综合提优测试(含答案)

A.y=3八上数学第六章综合提优测试(时间:90分钟满分:100分)一、选择题(每题2分,共26分)1.在圆的周长C=2R中,常量与变量分别是().A.2是常量,C、、R是变量 B.2是常量,C、R是变量C.C、2是常量,R是变量D.2是常量,C、R是变量2.如果每盒圆珠笔有12枝,售价18元,那么购买圆珠笔的总金额y(元)与购买圆珠笔的数量x(枝)之间的关系是().2x B.y=x C.y=12x D.y=18x233.图中的折线ABCDE描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s(km)和行驶的时间t(h)之间的函数关系,根据图中提供的信息.给出下列说法:①汽车共行驶了120km;②汽车在行驶途中停留了0.5h;③汽车在整个行驶过程中的平均速度为803km/h;④汽车自出发后3~4.5h之间行驶的速度在逐渐减少.其中正确的说法有()A.1个B.2个C.3个D.4个4.下列函数:①y=x;②y=2x+11;③y=x2+x+1;④y=1x中.是关于x的一次函数的有().A.4个B.3个C.2个D.1个5.函数y=(m2)x n-1+n是关于x的一次函数,m,n应满足的条件是().A.m≠2且n=0B.m=2且n=2C.m≠2且n=2D.m=2且n=06.若点(3,m)在函数y=13x+2的图象上.则m的值为().A.0B.1C.2D.37.下列图象中,表示一次函数y=mx+n与正比例函数y=mx(m,n是常数且mn≠0)图象的是().A.x y20,8.在平面直角坐标系中,已知点A(4,0),B(2,0),若点C在一次函数y=12x+2的图象上,且△ABC为直角三角形.则满足条件的点C有().A.1个B.2个C.3个D.4个9.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象.如图所示,则所解的二元一次方程组是().2x y10,B.3x2y103x2y10C.2x y10,3x2y50D.x y20,2x y1010.弹簧的长度y(cm)与断挂物体的质量x(kg)为一次函数的关系,如图所示.由图象可知,不挂物体时.弹簧的长度为().A.7cm B.8cmC.9cm D.10cm11.某游客为了爬上3km高的山顶看日出,先用了1h爬了2km,休息0.5h后,再用1h爬上山顶,游客爬山所用的时间t(h)与山高h(km)间的函数关系用图象表示是().12.以下四条直线中,与直线y=2x+3相交于第三象限的是直线().A.y=2x1B.y=x+3C.y=x+2D.y=x413.一次函数y=kx+b,当3≤x≤1时.对应的y值为l≤y≤9,则kb的值为().A.14 B.6C.1和21D.6和142二、填空题(每题 3 分,共 27 分)14.已知函数:①y=0.3x 7;②y= 2x+5;(9y=4 3x ; ④y= x ;⑤y=3x ;⑥y= (1 x).其中,y 值随 x 值增大而增大的函数是________.(写出序号) 15.点( 5,y 1)和点( 2,y 2)都在直线 y= 2x 上,则 y 1 与 y 2 的大小关系是________. 16.已知 m 是整数,且一次函数 y=(m +4)x+m +2 的图象不经过第二象限,则 m =_______.17.在一次函数 y= 1 1x+ 的图象上,和 x 轴的距离等于 1 的点的坐标是__________.2 22 7 2 1 18 .两直线 l :y= x 与 l : y = x 的交点坐标可以看作是二元一次方程组1 5 5 3 3_________的解.19.若直线 y= x+a 和直线 y=x+b 的交点坐标为(m ,8).则 a+b=_________. 20.一次函数 y=kx+b 的图象经过点(0,4),且与两坐标轴所围成的三角形的面积为 8,则 k=________,b=__________21.如图,OA 、BA 分别表示甲、乙两名学生运动的一次函数图象,图中 s(m )和 t(s)分别表示运动路程和时间,根据图象,判断快者的速度 比慢者的速度每秒快____________.22.已知一次函数 y=(n 4)x+(4 2m )和 y=(n+1)x+m 3,(1)若它们的图象与 y 轴的交点分别是点 P 和点 Q .若点 P 与点 Q 关 于 x 轴对称,m 的值为__________;(2)若这两个一次函数的图象交于点(1,2),则,m ,n 的值为_________. 三、解答题(第 23~26 题每题 9 分,第 27 题 11 分,共 47 分) 23.已知函数 y=(1 2m )x+m +1 ,求当 m 为何值时. (1)y 随 x 的增大而增大?(2)图象经过第一、二、四象限? (3)图象经过第一、三象限?(4)图象与 y 轴的交点在 x 轴的上方?24.已知一次函数y=kx+b的图象经过点(1,5),且与正比例函数y=点(2,a).求:(1)a的值;(2)k,b的值;(3)这两个函数图象与x轴所围成的三角形面积.12x的图象相交于25.如图,点A的坐标为(4,0).点P是直线y=12x+3在第一象限内的点,过P作PM x轴于点M,O是原点.(1)设点P的坐标为(x,y),试用它的纵坐标y表示△OP A的面积S;(2)S与y是怎样的函数关系?它的自变量y的取值范围是什么?(3)如果用P的坐标表示△OP A的面积S,S与x是怎样的函数关系?它的自变量的取值范围是什么?(4)在直线y=12x+3上求一点Q,使△QOA是以OA为底的等腰三角形.26.我国是世界上严重缺水的国家之一.为了增强居民节水意识.某市自来水公司对居民用水采用以户为单位分段汁费办法收费.即一月用水10t以内(包括10t)的用户.每吨收水费a元,一月用水超过10t的用户,10t水仍按每吨a元收费,超过10t的部分,按每吨b元(b>a)收费.设一户居民月用水x(t),应缴水费y(元).y与x之间的函数关系如图所示.(1)求a的值,某户居民上月用水8t.应收水费多少元?(2)求b的值,并写出当x>10时.y与x之间的函数关系式;(3)已知居民甲上月比居民乙多用水4t.两家共收消费46元.求他们上月分别用水多少吨?27.夏天容易发生腹泻等肠道疾病。
八年级数学上册第6章一次函数6-1函数第1课时函数的有关概念习题课件新版苏科版

0.4
x和y
是常量,
1
2
3
,这个问题
4
5
6
是变量.
7
8
9
10
4. “早穿皮袄,午穿纱”这句谚语反映了我国新疆地区一天
中,
气温
随
1
时间
2
3
变化而变化.
4
5
6
7
8
9
10
5. 汽车开始行驶时,油箱中有油55升,如果每小时耗油7
升,则油箱内剩余油量 y (升)与行驶时间 t (小时)的关系式
为
y =-7 t +55
积为 y cm2.
(1)求 y 与 x 之间的函数表达式;
1
2
3
4
5
6
7
8
9
10
解:(1)∵△ ABC 的面积是12 cm2, BC =6 cm,
∴ BC 边上的高为4 cm,
∴ y 与 x 之间的函数表达式为 y = x ×4=2 x (0≤
x ≤6).
1
2
3
4
5
6
7
8
9
10
(2)用表格表示在 x 的值从1增加到6的过程中(每次增加
车在刹车后还要继续向前滑行一段距离才能停止,这段
距离称为“刹车距离”.为了测定某种型号小型载客汽车
的刹车性能(车速不超过140 km/h),对这种型号的汽车
进行了测试,测得的数据如下表:
刹车时车速
v/(km/h)
0
10
20
30
40
刹车距离s/m
0
2.5
5
7.5
10
1
一次函数的图像和性质压轴题八种模型全攻略—2023-2024学年八年级数学上册(苏科版)(解析版)

一次函数的图像和性质压轴题八种模型全攻略【考点导航】目录【典型例题】 (1)【考点一 正比例函数的图像和性质】 (1)【考点二 画一次函数的图像】 (3)【考点三 一次函数的图像和性质】 (7)【考点四 已知函数经过的象限求参数范围】 (9)【考点五 根据一次函数增减性求参数】 (11)【考点六 比较一次函数值的大小】 (12)【考点七 一次函数图像与坐标轴的交点问题】 (14)【考点八 一次函数图像的平移问题】 (17)【过关检测】 (18)【典型例题】【考点一 正比例函数的图像和性质】例题:(2023春·黑龙江哈尔滨·八年级校考期中)关于函数5y x =−,下列判断正确的是( ) A .图象必过()1,5−−B .图象经过第一、三象限C .y 随x 的增大而减小D .不论x 取何值总有0y > 【答案】C【分析】利用一次函数图象上点的坐标特征,可得出函数5y x =−的图象不过点()1,5−−;由50k =−<,利用正比例函数的性质,可得出函数5y x =−的图象经过第二、四象限;由50k =−<,利用正比例函数的性质,可得出y 随x 的增大而减小;利用不等式的性质,可得出当0x <时,0y >.【详解】解:A .当=1x −时,5(1)5y =−⨯−=,55≠−,∴函数5y x =−的图象不过点()1,5−−,选项不符合题意;B .50k =−<,∴函数5y x =−的图象经过第二、四象限,选项不符合题意;C .50k =−<,y ∴随x 的增大而减小,选项符合题意;D .当0x <时,50y x =−>,选项不符合题意.故选:C .【点睛】本题考查了一次函数图象上点的坐标特征以及正比例函数的性质,逐一分析各选项的正误是解题的关键.【变式训练】A .2k =−B .图象必经过点()12−,C .图象不经过原点D .y 随x 的增大而减小【答案】D【详解】解:A .正比例函数2x y =−的12k =−,故选项错误,不符合题意;B .将()12−,代入解析式得,122≠,故本选项错误,不合题意;C .正比例函数2x y =−的图象过原点,故本选项错误,不合题意; D .由于函数图象过二、四象限,则函数值y 随x 的增大而减小,故本选项正确,符合题意. 故选:D .【点睛】本题考查了正比例函数的性质,熟悉函数的图象及系数与图象的关系是解题的关键.A .函数图象经过点()1,3B .函数图象经过第一、三象限C .y 随x 的增大而减小D .不论x 为何值,总有0y >【答案】B【分析】直接根据正比例函数的图象与性质特点逐项判断即可得.【详解】解:A 、当1x =时,133y =≠,则函数图象不经过点()1,3,此项错误,不符合题意;B 、函数13y x =中的103k =>,则函数图象经过第一、三象限,此项正确,符合题意;C 、函数13y x =中的103k =>,则y 随x 的增大而增大,此项错误,不符合题意;D 、只有当0x >时,0y >,则此项错误,不符合题意;故选:B .【点睛】本题考查了正比例函数的图象与性质,熟练掌握正比例函数的图象与性质是解题关键.【考点二 画一次函数的图像】【答案】(1)见解析(2)在【分析】(1)根据函数图象与x ,y 轴的坐标交点坐标,画出图象即可;(2)根据平移的特点得出解析式,进而解答.【详解】(1)解:列表:过点()2,0和点()0,2−画出直线2y x =−,;(2)解:把函数2y x =−图象向上平移3个单位,得函数的解析式为1y x =+,当3x =−时,312y =−+=−,∴点()3,2−−在平移后的直线上.【点睛】本题考查一次函数与几何变换,关键是根据函数图象与x ,y 轴的坐标交点画出图象.【变式训练】(2)判断点()3,1A 是否在该函数的图象上,开说明理由.【答案】(1)4−,2(2)点()3,1A 不在该函数的图象上,理由见解析【分析】(1)分别将0x =,0y =代入函数解析式中,求出与之对应的y ,x 的值,再描点,连线,即可画出函数图象;(2)将3x =代入函数解析式中,求出对应的y 值,再与1y =进行比较即可得出结论.【详解】(1)解:当0x =时,2044y =⨯−=−,当0y =时,240x −=,解得:2x =,画出函数图象,如图所示,故答案为:4−,2;(2)解:点()3,1A 不在该函数的图象上,理由如下:当3x =时,2342y =⨯−=,21≠,∴点()3,1A 不在该函数的图象上.【点睛】本题主要考查一次函数图象上点的坐标特征、一次函数的图象,熟知直线上任意一点的坐标都满足该直线解析式时解题关键.判断)2.541325).3(()(A B C −−,,,,,是否在函数21y x =+的图象上.【答案】实数;见解析;点A 、B 在函数21y x =+的图象上,点C 不在函数21y x =+的图象上【分析】一次函数的自变量取值为实数;把自变量x 的值代入解析式21y x =+,求出y 的值;描点、连线画出一次函数的图象;把)2.541325).3(()(A B C −−,,,,,代入解析式21y x =+,通过等式是否成立判断是否是直线上的点. 【详解】解:函数21y x =+的自变量x 的取值范围是实数;故答案为:实数;列表:描点、连线,画出一次函数的图象如图:把)2.541325).3(()(A B C −−,,,,,代入解析式21y x =+, 2.5214−⨯+=−;1213⨯+=2.52163⨯+=≠,∴点A 、B 在函数21y x =+的图象上.【点睛】本题考查了一次函数的图象与图象上的点,解题的关键是掌握一次函数的图象与一次函数图象上点的特点.【考点三 一次函数的图像和性质】 例题:(2023春·福建泉州·八年级福建省泉州市培元中学校考期中)下列描述一次函数34y x =−+的图象及性质错误的是( )A .直线与x 轴交点坐标是()0,4B .y 随x 的增大而减小C .直线经过第一、二、四象限D .当0x <时,4y <【答案】A【分析】根据一次函数的性质解答即可.【详解】A. 直线与x 轴交点坐标是4,03⎛⎫ ⎪⎝⎭,符合题意; B. y 随x 的增大而减小,不符合题意;C. 直线经过第一、二、四象限,不符合题意;D. 当0x <时,4y <,不符合题意;故选A .【点睛】本题考查了一次函数的性质和图像分布,熟练掌握性质是解题的关键.【变式训练】1.(2023春·浙江台州·八年级统考期末)对于一次函数2y x =−+,下列说法正确的是( )A . y 随x 的增大而增大B .它的图象过点()11,C .它的图象过第一、二、三象限D .它的图象与x 轴的交点坐标为()20−,【答案】B【分析】由10k =−<,20b =>,可得y 随x 的增大而减小,图象过第一、二、四象限,进而可判断A 、C 的正误;当1x =时,121y =−+=,则图象过点()11,,进而可判断B 的正误;当0y =时,02x =−+,解得2x =,则图象与x 轴的交点坐标为()20,,进而可判断D 的正误.【详解】解:∵10k =−<,20b =>,∴y 随x 的增大而减小,图象过第一、二、四象限,A 、C 错误,故不符合要求;当1x =时,121y =−+=,∴图象过点()11,,B 正确,故符合要求;当0y =时,02x =−+,解得2x =,∴图象与x 轴的交点坐标为()20,,D 错误,故不符合要求; 故选:B .【点睛】本题考查了一次函数的图象与性质,图象与坐标轴的交点.解题的关键在于对知识的熟练掌握与灵活运用.2.(2023春·广西桂林·八年级校考阶段练习)对于函数1y x =−,下列结论不正确的是( ) A .图象经过点()1,2−−B .图象不经过第一象限C .图象与y 轴交点坐标是()0,1−D .y 的值随x 值的增大而增大 【答案】C【分析】根据一次函数的性质及函数图像上点满足函数解析式逐个判断即可得到答案;【详解】解:由题意可得,当=1x −时,112y =−−=−,故A 正确,当0x =时,011y =−=−,故C 正确,∵10k =>,10b =−<,∴y 的值随x 值的增大而增大,图像经过一,三,四象限,故D 正确C 错误,故选C ;【点睛】本题考查一次函数的性质,解题的关键是熟练掌握0k >过一三象限,y 的值随x 值的增大而增大,0b <向下平移.3.(2023秋·四川成都·八年级统考期末)关于一次函数23y x =−+,下列结论正确的是( ) A .图象不经过第二象限B .图象与x 轴的交点是()0,3C .将一次函数23y x =−+的图象向上平移3个单位长度后,所得图象的函数表达式为26y x =−+D .点()11,x y 和()22,x y 在一次函数23y x =−+的图象上,若12x x <,则12y y <【答案】C【分析】根据一次函数的图象与性质,逐项判断即可作答.【详解】A .20−<,30>,一次函数图象经过第一、二、四象限,故本项原说法错误;B .图象与y 轴的交点是()0,3,故本项原说法错误;C .将一次函数23y x =−+的图象向上平移3个单位长度后,所得图象的函数表达式为26y x =−+,故本项说法正确;D.点()11,x y 和()22,x y 在一次函数23y x =−+的图象上,若12x x <,则12y y >,故本项原说法错误; 故选:C .【点睛】本题主要考查了一次函数的图象与性质,掌握一次函数的图象与性质,是解答本题的关键.【考点四 已知函数经过的象限求参数范围】 例题:(2023春·河南洛阳·八年级统考期末)若一次函数y x b =−+(b 为常数)的图象经过第一、二、四象限,则b 的值可以为 .(写出一个即可)【答案】1(答案不唯一)【分析】根据一次函数的图象经过第一、二、四象限判断出b 的符号,再找出符合条件的b 的可能值即可.【详解】解:∵一次函数y x b =−+的图象经过第一、二、四象限,1k =−,∴0b >,故答案是:1(答案不唯一).【点睛】本题考查了一次函数的图象与性质,对于一次函数y kx b =+(k 为常数,0k ≠),当0k >时,y 随x 的增大而增大;当0k <时,y 随x 的增大而减小.当0b >,图象与y 轴的正半轴相交,当0b <,图象与y 轴的负半轴相交,当0b =,图象经过原点.【变式训练】1.(2023·河南周口·河南省淮阳中学校考三模)若一次函数3y kx k =−+不经过第二象限,则k 的取值范围为 .【答案】3k ≥【分析】根据图象在坐标平面内的位置关系确定k 的取值范围,从而求解.【详解】∵一次函数3y kx k =−+的图象不经过第二象限,∴一次函数3y kx k =−+的图象经过第一、三、四象限或者过第一、三象限,∴0k >且30k −+≤,解得3k ≥.故答案为:3k ≥.【点睛】本题主要考查一次函数图象在坐标平面内的位置与k b 、的关系.解答本题注意理解:直线y kx b =+所在的位置与k b 、的符号有直接的关系.需要特别注意不经过第二象限可能只经过第一、三象限. 2.(2023春·山东日照·八年级校考期中)一次函数(5)4y m x m =−+−的图象不经过第三象限,则m 的取值范围是 ;【答案】45m ≤≤【分析】分直线不是一次函数、直线经过第二、四象限和直线经过第一、二、四象限三种情况考虑,利用一次函数图象与系数的关系,即可得出关于m 的不等式(或方程),解之即可得出m 的取值范围.【详解】解:分三种情况考虑.当50m −=,即5m =时,直线为1y =,不经过第三象限,符合题意;当直线(5)4y m x m =−+−经过第二、四象限时,5040m m −<⎧⎨−=⎩,解得:4m =;当直线(5)4y m x m =−+−经过第一、二、四象限时,5040m m −<⎧⎨−>⎩,解得:45m <<.m ∴的取值范围是45m ≤≤.故答案为:45m ≤≤.【点睛】本题考查了一次函数图象与系数的关系,分直线不是一次函数、直线经过第二、四象限和直线经过第一、二、四象限两种情况,求出m 的取值范围(或m 的值)是解题的关键.3.(2023春·山东菏泽·八年级统考期末)已知一次函数2y x b =+的图象经过第一、三、四象限,则函数y bx b =−的图象经过的象限是 .【答案】一、二、四【分析】先根据一次函数2y x b =+的图象经过第一、三、四象限判断b 的取值范围,再判断函数y bx b =−的图象经过的象限.【详解】∵一次函数2y x b =+的图象经过第一、三、四象限, ∴0b <,0b −>,∴函数y bx b =−的图象经过一、二、四象限. 故答案为:一、二、四.【点睛】本题考查了一次函数的图象与性质,对于一次函数y kx b =+(k 为常数,0k ≠),当0k >时,y 随x 的增大而增大;当0k <时,y 随x 的增大而减小.当0b >,图象与y 轴的正半轴相交,当0b <,图象与y 轴的负半轴相交,当0b =,图象经过原点.【考点五 根据一次函数增减性求参数】例题:(2023春·四川巴中·八年级校考阶段练习)若一次函数()23y m x =−−,y 随x 增大而减小,则m 的取值范围为 . 【答案】2m <【分析】根据一次函数的性质y 随x 的增大而减小得到20m −<,即可得到答案. 【详解】解:∵一次函数()23y m x =−−,若y 随x 的增大而减小,∴20m −<, ∴2m <,故答案为:2m <.【点睛】此题考查了一次函数的性质:当0k >时,图象过第一、三象限,y 随x 的增大而增大;当0k <时,图象过二、四象限, y 随x 的增大而减小. 【变式训练】1.(2023春·青海果洛·八年级统考期末)若一次函数4y kx =−的函数值y 随x 的增大而增大,则k 的值可能是 .【答案】1(答案不唯一)【分析】根据一次函数的性质,若y 随x 的增大而增大,则比例系数大于0. 【详解】解:∵4y kx =−的函数值y 随x 的增大而增大, ∴0k >,则k 的值可能是1,故答案为:1(答案不唯一).【点睛】本题考查了一次函数的性质,要知道,在直线y kx b =+中,当0k >时,y 随x 的增大而增大;当0k <时,y 随x 的增大而减小.2.(2023春·上海虹口·八年级统考期末)已知一次函数()12=−+y m x 图像上两点()11,A x y ,()22,B x y ,当12x x <时,12y y >,那么m 的取值范围是 .【答案】>1m【分析】根据题意可得y 随x 的增大而减小,可得10m −<,从而可得答案. 【详解】解:∵一次函数()12=−+y m x 图像上两点()11,A x y ,()22,B x y ,当12x x <时,12y y >,∴y 随x 的增大而减小, ∴10m −<, 解得:>1m , 故答案为:>1m .【点睛】本题考查的是一次函数的性质,熟记一次函数的增减性是解本题的关键.【答案】3a >【分析】根据一次函数的图像()32y a x =−−+,当()30a −−<时,y 随x 的增大而减小分析即可.【详解】解:当12x x >时,12y y <,y 随x 的增大而减小,()30a ∴−−<,3a ∴>,故答案为:3a >.【点睛】本题考查了一次函数图像上点的坐标特征,一次函数的性质,熟练掌握一次函数的性质是解题的关键.【考点六 比较一次函数值的大小】例题:(2023春·广西南宁·八年级校考阶段练习)若点()15,A y ,()22,B y 在一次函数25y x =−+的图象上,则1y 2y .(填“>”或“<”或“=”) 【答案】<【分析】利用一次函数的增减性判断即可.【详解】解:由题可知,一次函数25y x =−+,20k =−<,y 随x 的增大而减小, ∵52>, ∴12y y <, 故答案为:<.【点睛】本题考查利用一次函数的增减性判断函数值的大小问题,准确判断函数的增减性是解题关键. 【变式训练】1.(2023春·湖南岳阳·八年级统考期末)已知一次函数24y x =+的图象经过点()2,a −,()4,b −,则a b (填“>”,“<”或“=”) 【答案】>【分析】根据一次函数图象的增减性进行判断. 【详解】解:∵一次函数24y x =+中的20>, ∴该函数图象是直线,且y 的值随 ∵24−>−, ∴a b >故答案为:>.【点睛】本题考查了一次函数图象上点的坐标特征.解题时,利用了一次函数图象的性质.2.(2023春·山东滨州·八年级统考期中)已知点()12,y −,()21,y −都在直线3y x b =−+上,则1y 2y (填“>”“<”“=”). 【答案】>【分析】根据直线3y x b =−+的k 值,确定直线的增减性,再利用两点的横坐标大小判断1y 和2y 的大小.【详解】解:3y x b =−+中,30k =−<,y∴随x 增大而减小.又21−<−,则12y y >. 故答案为:>.【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的性质,熟练掌握一次函数的增减性是解答的关键.【答案】>【分析】根据非负数的性质求出3a =−,12b =,得到一次函数132y x =−+,进而求出1y 和2y 的值,比较1y 和2y 的大小即可得到答案.【详解】解:()230a +=Q ,30a ∴+=,210b −=, 3a ∴=−,12b =,∴一次函数132y x =−+,点()112P y −,,点()226P y ,是一次函数y ax b =+的图象的两个点,()11133222y ∴=−⨯−+=,21353622y =−⨯+=−,1y ∴与2y 为的大小关系是12y y >,故答案为:>.【点睛】本题考查了非负数的性质,一次函数值的大小比较,熟练掌握相关知识点是解题关键.【考点七 一次函数图像与坐标轴的交点问题】【答案】()20, ()02−,【分析】令0x =,解得y ,令0y =,解得x ,即为函数与y 轴、x 轴交点坐标.【详解】解:令0y =,即20x −=,解得2x =, ∴与x 轴的交点坐标为()20,.令02x y ==−,, ∴与y 轴的交点坐标为()02−,.故答案为:()20,,()02−,.【点睛】本题考查了一次函数图象上点的坐标特征,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键. 【变式训练】1.(2023春·山东临沂·八年级统考期末)在平面直角坐标系中直线36y x =+与x 轴、y 轴所围成的三角形的面积是 . 【答案】6【分析】设直线36y x =+与x 轴、y 轴分别交于A 、B 两点,求出A 和B 的坐标得到OA 和OB 的长,即可求解.【详解】解:设直线36y x =+与x 轴、y 轴分别交于A 、B 两点,∴()20A −,,()06B ,,∴26OA OB ==,, ∵90AOB ∠=︒, ∴162AOB S OA OB =⋅=△,故答案为:6.【点睛】本题主要考查了一次函数与坐标轴围成的面积,解题的关键在于能够准确求出一次函数与坐标轴的交点坐标.2.(2023春·黑龙江鹤岗·八年级统考期末)直线y kx b =+经过点()03,,且与两坐标轴构成的直角三角形的面积是6,则k 为 . 【答案】34±【分析】直线y kx b =+与y 轴交于点()03,,分别求出直线3y kx =+与x 轴、y 轴的交点坐标,然后应用面积计算即可.【详解】解:直线y kx b =+与y 轴交于点()03,,3b ∴=,3y kx ∴=+,当0y =时,即30kx +=,解得3x k =−,直线3y kx =+与x 轴交于点30⎛⎫− ⎪⎝⎭,k , 由题意得13632k ⨯⨯−=,整理得34k =,即34k =±,故答案为:34±.【点睛】本题考查了一次函数与坐标轴围成图形的面积问题;解题的关键是用参数表示坐标轴与直线的交点坐标及相应线段的值.【分析】根据一次函数解析式得出23k OA k −=,23OB k =−+,然后代入化简即可.【详解】解:23y kx k =−+,∴当0y =时,32x k =−+,当0x =时,23y k =−+,∴3232k OA k k −=−+=,23OB k =−+, ∴2323232312332232323k k k OA OB k k k k k −+=+=−==−−−−−,故答案为:1.【点睛】题目主要考查一次函数与坐标轴的交点及求代数式的值,熟练掌握一次函数的性质是解题关键.【考点八 一次函数图像的平移问题】例题:(2023春·福建泉州·八年级福建省泉州市培元中学校考期中)把函数34y x =−向上平移3个单位长度后,所得函数的解析式为 . 【答案】31y x =−【分析】一次函数图象平移:上下平移后解析式变化,对函数值上加下减.【详解】解:34y x =−向上平移个单位长度得函数的解析式为34331y x x =−+=−; 故答案为:31y x =−【点睛】本题考查一次函数的平移,掌握图象平移后解析的变化规则是解题的关键. 【变式训练】【答案】2【分析】先根据平移规律求出直线3y x b =+向上平移3个单位后的直线解析式,再把点()0,5代入,即可求出b 的值.【详解】将直线3y x b =+向上平移3个单位后得到直线33y x b =++, 把点()0,5代入,得53b =+,故答案为:2.【点睛】本题考查了一次函数图象与几何变换,一次函数图象上点的坐标特征,正确求出平移后的直线解析式是解题的关键.2.(2023春·云南临沧·八年级统考期末)将一次函数32y x =+的图像先向左平移3个单位长度,再向下平移1个单位长度后得到的函数解析式为 .【答案】310y x =+【分析】根据“上加下减、左加右减”的原则进行解答即可.【详解】解:将一次函数32y x =+的图像先向左平移3个单位长度,再向下平移1个单位长度后得到的函数解析式为:()3321y x =++−,即310y x =+,故答案为:310y x =+.【点睛】本题考查的是二次函数的图像与几何变换,熟知函数图像平移的法则是解答此题的关键.【过关检测】一、单选题1.(2022秋·广东清远·八年级统考期中)一次函数2y x =−的图象不经过( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】B【分析】根据一次函数的图象和性质,即可求解. 【详解】解:∵一次函数2y x =−中10,20k b =>=<, ∴此函数的图象经过一、三、四象限,不经过第二象限. 故选:B .【点睛】本题主要考查了一次函数的图象,熟练掌握一次函数()0y kx b k =+≠,当0,0k b >>时,一次函数图象经过第一、二、三象限;当0,0k b ><时,一次函数图象经过第一、三、四象限;当0,0k b <>时,一次函数图象经过第一、二、四象限;当0,0k b <<时,一次函数图象经过第二、三、四象限是解题的关键.2.(2023春·云南红河·八年级统考期末)直线3y x =−与x 轴的交点坐标是( ) A .(0,3) B .(2,1) C .(1,3)− D .(3,0)【答案】D【分析】令0y =,求出的值即可得出结论. 【详解】解:令0y =,则3x =,∴直线3y x =−与x 轴的交点坐标为(3,0).故选:D .【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.3.(2022秋·河北廊坊·九年级校考开学考试)把直线21y x =−向左平移1个单位长度,再向上平移2个单位长度,则平移后所得直线的解析式为( ) A .23y x =+ B .32y x =+C .24y x =+D .21y x =+【答案】A【分析】直接利用一次函数的平移规律即可解答.【详解】解:把直线21y x =−向左平移1个单位长度,再向上平移2个单位长度,则平移后所得直线的解析式为()2112y x =+−+.即23y x =.故选:A .【点睛】本题主要考查了一次函数与几何变换,正确掌握平移规律是解题关键.【答案】C【分析】求出点M 关于y 轴对称点的坐标,然后代入正比例函数进行求解即可. 【详解】解:由点()1,2M 关于y 轴对称的点的坐标为()1,2-,∴322k −−=,解得:43k =−;故选C .【点睛】本题主要考查正比例函数的图象与性质,熟练掌握正比例函数的图象与性质是解题的关键. 5.(2022秋·湖南长沙·九年级校考开学考试)下列关于一次函数23y x =+的说法中,正确的是( ) A .图象经过第一、二、四象限 B .y 随x 的增大而减小 C .当 1.5x >−时,0y < D .图象与y 轴交于点()0,3【答案】D【分析】根据题目中的函数解析式和一次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:一次函数23y x =+,20k =>,30=>b , ∴该函数图象经过第一、二、三象限,故选项A 不符合题意;y 随x 的增大而增大,故选项B 不符合题意;当 1.5x >−时,0y >,故选项C 不符合题意;当0x =时,3y =,则图象与y 轴交于点(0,3),故选项D 符合题意; 故选:D .【点睛】此题考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质是解题的关键.【答案】A【分析】根据一次函数()10y kx k =+≠与y 轴交于()0,1,结合与坐标轴围成的三角形的面积为2,分与x 轴的交点坐标()4,0−或()4,0两种情况讨论,求出k 的值,结合一次函数的图象与性质,逐项判断,选择答案即可.【详解】解:∵一次函数()10y kx k =+≠与坐标轴围成的三角形的面积为2,∴一次函数()10y kx k=+≠与y轴交于()0,1,∴一次函数的图象直线与x轴的交点坐标有()4,0−或()4,0两种情况,当交点坐标为()4,0−时,410k−+=,解得:14k=;当交点坐标为()4,0时,410k+=,解得:14k=−,∴A选项正确;当14k=−时,y的值随x的增大而减小,故B选项不正确;当14k=−时,该函数图象经过第一、二、四象限,故C选项不正确;当14k=−时,在40x−≤≤的范围内,当4x=−时,取得最大值2y=,故D选项不正确.故选:A.【点睛】本题考查了一次函数的图象与性质,分类讨论求解出k的值是解题的关键.二、填空题【答案】5−【分析】将点()1,2-代入3y x n=+,即可求解.【详解】解:将点()1,2-代入3y x n=+得:23n−=+,解得:5n=−,故答案为:5−.【点睛】本题主要考查了求一次函数解析式,解题的关键是掌握用待定系数法求一次函数解析式的方法和步骤.【答案】 1,02⎛⎫ ⎪⎝⎭ ()0,1− 14【分析】分别令0x =,0y =,求出直线21y x =−与x 轴的交点坐标是1,02⎛⎫ ⎪⎝⎭;与y 轴的交点坐标是()0,1−,即可求解.【详解】解:令0x =,1y =−,令0y =,210x −=, 解得:12x =, ∴直线21y x =−与x 轴的交点坐标是1,02⎛⎫ ⎪⎝⎭;与y 轴的交点坐标是()0,1−,∴与坐标轴围成的三角形面积为1111224⨯⨯=. 故答案为:1,02⎛⎫ ⎪⎝⎭;()0,1−;14【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.另外要记住一次函数图象与坐标轴所围成的三角形的面积计算公式.【答案】>【分析】在y kx b =+中,当0k <时,y 随x 的增大而减小,利用一次函数的增减性进行判断即可.【详解】解:在一次函数3y x m =−+中,∵30k =−<,∴y 随x 的增大而减小,∵53−<−,∴a b >,故答案为:>.【点睛】本题主要考查了一次函数的性质,掌握一次函数的增减性是解题的关键.【答案】三【分析】由非负性可以得到10,10k b +=−=,解得未知数的值即可得一次函数的解析式即可得到答案.【详解】由10k +=可得10,10k b +=−=, 解得:1,1k b =−=∴一次函数的解析式为1y x =−+,∴一次函数的图象不过第三象限,故答案为:三.【点睛】本题考查绝对值、算术平方根的非负性,一次函数的图象,掌握绝对值和算数平方根的非负性是解题的关键.,将AOB 沿着某直线 【答案】7,04⎛⎫ ⎪⎝⎭【分析】设(,0)C a ,根据题意,8AC BC a ==−,然后根据勾股定理列出关于a 的方程,解方程即可求得.【详解】解:设(,0)C a ,∴OC a =,6OA =,8OB =,又由折叠知AC BC =,∴8AC BC a ==−,在Rt AOC 中,222AC OA OC =+,∴222(8)6a a −=+, 解得74a =, ∴7(,0)4C , 故答案为7(,0)4.【点睛】本题考查了一次函数的图象与几何变换,翻折的性质以及勾股定理的应用,根据勾股定理列出方程是解题的关键.【答案】 5 2或3【分析】若()3,2M 在直线l 上时,直接代入即可;根据直线l 与坐标轴的夹角为45︒,可得MDE 与OEF 为等腰直角三角形,分别求出位于坐标轴上的点,代入即可求出即可.【详解】解:∵直线解析式为:l y x b −+,若()3,2M 在直线l 上时,32b −+=,解得5b =,过点M 作MF ⊥直线l ,交y 轴于点F ,交x 轴于点E ,则点E 、F 为点M 在坐标轴上的对称点, 过点M 作MD x ⊥轴于点D ,则3,2OD MD ==,如图,∵直线l 与坐标轴的夹角为45︒,∴45MED ∠=︒,∴MDE 为等腰直角三角形,∴DM x ⊥轴,()3,0D ,∴直线:l y x b =−+过点()3,0, 则3b =,同理,点M 关于直线l 的对称点落在y 轴上时,∴直线:l y x b =−+过点()0,2,则2b =;故答案为:2或3【点睛】本题考查一次函数图象性质和点的轴对称性问题,解答关键是解题过程应用数形结合思想.三、解答题 13.(2023春·吉林长春·八年级校考期中)已知正比例函数的图象经过点(6,2)A −.(1)求这个函数的表达式;(2)判断点(12,4),(5,1)B C −−是否在这个函数的图象上?【答案】(1)13y x =− (2)点B 在,点C 不在【分析】(1)直接把点(6,2)A −代入正比例函数y kx =,求出k 的值即可;(2)把点(12,4)B −和点(5,1)C −代入(1)中函数解析式进行检验即可.【详解】(1)解:正比例函数的图象经过点(6,2)A −,设y kx =,26k ∴=−,解得13k =−, ∴这个正比例函数的解析式为13y x =−; (2)当12x =−时,4y =,∴点(12,4)B −在该函数的图象上;当5x =时,53y =−,∴点(5,1)C −不在该函数的图象上.【点睛】本题考查的是正比例函数图象上点的坐标特点,熟知函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.【答案】(1)35y x =−−(2)点1,43A ⎛⎫−− ⎪⎝⎭在此一次函数的图像上【分析】(1)两直线平行,则直线对应的一次函数解析式k 值相等;再将点()2,1−代入解析式即可求解;(2)令13x =-,代入函数解析式观察函数值是否等于4−即可进行判断. 【详解】(1)解:由题意可知2341k k b =−⎧⎨−+=⎩,解得235k b =−⎧⎨=−⎩∴这个函数的解析式为35y x =−−(2)解:当13x =-时,354y x =−−=− ∴点1,43A ⎛⎫−− ⎪⎝⎭在此一次函数的图像上. 【点睛】本题考查了一次函数的解析式、判断给出的点是否在一次函数图象上.求出解析式是解题关键. 15.(2023春·广东惠州·八年级惠州市惠阳区第一中学校考期中)已知一次函数()226y k x k =−−+.(1)当k 满足什么条件时,图象经过()14,? (2)当k 满足什么条件时,y 随x 的增大而减小?(3)当k 满足什么条件时,图象与y 轴的交点在x 轴的上方?【答案】(1)43k =时,它的图象经过点()14,;。
6.4 用一次函数解决问题同步练习 2022-2023学年苏科版数学八年级上册

2022-2023学年八年级上册数学同步练习6.4用一次函数解决问题一、选择题1.如图所示,一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的高度h(cm)与燃烧时间t(h)的函数关系用图象表示为()A B C D2.已知等腰三角形的周长为10cm,将底边长y(cm)表示成腰长x(cm)的函数关系式是y =10-2x,则其自变量x的取值范围是()3.甲骑自行车.乙骑摩托车沿相同路线由A地到B地,行驶过程中路程与时间的函数关系的图象如图,从图象可知,当时间x等于()时,甲与乙相遇.A.10分钟B.25分钟C.20分钟D.30分钟4.如图是本地区一种产品30天的销售图象,图1是产品日销售量y(单位:件)与时间t(单位:天)的函数关系,图2是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×每件产品的销售利润,下列结论错误的是()A.第24天的销售量为200件B.第10天销售一件产品的利润是15元C.第12天与第30天这两天的日销售利润相等D.第30天的日销售利润是750元5.“高高兴兴上学来,开开心心回家去”,小明某天放学后,17时从学校出发,回家途中离家的路程S(百米)与所走的时间t(min)之间的函数关系如图所示,那么这天小明到家的时间为()A.17时15分B.17时14分C.17时12分D.17时11分二、填空题6.某种茶杯每只2元,买这种茶杯x只,共花去y元,则y(元)与x(只)之间的函数关系式是_________.7.某校有125名教职工,在今年教师节庆祝活动中,工会拨款3000元,如果为每位教职工买一件价值x元的纪念品,尚余y元,则y(元)与x(元)之间的函数关系式是___________。
8.鲁老师乘车从学校到省城去参加会议,学校距省城200千米,行驶的平均速度为80千米/时,x 小时后鲁老师距省城y 千米,则y 与x 之间的函数关系式为______.9.为了增强公民的节水意识,某市制定了如下用水收费标准,每户每月的用水不超过10t 时,水价为每吨1.2元;超过10t 时,超过的部分按每吨1.8元收费,该市某户居民五月份用水xt (x >10),应交水费y 元,则y 关于x 的函数关系式为_______。
八年级数学上册第6章一次函数6-3一次函数的图像第1课时一次函数的图像习题课件新版苏科版

∠ AOB =90°, AC = AO =2, CD = OB =3,∴ AC ⊥
x 轴, CD ∥ x 轴,∴点 D 的坐标为(5,2),故选C.
1
2
3
4
5
6
7
8
9
10
11
12
13
11. [2024泰州高港区期末]如图,在平面直角坐标系中,已
把 B ( m ,4)的坐标代入 y =2 x -4,得2 m -4=4,
∴ m =4,∴点 B 的坐标是(4,4).
1
2
3
4
5
6
7
8
9
10
11
12
13
(2)直接在如图所示的平面直角坐标系中画出一次函数 y =
2 x -4的图像;
解:(2)图像如图所示.
1
2
3
4
5
6
7
8
9
10
11
12
13
(3)点 P 在 x 轴的正半轴上,若△ ABP 是以 AB 为腰的等腰
∵ S△ ABC =6,∴ ×( a +4)×2=
0).∴ AB = a +4.
6,解得 a =2.∴ B (2,0), P (2,3).
1
2
3
4
5
6
7
8
9
10
11
12
13
(2)过点 B 作直线 BQ ∥ AP ,交 y 轴于点 Q ,求点 Q
的坐标.
解:(2)如图.∵ BQ ∥ AP ,∴设直线 BQ
在的点的一次函数表达式为( A )
新苏科版八年级上册初中数学 6-4 课时1 利用一次函数解决实际问题 教学课件

③出发3 Байду номын сангаас时,甲、乙同时到达终点;
④甲的速度是乙速度的一半.
其中,正确结论的个数是( B )
A.4
B.3
C.2
D.1
拓展与延伸
某报刊销售亭从报社订购晚报的价格是0.7元/份,销售 价是1元/份,卖不掉的报纸可以以0.2元/份的价格退回 报社.每月按30天计算,有20天每天可卖出100份报纸,其 余10天每天只能卖出60份报纸,但报亭每天从报社订购 的报纸的份数必须相同.问:报亭每天要从报社订购多少 份报纸,才能使本月所获得的利润最大?
新课讲解
典例分析
例 某工厂生产某种产品,已知该工厂正常运转的固定成 本为每天 12 000 元,生产该产品的原料成本为每件 900 元. (1) 写出每天的生产成本(包括固定成本和原料成 本)与产量之间的函数表达式; (2) 如果每件产品的出厂价为 1 200 元,那么每天 生产多少件产品,该工厂才有盈利?
新课讲解
解:(1)他第 n 年的月工资 y(元)与 n 的函数表达式是 y=300(n-1)+2 000. (2)第 5 年的月工资为 300×(5-1)+2 000 =3 200(元). 所以年收入为 3 200×12=38 400(元). 因为 38 400<40 000, 所以他第 5 年的年收入不能超过 40 000 元.
新课讲解
方法一(算术解法): (5 596-4 500)÷10=109.6(年). 方法二(函数的方法): 按照上面的假设,雪线海拔 y(m)是时间 x (年)的一 次函数,其函数表达式为 4 500+10x=y. 当雪线退至山顶 5 596 m 时,4 500+10x=5 596. 解得 x=109.6.
苏科版数学八年级上册6.4《用一次函数解决问题》解答题专项练习

《用一次函数解决问题》解答题专题练习1.星期天,李玉刚同学随爸爸妈妈回老家探望爷爷奶奶,爸爸8:30骑自行车先走,平均每小时骑行20km ;李玉刚同学和妈妈9:30乘公交车后行,公交车平均速度是40km/h .爸爸的骑行路线与李玉刚同学和妈妈的乘车路线相同,路程均为40km .设爸爸骑行时间为x (h ).(1)请分别写出爸爸的骑行路程y 1(km )、李玉刚同学和妈妈的乘车路程y 2(km )与x (h )之间的函数解析式,并注明自变量的取值范围;(2)请在同一个平面直角坐标系中画出(1)中两个函数的图象;(3)请回答谁先到达老家.2.有一科技小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,历时7分钟同时到达C 点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y (米)与他们的行走时间x (分钟)之间的函数图象,请结合图象,回答下列问题:(1)A 、B 两点之间的距离是 米,甲机器人前2分钟的速度为 米/分;(2)若前3分钟甲机器人的速度不变,求线段EF 所在直线的函数解析式;(3)若线段FG ∥x 轴,则此段时间,甲机器人的速度为 米/分;(4)求A 、C 两点之间的距离;(5)直接写出两机器人出发多长时间相距28米.3.甲、乙两人利用不同的交通工具,沿同一路线从A 地出发前往B 地,甲出发1h 后,y 甲、y 乙与x 之间的函数图象如图所示.(1)甲的速度是 km/h ;(2)当1≤x≤5时,求y关于x的函数解析式;乙(3)当乙与A地相距240km时,甲与A地相距km.4.环保局对某企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L.环保局要求该企业立即整改,在15天以内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AB表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度y与时间x成反比例关系.(1)求整改过程中硫化物的浓度y与时间x的函数表达式;(2)该企业所排污水中硫化物的浓度,能否在15天以内不超过最高允许的1.0mg/L?为什么?5.某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如表:已知用600元购进的餐桌数量与用160元购进的餐椅数量相同.(1)求表中a的值;(2)若该商场购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张.该商场计划将一半的餐桌成套(一张餐桌和四张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售.请问怎样进货,才能获得最大利润?最大利润是多少?(3)由于原材料价格上涨,每张餐桌和餐椅的进价都上涨了10元,按照(2)中获得最大利润的方案购进餐桌和餐椅,在调整成套销售量而不改变销售价格的情况下,实际全部售出后,所得利润比(2)中的最大利润少了2250元.请问本次成套的销售量为多少?6.根据卫生防疫部门要求,游泳池必须定期换水,清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m3)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数表达式.7.公司有330台机器需要一次性运送到某地,计划租用甲、乙两种货车共8辆,已知每辆甲种货车一次最多运送机器45台、租车费用为400元,每辆乙种货车一次最多运送机器30台、租车费用为280元(Ⅰ)设租用甲种货车x辆(x为非负整数),试填写表格.表一:表二:(Ⅱ)给出能完成此项运送任务的最节省费用的租车方案,并说明理由.8.暑假期间,小刚一家乘车去离家380公里的某景区旅游,他们离家的距离y (km)与汽车行驶时间x(h)之间的函数图象如图所示.(1)从小刚家到该景区乘车一共用了多少时间?(2)求线段AB对应的函数解析式;(3)小刚一家出发2.5小时时离目的地多远?9.小李是某服装厂的一名工人,负责加工A,B两种型号服装,他每月的工作时间为22天,月收入由底薪和计件工资两部分组成,其中底薪900元,加工A型服装1件可得20元,加工B型服装1件可得12元.已知小李每天可加工A型服装4件或B型服装8件,设他每月加工A型服装的时间为x天,月收入为y元.(1)求y与x的函数关系式;(2)根据服装厂要求,小李每月加工A型服装数量应不少于B型服装数量的,那么他的月收入最高能达到多少元?10.都匀某校准备组织学生及家长代表到桂林进行社会实践活动,为便于管理,所有人员必须乘坐同一列高铁,高铁单程票价格如表所示,二等座学生票可打7.5折,已知所有人员都买一等座单程火车票需6175元,都买二等座单程火车票需3150元;如果家长代表与教师的人数之比为2:1.(1)参加社会实践活动的老师、家长代表与学生各有多少人?(2)由于各种原因,二等座单程火车票只能买x张(x<参加社会实践的总人数),其余的须买一等座单程火车票,在保证所有人员都有座位的前提下,请你设计最经济的购票方案,并写出购买单程火车票的总费用y与x之间的函数关系式.(3)在(2)的方案下,请求出当x=30时,购买单程火车票的总费用.11.我省某苹果基地销售优质苹果,该基地对需要送货且购买量在2000kg﹣5000kg(含2000kg和5000kg)的客户有两种销售方案(客户只能选择其中一种方案):方案A:每千克5.8元,由基地免费送货.方案B:每千克5元,客户需支付运费2000元.(1)请分别写出按方案A,方案B购买这种苹果的应付款y(元)与购买量x(kg)之间的函数表达式;(2)求购买量x在什么范围时,选用方案A比方案B付款少;(3)某水果批发商计划用20000元,选用这两种方案中的一种,购买尽可能多的这种苹果,请直接写出他应选择哪种方案.12.某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价分别是多少?(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数关系式;(3)小明家5月份用水26吨,则他家应交水费多少元?13.某学校计划组织500人参加社会实践活动,与某公交公司接洽后,得知该公司有A,B型两种客车,它们的载客量和租金如表所示:经测算,租用A,B型客车共13辆较为合理,设租用A型客车x辆,根据要求回答下列问题:(1)用含x的代数式填写下表:(2)采用怎样的租车方案可以使总的租车费用最低,最低为多少?14.我州某养殖场计划购买甲、乙两种鱼苗600条,甲种鱼苗每条16元,乙种鱼苗每条20元,相关资料表明:甲、乙两种鱼苗的成活率为80%,90%(1)若购买这两种鱼苗共用去11000元,则甲、乙两种鱼苗各购买多少条?(2)若要使这批鱼苗的总成活率不低于85%,则乙种鱼苗至少购买多少条?(3)在(2)的条件下,应如何选购鱼苗,使购买鱼苗的总费用最低?最低费用是多少?15.周末,小芳骑自行车从家出发到野外郊游,从家出发0.5小时到达甲地,游玩一段时间后按原速前往乙地,小芳离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,行驶10分钟时,恰好经过甲地,如图是她们距乙地的路程y(km)与小芳离家时间x(h)的函数图象.(1)小芳骑车的速度为km/h,H点坐标.(2)小芳从家出发多少小时后被妈妈追上?此时距家的路程多远?(3)相遇后,妈妈载上小芳和自行车同时到达乙地(彼此交流时间忽略不计),求小芳比预计时间早几分钟到达乙地?16.某校准备组织师生共60人,从南靖乘动车前往厦门参加夏令营活动,动车票价格如表所示:(教师按成人票价购买,学生按学生票价购买).若师生均购买二等座票,则共需1020元.(1)参加活动的教师有人,学生有人;(2)由于部分教师需提早前往做准备工作,这部分教师均购买一等座票,而后续前往的教师和学生均购买二等座票.设提早前往的教师有x人,购买一、二等座票全部费用为y元.①求y关于x的函数关系式;②若购买一、二等座票全部费用不多于1032元,则提早前往的教师最多只能多少人?17.为保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:(1)设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值范围;(2)求出最低费用,并说明费用最低时的调配方案.18.某公司今年如果用原线下销售方式销售一产品,每月的销售额可达100万元.由于该产品供不应求,公司计划于3月份开始全部改为线上销售,这样,预计今年每月的销售额y(万元)与月份x(月)之间的函数关系的图象如图1中的点状图所示(5月及以后每月的销售额都相同),而经销成本p(万元)与销售额y(万元)之间函数关系的图象图2中线段AB所示.(1)求经销成本p(万元)与销售额y(万元)之间的函数关系式;(2)分别求该公司3月,4月的利润;(3)问:把3月作为第一个月开始往后算,最早到第几个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元?(利润=销售额﹣经销成本)19.荔枝是深圳的特色水果,小明的妈妈先购买了2千克桂味和3千克糯米糍,共花费90元;后又购买了1千克桂味和2千克糯米糍,共花费55元.(每次两种荔枝的售价都不变)(1)求桂味和糯米糍的售价分别是每千克多少元;(2)如果还需购买两种荔枝共12千克,要求糯米糍的数量不少于桂味数量的2倍,请设计一种购买方案,使所需总费用最低.20.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示(1)求甲车从A地到达B地的行驶时间;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)求乙车到达A地时甲车距A地的路程.21.(列方程(组)及不等式解应用题)春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.22.一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg.且不高于180元/kg,经销一段时间后得到如下数据:设y与x的关系是我们所学过的某一种函数关系.(1)直接写出y与x的函数关系式,并指出自变量x的取值范围;(2)当销售单价为多少时,销售利润最大?最大利润是多少?23.某花店准备购进甲、乙两种花卉,若购进甲种花卉20盆,乙种花卉50盆,需要720元;若购进甲种花卉40盆,乙种花卉30盆,需要880元.(1)求购进甲、乙两种花卉,每盆各需多少元?(2)该花店销售甲种花卉每盆可获利6元,销售乙种花卉每盆可获利1元,现该花店准备拿出800元全部用来购进这两种花卉,设购进甲种花卉x盆,全部销售后获得的利润为W元,求W与x之间的函数关系式;(3)在(2)的条件下,考虑到顾客需求,要求购进乙种花卉的数量不少于甲种花卉数量的6倍,且不超过甲种花卉数量的8倍,那么该花店共有几种购进方案?在所有的购进方案中,哪种方案获利最大?最大利润是多少元?24.A城有某种农机30台,B城有该农机40台,现要将这些农机全部运往C,D 两乡,调运任务承包给某运输公司.已知C乡需要农机34台,D乡需要农机36台,从A城往C,D两乡运送农机的费用分别为250元/台和200元/台,从B城往C,D两乡运送农机的费用分别为150元/台和240元/台.(1)设A城运往C乡该农机x台,运送全部农机的总费用为W元,求W关于x 的函数关系式,并写出自变量x的取值范围;(2)现该运输公司要求运送全部农机的总费用不低于16460元,则有多少种不同的调运方案?将这些方案设计出来;(3)现该运输公司决定对A城运往C乡的农机,从运输费中每台减免a元(a ≤200)作为优惠,其它费用不变,如何调运,使总费用最少?25.甲、乙两车从A城出发前往B城,在整个行程中,两车离开A城的距离y与t的对应关系如图所示:(1)A、B两城之间距离是多少千米?(2)求乙车出发多长时间追上甲车?(3)直接写出甲车出发多长时间,两车相距20千米.26.下表是世界人口增长趋势数据表:(1)请你认真研究上面数据表,求出从1960年到2010年世界人口平均每年增长多少亿人;(2)利用你在(1)中所得到的结论,以1960年30亿人口为基础,设计一个最能反映人口数量y关于年份x的函数关系式,并求出这个函数的解析式;(3)利用你在(2)中所得的函数解析式,预测2020年世界人口将达到多少亿人.27.某公司有A型产品40件,B型产品60件,分配给甲、乙两个商店销售,其中70件给甲店,30件给乙店,且全部售出,两种产品的利润如表所示:(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并求x的取值范围.(2)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品每件的利润仍高于甲店B型产品每件的利润,其它利润不变,问该公司如何设计分配方案,可使得总利润最大?28.某农机租赁公司共有50台收割机,其中甲型20台、乙型30台,现将这50台联合收割机派往A、B两地区收割水稻,其中30台派往A地区,20台派往B 地区,两地区与该农机公司商定的每天租赁价格如下表:(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y元,求y关于x的函数关系式;(2)若使农机租赁公司这50台收割机一天所获租金不低于79600元,试写出满足条件的所有分派方案;(3)农机租赁公司拟出一个分派方案,使该公司50台收割机每天获得租金最高,并说明理由.29.甲、乙两组同学玩“两人背夹球”比赛,即:每组两名同学用背部夹着球跑完规定的路程,若途中球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲组两位同学掉了球;乙组两位同学则顺利跑完.设比赛距出发点用y表示,单位是米;比赛时间用x表示,单位是秒.两组同学比赛过程用图象表示如下.(1)这是一次米的背夹球比赛,获胜的是组同学;(2)请直接写出线段AB的实际意义;(3)求出C点坐标并说明点C的实际意义.30.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y 元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?参考答案与解析1.(2016•滨州)星期天,李玉刚同学随爸爸妈妈回老家探望爷爷奶奶,爸爸8:30骑自行车先走,平均每小时骑行20km ;李玉刚同学和妈妈9:30乘公交车后行,公交车平均速度是40km/h .爸爸的骑行路线与李玉刚同学和妈妈的乘车路线相同,路程均为40km .设爸爸骑行时间为x (h ).(1)请分别写出爸爸的骑行路程y 1(km )、李玉刚同学和妈妈的乘车路程y 2(km )与x (h )之间的函数解析式,并注明自变量的取值范围;(2)请在同一个平面直角坐标系中画出(1)中两个函数的图象;(3)请回答谁先到达老家.【分析】(1)根据速度乘以时间等于路程,可得函数关系式,(2)根据描点法,可得函数图象;(3)根据图象,可得答案.【解答】解;(1)由题意,得y 1=20x (0≤x ≤2)y 2=40(x ﹣1)(1≤x ≤2);(2)由题意得;(3)由图象可得李玉刚和妈妈乘车和爸爸骑行同时到达老家.【点评】本题考查了一次函数图象,利用描点法是画函数图象的关键.2.(2016•齐齐哈尔)有一科技小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,历时7分钟同时到达C 点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:(1)A、B两点之间的距离是70 米,甲机器人前2分钟的速度为95 米/分;(2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;(3)若线段FG∥x轴,则此段时间,甲机器人的速度为60 米/分;(4)求A、C两点之间的距离;(5)直接写出两机器人出发多长时间相距28米.【分析】(1)结合图象得到A、B两点之间的距离,甲机器人前2分钟的速度;(2)根据题意求出点F的坐标,利用待定系数法求出EF所在直线的函数解析式;(3)根据一次函数的图象和性质解答;(4)根据速度和时间的关系计算即可;(5)分前2分钟、2分钟﹣3分钟、4分钟﹣7分钟三个时间段解答.【解答】解:(1)由图象可知,A、B两点之间的距离是70米,甲机器人前2分钟的速度为:(70+60×2)÷2=95米/分;(2)设线段EF所在直线的函数解析式为:y=kx+b,∵1×(95﹣60)=35,∴点F的坐标为(3,35),则,解得,,∴线段EF所在直线的函数解析式为y=35x﹣70;(3)∵线段FG∥x轴,∴甲、乙两机器人的速度都是60米/分;(4)A、C两点之间的距离为70+60×7=490米;(5)设前2分钟,两机器人出发x分钟相距28米,由题意得,60x+70﹣95x=28,解得,x=1.2,前2分钟﹣3分钟,两机器人相距28米时,35x﹣70=28,解得,x=2.8.4分钟﹣7分钟,直线GH经过点(4,35)和点(7,0),则直线GH的方程为y=﹣x+,当y=28时,解得x=4.6,答:两机器人出发1.2分或2.8分或4.6分相距28米.【点评】本题考查的是一次函数的综合运用,掌握待定系数法求一次函数解析式、正确列出一元一次方程、灵活运用数形结合思想是解题的关键.3.(2016•吉林)甲、乙两人利用不同的交通工具,沿同一路线从A地出发前往B地,甲出发1h后,y甲、y乙与x之间的函数图象如图所示.(1)甲的速度是60 km/h;(2)当1≤x≤5时,求y乙关于x的函数解析式;(3)当乙与A地相距240km时,甲与A地相距220 km.【分析】(1)根据图象确定出甲的路程与时间,即可求出速度;关于x的函数解析式即可;(2)利用待定系数法确定出y乙(3)求出乙距A地240km时的时间,加上1,再乘以甲的速度即可得到结果.【解答】解:(1)根据图象得:360÷6=60km/h;(2)当1≤x≤5时,设y=kx+b,乙把(1,0)与(5,360)代入得:,解得:k=90,b=﹣90,=90x﹣90;则y乙(3)∵乙与A地相距240km,且乙的速度为360÷(5﹣1)=90km/h,∴乙用的时间是240÷90=h,则甲与A地相距60×(+1)=220km,故答案为:(1)60;(3)220【点评】此题考查了一次函数的应用,弄清图象中的数据是解本题的关键.4.(2016•连云港)环保局对某企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L.环保局要求该企业立即整改,在15天以内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AB表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度y与时间x成反比例关系.(1)求整改过程中硫化物的浓度y与时间x的函数表达式;(2)该企业所排污水中硫化物的浓度,能否在15天以内不超过最高允许的1.0mg/L?为什么?【分析】(1)分情况讨论:①当0≤x≤3时,设线段AB对应的函数表达式为y=kx+b;把A(0,10),B(3,4)代入得出方程组,解方程组即可;②当x>3时,设y=,把(3,4)代入求出m的值即可;(2)令y==1,得出x=12<15,即可得出结论.【解答】解:(1)分情况讨论:①当0≤x≤3时,设线段AB对应的函数表达式为y=kx+b;把A(0,10),B(3,4)代入得,解得:,∴y=﹣2x+10;②当x>3时,设y=,把(3,4)代入得:m=3×4=12,∴y=;综上所述:当0≤x≤3时,y=﹣2x+10;当x>3时,y=;(2)能;理由如下:令y==1,则x=12<15,故能在15天以内不超过最高允许的1.0mg/L.【点评】本题考查了扬州市的应用、反比例函数的应用;根据题意得出函数关系式是解决问题的关键.5.(2016•达州)某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如表:已知用600元购进的餐桌数量与用160元购进的餐椅数量相同.(1)求表中a的值;(2)若该商场购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张.该商场计划将一半的餐桌成套(一张餐桌和四张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售.请问怎样进货,才能获得最大利润?最大利润是多少?(3)由于原材料价格上涨,每张餐桌和餐椅的进价都上涨了10元,按照(2)中获得最大利润的方案购进餐桌和餐椅,在调整成套销售量而不改变销售价格的情况下,实际全部售出后,所得利润比(2)中的最大利润少了2250元.请问本次成套的销售量为多少?【分析】(1)根据餐桌和餐椅数量相等列出方程求解即可;(2)设购进餐桌x张,餐椅(5x+20)张,销售利润为W元.根据购进总数量不超过200张,得出关于x的一元一次不等式,解不等式即可得出x的取值范围,再根据“总利润=成套销售的利润+零售餐桌的利润+零售餐椅的利润”即可得出W关于x的一次函数,根据一次函数的性质即可解决最值问题;(3)设本次成套销售量为m套,先算出涨价后每张餐桌及餐椅的进价,再根据利润间的关系找出关于m的一元一次方程,解方程即可得出结论.【解答】解:(1)由题意得=,解得a=150,经检验,a=150是原分式方程的解;(2)设购进餐桌x张,则购进餐椅(5x+20)张,销售利润为W元.由题意得:x+5x+20≤200,解得:x≤30.∵a=150,∴餐桌的进价为150元/张,餐椅的进价为40元/张.依题意可知:W=x•(500﹣150﹣4×40)+x•(270﹣150)+(5x+20﹣x•4)•(70﹣40)=245x+600,∵k=245>0,∴W 关于x 的函数单调递增,∴当x=30时,W 取最大值,最大值为7950.故购进餐桌30张、餐椅170张时,才能获得最大利润,最大利润是7950元.(3)涨价后每张餐桌的进价为160元,每张餐椅的进价为50元,设本次成套销售量为m 套.依题意得:(500﹣160﹣4×50)m+(30﹣m )×(270﹣160)+(170﹣4m )×(70﹣50)=7950﹣2250,即6700﹣50m=5700,解得:m=20.答:本次成套的销售量为20套.【点评】本题考查了一次函数的应用、解一元一次不等式、一次函数的性质及解一元一次方程,解题的关键是:(1)由数量相等得出关于a 的分式方程;(2)根据数量关系找出W 关于x 的函数解析式;(3)根据数量关系找出关于m 的一元一次方程.本题属于中档题,难度不大,但较繁琐,解决该题型题目时,根据数量关系找出函数关系式(方程或方程组)是关键.6.(2016•绍兴)根据卫生防疫部门要求,游泳池必须定期换水,清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q (m 3)和开始排水后的时间t (h )之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔排水速度是多少?(2)当2≤t ≤3.5时,求Q 关于t 的函数表达式.。
苏科版-数学-八年级上册-《一次函数》拓展材料中国古时漏刻

一次函数拓展资料中国古代漏刻日常生活中,人们常常利用一次函数解决实际问题,时间的计量就是一个例子.普通钟表的指针转动的角度是所需时间的一次函数,在古代,许多民族与地区使用水钟来计时,其中容器泄水的流量也是时间的一次函数.水钟在中国古代叫“漏刻”或“漏壶”.如图是一种原始漏刻的示意图:水从上面的贮水壶慢慢漏入下方的受水壶中,受水壶中的浮子上竖直放置一根标尺(称为“漏箭”).假设漏水量是均匀的,受水壶中的浮子就会均匀升高,也就是说浮子升高的高度h与所经历的时间t成正比(h = kt(k为比例常数)利用这一关系,在漏箭上标上适当的刻度,就可以用来计时了(中国古代天文学家通常将一昼夜分为100刻).当然,古人注意到随着贮水壶中水的减少,漏水速度会变慢,因此就出现了设置多个贮水壶(所谓补偿壶)的多级型漏壶,使水逐级下漏,以保证最后漏入受水壶的水流的均匀性(如图为唐代制造的一种四级漏刻).另外,水流速度还受到四季温度变化等诸多因素的影响,因此古人设计漏刻时常常会根据实际情况采取相应措施来保证最后漏入受水壶的水流的均匀性和计时的准确性.漏刻是古代的一种计时工具,不仅古代中国用,而且古埃及、古巴比伦等文明古国都使用过。
漏刻的计时方法可分为两类:泄水型和受水型。
漏刻是一种独立的计时系统,只借助水的运动。
现存于北京故宫博物院的铜壶漏刻是公元1745年制造的,最上面漏壶的水从雕刻精致的龙口流出,依次流向下壶,箭壶盖上有个铜人仿佛报着箭杆,箭杆上刻有96格,每格为15分钟,人们根据铜人手握箭杆处的标志来报告时间。
现存于北京故宫博物院的铜壶漏刻是公元1745年制造的,最上面漏壶的水从雕刻精致的龙口流出,依次流向下壶,箭壶盖上有个铜人仿佛报着箭杆,箭杆上刻有96格,每格为15分钟,人们根据铜人手握箭杆处的标志来报告时间。
元延祐三年(公元1316年)造,整件由日壶、月壶、星壶、受水壶组成。
日壶高75.5厘米、口径68.2厘米、底径60厘米,月壶高58.5厘米、口径54.5厘术、底径53厘米,星壶高55.4厘米、口径44厘米、底径39厘米,受水壶高75厘米、口径32厘米、底径31厘米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《函数》典型例题
例1、下面变量之间的关系是不是函数关系?为什么?
(1)矩形的面积一定,它的长与宽;
(2)任意三角形的高与底;
(3)矩形的周长与面积;
(4)正方形的周长与面积.
例2、下面的表分别给出了变量x与y之间的对应关系,判断y是x的函数吗?如果不是,说明出理由.
例3、判断下列关系是不是函数关系?
(1)长方形的宽一定时,其长与面积;
(2)等腰三角形的底边长与面积;
(3)某人的年龄与身高;
(4)关系式| y |=x中的y与x.
例4、汽车由北京驶往相距850千米的沈阳,它的平均速度为80千米/小时,求汽车距沈阳的路程S(千米)与行驶时间t(小时)的函数关系式,写出自变量的取值范围.
例5、如图,是某个篮球运动员在五场比赛中的得分情况,依据图回答:
(1)该运动员第一场球得多少分;
(2)哪场球得分比前一场得分少?
(3)在五场比赛中最高得分是多少?最低得分是多少?
(4)从这五场比赛中的得分情况分析,该运动员的竞技状态怎么样?
参考答案
例1、解(1)矩形的面积确定时,它的宽取一个值,就有惟一确定的y 的值与宽对应,因此这是一个函数关系.
(2)当一个三角形的底取一个值时,它的高并不能确定,因此“三角形的高与底”不是函数关系.
(3)当矩形的周长是一个确定的值时,由于长、度不能确定,它的面积也不确定,这也不是函数关系.
(4)当正方形的周长确定了,它的边长也确定,因此面积也确定,这是函数关系. 例2、解:(1)y 是x 的函数; (2)y 是x 的函数;
(3)y 不是x 的函数,因对于变量x=1,变量y 有1与-1两个值与它对应; (4)y 是x 的函数
说明:对于x 的每一个值,y 都有唯一的值与它对应.第四个是常数函数它符合函数的定义. 例3、分析:判断一个关系是不是函数关系,第一要看是不是一个变化过程;第 二要看在这个变化过程中,是不是有两个变量;第三要看自变量每取一个确定值, 函数是不是都有唯一确定的值与它对应.
解:(1)长方形的宽一定时,其长所取的每一个确定的值,面积都有唯一确定的值与它对
应,所以长与面积是函数关系.
(2)因为三角形的面积受底和高两个因素的影响,当等腰三角形的底取一个定值时,它的面积又受高的影响,不能有唯一确定的值和底相对应,所以底边长与面积不是函数关系.
(3)人的任意一个确定的年龄,都有唯一确定的身高与之相对应,所以某人的年龄与身高是函数关系.
(4)x 每取一个正值,y 都有两个值与它对应,所以| y | = x 不是函数关系.
说明:年龄与身高的变化不按某种规律,但某人每一个确定的年龄,必有唯一确定的身高和它相对应,因此函数关系是一定的,所以不要以为存在一定比例关系或一定规律,能用解析式表示的才是函数关系.
例4、分析:北京距沈阳850千米,汽车距沈阳的路程等于全程减去已行驶的路程,已行驶
的路程等于速度乘以时间. 解:85080S t =-
00S t ≥⎧⎨≥⎩ 得850800
t
t -⎧⎨≥⎩ 85
0.8
t ∴≤≤
于是汽车距沈阳的路程S 与时间t 的函数关系式为85080S t =-,自变量t 的取值范围是850.8
t ≤≤
例5、解:(1)这个运动员在第一场比赛中得21分. (在场次栏中找到“1”,然后在得分栏中找到相应的得分) (2)第二场球比第一场球得分少,竞技状态趋下.(图形向下) (3)第五场比赛得分最高为36分,第一场比赛得分最低21分.
(4)从这五场的比赛得分情况看,该运动员目前的竞技状态是向前发展,其趋势是良
好的.(从第二场球之后图形全部向上.)
说明:本题考查学生的识图能力。
能由所给出的函数图象回答所问的问题。