高考物理法拉第电磁感应定律-经典压轴题附答案解析
高考物理压轴题之法拉第电磁感应定律(高考题型整理,突破提升)附答案解析
高考物理压轴题之法拉第电磁感应定律(高考题型整理,突破提升)附答案解析一、法拉第电磁感应定律1.如图,匝数为N 、电阻为r 、面积为S 的圆形线圈P 放置于匀强磁场中,磁场方向与线圈平面垂直,线圈P 通过导线与阻值为R 的电阻和两平行金属板相连,两金属板之间的距离为d ,两板间有垂直纸面的恒定匀强磁场。
当线圈P 所在位置的磁场均匀变化时,一质量为m 、带电量为q 的油滴在两金属板之间的竖直平面内做圆周运动。
重力加速度为g ,求:(1)匀强电场的电场强度 (2)流过电阻R 的电流(3)线圈P 所在磁场磁感应强度的变化率 【答案】(1)mg q (2)mgdqR(3)()B mgd R r t NQRS ∆+=∆ 【解析】 【详解】 (1)由题意得:qE =mg解得mg qE =(2)由电场强度与电势差的关系得:UE d=由欧姆定律得:U I R=解得mgdI qR=(3)根据法拉第电磁感应定律得到:E Nt∆Φ=∆ BS t t∆Φ∆=∆∆根据闭合回路的欧姆定律得到:()E I R r =+ 解得:()B mgd R r t NqRS∆+=∆2.如图所示,面积为0.2m 2的100匝线圈处在匀强磁场中,磁场方向垂直于线圈平面。
已知磁感应强度随时间变化的规律为B =(2+0.2t )T ,定值电阻R 1=6 Ω,线圈电阻R 2=4Ω求:(1)磁通量变化率,回路的感应电动势。
(2)a 、b 两点间电压U ab 。
【答案】(1)0.04Wb/s 4V (2)2.4V 【解析】 【详解】(1)由B =(2+0.2t )T 得磁场的变化率为0.2T/s Bt∆=∆ 则磁通量的变化率为:0.04Wb/s BS t t∆Φ∆==∆∆ 根据E nt∆Φ=∆可知回路中的感应电动势为: 4V BE nnS t t∆Φ∆===∆∆ (2)线圈相当于电源,U ab 是外电压,根据电路分压原理可知:1122.4V ab ER R R U =+=答:(1)磁通量变化率为0.04Wb/s ,回路的感应电动势为4V 。
2025年高考人教版物理一轮复习专题训练—法拉第电磁感应定律自感和涡流 附答案解析
2025年⾼考⼈教版物理⼀轮复习专题训练—法拉第电磁感应定律、⾃感和涡流(附答案解析)1.(2023·北京卷·5)如图所⽰,L是⾃感系数很⼤、电阻很⼩的线圈,P、Q是两个相同的⼩灯泡,开始时,开关S处于闭合状态,P灯微亮,Q灯正常发光,断开开关( )A.P与Q同时熄灭B.P⽐Q先熄灭C.Q闪亮后再熄灭D.P闪亮后再熄灭2.(2023·江苏卷·8)如图所⽰,圆形区域内有垂直纸⾯向⾥的匀强磁场,OC导体棒的O端位于圆⼼,棒的中点A位于磁场区域的边缘。
现使导体棒绕O点在纸⾯内逆时针转动。
O、A、C点电势分别为φO、φA、φC,则( )A.φO>φC B.φC>φAC.φO=φA D.φO-φA=φA-φC3.(2023·⼭东德州市模拟)如图甲所⽰,正⽅形虚线框为匀强磁场区域的边界,取垂直纸⾯向⾥为正⽅向,磁感应强度B随时间t变化的规律如图⼄所⽰。
匝数为n、半径为r的导线圈恰好处于虚线框的外接圆上,导线圈与电阻箱R1、定值电阻R2组成回路,回路中的其他电阻不计。
以下说法正确的是( )A.R2中的电流⽅向先向左,再向右B.回路中的电动势为C.t=t0时刻,回路中的电流为零D.R1=R2时,R1消耗的电功率最⼤4.(2023·⼴东⼴州市⼀模)如图甲所⽰为探究电磁驱动的实验装置。
某个铝笼置于U形磁体的两个磁极间,铝笼可以绕⽀点⾃由转动,其截⾯图如图⼄所⽰。
开始时,铝笼和磁体均静⽌,转动磁体,会发现铝笼也会跟着发⽣转动,下列说法正确的是( )A.铝笼是因为受到安培⼒⽽转动的B.铝笼转动的速度的⼤⼩和⽅向与磁体相同C.磁体从图⼄位置开始转动时,铝笼截⾯abcd中的感应电流的⽅向为a→d→c→b→a D.当磁体停⽌转动后,如果忽略空⽓阻⼒和摩擦阻⼒,铝笼将保持匀速转动5.(多选)(2023·辽宁沈阳市模拟)电⼦感应加速器基本原理如图所⽰,图甲的上、下两个电磁铁线圈中电流的⼤⼩、⽅向可以变化,产⽣的感⽣电场使真空室中的电⼦加速。
高考物理压轴题之法拉第电磁感应定律(高考题型整理,突破提升)附详细答案
高考物理压轴题之法拉第电磁感应定律(高考题型整理,突破提升)附详细答案一、法拉第电磁感应定律1.如图(a )所示,间距为l 、电阻不计的光滑导轨固定在倾角为θ的斜面上。
在区域I 内有方向垂直于斜面的匀强磁场,磁感应强度为B ;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度B t 的大小随时间t 变化的规律如图(b )所示。
t =0时刻在轨道上端的金属细棒ab 从如图位置由静止开始沿导轨下滑,同时下端的另一金属细棒cd 在位于区域I 内的导轨上由静止释放。
在ab 棒运动到区域Ⅱ的下边界EF 处之前,cd 棒始终静止不动,两棒均与导轨接触良好。
已知cd 棒的质量为m 、电阻为R ,ab 棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为2l ,在t =t x 时刻(t x 未知)ab 棒恰进入区域Ⅱ,重力加速度为g 。
求:(1)通过cd 棒电流的方向和区域I 内磁场的方向; (2)ab 棒开始下滑的位置离EF 的距离;(3)ab 棒开始下滑至EF 的过程中回路中产生的热量。
【答案】(1)通过cd 棒电流的方向从d 到c ,区域I 内磁场的方向垂直于斜面向上;(2)3l (3)4mgl sin θ。
【解析】 【详解】(1)由楞次定律可知,流过cd 的电流方向为从d 到c ,cd 所受安培力沿导轨向上,由左手定则可知,I 内磁场垂直于斜面向上,故区域I 内磁场的方向垂直于斜面向上。
(2)ab 棒在到达区域Ⅱ前做匀加速直线运动,a =sin mg mθ=gs in θ cd 棒始终静止不动,ab 棒在到达区域Ⅱ前、后,回路中产生的感应电动势不变,则ab 棒在区域Ⅱ中一定做匀速直线运动,可得:1Blv t∆Φ=∆ 2(sin )x xB l IBI g t t θ⋅⋅= 解得2sin x lt g θ=ab 棒在区域Ⅱ中做匀速直线运动的速度12sin v gl θ=则ab 棒开始下滑的位置离EF 的距离21232x h at l l =+= (3)ab 棒在区域Ⅱ中运动时间222sin xl lt v g θ== ab 棒从开始下滑至EF 的总时间222sin x lt t t g θ=+= 感应电动势:12sin E Blv Bl gl θ==ab 棒开始下滑至EF 的过程中回路中产生的热量:Q =EIt =4mgl sin θ2.如下图所示,MN 、PQ 为足够长的光滑平行导轨,间距L =0.5m.导轨平面与水平面间的夹角θ= 30°,NQ 丄MN ,N Q 间连接有一个3R =Ω的电阻,有一匀强磁场垂直于导轨平面,磁感应强度为01B T =,将一根质量为m =0.02kg 的金属棒ab 紧靠NQ 放置在导轨上,且与导轨接触良好,金属棒的电阻1r =Ω,其余部分电阻不计,现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与NQ 平行,当金属棒滑行至cd 处时速度大小开始保持不变,cd 距离NQ 为 s=0.5 m ,g =10m/s 2。
电磁感应规律的综合应用(解析版)-2023年高考物理压轴题专项训练(新高考专用)
压轴题07电磁感应规律的综合应用目录一,考向分析 (1)二.题型及要领归纳 (2)热点题型一以动生电动势为基综合考查导体棒运动的问题 (2)热点题型二以感生电动势为基综合考查导体棒运动的问题 (9)热点题型三以等间距双导体棒模型考动量能量问题 (16)热点题型四以不等间距双导体棒模型考动量定理与电磁规律的综合问题 (21)热点题型五以棒+电容器模型考查力电综合问题 (27)三.压轴题速练 (33)一,考向分析1.本专题是运动学、动力学、恒定电流、电磁感应和能量等知识的综合应用,高考既以选择题的形式命题,也以计算题的形式命题。
2.学好本专题,可以极大地培养同学们数形结合的推理能力和电路分析能力,针对性的专题强化,可以提升同学们解决数形结合、利用动力学和功能关系解决电磁感应问题的信心。
3.用到的知识有:左手定则、安培定则、右手定则、楞次定律、法拉第电磁感应定律、闭合电路欧姆定律、平衡条件、牛顿运动定律、函数图像、动能定理和能量守恒定律等。
电磁感应综合试题往往与导轨滑杆等模型结合,考查内容主要集中在电磁感应与力学中力的平衡、力与运动、动量与能量的关系上,有时也能与电磁感应的相关图像问题相结合。
通常还与电路等知识综合成难度较大的试题,与现代科技结合密切,对理论联系实际的能力要求较高。
4.电磁感应现象中的电源与电路(1)产生感应电动势的那部分导体相当于电源。
(2)在电源内部电流由负极流向正极。
(3)电源两端的电压为路端电压。
5.电荷量的求解电荷量q=IΔt,其中I必须是电流的平均值。
由E=n ΔΦΔt、I=ER总、q=IΔt联立可得q=n ΔΦR总,与时间无关。
6.求解焦耳热Q的三种方法(1)焦耳定律:Q=I2Rt,适用于电流、电阻不变。
(2)功能关系:Q=W克服安培力,电流变不变都适用。
(3)能量转化:Q=ΔE(其他能的减少量),电流变不变都适用。
7.用到的物理规律匀变速直线运动的规律、牛顿运动定律、动能定理、能量守恒定律等。
高考物理压轴题之电磁感应现象的两类情况(高考题型整理,突破提升)及详细答案
代入数据解得:P=1W
棒MN最终做匀速运动,设棒最大速度为vm,棒受力平衡,则有:
代入数据解得:
(2)解除棒PQ后,两棒运动过程中动量守恒,最终两棒以相同的速度做匀速运动,设速度大小为v′,则有:
设从PQ棒解除锁定,到两棒达到相同速度,这个过程中,两棒共产生的焦耳热为Q,由能量守恒定律可得:
(1)前2s时间内流过MN杆的电量(设EF杆还未离开水平绝缘平台);
(2)至少共经多长时间EF杆能离开平台。
【答案】(1)5C;(2)4s
【解析】
【分析】
【详解】
解:(1)t=2s内MN杆上升的距离为
此段时间内MN、EF与导轨形成的回路内,磁通量的变化量为
产生的平均感应电动势为
产生的平均电流为
流过MN杆的电量
(1)导线框匀速穿出磁场的速度;
(2)导线框进入磁场过程中产生的焦耳热;
(3)若在导线框进入磁场过程对其施加合适的外力F则可以使其匀加速地进入磁场区域,且之后的运动同没施加外力F时完全相同。请写出F随时间t变化的函数表达式.
【答案】(1)2m/s (2)0.15J (3)F=0.75-1.25t(0<t<0.4s)
联立①②③式பைடு நூலகம்得: ④
(2)设金属杆在磁场区域中匀速运动时,金属杆的电流为I,根据欧姆定律:I= ⑤
式中R为电阻的阻值.金属杆所受的安培力为: ⑥
因金属杆做匀速运动,由牛顿运动定律得:F–μmg–f=0⑦
联立④⑤⑥⑦式得:R=
5.如图所示空间存在有界匀强磁场,磁感应强度B=5T,方向垂直纸面向里,上下宽度为d=0.35m.现将一边长L=0.2m的正方形导线框自磁场上边缘由静止释放经过一段时间,导线框到达磁场下边界,之后恰好匀速离开磁场区域.已知导线框的质量m=0.1kg,电阻 .(g取10m/s2)求:
高考物理《法拉第电磁感应定律》真题练习含答案专题
高考物理《法拉第电磁感应定律》真题练习含答案专题1.如图所示,用粗细相同的铜丝做成边长分别为 L 和2L 的两只闭合线框a 和b ,以相同的速度从磁感应强度为B 的匀强磁场区域中匀速地拉到磁场外,若感应电动势分别为E a 、E b ,则E a ∶E b 为( )A .1∶4B .1∶2C .2∶1D .4∶1 答案:B解析:线框切割磁感线时的感应电动势为E =BLv ,解得E a ∶E b =1∶2,B 正确.2.[2024·湖北省名校联盟联考]今年11月底,襄阳三中举行了秋季运动会,其中“旋风跑”团体运动项目很受学生欢迎.如图是比赛过程的简化模型,一名学生站在O 点,手握在金属杆的一端A 点,其他四名学生推着金属杆AB ,顺时针(俯视)绕O 点以角速度ω匀速转动.已知OA =l ,AB =L 运动场地附近空间的地磁场可看作匀强磁场,其水平分量为B x ,竖直分量为B y ,则此时( )A .A 点电势高于B 点电势B .AB 两点电压大小为B y ω(L 2+2lL )2C .AB 两点电压大小为B y ω(L +l )22D .AB 两点电压大小为B x ωL(L +l) 答案:B解析:地磁场在北半球的磁感应强度斜向下,其竖直分量B y 竖直向下,则金属杆切割B y 产生动生电动势,由右手定则可知电源内部的电流从A 点到B 点,即B 点为电源的正极,故A 点电势低于B 点电势,A 错误;动生电动势的大小为E =Bl v -,解得U BA =B y L ω(L +l )+ωl 2 =B y Lω(L +2l )2,B 正确,C 、D 错误.3.(多选)动圈式扬声器的结构如图(a )和图(b )所示,图(b )为磁铁和线圈部分的右视图,线圈与一电容器的两端相连.当人对着纸盆说话,纸盆带着线圈左右运动能将声信号转化为电信号.已知线圈有n 匝,线圈半径为r ,线圈所在位置的磁感应强度大小为B ,则下列说法正确的是( )A.纸盆向左运动时,电容器的上极板电势比下极板电势高B.纸盆向左运动时,电容器的上极板电势比下极板电势低C.纸盆向右运动速度为v时,线圈产生的感应电动势为2nrBvD.纸盆向右运动速度为v时,线圈产生的感应电动势为2nπrBv答案:BD解析:根据右手定则,可知上极板带负电,下极板带正电,因此下极板电势更高,A项错误,B项正确;每匝有效切割长度为2πr,则E=2πnBvr,C项错误,D项正确.4.如图所示,一根弧长为L的半圆形硬导体棒AB在水平拉力F作用下,以速度v0在竖直平面内的U形框架上匀速滑动,匀强磁场的磁感应强度为B,回路中除电阻R外,其余电阻均不计,U形框左端与平行板电容器相连,质量为m的带电油滴静止于电容器两极板中央,半圆形硬导体棒AB始终与U形框接触良好.则以下判断正确的是()A.油滴所带电荷量为mgdBLv0B.电流自上而下流过电阻RC.A、B间的电势差U AB=BLv0D.其他条件不变,使电容器两极板距离减小,电容器所带电荷量将增加,油滴将向下运动答案:B解析:由右手定则可知,导体棒中电流方向从B到A,电流自上而下流过电阻R,故B正确;弧长为L的半圆形硬导体棒切割磁感线的有效长度D=2Lπ,则A、B间的电势差为U AB=2BLv0π,C错误;油滴受力平衡可得qE=mg,E=U ABd,则油滴所带电荷量为q=πmgd2BLv0,A错误;其他条件不变,使电容器两极板距离减小,由C=εS4πkd知电容器的电容变大,又由Q=UC可知,电容器所带电荷量将增加,电场力变大,油滴将向上运动,故D错误.5.(多选)如图所示,矩形金属框架三个竖直边ab 、cd 、ef 的长都是l ,电阻都是R ,其余电阻不计.框架以速度v 匀速平动地穿过磁感应强度为B 的匀强磁场,设ab 、cd 、ef 三条边先后进入磁场时,ab 边两端电压分别为U 1、U 2、U 3,则下列判断结果正确的是( )A .U 1=13 Blv B .U 2=2U 1C .U 3=0D .U 1=U 2=U 3 答案:AB解析:当ab 边进入磁场时I =E R +R 2=2Blv 3R ,则U 1=E -IR =13Blv ;当cd 边也进入磁场时I =E R +R 2 =2Blv 3R ,则U 2=E -I R 2 =23 Blv ,三条边都进入磁场时U 3=Blv ,A 、B 正确.6.[2024·湖北省武汉市月考](多选)如图所示,电阻不计的平行长直金属导轨水平放置,间距L =1 m .导轨左右端分别接有阻值R 1=R 2=4 Ω的电阻.电阻r =2 Ω的导体棒MN 垂直放置在导轨上,且接触良好,导轨所在区域内有方向竖直向的匀强磁场,大小为B =2 T .在外力作用下棒沿导轨向左以速度v =2 m /s 做匀速直线运动,外力的功率为P ,MN 两端的电势差为U MN ,则以下说法正确的是( )A .U MN =4 VB .U MN =2 VC .P =16 WD .P =4 W 答案:BD解析:棒产生的感应电动势大小为E =BLv =4 V ,外电阻是R 1和R 2并联总电阻为R =2 Ω,MN 两端的电势差为U MN =R R +r E =2 V ,A 错误,B 正确;回路电流为I =ER +r =1 A ,电路总功率为P 总=EI =4 W ,由能量守恒可知外力的功率和电路总功率相同,有P =4 W ,C 错误,D 正确.7.[2024·吉林省长春市模拟]在如图甲所示的电路中,电阻R 1=R 2=R ,圆形金属线圈半径为r 1,线圈导线的电阻也为R ,半径为r 2(r 2<r 1)的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B 随时间t 变化的关系如图乙所示,图线与横、纵轴的交点坐标分别为t 0和B 0,其余导线的电阻不计.闭合开关S ,至t =0的计时时刻,电路中的电流已经稳定,下列说法正确的是( )A .线圈中产生的感应电动势大小为B 0πr 21t 0B .t 0时间内流过R 1的电量为B 0πr 22RC .电容器下极板带负电D .稳定后电容器两端电压的大小为B 0πr 223t 0答案:D解析:由法拉第电磁感应定律知感应电动势为E =ΔΦΔt =ΔB Δt S =πr 22 B 0t 0,A 错误;由闭合电路欧姆定律得感应电流为I =E R +R 1+R 2 =πr 22 B 03Rt 0 ,t 0时间内流过R 1的电量为q =It 0=πr 22 B 03R,B 错误;由楞次定律知圆形金属线圈中的感应电流方向为顺时针方向,金属线圈相当于电源,电源内部的电流从负极流向正极,则电容器的下极板带正电,上极板带负电,C 错误;稳定后电容器两端电压的大小为U =IR 1=B 0πr 223t 0,D 正确.8.(多选)如图所示,长为a ,宽为b ,匝数为n 的矩形金属线圈恰有一半处于匀强磁场中,线圈总电阻为R ,线圈固定不动.当t =0时匀强磁场的磁感应强度的方向如图甲所示,磁感应强度B 随时间t 变化的关系图像如图乙所示,则( )A .线圈中的感应电流的方向先逆时针再顺时针B .回路中感应电动势恒为nB 0ab2t 0C .0~2t 0时刻,通过导线某横截面的电荷量为nB 0abRD .t =0时刻,线圈受到的安培力大小为nB 20 a 2b2t 0R答案:BC解析:由题意可知线圈中磁通量先垂直纸面向外减小,再垂直纸面向里增大,根据楞次定律可知线圈中的感应电流方向始终为逆时针方向,A 错误;根据法拉第电磁感应定律可得线圈中感应电动势的大小为E =n ΔΦΔt =nS ΔB Δt =nabB 02t 0 ,根据闭合电路欧姆定律可得,线圈中电流大小为I =E R =nabB 02Rt 0 ,t =0时刻,线圈受到的安培力大小为F =nB 0I·a =n 2a 2bB 202Rt 0 ,B 正确,D 错误;0~2t 0时刻,通过导线某横截面的电荷量为q =I·2t 0=nabB 0R,C 正确.9.如图所示,足够长通电直导线平放在光滑水平面上并固定,电流I 恒定不变.将一个金属环以初速度v 0沿与导线成一定角度θ(θ<90°)的方向滑出,此后关于金属环在水平面内运动的分析,下列判断中正确的是( )A .金属环做直线运动,速度先减小后增大B .金属环做曲线运动,速度一直减小至0后静止C .金属环最终做匀速直线运动,运动方向与直导线平行D .金属环最终做匀变速直线运动,运动方向与直导线垂直 答案:C解析:金属环周围有环形的磁场,金属环向右运动,磁通量减小,根据“来拒去留”可知,所受的安培力将阻碍金属圆环远离通电直导线,即安培力垂直直导线向左,与运动方向并非相反,故金属环做曲线运动,安培力使金属环在垂直导线方向做减速运动,当垂直导线方向的速度减为零,只剩沿导线方向的速度,然后磁通量不变,无感应电流,水平方向不受外力作用,故最终做匀速直线运动,方向与直导线平行,故金属环先做曲线运动后做直线运动,C 项正确.10.[2024·云南省昆明市模拟]如图甲所示,一匝数N =200的闭合圆形线圈放置在匀强磁场中,磁场垂直于线圈平面.线圈的面积为S =0.5 m 2,电阻r =4 Ω.设垂直纸面向里为磁场的正方向,磁感应强度B 随时间的变化图像如图乙所示.求:(1)2 s 时感应电流的方向和线圈内感应电动势的大小; (2)在3~9 s 内通过线圈的电荷量q 、线圈产生的焦耳热Q. 答案:(1)逆时针,E 1=20 V (2)q =15 C ,Q =150 J解析:(1)由楞次定律知,0~3 s 感应电流磁场垂直纸面向外,感应电流方向为逆时针方向;感应电动势为E 1=N ΔΦ1Δt 1 =N ΔB 1·S Δt 1结合图像并代入数据解得E 1=20 V(2)同理可得3 s ~9 s 内有感应电动势E 2=N ΔΦ2Δt 2 =N ΔB 2·SΔt 2感应电流I 2=E 2r电荷量q =I 2Δt 2 代入数据解得q =15 C 线圈产生的焦耳热Q =I 22 r Δt 2 代入数据得Q =150 J。
高考物理法拉第电磁感应定律-经典压轴题及答案解析
【答案】(1) v1
2gr (2) x 2
rh (3) Q 1 mgr
2
2
【解析】
【分析】
【详解】
(1)a 棒沿圆弧轨道运动到最低点 M 时,由机械能守恒定律得:
mgr
1 2
mv02
解得 a 棒沿圆弧轨道最低点 M 时的速度 v0 2gr
从 a 棒进入水平轨道开始到两棒达到相同速度的过程中,两棒在水平方向受到的安培力总 是大小相等,方向相反,所以两棒的总动量守恒.由动量守恒定律得:
有:
Mgh
mghsin
Q总
1(M 2
m)vm2
Q 总=96J
电阻 R 产生的焦耳热: QR R Q总 R r
QR=57.6J 【点睛】本题有两个关键:一是推导安培力与速度的关系;二是推导感应电荷量 q 的表达 式,对于它们的结果要理解记牢,有助于分析和处理电磁感应的问题.
7.如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距 lm,导轨平 面与水平面成 θ=37°角,下端连接阻值为 R 的电阻.匀强磁场方向与导轨平面垂直.质量 为 0.2kg、电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动 摩擦因数为 0.25.求:
线框匀速运动,其受到的安培力为阻力大小即为 F1 ,由能量守恒:
Q W 安 F1L 0.02 0.1J 2.0 103 J
(2) 金属框拉出的过程中产生的热量:
Q I 2Rt
线框的电阻:
Q 2.0103
R
I 2t
0.22
Ω 0.05
1.0Ω
2.如图所示,竖直平面内两竖直放置的金属导轨间距为 L1,导轨上端接有一电动势为 E、 内阻不计的电源,电源旁接有一特殊开关 S,当金属棒切割磁感线时会自动断开,不切割 时自动闭合;轨道内存在三个高度均为 L2 的矩形匀强磁场区域,磁感应强度大小均为 B, 方向如图。一质量为 m 的金属棒从 ab 位置由静止开始下落,到达 cd 位置前已经开始做匀 速运动,棒通过 cdfe 区域的过程中始终做匀速运动。已知定值电阻和金属棒的阻值均为 R,其余电阻不计,整个过程中金属棒与导轨接触良好,重力加速度为 g,求:
高考物理法拉第电磁感应定律-经典压轴题含答案解析
高考物理法拉第电磁感应定律-经典压轴题含答案解析一、法拉第电磁感应定律1.如图所示,两根相距为L 的光滑平行金属导轨CD 、EF 固定在水平面内,并处在竖直向下的匀强磁场中,导轨足够长且电阻不计.在导轨的左端接入阻值为R 的定值电阻,将质量为m 、电阻可忽略不计的金属棒MN 垂直放置在导轨上,可以认为MN 棒的长度与导轨宽度相等,且金属棒运动过程中始终与导轨垂直并接触良好,不计空气阻力.金属棒MN 以恒定速度v 向右运动过程中,假设磁感应强度大小为B 且保持不变,为了方便,可认为导体棒中的自由电荷为正电荷.(1)请根据法拉第电磁感应定律,推导金属棒MN 中的感应电动势E ;(2)在上述情景中,金属棒MN 相当于一个电源,这时的非静电力与棒中自由电荷所受洛伦兹力有关.请根据电动势的定义,推导金属棒MN 中的感应电动势E .(3)请在图中画出自由电荷所受洛伦兹力示意图.我们知道,洛伦兹力对运动电荷不做功.那么,金属棒MN 中的自由电荷所受洛伦兹力是如何在能量转化过程中起到作用的呢?请结合图中自由电荷受洛伦兹力情况,通过计算分析说明.【答案】(1)E BLv =;(2)v E BL =(3)见解析 【解析】 【分析】(1)先求出金属棒MN 向右滑行的位移,得到回路磁通量的变化量∆Φ ,再由法拉第电磁感应定律求得E 的表达式;(2)棒向右运动时,电子具有向右的分速度,受到沿棒向下的洛伦兹力,1v f e B =,棒中电子在洛伦兹力的作用下,电子从M 移动到N 的过程中,非静电力做功v W e Bl =,根据电动势定义WE q=计算得出E. (3)可以从微观的角度求出水平和竖直方向上的洛伦兹力做功情况,在比较整个过程中做功的变化状况. 【详解】(1)如图所示,在一小段时间∆t 内,金属棒MN 的位移 x v t ∆=∆这个过程中线框的面积的变化量S L x Lv t ∆=∆=∆ 穿过闭合电路的磁通量的变化量B S BLv t ∆Φ=∆=∆根据法拉第电磁感应定律 E t∆Φ=∆ 解得 E BLv =(2)如图所示,棒向右运动时,正电荷具有向右的分速度,受到沿棒向上的洛伦兹力1v f e B =,f 1即非静电力在f 的作用下,电子从N 移动到M 的过程中,非静电力做功v W e BL =根据电动势定义 W E q= 解得 v E BL =(3)自由电荷受洛伦兹力如图所示.设自由电荷的电荷量为q ,沿导体棒定向移动的速率为u .如图所示,沿棒方向的洛伦兹力1f q B =v ,做正功11ΔΔW f u t q Bu t =⋅=v 垂直棒方向的洛伦兹力2f quB =,做负功22ΔΔW f v t quBv t =-⋅=-所以12+=0W W ,即导体棒中一个自由电荷所受的洛伦兹力做功为零.1f 做正功,将正电荷从N 端搬运到M 端,1f 相当于电源中的非静电力,宏观上表现为“电动势”,使电源的电能增加;2f 做负功,宏观上表现为安培力做负功,使机械能减少.大量自由电荷所受洛伦兹力做功的宏观表现是将机械能转化为等量的电能,在此过程中洛伦兹力通过两个分力做功起到“传递”能量的作用. 【点睛】本题较难,要从电动势定义的角度上去求电动势的大小,并学会从微观的角度分析带电粒子的受力及做功情况.2.如图()a ,平行长直导轨MN 、PQ 水平放置,两导轨间距0.5L m =,导轨左端MP 间接有一阻值为0.2R =Ω的定值电阻,导体棒ab 质量0.1m kg =,与导轨间的动摩擦因数0.1μ=,导体棒垂直于导轨放在距离左端 1.0d m =处,导轨和导体棒电阻均忽略不计.整个装置处在范围足够大的匀强磁场中,0t =时刻,磁场方向竖直向下,此后,磁感应强度B 随时间t 的变化如图()b 所示,不计感应电流磁场的影响.当3t s =时,突然使ab 棒获得向右的速度08/v m s =,同时在棒上施加一方向水平、大小可变化的外力F ,保持ab 棒具有大小为恒为24/a m s =、方向向左的加速度,取210/g m s =.()1求0t =时棒所受到的安培力0F ;()2分析前3s 时间内导体棒的运动情况并求前3s 内棒所受的摩擦力f 随时间t 变化的关系式;()3从0t =时刻开始,当通过电阻R 的电量 2.25q C =时,ab 棒正在向右运动,此时撤去外力F ,此后ab 棒又运动了2 6.05s m =后静止.求撤去外力F 后电阻R 上产生的热量Q .【答案】(1)0 0.025F N =,方向水平向右(2) ()0.01252?f t N =-(3) 0.195J【解析】 【详解】 解:()1由图b 知:0.20.1T /s 2B t V V == 0t =时棒的速度为零,故回路中只有感生感应势为:0.05V B E Ld t tΦ===V V V V感应电流为:0.25A EI R==可得0t =时棒所受到的安培力:000.025N F B IL ==,方向水平向右;()2ab 棒与轨道间的最大摩擦力为:00.10.025N m f mg N F μ==>=故前3s 内导体棒静止不动,由平衡条件得: f BIL =由图知在03s -内,磁感应强度为:00.20.1B B kt t =-=- 联立解得: ()0.01252(3s)f t N t =-<;()3前3s 内通过电阻R 的电量为:10.253C 0.75C q I t V =⨯=⨯=设3s 后到撤去外力F 时又运动了1s ,则有:11BLs q q I t R RΦ-===V V &解得:16m s =此时ab 棒的速度设为1v ,则有:221012v v as -=解得:14m /s v =此后到停止,由能量守恒定律得: 可得:21210.195J 2Q mv mgs μ=-=3.如图所示,ACD 、EFG 为两根相距L =0.5m 的足够长的金属直角导轨,它们被竖直固定在绝缘水平面上,CDGF 面与水平面夹角θ=300.两导轨所在空间存在垂直于CDGF 平面向上的匀强磁场,磁感应强度大小为B`=1T .两根长度也均为L =0.5m 的金属细杆ab 、cd 与导轨垂直接触形成闭合回路,ab 杆的质量m 1未知,cd 杆的质量m 2=0.1kg ,两杆与导轨之间的动摩擦因数均为μ=36,两金属细杆的电阻均为R =0.5Ω,导轨电阻不计.当ab 以速度v 1沿导轨向下匀速运动时,cd 杆正好也向下匀速运动,重力加速度g 取10m/s 2.(1)金属杆cd 中电流的方向和大小 (2)金属杆ab 匀速运动的速度v 1 和质量m 1【答案】I =5A 电流方向为由d 流向c; v 1=10m/s m 1=1kg 【解析】 【详解】(1)由右手定则可知cd 中电流方向为由d 流向c对cd 杆由平衡条件可得:μ=+0022安sin 60(cos 60)m g m g F=安F BLI联立可得:I =5A (2) 对ab: 由 =12BLv IR得 110m/s v = 分析ab 受力可得: 0011sin 30cos 30m g BLI m g μ=+解得: m 1=1kg4.如图所示,两根足够长、电阻不计的光滑平行金属导轨相距为L =1m ,导轨平面与水平面成θ=30︒角,上端连接 1.5R =Ω的电阻.质量为m =0.2kg 、阻值0.5r =Ω的金属棒ab 放在两导轨上,与导轨垂直并接触良好,距离导轨最上端d =4m ,整个装置处于匀强磁场中,磁场的方向垂直导轨平面向上.(1)若磁感应强度B=0.5T ,将金属棒释放,求金属棒匀速下滑时电阻R 两端的电压; (2)若磁感应强度的大小与时间成正比,在外力作用下ab 棒保持静止,当t =2s 时外力恰好为零.求ab 棒的热功率;(3)若磁感应强度随时间变化的规律是()0.05cos100B t T π=,在平行于导轨平面的外力F 作用下ab 棒保持静止,求此外力F 的最大值。
高考物理法拉第电磁感应定律-经典压轴题含答案
(2)若撤去外力后棒的速度v随位移x的变化规律满足 (v0是撤去外力时,金属棒速度),且棒在运动到ef处时恰好静止,则外力F作用的时间为多少?
(3)若在棒未出磁场区域时撤出外力,画出棒在整个运动过程中速度随位移变化所对应的各种可能的图线.
解得:
刚进入磁场时产生的感应电动势:
导轨宽度:
回路电阻:
联立可得:
(2)设长度为S,从MP到NQ过程中的任一时刻,速度为 ,在此后无穷小的 时间内,根据动量定理:
得:
(3)金属棒匀加速运动,
切割磁感线的有效长度为:
产生感应电动势:
回路的瞬时电阻:
功率:
金属棒运动到D点,所需的时间设为 ,则有:
解得:
WF-W'安+(M-m)g·2L= (M+m)( -v2)
联立解得:
WF-W'安=0
而W'安=Q',故Q'=3.6 J
又因为线框每边产生的热量相等,故eb边上产生的焦耳热:
Qeb= Q'=0.9 J.
答:(1)线框eb边进入磁场中运动时,e、b两点间的电势差Ueb=1.2 V.
(2)线框匀速穿过磁场区域的过程中产生的焦耳热Q=3.2 J.
【点睛】本题是电磁感应与电路、力学知识的综合,由电路的串联关系先求出电动势,再求出速度;由加速度的定义,求出加速度;根据瞬时功率的表达式,求出第5秒末外力F的功率.
9.如图所示,光滑的平行金属导轨水平放置,电阻不计,导轨间距为l,左侧接一阻值为R的电阻.区域cdef内存在垂直轨道平面向下的有界匀强磁场,磁场宽度为s.一质量为m、电阻为r的金属棒MN置于导轨上,与导轨垂直且接触良好,受到F=0.5v+0.4(N)(v为金属棒速度)的水平外力作用,从磁场的左边界由静止开始向右运动,测得电阻两端电压随时间均匀增大.(已知:l=1m,m=1kg,R=0.3Ω,r=0.2Ω,s=1m)
高考物理法拉第电磁感应定律-经典压轴题附详细答案
高考物理法拉第电磁感应定律-经典压轴题附详细答案一、法拉第电磁感应定律1.如图甲所示,一个圆形线圈的匝数n=100,线圈面积S=200cm2,线圈的电阻r=1Ω,线圈外接一个阻值R=4Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间变化规律如图乙所示。
求:(1)线圈中的感应电流的大小和方向;(2)电阻R两端电压及消耗的功率;(3)前4s内通过R的电荷量。
【答案】(1)0﹣4s内,线圈中的感应电流的大小为0.02A,方向沿逆时针方向。
4﹣6s 内,线圈中的感应电流大小为0.08A,方向沿顺时针方向;(2)0﹣4s内,R两端的电压是0.08V;4﹣6s内,R两端的电压是0.32V,R消耗的总功率为0.0272W;(3)前4s内通过R的电荷量是8×10﹣2C。
【解析】【详解】(1)0﹣4s内,由法拉第电磁感应定律有:线圈中的感应电流大小为:由楞次定律知感应电流方向沿逆时针方向。
4﹣6s内,由法拉第电磁感应定律有:线圈中的感应电流大小为:,方向沿顺时针方向。
(2)0﹣4s内,R两端的电压为:消耗的功率为:4﹣6s内,R两端的电压为:消耗的功率为:故R消耗的总功率为:(3)前4s内通过R的电荷量为:2.如图所示,在垂直纸面向里的磁感应强度为B 的有界矩形匀强磁场区域内,有一个由均匀导线制成的单匝矩形线框abcd ,线框平面垂直于磁感线。
线框以恒定的速度v 沿垂直磁场边界向左运动,运动中线框dc 边始终与磁场右边界平行,线框边长ad =l ,cd =2l ,线框导线的总电阻为R ,则线框离开磁场的过程中,求:(1)线框离开磁场的过程中流过线框截面的电量q ; (2)线框离开磁场的过程中产生的热量 Q ; (3)线框离开磁场过程中cd 两点间的电势差U cd . 【答案】(1)22Bl q R =(2) 234B l vQ R=(3)43cd Blv U =【解析】 【详解】(1)线框离开磁场的过程中,则有:2E B lv =E I R = q It =l t v=联立可得:22Bl q R=(2)线框中的产生的热量:2Q I Rt=解得:234B l vQ R=(3) cd 间的电压为:23cd U IR = 解得:43cd BlvU =3.如图所示,电阻不计的相同的光滑弯折金属轨道MON 与M O N '''均固定在竖直平面内,二者平行且正对,间距为L =1m ,构成的斜面ONN O ''跟水平面夹角均为30α=︒,两侧斜面均处在垂直斜面向上的匀强磁场中,磁感应强度大小均为B =0.1T .t =0时,将长度也为L =1m ,电阻R =0.1Ω的金属杆ab 在轨道上无初速释放.金属杆与轨道接触良好,轨道足够长.重力加速度g =10m/s 2;不计空气阻力,轨道与地面绝缘. (1)求t =2s 时杆ab 产生的电动势E 的大小并判断a 、b 两端哪端电势高(2)在t =2s 时将与ab 完全相同的金属杆cd 放在MOO'M'上,发现cd 杆刚好能静止,求ab 杆的质量m 以及放上cd 杆后ab 杆每下滑位移s =1m 回路产生的焦耳热Q【答案】(1) 1V ;a 端电势高;(2) 0.1kg ; 0.5J 【解析】 【详解】解:(1)只放ab 杆在导轨上做匀加速直线运动,根据右手定则可知a 端电势高;ab 杆加速度为:a gsin α=2s t =时刻速度为:10m/s v at ==ab 杆产生的感应电动势的大小:0.1110V 1V E BLv ==⨯⨯=(2) 2s t =时ab 杆产生的回路中感应电流:1A 5A 220.1E I R ===⨯ 对cd 杆有:30mgsin BIL ︒=解得cd 杆的质量:0.1kg m = 则知ab 杆的质量为0.1kg放上cd 杆后,ab 杆做匀速运动,减小的重力势能全部产生焦耳热根据能量守恒定律则有:300.11010.5J 0.5J Q mgh mgs sin ==︒=⨯⨯⨯=4.如图所示,两根相距为L 的光滑平行金属导轨CD 、EF 固定在水平面内,并处在竖直向下的匀强磁场中,导轨足够长且电阻不计.在导轨的左端接入阻值为R 的定值电阻,将质量为m 、电阻可忽略不计的金属棒MN 垂直放置在导轨上,可以认为MN 棒的长度与导轨宽度相等,且金属棒运动过程中始终与导轨垂直并接触良好,不计空气阻力.金属棒MN 以恒定速度v 向右运动过程中,假设磁感应强度大小为B 且保持不变,为了方便,可认为导体棒中的自由电荷为正电荷.(1)请根据法拉第电磁感应定律,推导金属棒MN 中的感应电动势E ;(2)在上述情景中,金属棒MN 相当于一个电源,这时的非静电力与棒中自由电荷所受洛伦兹力有关.请根据电动势的定义,推导金属棒MN 中的感应电动势E .(3)请在图中画出自由电荷所受洛伦兹力示意图.我们知道,洛伦兹力对运动电荷不做功.那么,金属棒MN 中的自由电荷所受洛伦兹力是如何在能量转化过程中起到作用的呢?请结合图中自由电荷受洛伦兹力情况,通过计算分析说明.【答案】(1)E BLv =;(2)v E BL =(3)见解析 【解析】 【分析】(1)先求出金属棒MN 向右滑行的位移,得到回路磁通量的变化量∆Φ ,再由法拉第电磁感应定律求得E 的表达式;(2)棒向右运动时,电子具有向右的分速度,受到沿棒向下的洛伦兹力,1v f e B =,棒中电子在洛伦兹力的作用下,电子从M 移动到N 的过程中,非静电力做功v W e Bl =,根据电动势定义WE q=计算得出E. (3)可以从微观的角度求出水平和竖直方向上的洛伦兹力做功情况,在比较整个过程中做功的变化状况. 【详解】(1)如图所示,在一小段时间∆t 内,金属棒MN 的位移 x v t ∆=∆这个过程中线框的面积的变化量S L x Lv t ∆=∆=∆ 穿过闭合电路的磁通量的变化量B S BLv t ∆Φ=∆=∆根据法拉第电磁感应定律 E t∆Φ=∆ 解得 E BLv =(2)如图所示,棒向右运动时,正电荷具有向右的分速度,受到沿棒向上的洛伦兹力1v f e B =,f 1即非静电力在f 的作用下,电子从N 移动到M 的过程中,非静电力做功v W e BL =根据电动势定义 W E q= 解得 v E BL =(3)自由电荷受洛伦兹力如图所示.设自由电荷的电荷量为q ,沿导体棒定向移动的速率为u .如图所示,沿棒方向的洛伦兹力1f q B =v ,做正功11ΔΔW f u t q Bu t =⋅=v 垂直棒方向的洛伦兹力2f quB =,做负功22ΔΔW f v t quBv t =-⋅=-所以12+=0W W ,即导体棒中一个自由电荷所受的洛伦兹力做功为零.1f 做正功,将正电荷从N 端搬运到M 端,1f 相当于电源中的非静电力,宏观上表现为“电动势”,使电源的电能增加;2f 做负功,宏观上表现为安培力做负功,使机械能减少.大量自由电荷所受洛伦兹力做功的宏观表现是将机械能转化为等量的电能,在此过程中洛伦兹力通过两个分力做功起到“传递”能量的作用. 【点睛】本题较难,要从电动势定义的角度上去求电动势的大小,并学会从微观的角度分析带电粒子的受力及做功情况.5.水平面上平行固定两长直导体导轨MN 和PQ ,导轨宽度L =2m ,空间存在竖直向下的匀强磁场,磁感应强度B =0.5T ,在垂直于导轨方向静止放置两根导体棒1和2,其中1的质量M =4kg,有效电阻R =0.6Ω,2的质量m =1kg ,有效电阻r =0.4Ω,现使1获得平行于导轨的初速度v 0=10m/s ,不计一切摩擦,不计其余电阻,两棒不会相撞.请计算:(1)初始时刻导体棒2的加速度a 大小. (2)系统运动状态稳定时1的速度v 大小.(3)系统运动状态达到稳定的过程中,流过导体棒1某截面的电荷量q 大小. (4)若初始时刻两棒距离d =10m ,则稳定后两棒的距离为多少? 【答案】(1)10m/s 2(2)8m/s (3)8C (4)2m【解析】 【详解】解:(1)初始时:0E BLv =EI R r=+ 对棒2:F 安BIL ma ==解得:222010m/s B L v a R r==+(2)对棒1和2的系统,动量守恒,则最后稳定时:0()Mv m M v =+ 解得:8m/s v =(3)对棒2,由动量定理:BIL t mv ∆= ,其中q I t =∆ 解得:8C mvq BL== (4)由E t φ∆=∆ 、E I R r=+、 q I t =∆ 联立解得:BL xq R r R rφ∆∆==++ 又mv q BL=解得:22()mv R r x B L+∆=则稳定后两棒的距离:22()2m mv R r d d x d B L+'=-∆=-=6.如图所示,ACD 、EFG 为两根相距L =0.5m 的足够长的金属直角导轨,它们被竖直固定在绝缘水平面上,CDGF 面与水平面夹角θ=300.两导轨所在空间存在垂直于CDGF 平面向上的匀强磁场,磁感应强度大小为B`=1T .两根长度也均为L =0.5m 的金属细杆ab 、cd 与导轨垂直接触形成闭合回路,ab 杆的质量m 1未知,cd 杆的质量m 2=0.1kg ,两杆与导轨之间的动摩擦因数均为μ=36,两金属细杆的电阻均为R =0.5Ω,导轨电阻不计.当ab 以速度v 1沿导轨向下匀速运动时,cd 杆正好也向下匀速运动,重力加速度g 取10m/s 2.(1)金属杆cd 中电流的方向和大小 (2)金属杆ab 匀速运动的速度v 1 和质量m 1【答案】I =5A 电流方向为由d 流向c; v 1=10m/s m 1=1kg 【解析】 【详解】(1)由右手定则可知cd 中电流方向为由d 流向c对cd 杆由平衡条件可得:μ=+0022安sin 60(cos 60)m g m g F=安F BLI联立可得:I =5A (2) 对ab: 由 =12BLv IR得 110m/s v = 分析ab 受力可得: 0011sin 30cos 30m g BLI m g μ=+解得: m 1=1kg7.如图所示,两根间距为L 的平行金属导轨,其cd 右侧水平,左侧为竖直的14画弧,圆弧半径为r ,导轨的电阻与摩擦不计,在导轨的顶端接有阻值为R 1的电阻,整个装置处在竖直向上的匀强磁场中。
备战高考物理法拉第电磁感应定律-经典压轴题含详细答案
一、法拉第电磁感应定律1.如图,匝数为N 、电阻为r 、面积为S 的圆形线圈P 放置于匀强磁场中,磁场方向与线圈平面垂直,线圈P 通过导线与阻值为R 的电阻和两平行金属板相连,两金属板之间的距离为d ,两板间有垂直纸面的恒定匀强磁场。
当线圈P 所在位置的磁场均匀变化时,一质量为m 、带电量为q 的油滴在两金属板之间的竖直平面内做圆周运动。
重力加速度为g ,求:(1)匀强电场的电场强度 (2)流过电阻R 的电流(3)线圈P 所在磁场磁感应强度的变化率 【答案】(1)mg q (2)mgdqR(3)()B mgd R r t NQRS ∆+=∆ 【解析】 【详解】 (1)由题意得:qE =mg解得mg qE =(2)由电场强度与电势差的关系得:UE d=由欧姆定律得:U I R=解得mgdI qR=(3)根据法拉第电磁感应定律得到:E Nt∆Φ=∆ BS t t∆Φ∆=∆∆根据闭合回路的欧姆定律得到:()E I R r =+ 解得:()B mgd R r t NqRS∆+=∆2.如图,水平面(纸面)内同距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上,t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.0t 时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求(1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值.【答案】0F E Blt g m μ⎛⎫=- ⎪⎝⎭ ; R =220B l t m【解析】 【分析】 【详解】(1)设金属杆进入磁场前的加速度大小为a ,由牛顿第二定律得:ma=F-μmg ① 设金属杆到达磁场左边界时的速度为v ,由运动学公式有:v =at 0 ②当金属杆以速度v 在磁场中运动时,由法拉第电磁感应定律,杆中的电动势为:E=Blv ③ 联立①②③式可得:0F E Blt g m μ⎛⎫=-⎪⎝⎭④ (2)设金属杆在磁场区域中匀速运动时,金属杆的电流为I ,根据欧姆定律:I=ER⑤ 式中R 为电阻的阻值.金属杆所受的安培力为:f BIl = ⑥ 因金属杆做匀速运动,由牛顿运动定律得:F –μmg–f=0 ⑦联立④⑤⑥⑦式得: R =220B l t m3.如图所示,平等光滑金属导轨AA1和CC1与水平地面之间的夹角均为θ,两导轨间距为L ,A 、C 两点间连接有阻值为R 的电阻,一根质量为m 、电阻也为R 的直导体棒EF 跨在导轨上,两端与导轨接触良好。
高考物理一轮复习专题27法拉第电磁感应定律(原卷版+解析)
专题27 法拉第电磁感应定律目录题型一实验:探究影响感应电流方向的因素 (1)题型二感应电流的产生和方向判断 (4)题型三楞次定律推论的应用 (6)题型四“三定则、一定律”的应用 (9)题型五法拉第电磁感应定律的理解及应用 (10)题型六导体切割磁感线产生的感应电动势 (13)类型1 平动切割磁感线 (14)类型2 转动切割磁感线 (15)类型3 有效长度问题 (16)题型六自感现象 (17)题型一实验:探究影响感应电流方向的因素1.实验设计如图2所示,通过将条形磁体插入或拔出线圈来改变穿过螺线管的磁通量,根据电流表指针的偏转方向判断感应电流的方向。
2.实验结论当穿过线圈的磁通量增加时,感应电流的磁场与原磁场的方向相反;当穿过线圈的磁通量减小时,感应电流的磁场与原磁场的方向相同。
3.注意事项实验前应首先查明电流表中电流的流向与电流表指针偏转方向之间的关系,判断的方法是:采用如图所示的电路,把一节干电池与电流表及线圈串联,由于电流表量程较小,所以在电路中应接入限流变阻器R,电池采用旧电池,开关S采用瞬间接触,记录指针偏转方向。
【例1】探究感应电流方向的实验所需器材包括:条形磁体、电流表、线圈、导线、一节干电池(用来查明线圈中电流的流向与电流表中指针偏转方向的关系).(1)实验现象:如图所示,在四种情况下,将实验结果填入下表.①线圈内磁通量增加时的情况①线圈内磁通量减少时的情况请填写表格中的空白项.(2)实验结论:当穿过闭合线圈的磁通量增加时,感应电流的磁场与原磁场方向________(选填“相同”或“相反”).(3)总结提炼:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的________.(4)拓展应用:如图所示是一种延时继电器的示意图.铁芯上有两个线圈A和B.线圈A和电源连接,线圈B与直导线ab构成一个闭合回路.弹簧K与衔铁D相连,D的右端触头C 连接工作电路(未画出).开关S闭合状态下,工作电路处于导通状态.S断开瞬间,延时功能启动,此时直导线ab中电流方向为________(选填“a到b”或“b到a”).说明延时继电器的“延时”工作原理:________.【例2】在“探究电磁感应的产生条件”的实验中,先按如图甲所示连线,不通电时,电流计指针停在正中央,闭合开关S时,观察到电流表指针向左偏。
2025年高考物理-法拉第电磁感应定律的理解及应用(解析版)
法拉第电磁感应定律的理解及应用考点考情命题方向考点法拉第电磁感应定律2024年高考甘肃卷2024年高考广东卷2024年高考北京卷2023年高考湖北卷2023高考江苏卷2022年高考天津卷法拉第电磁感应定律是电磁感应的核心知识点,年年考查,一般与安培力、动力学、功和能结合考查。
题型一对法拉第电磁感应定律的理解及应用1.感应电动势(1)感应电动势:在电磁感应现象中产生的电动势.产生感应电动势的那部分导体就相当于电源,导体的电阻相当于电源内阻.(2)感应电流与感应电动势的关系:遵循闭合电路欧姆定律,即I =ER +r.2.感应电动势大小的决定因素(1)感应电动势的大小由穿过闭合电路的磁通量的变化率ΔΦΔt和线圈的匝数共同决定,而与磁通量Φ、磁通量的变化量ΔΦ的大小没有必然联系.(2)当ΔΦ仅由B 的变化引起时,则E =nΔB ·S Δt ;当ΔΦ仅由S 的变化引起时,则E =n B ·ΔSΔt;当ΔΦ由B 、S 的变化同时引起时,则E =n B 2S 2-B 1S 1Δt ≠n ΔB ·ΔSΔt.3.磁通量的变化率ΔΦΔt 是Φ-t 图象上某点切线的斜率.1(2024•泰州模拟)如图所示,正三角形ABC 区域存在方向垂直纸面向里、大小随时间均匀增加的磁场。
以三角形顶点C 为圆心,粗细均匀的铜导线制成圆形线圈平行于纸面固定放置,则下列说法正确的是()A.线圈中感应电流的方向为顺时针B.线圈有扩张趋势C.线圈所受安培力方向与AB 边垂直D.增加线圈匝数,线圈中感应电流变小【解答】解:AB 、磁场垂直纸面向里,磁感应强度增大,穿过线圈的磁通量增加,根据楞次定律可知,感应电流的方向为逆时针。
因感应电流的磁场要阻碍磁通量的变化,所以线圈有收缩趋势,故AB 错误;C 、线圈的有效长度与AB 边平行,根据左手定则可知,线圈所受安培力方向与AB 边垂直,故C 正确;D 、设B =kt (k >0,且为常数),圆形线圈的半径为l ,电阻为R 。
2023年高考物理热点复习:法拉第电磁感应定律 自感现象(附答案解析)
第1页(共22页)2023年高考物理热点复习:法拉第电磁感应定律
自感现象【2023高考课标解读】
1.能应用法拉第电磁感应定律E =n
ΔΦΔt
和导线切割磁感线产生电动势公式E =Blv 计算感应电动势.2.会判断电动势的方向,即导体两端电势的高低.3.理解自感现象、涡流的概念,能分析通电自感和断电自感.
【2023高考热点解读】
一、法拉第电磁感应定律
1.感应电动势
(1)感应电动势:在电磁感应现象中产生的电动势.
(2)产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关.
(3)方向判断:感应电动势的方向用楞次定律或右手定则判断.
2.法拉第电磁感应定律
(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.
(2)公式:E =n ΔΦΔt
,其中n 为线圈匝数.(3)感应电流与感应电动势的关系:遵循闭合电路的欧姆定律,即I =E R +r .3.导体切割磁感线时的感应电动势
(1)导体垂直切割磁感线时,感应电动势可用E =Blv 求出,式中l 为导体切割磁感线的有效长度;
(2)导体棒在磁场中转动时,导体棒以端点为轴,在匀强磁场中垂直于磁感线方向匀速转动
产生感应电动势E =Bl v -=12Bl 2ω(平均速度等于中点位置的线速度12
lω).二、自感、涡流、电磁阻尼和电磁驱动
1.自感现象
(1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感,由于自感而产生的感应电动势叫做自感电动势.
(2)表达式:E =L ΔI Δt
.(3)自感系数L 的影响因素:与线圈的大小、形状、匝数以及是否有铁芯有关.
2.涡流现象。
高考物理法拉第电磁感应定律-经典压轴题含答案解析
一、法拉第电磁感应定律1.如图所示,正方形单匝线框bcde边长L=0.4 m,每边电阻相同,总电阻R=0.16 Ω.一根足够长的绝缘轻质细绳跨过两个轻小光滑定滑轮,一端连接正方形线框,另一端连接物体P,手持物体P使二者在空中保持静止,线框处在竖直面内.线框的正上方有一有界匀强磁场,磁场区域的上、下边界水平平行,间距也为L=0.4 m,磁感线方向垂直于线框所在平面向里,磁感应强度大小B=1.0 T,磁场的下边界与线框的上边eb相距h=1.6 m.现将系统由静止释放,线框向上运动过程中始终在同一竖直面内,eb边保持水平,刚好以v =4.0 m/s的速度进入磁场并匀速穿过磁场区,重力加速度g=10 m/s2,不计空气阻力.(1)线框eb边进入磁场中运动时,e、b两点间的电势差U eb为多少?(2)线框匀速穿过磁场区域的过程中产生的焦耳热Q为多少?(3)若在线框eb边刚进入磁场时,立即给物体P施加一竖直向下的力F,使线框保持进入磁场前的加速度匀加速运动穿过磁场区域,已知此过程中力F做功W F=3.6 J,求eb边上产生的焦耳Q eb为多少?【答案】(1)1.2 V(2)3.2 J(3)0.9 J【解析】【详解】(1)线框eb边以v=4.0 m/s的速度进入磁场并匀速运动,产生的感应电动势为:10.44V=1.6 VE BLv==⨯⨯因为e、b两点间作为等效电源,则e、b两点间的电势差为外电压:U eb=34E=1.2 V.(2)线框进入磁场后立即做匀速运动,并匀速穿过磁场区,线框受安培力:F安=BLI根据闭合电路欧姆定律有:I=E R联立解得解得F安=4 N所以克服安培力做功:=2=420.4J=3.2J W F L ⨯⨯⨯安安而Q =W 安,故该过程中产生的焦耳热Q =3.2 J(3)设线框出磁场区域的速度大小为v 1,则根据运动学关系有:22122v v a L -=而根据牛顿运动定律可知:()M m ga M m-=+联立整理得:12(M+m )( 21v -v 2)=(M-m )g ·2L 线框穿过磁场区域过程中,力F 和安培力都是变力,根据动能定理有:W F -W'安+(M-m )g ·2L =12(M+m )( 21v -v 2) 联立解得:W F -W'安=0而W'安= Q',故Q'=3.6 J又因为线框每边产生的热量相等,故eb 边上产生的焦耳热:Q eb =14Q'=0.9 J. 答:(1)线框eb 边进入磁场中运动时,e 、b 两点间的电势差U eb =1.2 V. (2)线框匀速穿过磁场区域的过程中产生的焦耳热Q =3.2 J. (3) eb 边上产生的焦耳Q eb =0.9J.2.如图所示,面积为0.2m 2的100匝线圈处在匀强磁场中,磁场方向垂直于线圈平面。
高考物理电磁感应现象压轴难题综合题含答案解析
高考物理电磁感应现象压轴难题综合题含答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,水平放置的两根平行光滑金属导轨固定在平台上导轨间距为1m ,处在磁感应强度为2T 、竖直向下的匀强磁场中,平台离地面的高度为h =3.2m 初始时刻,质量为2kg 的杆ab 与导轨垂直且处于静止,距离导轨边缘为d =2m ,质量同为2kg 的杆cd 与导轨垂直,以初速度v 0=15m/s 进入磁场区域最终发现两杆先后落在地面上.已知两杆的电阻均为r =1Ω,导轨电阻不计,两杆落地点之间的距离s =4m (整个过程中两杆始终不相碰)(1)求ab 杆从磁场边缘射出时的速度大小; (2)当ab 杆射出时求cd 杆运动的距离;(3)在两根杆相互作用的过程中,求回路中产生的电能.【答案】(1) 210m/s v =;(2) cd 杆运动距离为7m ; (3) 电路中损耗的焦耳热为100J . 【解析】 【详解】(1)设ab 、cd 杆从磁场边缘射出时的速度分别为1v 、2v设ab 杆落地点的水平位移为x ,cd 杆落地点的水平位移为x s +,则有2h x v g =2h x s v g+=根据动量守恒012mv mv mv =+求得:210m/s v =(2)ab 杆运动距离为d ,对ab 杆应用动量定理1BIL t BLq mv ==设cd 杆运动距离为d x +∆22BL xq r r∆Φ∆== 解得1222rmv x B L ∆=cd 杆运动距离为12227m rmv d x d B L+∆=+= (3)根据能量守恒,电路中损耗的焦耳热等于系统损失的机械能222012111100J 222Q mv mv mv =--=2.如图,在地面上方空间存在着两个水平方向的匀强磁场,磁场的理想边界ef 、gh 、pq 水平,磁感应强度大小均为B ,区域I 的磁场方向垂直纸面向里,区域Ⅱ的磁场方向向外,两个磁场的高度均为L ;将一个质量为m ,电阻为R ,对角线长为2L 的正方形金属线圈从图示位置由静止释放(线圈的d 点与磁场上边界f 等高,线圈平面与磁场垂直),下落过程中对角线ac 始终保持水平,当对角线ac 刚到达cf 时,线圈恰好受力平衡;当对角线ac 到达h 时,线圈又恰好受力平衡(重力加速度为g ).求:(1)当线圈的对角线ac 刚到达gf 时的速度大小;(2)从线圈释放开始到对角线ac 到达gh 边界时,感应电流在线圈中产生的热量为多少?【答案】(1)1224mgR v B L = (2)322442512m g R Q mgL B L=- 【解析】 【详解】(1)设当线圈的对角线ac 刚到达ef 时线圈的速度为1v ,则此时感应电动势为:112E B Lv =⨯感应电流:11E I R=由力的平衡得:12BI L mg ⨯= 解以上各式得:1224mgRv B L =(2)设当线圈的对角线ac 刚到达ef 时线圈的速度为2v ,则此时感应电动势2222E B Lv =⨯感应电流:22E I R=由力的平衡得:222BI L mg ⨯= 解以上各式得:22216mgRv B L =设感应电流在线圈中产生的热量为Q ,由能量守恒定律得:22122mg L Q mv ⨯-=解以上各式得:322442512m g R Q mgL B L =-3.电源是通过非静电力做功把其它形式的能转化为电势能的装置,在不同的电源中,非静电力做功的本领也不相同,物理学中用电动势E 来表明电源的这种特性。
高考物理电磁感应现象压轴难题综合题附答案解析
高考物理电磁感应现象压轴难题综合题附答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图甲所示,MN 、PQ 两条平行的光滑金属轨道与水平面成θ = 30°角固定,M 、P 之间接电阻箱R ,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B = 1T .质量为m 的金属杆ab 水平放置在轨道上,其接入电路的电阻值为r ,现从静止释放杆ab ,测得最大速度为v m .改变电阻箱的阻值R ,得到v m 与R 的关系如图乙所示.已知轨距为L = 2m ,重力加速度g 取l0m/s 2,轨道足够长且电阻不计.求:(1)杆ab 下滑过程中流过R 的感应电流的方向及R =0时最大感应电动势E 的大小; (2)金属杆的质量m 和阻值r ;(3)当R =4Ω时,求回路瞬时电功率每增加2W 的过程中合外力对杆做的功W . 【答案】(1)电流方向从M 流到P ,E =4V (2)m =0.8kg ,r =2Ω (3)W =1.2J 【解析】本题考查电磁感应中的单棒问题,涉及动生电动势、闭合电路欧姆定律、动能定理等知识.(1)由右手定则可得,流过R 的电流方向从M 流到P 据乙图可得,R=0时,最大速度为2m/s ,则E m = BLv = 4V (2)设最大速度为v ,杆切割磁感线产生的感应电动势 E = BLv 由闭合电路的欧姆定律EI R r=+ 杆达到最大速度时0mgsin BIL θ-= 得 2222sin sin B L mg mg v R r B Lθθ=+ 结合函数图像解得:m = 0.8kg 、r = 2Ω(3)由题意:由感应电动势E = BLv 和功率关系2E P R r =+得222B L V P R r=+则22222221B L V B L V P R r R r∆=-++ 再由动能定理22211122W mV mV =- 得22()1.22m R r W P J B L +=∆=2.如图所示,一阻值为R 、边长为l 的匀质正方形导体线框abcd 位于竖直平面内,下方存在一系列高度均为l 的匀强磁场区,与线框平面垂直,各磁场区的上下边界及线框cd 边均磁场方向均与线框平面垂水平。
高考物理压轴题之电磁感应现象的两类情况(高考题型整理,突破提升)附答案
一、电磁感应现象的两类情况
1.如图所示,无限长平行金属导轨 EF、PQ 固定在倾角 θ=37°的光滑绝缘斜面上,轨道间 距 L=1m,底部接入一阻值 R=0.06Ω 的定值电阻,上端开口,垂直斜面向上的匀强磁场的磁 感应强度 B=2T。一质量 m=2kg 的金属棒 ab 与导轨接触良好,ab 与导轨间的动摩擦因数 μ=0.5,ab 连入导轨间的电阻 r=0.04Ω,电路中其余电阻不计。现用一质量 M=6kg 的物体通 过一不可伸长的轻质细绳绕过光滑的定滑轮与 ab 相连.由静止释放物体,当物体下落高度 h=2.0m 时,ab 开始匀速运动,运动中 ab 始终垂直导轨并与导轨接触良好。不计空气阻 力,sin37°=0.6,cos37°=0.8,g 取 10m/s2。
电阻,一长为 l 的金属杆置于导轨上,杆与导轨的电阻均忽略不计,两者始终保持垂直且 接触良好,两者之间的动摩擦因数为 μ,导轨处于匀强磁场中,磁感应强度大小为 B,方 向垂直于斜面向上,当金属杆受到平行于斜面向上大小为 F 的恒定拉力作用,可以使其匀
速向上运动;当金属杆受到平行于斜面向下大小为 F 的恒定拉力作用时,可以使其保持与 2
I E R
q It
q BLat2 5C 2R
BIL Mg
I E R
E BLv
t v a
t=
MgR B 2 L2 a
4s
4.如图 1 所示,在光滑的水平面上,有一质量 m=1kg、足够长的 U 型金属导轨 abcd,间
距 L=1m。一电阻值 R 0.5Ω 的细导体棒 MN 垂直于导轨放置,并被固定在水平面上的两 立柱挡住,导体棒 MN 与导轨间的动摩擦因数 0.2 ,在 M、N 两端接有一理想电压表
高考物理法拉第电磁感应定律-经典压轴题附答案
高考物理法拉第电磁感应定律- 经典压轴题附答案一、法拉第电磁感应定律1.如图,匝数为N、电阻为r、面积为S的圆形线圈P 放置于匀强磁场中,磁场方向与线圈平面垂直,线圈P 通过导线与阻值为R 的电阻和两平行金属板相连,两金属板之间的距离为d,两板间有垂直纸面的恒定匀强磁场。
当线圈P 所在位置的磁场均匀变化时,一质量为m 、带电量为q 的油滴在两金属板之间的竖直平面内做圆周运动。
重力加速度为g,求:(1)匀强电场的电场强度(2)流过电阻R 的电流(3)线圈P 所在磁场磁感应强度的变化率答案】mg mgd(1) m q g(2) m q g R d(3)mgd (R r )NQRS解析】详解】(1)由题意得:解得qE=mgmg (2)由电场强度与电势差的关系得:由欧姆定律得:解得mgdqR (3)根据法拉第电磁感应定律得到:ENt根据闭合回路的欧姆定律得到: E I (R r ) 解得:B mgd (R r ) t NqRS2.如图所示,光滑的长平行金属导轨宽度 d=50cm ,导轨所在的平面与水平面夹角θ =37,°导轨上端电阻 R=0.8 Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度 B=0.4T .金属棒 ab 从上端由静止开始下滑,金属棒 ab 的质量(2)求当速度达到 5m/s 时导体棒的加速度;(3)若经过时间 t ,导体棒下滑的垂直距离为 s ,速度为 v .若在同一时间内,电阻产生的 热与一恒定电流 I 0 在该电阻上产生的热相同,求恒定电流 I 0的表达式(各物理量全部用字 母表示).【答案】 (1)18.75m/s (2)a=4.4m/s 2(3) 2mgs mv2Rt【解析】【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方 程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解 ; 根据能量守恒求 解;解:( 1)当物体达到平衡时,导体棒有最大速度,有: mgsin F cos , 根据安培力公式有: F BIL ,解得: v m 2 g 2Rsin 218.75 ;B L cos(2)由牛顿第二定律有: mg sin F cos ma ,I BLv cos 1A RF BIL 0.2N ,a 4.4m / s 2 ;(3)根据能量守恒有:根据欧姆定律有: IE BLv cos RR mgs22mv 2 I 02Rt, 2MN 、 PQ 间有垂直轨道平面向下、磁感应强度为 B 1 的匀强磁场, PQ 、GH 间有平行于斜面但大小、方向未知的匀强磁场 B 2,其他区域无磁场,除金属棒及定值电阻,其余电阻均不 计,sin 37 =°0.6,cos 37 °=0.8,当 ab 棒从 MN 上方一定距离由静止释放通过 MN 、PQ 区 域(运动过程中 ab 棒始终保持水平 ),电压传感器监测到1)求 ab 棒刚进入磁场 B 1 时的速度大小. 2)求定值电阻上产生的热量 Q 1.3)多次操作发现,当 ab 棒从 MN 以某一特定速度进入 MNQP 区域的同时,另一质量为 2m ,电阻为 2R 的金属棒 cd 只要以等大的速度从 PQ 进入 PQHG 区域,两棒均可同时匀速通过各自场区,试求 B 2 的大小和方向.解析】 详解】(1)根据 ab 棒刚进入磁场 B 1 时电压传感器的示数为 U,再由闭合电路欧姆定律可得此时的感应电动势:E 1 U 2U R R 1.5U根据导体切割磁感线产生的感应电动势计算公式可得:E 1B 1dv 1计算得出 :v 1.5UB 1d .(2)设金属棒 ab 离开 PQ 时的速度为 v 2,根据图乙可以知道定值电阻两端电压为 2U ,根据闭合电路的欧姆定律可得:B 1dv22R 2U2R R解得: I 02mgs mv 2Rt3.如图甲所示,相距 d 的两根足够长的金属制成的导轨,水平部分左端 ef 间连接一阻值 为 2R 的定值电阻,并用电压传感器实际监测两端电压,倾斜部分与水平面夹角为37°.长度也为 d 、质量为 m 的金属棒 ab 电阻为 R ,通过固定在棒两端的金属轻滑环套在导轨上,滑 环与导轨上 MG 、NH 段动摩擦因数 μ= 81 (其余部分摩擦不计8).MN 、PQ 、GH 相距为 L ,U - t 关系如图乙所示. 答案】 1)1.5UB 1d1 2)mgL49B m 2Ud 2 ;(3)32B 1方向沿导轨平面向上;棒 ab 从 MN 到 PQ ,根据动能定理可得: B 1d1 2 1 2 mgsin37 L mg cos37 L W 安mv 2 mv 1 22根据功能关系可得产生的总的焦耳热根据焦耳定律可得定值电阻产生的焦耳热为:将 v m 2gR 2 代入计算得出: B 2 32B 1 . B 1 d答: (1)ab 棒刚进入磁场 B 1时的速度大小为 1.5U ; B 1d(2)定值电阻上产生的热量为 1mgL 9m 2U34B 12d(3)B 2的大小为 32B 1 ,方向沿导轨平面向上 .4. 如图所示,两条平行的金属导轨相距 L=lm ,金属导轨的倾斜部分与水平方向的夹角为 37°,整个装置处在竖直向下的匀强磁场中.金属棒 MN 和 PQ 的质量均为 m=0.2kg ,电阻分别为 R MN =1Ω和 R PQ =2Ω. MN 置于水平导轨上,与水平导轨间的动摩擦因数 μ =0.5,PQ 置于光滑的倾斜导轨上,两根金属棒均与导轨垂直且接触良好.从 t=0 时刻起, MN 棒在 水平外力 F 1的作用下由静止开始以 a=1m / s 2的加速度向右做匀加速直线运动, PQ 则在平行 于斜面方向的力 F 2作用下保持静止状态. t =3s 时, PQ 棒消耗的电功率为 8W ,不计导轨的3U计算得出: v 2Q 12R2R RQ总联立以上各式得出:1Q 1mgL 39mU 24B 12d 2 (3)两棒以相同的初速度进入场区匀速经过相同的位移,对 mg sin 37mg cos37ab 棒根据共点力的平衡可得:B 12d 2v2R 0mgR 计算得出: v B m 12g d R2对 cd 棒分析因为:2mg sin 372mg cos37 0故 cd 棒安培力必须垂直导轨平面向下,根据左手定则可以知道磁感应强度 向上, cd 棒也匀速运动则有:B 2 沿导轨平面2mg sin 372mgcos37 B 2 12 B 21d R v d22电阻,水平导轨足够长, MN 始终在水平导轨上运动.求:1) 磁感应强度 B 的大小;2) t=0~3s 时间内通过 MN 棒的电荷量; 3) 求 t=6s 时 F 2 的大小和方向;4) 若改变 F 1的作用规律,使 MN 棒的运动速度 v 与位移 s 满足关系: v=0.4s , PQ 棒仍20J 3解析】 【分析】t =3s 时, PQ 棒消耗的电功率为 8W ,由功率公式 P=I 2R 可求出电路中电流,由闭合电路欧姆定律求出感应电动势.已知 MN 棒做匀加速直线运动,由速度时间公式求出 t=3s 时的速 度,即可由公式 E=BLv 求出磁感应强度 B ;根据速度公式 v=at 、感应电动势公式 E=BLv 、闭 合电路欧姆定律和安培力公式 F=BIL 结合,可求出 PQ 棒所受的安培力大小,再由平衡条件 求解 F 2的大小和方向;改变 F 1的作用规律时, MN 棒做变加速直线运动,因为速度 v 与位 移x 成正比,所以电流 I 、安培力也与位移 x 成正比,可根据安培力的平均值求出安培力做 功,系统产生的热量等于克服安培力,即可得解. 【详解】(1) 当 t=3s 时,设 MN 的速度为 v 1, 则 v 1=at =3m/s 感应电动势为: E 1=BL v 1根据欧姆定律有: E 1=I(R MN + R PQ ) 根据 P=I 2 R PQ代入数据解得 : B=2T(2) 当 t =6 s 时,设 MN 的速度为 v 2,则 速度为: v 2=at = 6 m/s 感应电动势为: E 2=BLv 2=12 V安培力为: F 安= BI 2L = 8 N 规定沿斜面向上为正方向,对 PQ 进行受力分析可得:F 2+ F 安cos 37 °=mgsin 37 °代入数据得: F 2=- 5.2 N(负号说明力的方向沿斜面向下 ) (3)MN 棒做变加速直线运动,当 x =5 m 时, v = 0.4x = 0.4 ×5 m =/s2 m/s根据闭合电路欧姆定律 : I 2E2RMNRPQ4A然静止在倾斜轨道上.求 MN 棒从静止开始到 s=5m 的过程中,系统产生的焦耳热.Q因为速度 v 与位移 x 成正比,所以电流 I 、安培力也与位移 x 成正比, 【点睛】本题是双杆类型,分别研究它们的情况是解答的基础,运用力学和电路.关键要抓住安培 力与位移是线性关系,安培力的平均值等于初末时刻的平均值,从而可求出安培力做功.5.如图所示足够长的光滑平行金属导轨 MN 、 PQ 组成的平面与水平面成 37°放置,导轨宽度 L=1m ,一匀强磁场垂直导轨平面向下,导轨上端 M 与 P 之间连接阻值 R=0.3Ω的电 阻,质量为 m=0.4kg 、电阻 r=0.1 Ω的金属棒 ab 始终紧贴在导轨上.现使金属导轨 ab 由静 止开始下滑,下滑过程中 ab 始终保持水平,且与导轨接触良好,其下滑距离 x 与时间 t 的 关系如图乙所示,图像中的 OA 段为曲线, AB 段为直线,导轨电阻不计. g=10m/s 2,忽略(1) 磁感应强度 B 的大小;(2) 金属棒 ab 在开始运动的 2.0s 内,通过电阻 R 的电荷量;(3) 金属棒 ab 在开始运动的 2.0s 内,电阻 R 产生的焦耳热. 【答案】( 1) B 0.4T (2) q 6C (3) Q R 5.4J 【解析】(1) 导体棒在沿斜面方向的重力分力与安培力平衡:得 mgsin BIL导体棒切割磁感线产生的电动势为:E BLv 由闭合电路欧姆定律知:Rrx 3.6 v 6m/st 0.6 联立解得: B 0.4T(2) q It E t t BsL 6C R r t(R r) (R r) (R r)12安培力做功 : W 安 1BL 2BLv230Jab 棒在运动过程中对原磁场的影响.求:3)由功能关系得:mgxsin 12 mv2 QQQ R R 5.4JRr综上所述本题答案是: (1) 0.4T (2)6C (3) 5.4J点睛:对于本题要从力的角度分析安培力作用下导体棒的平衡问题,列平衡方程,另外要借助于动能定理、功能关系求能量之间的关系.6.如图所示,两根相距d=1m 的足够长的光滑平行金属导轨位于xoy 竖直面内,两金属导轨一端接有阻值为R=2Ω的电阻.在y>0 的一侧存在垂直纸面的磁场,磁场大小沿x轴均匀分布,沿y 轴大小按规律B 0.5 y 分布。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)在0~4s时间内通过电阻R的电荷量q;
(3)在0~5s时间内金属棒ab产生的焦耳热Q。
【答案】(1) (2) (3)
【解析】(1)棒进入磁场之前对ab受力分析由牛顿第二定律得
由匀变速直线位移与时间关系
则由匀变速直线运动速度与时间 Nhomakorabea系得金属棒受到的安培力
(2)由上知,棒进人磁场时 ,则金属棒作匀速运动,匀速运动时间
F安=BLI
根据闭合电路欧姆定律有:
I=
联立解得解得F安=4 N
所以克服安培力做功:
而Q=W安,故该过程中产生的焦耳热Q=3.2 J
(3)设线框出磁场区域的速度大小为v1,则根据运动学关系有:
而根据牛顿运动定律可知:
联立整理得:
(M+m)( -v2)=(M-m)g·2L
线框穿过磁场区域过程中,力F和安培力都是变力,根据动能定理有:
【答案】(1)1.2 V(2)3.2 J(3)0.9 J
【解析】
【详解】
(1)线框eb边以v=4.0 m/s的速度进入磁场并匀速运动,产生的感应电动势为:
因为e、b两点间作为等效电源,则e、b两点间的电势差为外电压:
Ueb= E=1.2 V.
(2)线框进入磁场后立即做匀速运动,并匀速穿过磁场区,线框受安培力:
对棒2: 安
解得:
(2)对棒1和2的系统,动量守恒,则最后稳定时:
解得:
(3)对棒2,由动量定理: ,其中
解得:
(4)由 、 、
联立解得:
又
解得:
则稳定后两棒的距离:
8.如图所示,两根足够长、电阻不计的光滑平行金属导轨相距为L=1m,导轨平面与水平面成 =30角,上端连接 的电阻.质量为m=0.2kg、阻值 的金属棒ab放在两导轨上,与导轨垂直并接触良好,距离导轨最上端d=4m,整个装置处于匀强磁场中,磁场的方向垂直导轨平面向上.
(1)金属杆的质量;
(2)金属杆在磁场中匀速向上运动时速度的大小。
【答案】(1) ;(2) 。
【解析】
【分析】
【详解】
(1)金属杆在平行于斜面向上大小为F的恒定拉力作用下可以保持匀速向上运动,设金属杆的质量为m,速度为v,由力的平衡条件可得
,
同理可得
,
由闭合电路的欧姆定律可得
,
由法拉第电磁感应定律可得
解得:
此后到停止,由能量守恒定律得:
可得:
7.水平面上平行固定两长直导体导轨MN和PQ,导轨宽度L=2m,空间存在竖直向下的匀强磁场,磁感应强度B=0.5T,在垂直于导轨方向静止放置两根导体棒1和2,其中1的质量M=4kg,有效电阻R=0.6Ω,2的质量m=1kg,有效电阻r=0.4Ω,现使1获得平行于导轨的初速度v0=10m/s,不计一切摩擦,不计其余电阻,两棒不会相撞.请计算:
(3)根据法拉第电磁感应定律可得: ,根据 可得, ,最后化简可得 ,所以外力F的取值范围
【点睛】
过程比较复杂的问题关键在于过程分析,对运动和受力进行分析。
9.如图甲所示,水平放置的电阻不计的光滑平行金属导轨相距L=0.5m,左端连接R=0.4Ω的电阻,右端紧靠在绝缘墙壁边,导轨间虚线右边与墙壁之间的区域内存在方向垂直导轨平面的磁场,虚线与墙壁间的距离为s=10m,磁感应强度B随时间t变化的图象如图乙所示。一电阻r=0.1Ω、质量为m=0.5kg的金属棒ab垂直导轨放置于距离磁场左边界d= 2.5m处,在t=0时刻金属棒受水平向右的大小F=2.5N的恒力作用由静止开始运动,棒与导轨始终接触良好,棒滑至墙壁边后就保持静止不动。求:
(1)若磁感应强度B=0.5T,将金属棒释放,求金属棒匀速下滑时电阻R两端的电压;
(2)若磁感应强度的大小与时间成正比,在外力作用下ab棒保持静止,当t=2s时外力恰好为零.求ab棒的热功率;
(3)若磁感应强度随时间变化的规律是 ,在平行于导轨平面的外力F作用下ab棒保持静止,求此外力F的最大值。
【答案】(1) (2) (3)
高考物理法拉第电磁感应定律-经典压轴题附答案解析
一、法拉第电磁感应定律
1.如图所示,正方形单匝线框bcde边长L=0.4 m,每边电阻相同,总电阻R=0.16 Ω.一根足够长的绝缘轻质细绳跨过两个轻小光滑定滑轮,一端连接正方形线框,另一端连接物体P,手持物体P使二者在空中保持静止,线框处在竖直面内.线框的正上方有一有界匀强磁场,磁场区域的上、下边界水平平行,间距也为L=0.4 m,磁感线方向垂直于线框所在平面向里,磁感应强度大小B=1.0 T,磁场的下边界与线框的上边eb相距h=1.6 m.现将系统由静止释放,线框向上运动过程中始终在同一竖直面内,eb边保持水平,刚好以v=4.0 m/s的速度进入磁场并匀速穿过磁场区,重力加速度g=10 m/s2,不计空气阻力.
解: 由图b知:
时棒的速度为零,故回路中只有感生感应势为:
感应电流为:
可得 时棒所受到的安培力:
,方向水平向右;
棒与轨道间的最大摩擦力为:
故前3s内导体棒静止不动,由平衡条件得:
由图知在 内,磁感应强度为:
联立解得: ;
前3s内通过电阻R的电量为:
设3s后到撤去外力F时又运动了 ,则有:
解得:
此时ab棒的速度设为 ,则有:
(1)在达到稳定速度前,金属棒的加速度逐渐减小,速度逐渐增大,达到稳定速度时,有
其中
根据法拉第电磁感应定律,有
联立解得:
(2)根据能量关系有
电阻R上产生的热量
解得:
(3)当回路中的总磁通量不变时,金属棒中不产生感应电流,此时金属棒将沿导轨做匀加速运动,根据牛顿第二定律,有:
根据位移时间关系公式,有
设t时刻磁感应强度为B,总磁通量不变,有:
(1)初始时刻导体棒2的加速度a大小.
(2)系统运动状态稳定时1的速度v大小.
(3)系统运动状态达到稳定的过程中,流过导体棒1某截面的电荷量q大小.
(4)若初始时刻两棒距离d=10m,则稳定后两棒的距离为多少?
【答案】(1)10m/s2(2)8m/s(3)8C(4)2m
【解析】
【详解】
解:(1)初始时:
求 时棒所受到的安培力 ;
分析前3s时间内导体棒的运动情况并求前3s内棒所受的摩擦力f随时间t变化的关系式;
从 时刻开始,当通过电阻R的电量 时,ab棒正在向右运动,此时撤去外力F,此后ab棒又运动了 后静止 求撤去外力F后电阻R上产生的热量Q.
【答案】(1) ,方向水平向右(2) (3)
【解析】
【详解】
5.如图所示,间距为l的平行金属导轨与水平面间的夹角为 ,导轨间接有一阻值为R的电阻,一长为l的金属杆置于导轨上,杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ,导轨处于匀强磁场中,磁感应强度大小为B,方向垂直于斜面向上,当金属杆受到平行于斜面向上大小为F的恒定拉力作用,可以使其匀速向上运动;当金属杆受到平行于斜面向下大小为 的恒定拉力作用时,可以使其保持与向上运动时大小相同的速度向下匀速运动,重力加速度大小为g,求:
(1)线框离开磁场的过程中流过线框截面的电量q;
(2)线框离开磁场的过程中产生的热量Q;
(3)线框离开磁场过程中cd两点间的电势差Ucd.
【答案】(1) (2) (3)
【解析】
【详解】
(1)线框离开磁场的过程中,则有:
联立可得:
(2)线框中的产生的热量:
解得:
(3) 间的电压为:
解得:
3.如下图所示,MN、PQ为足够长的光滑平行导轨,间距L=0.5m.导轨平面与水平面间的夹角 = 30°,NQ丄MN,NQ间连接有一个 的电阻,有一匀强磁场垂直于导轨平面,磁感应强度为 ,将一根质量为m=0.02kg的金属棒ab紧靠NQ放置在导轨上,且与导轨接触良好,金属棒的电阻 ,其余部分电阻不计,现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与NQ平行,当金属棒滑行至cd处时速度大小开始保持不变,cd距离NQ为s=0.5 m,g=10m/s2。
(1)求金属棒达到稳定时的速度是多大;
(2)金属棒从静止开始到稳定速度的过程中,电阻R上产生的热量是多少?
(3)若将金属棒滑行至cd处的时刻记作t=0,从此时刻起,让磁感应强度逐渐减小,可使金属棒中不产生感应电流,则t=1s时磁感应强度应为多大?
【答案】(1) (2)0.0183J(3)
【解析】
【详解】
,
联立解得
,
(2)金属杆在磁场中匀速向上运动时速度的大小
。
6.如图 ,平行长直导轨MN、PQ水平放置,两导轨间距 ,导轨左端MP间接有一阻值为 的定值电阻,导体棒ab质量 ,与导轨间的动摩擦因数 ,导体棒垂直于导轨放在距离左端 处,导轨和导体棒电阻均忽略不计 整个装置处在范围足够大的匀强磁场中, 时刻,磁场方向竖直向下,此后,磁感应强度B随时间t的变化如图 所示,不计感应电流磁场的影响 当 时,突然使ab棒获得向右的速度 ,同时在棒上施加一方向水平、大小可变化的外力F,保持ab棒具有大小为恒为 、方向向左的加速度,取 .
v= =7 m/s
根据欧姆定律可得:
I=
根据平衡条件有
mg=BIL
解得:
B=0.1T
(2)根据电量公式:
q= Δt
根据欧姆定律可得:
=
磁通量变化量
ΔΦ= B
解得:
q=0.67 C
(3)根据能量守恒有:
Q=mgx- mv2
解得:
Q=0.455 J
所以
QR= Q=0.26 J
答:(1)v=7 m/sB=0.1 T (2)q=0.67 C (3)0.26 J
【解析】
【分析】
本题考查的是导体棒切割磁感线的动力学问题,我们首先把导体棒的运动情况和受力情况分析清楚,然后结合相应规律即可求出相应参量。