二次函数性质一览表
二次函数性质表格
最值
向上
(-h,0) 直线x=-h
向下
x<-h时y随x的增大而减小 x>-h时y随x的增大而增大
x<-h时y随x的增大而增大 x>-h时y随x的增大而减小
x=-h时y最小值=0
x=-h时y最大值=0
y=ax²+bx+c
a>0
a<0
大致图像
开口方向 顶点
对称轴
增减性
最值
向上 (-b/2a,(4ac-b²)/4a 直线x=-b/2a
y=ax²
a>0
a<0
大致图像
开口方向 顶点
对称轴
增减性
最值
向上
(0,0) y轴(直线x=0)
向下
x<0时y随x的增大而减小 x>0时y随x的增大而增大
x<0时y随x的增大而增大 x>0时y随x的增大而减小
x=0时y最小值=0
x=0时y最大值=0
y=a(x+h)²
a>0
a<0
大致图像
开口方向 顶点
对称轴
向下 )
x<-b/2a时y随x的增大而减小 x>-b/2a时y随x的增大而增大
x<-b/2a时y随x的增大而增大 x>-b/2a时y随x的增大而减小
x=-b/2a时y最小值=(4ac-b²)/4a x=-b/2a时y最大值=(4ac-b²)/4a
y=ax²+k
a>0
a<0
大致图像
开口方向 顶点 对称轴
增减性
最值
向上
向下
(0,k)
y轴(直线x=0)
x<0时y随x的增大而减小 x>0时y随x的增大而增大
x<0时y随x的增大而增 大
x>0时y随x的增大而减
《二次函数的图象和性质》 知识清单
《二次函数的图象和性质》知识清单一、二次函数的基本形式二次函数的一般式为:$y = ax^2 + bx + c$($a \neq 0$),其中$a$、$b$、$c$ 是常数。
当$a > 0$ 时,二次函数的图象开口向上;当$a < 0$ 时,图象开口向下。
二、二次函数的对称轴对于二次函数$y = ax^2 + bx + c$,其对称轴的方程为$x =\frac{b}{2a}$。
对称轴将二次函数的图象分成对称的两部分。
三、二次函数的顶点坐标二次函数的顶点坐标为$\left(\frac{b}{2a},\frac{4ac b^2}{4a}\right)$。
当$a > 0$ 时,顶点为图象的最低点;当$a < 0$ 时,顶点为图象的最高点。
四、二次函数的图象变化1、$a$ 的作用$|a|$的大小决定了图象开口的宽窄程度,$|a|$越大,开口越窄;$|a|$越小,开口越宽。
$a$ 的正负决定了图象的开口方向。
2、$b$ 的作用$b$ 和$a$ 共同决定对称轴的位置。
当$b = 0$ 时,对称轴为$y$ 轴。
3、$c$ 的作用$c$ 表示二次函数与$y$ 轴的交点纵坐标,即图象与$y$ 轴交于点$(0, c)$。
五、二次函数的最值当$a > 0$ 时,函数在顶点处取得最小值;当$a < 0$ 时,函数在顶点处取得最大值。
最值为$\frac{4ac b^2}{4a}$。
六、二次函数的图象与$x$ 轴的交点令$y = 0$,解一元二次方程$ax^2 + bx + c = 0$ 。
1、当$\Delta = b^2 4ac > 0$ 时,图象与$x$ 轴有两个交点。
2、当$\Delta = b^2 4ac = 0$ 时,图象与$x$ 轴有一个交点。
3、当$\Delta = b^2 4ac < 0$ 时,图象与$x$ 轴没有交点。
七、二次函数的平移1、向上平移$k$ 个单位函数表达式变为$y = ax^2 + bx + c + k$2、向下平移$k$ 个单位函数表达式变为$y = ax^2 + bx + c k$3、向左平移$h$ 个单位函数表达式变为$y = a(x + h)^2 + b(x + h) + c$4、向右平移$h$ 个单位函数表达式变为$y = a(x h)^2 + b(x h) + c$八、二次函数的应用二次函数在实际生活中有广泛的应用,例如:1、求最大利润问题通常设利润为$y$,销售量或价格为$x$,建立二次函数模型,通过求顶点坐标来得到最大利润。
二次函数图像与性质总结
二次函数的图像与性质一、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质: 上加下减。
3. ()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:二、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)三、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 四、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.五、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a-.六、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.八、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.二次函数图像参考:十一、2-32y=-2x 2y=3(x+4)22y=3x2y=-2(x-3)2【例题精讲】一、一元二次函数的图象的画法【例1】求作函数64212++=x x y 的图象 【解】)128(21642122++=++=x x x x y 2-4)(214]-4)[(21 2222+=+=x x4-=x 【例2】求作函数342+--=x x y 的图象。
二次函数图像与性质完整归纳
二次函数的图像与性质一、二次函数的根本形式1. 二次函数根本形式:2=的性质:y ax2. 2=+的性质:y ax c上加下减。
3. ()2=-的性质:y a x h左加右减。
4. ()2y a x h k =-+的性质:二、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的根底上“h 值正右移,负左移;k 值正上移,负下移〞. 概括成八个字“左加右减,上加下减〞. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上〔下〕平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2〔或m c bx ax y -++=2〕⑵c bx ax y ++=2沿轴平移:向左〔右〕平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2〔或c m x b m x a y +-+-=)()(2〕三、二次函数()2y a x h k =-+与2y ax bx c =++的比拟从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 四、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,〔假设与x 轴没有交点,那么取两组关于对称轴对称的点〕.画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.五、二次函数2y ax bx c =++的性质1.当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a-.六、二次函数解析式的表示方法1. 一般式:2y ax bx c =++〔a ,b ,c 为常数,0a ≠〕;2. 顶点式:2()y a x h k =-+〔a ,h ,k 为常数,0a ≠〕;3. 两根式:12()()y a x x x x =--〔0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标〕. 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系1.二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边那么0>ab ,在y 轴的右侧那么0<ab ,概括的说就是“左同右异〞总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式确实定:根据条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 抛物线上三点的坐标,一般选用一般式;2. 抛物线顶点或对称轴或最大〔小〕值,一般选用顶点式;3. 抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 抛物线上纵坐标一样的两点,常选用顶点式.八、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-;4. 关于顶点对称〔即:抛物线绕顶点旋转180°〕2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原那么,选择适宜的形式,习惯上是先确定原抛物线〔或表达式的抛物线〕的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.二次函数图像参考:十一、【例题精讲】一、一元二次函数的图象的画法【例1】求作函数64212++=x x y 的图象 【解】 )128(21642122++=++=x x x x y2-4)(214]-4)[(21 2222+=+=x x以4-=x 为中间值,取x 的一些值,列表如下:【例2】求作函数342+--=x x y 的图象。
二次函数的图像和性质表格
配方法
将二次函数通过配方转化为顶点式$y=a(xh)^2+k$,其中$(h,k)$为顶点坐标。根据 $a$的正负和顶点坐标可求得最值。
公式法
对于一般形式的二次函数$y=ax^2+bx+c$ ,其最值可通过公式$-frac{b}{2a}$求得对 称轴,再代入原函数求得最值。
04 典型二次函数图 像举例
对称轴与顶点坐标
对称轴
对于一般形式$y=ax^2+bx+c$的二次函 数,其对称轴为直线$x=-frac{b}{2a}$。
VS
顶点坐标
顶点的横坐标为对称轴与抛物线的交点, 即$x=-frac{b}{2a}$,纵坐标为$cfrac{b^2}{4a}$。
与坐标轴交点情况
与$x$轴交点
解方程$ax^2+bx+c=0$,若$Delta=b^2-4ac>0$,则有两个不相等的实数根,即抛物线与$x$轴 有两个交点;若$Delta=0$,则有两个相等的实数根,即抛物线与$x$轴有一个交点;若$Delta<0$ ,则无实数根,即抛物线与$x$轴无交点。
与$y$轴交点
抛物线与$y$轴的交点为点$(0,c)$。
03 二次函数性质分 析
奇偶性判断方法
观察法
通过观察二次函数的表达式,判断其是否满足$f(-x)=f(x)$或$f(-x)=-f(x)$,若满足则函数为偶函数或奇函数。
代数法
将$-x$代入二次函数的表达式,化简后与原函数比较,若相等则为偶函数,若互为相反数则为奇函数。
二次函数表达式
一般形式为$f(x) = ax^2 + bx + c$ ,其中$a$、$b$、$c$为常数,且$a neq 0$。
二次函数图像与性质总结(含答案)
二次函数的图像与性质 一、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:2. 2y ax c =+性质: 上加下减。
3. ()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:二、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)三、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 四、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.五、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-. 2. 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 增大而减小;当2bx a=-时,y 有最大值244ac b a-.六、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.八、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.二次函数图像参考:十一、2-32y=-2x 2y=3(x+4)22y=3x2y=-2(x-3)2【例题精讲】一、一元二次函数的图象的画法【例1】求作函数64212++=x x y 的图象 【解】 )128(21642122++=++=x x x x y2-4)(214]-4)[(21 2222+=+=x x【例2】求作函数342+--=x x y 的图象。
二次函数图像及性质完整归纳
二次函数的图像与性质 一、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质: 上加下减。
3. ()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:二、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)三、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 四、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.五、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a-.六、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结: 3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.八、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.二次函数图像参考:十一、【例题精讲】一、一元二次函数的图象的画法【例1】求作函数64212++=x x y 的图象 【解】 )128(21642122++=++=x x x x y2-4)(214]-4)[(21 2222+=+=x x2-32y=-2x 2y=3(x+4)22y=3x2y=-2(x-3)2以4-=x 为中间值,取x 的一些值,列表如下:【例2】求作函数342+--=x x y 的图象。
二次函数图像与性质完整归纳
二次函数的图像与性质一、二次函数的基本形式1. 二次函数基本形式:的性质:2y ax =a 的绝对值越大,抛物线的开口越小。
2. 的性质:2y ax c =+上加下减。
3. 的性质:()2y a x h =-左加右减。
4. 的性质:()2y a x h k =-+的符号a 开口方向顶点坐标对称轴性质a >向上()00,轴y 时,随的增大而增大;时,0x >y x 0x <随的增大而减小;时,有最小值y x 0x =y .00a <向下()00,轴y 时,随的增大而减小;时,0x >y x 0x <随的增大而增大;时,有最大值y x 0x =y .0的符号a 开口方向顶点坐标对称轴性质a >向上()0c ,轴y 时,随的增大而增大;时,0x >y x 0x <随的增大而减小;时,有最小值y x 0x =y .c 0a <向下()0c ,轴y 时,随的增大而减小;时,0x >y x 0x <随的增大而增大;时,有最大值y x 0x =y .c 的符号a 开口方向顶点坐标对称轴性质a >向上()0h ,X=h时,随的增大而增大;时,x h >y x x h <随的增大而减小;时,有最小值y x x h =y .00a <向下()0h ,X=h时,随的增大而减小;时,x h >y x x h <随的增大而增大;时,有最大值y x x h =y .0的符号a 开口方向顶点坐标对称轴性质a >向上()h k ,X=h时,随的增大而增大;时,x h >y x x h <随的增大而减小;时,有最小值y x x h =y二、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式,确定其顶点坐标;()2y a x h k =-+()h k ,⑵ 保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下:2y ax =()h k,【【【(h <0)【【【【【(h >0)【【【(h 【【|k|【【【2. 平移规律在原有函数的基础上“值正右移,负左移;值正上移,负下移”.h k 概括成八个字“左加右减,上加下减”. 方法二:⑴沿轴平移:向上(下)平移个单位,变成c bx ax y ++=2y m c bx ax y ++=2(或)m c bx ax y +++=2m c bx ax y -++=2⑵沿轴平移:向左(右)平移个单位,变成c bx ax y ++=2m c bx ax y ++=2(或)c m x b m x a y ++++=)()(2c m x b m x a y +-+-=)()(2三、二次函数与的比较()2y a x h k =-+2y ax bx c =++从解析式上看,与是两种不同的表达形式,后者通过()2y a x h k =-+2y ax bx c =++配方可以得到前者,即,其中.22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭2424b ac b h k a a -=-=,.k 0a <向下()h k ,X=h时,随的增大而减小;时,x h >y x x h <随的增大而增大;时,有最大值y x x h =y .k四、二次函数图象的画法2y ax bx c =++五点绘图法:利用配方法将二次函数化为顶点式,确2y ax bx c =++2()y a x h k =-+定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与轴的交点、以及关于对称轴对称的点y ()0c ,()0c ,、与轴的交点,(若与轴没有交点,则取两组关于对称轴()2h c ,x ()10x ,()20x ,x 对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.x y 五、二次函数的性质2y ax bx c =++ 1. 当时,抛物线开口向上,对称轴为,顶点坐标为.0a >2bx a =-2424b ac b a a ⎛⎫-- ⎪⎝⎭,当时,随的增大而减小;当时,随的增大而增大;当2b x a <-y x 2bx a>-y x 时,有最小值.2b x a =-y 244ac b a- 2. 当时,抛物线开口向下,对称轴为,顶点坐标为.当0a <2bx a =-2424b ac b aa ⎛⎫-- ⎪⎝⎭,时,随的增大而增大;当时,随的增大而减小;当时,2b x a <-y x 2b x a >-y x 2bx a=-有最大值.y 244ac b a-六、二次函数解析式的表示方法1. 一般式:(,,为常数,);2y ax bx c =++a b c 0a ≠2. 顶点式:(,,为常数,);2()y a x h k =-+a h k 0a ≠3. 两根式:(,,是抛物线与轴两交点的横坐标).12()()y a x x x x =--0a ≠1x 2x x 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与轴有交点,即时,抛物线的解析式才可以x 240b ac -≥用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数中,作为二次项系数,显然.2y ax bx c =++a 0a ≠ ⑴ 当时,抛物线开口向上,的值越大,开口越小,反之的值越小,开口越0a >a a 大;⑵ 当时,抛物线开口向下,的值越小,开口越小,反之的值越大,开口越0a <a a 大.总结起来,决定了抛物线开口的大小和方向,的正负决定开口方向,的大小决a a a 定开口的大小.2. 一次项系数b在二次项系数确定的前提下,决定了抛物线的对称轴.a b ⑴ 在的前提下,0a >当时,,即抛物线的对称轴在轴左侧;0b >02ba-<y 当时,,即抛物线的对称轴就是轴;0b =02ba-=y 当时,,即抛物线对称轴在轴的右侧.0b <02ba->y ⑵ 在的前提下,结论刚好与上述相反,即0a <当时,,即抛物线的对称轴在轴右侧;0b >02ba->y 当时,,即抛物线的对称轴就是轴;0b =02ba-=y 当时,,即抛物线对称轴在轴的左侧.0b <02ba-<y 总结起来,在确定的前提下,决定了抛物线对称轴的位置.a b 的符号的判定:对称轴在轴左边则,在轴的右侧则,ab abx 2-=y 0>ab y 0<ab 概括的说就是“左同右异”总结:3. 常数项c⑴ 当时,抛物线与轴的交点在轴上方,即抛物线与轴交点的纵坐标为正;0c >y x y⑵ 当时,抛物线与轴的交点为坐标原点,即抛物线与轴交点的纵坐标为;0c =y y 0 ⑶ 当时,抛物线与轴的交点在轴下方,即抛物线与轴交点的纵坐标为0c <y x y 负.总结起来,决定了抛物线与轴交点的位置.c y 总之,只要都确定,那么这条抛物线就是唯一确定的.a b c ,,二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与轴的两个交点的横坐标,一般选用两根式;x 4. 已知抛物线上纵坐标相同的两点,常选用顶点式.八、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于轴对称x关于轴对称后,得到的解析式是; 2y ax bx c =++x 2y ax bx c =---关于轴对称后,得到的解析式是;()2y a x h k =-+x ()2y a x h k =--- 2. 关于轴对称y关于轴对称后,得到的解析式是; 2y ax bx c =++y 2y ax bx c =-+关于轴对称后,得到的解析式是;()2y a x h k =-+y ()2y a x h k =++ 3. 关于原点对称 关于原点对称后,得到的解析式是;2y ax bx c =++2y ax bx c =-+-关于原点对称后,得到的解析式是;()2y a x h k =-+()2y a x h k =-+- 4. 关于顶点对称(即:抛物线绕顶点旋转180°)关于顶点对称后,得到的解析式是;2y ax bx c =++222b y ax bx c a=--+-关于顶点对称后,得到的解析式是.()2y a x h k =-+()2y a x h k =--+ 5. 关于点对称()m n ,关于点对称后,得到的解析式是()2y a x h k =-+()m n ,()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择a 合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.二次函数图像参考:y=3(x+4)22y=3x 2十一、【例题精讲】一、一元二次函数的图象的画法【例1】求作函数的图象64212++=x x y 【解】)128(21642122++=++=x x x x y 2-4)(214]-4)[(21 2222+=+=x x 以为中间值,取的一些值,列表如下:4-=x x x …-7-6-5-4-3-2-1…y …25023--223-025…【例2】求作函数的图象。
二次函数图像与性质完整归纳
⼆次函数图像与性质完整归纳⼆次函数图像与性质完整归纳————————————————————————————————作者:————————————————————————————————⽇期:⼆次函数的图像与性质⼀、⼆次函数的基本形式1. ⼆次函数基本形式:2y ax =的性质: a 的绝对值越⼤,抛物线的开⼝越⼩。
2. 2y ax c =+的性质: 上加下减。
3. ()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质: a 的符号开⼝⽅向顶点坐标对称轴性质0a >向上()00, y 轴0x >时,y 随x 的增⼤⽽增⼤;0x <时,y 随x 的增⼤⽽减⼩;0x =时,y 有最⼩值0. 0a < 向下()00,y 轴0x >时,y 随x 的增⼤⽽减⼩;0x <时,y 随x 的增⼤⽽增⼤;0x =时,y 有最⼤值0.a 的符号开⼝⽅向顶点坐标对称轴性质0a >向上()0c , y 轴0x >时,y 随x 的增⼤⽽增⼤;0x <时,y 随x 的增⼤⽽减⼩;0x =时,y 有最⼩值c .0a <向下()0c ,y 轴0x >时,y 随x 的增⼤⽽减⼩;0x <时,y 随x 的增⼤⽽增⼤;0x =时,y 有最⼤值c .a 的符号开⼝⽅向顶点坐标对称轴性质()0h ,X =hx h >时,y 随x 的增⼤⽽增⼤;x h <时,y 随x 的增⼤⽽减⼩;x h =时,y 有最⼩值0. 0a <向下()0h ,X=hx h >时,y 随x 的增⼤⽽减⼩;x h <时,y 随x 的增⼤⽽增⼤;x h =时,y 有最⼤值0.a 的符号开⼝⽅向顶点坐标对称轴性质0a >向上()h k , X=hx h >时,y 随x 的增⼤⽽增⼤;x h <时,y 随x 的增⼤⽽减⼩;x h =时,y 有最⼩值k . 0a < 向下 ()h k ,X =hx h >时,y 随x 的增⼤⽽减⼩;x h <时,y 随x 的增⼤⽽增⼤;x h =时,y 有最⼤值k .⼆、⼆次函数图象的平移1.平移步骤:⽅法⼀:⑴将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;⑵保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移⽅法如下:向右(h >0)【或左(h <0)】平移 |k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向右(h >0)【或左(h <0)】平移|k|个单位向右(h >0)【或左(h <0)】平移|k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向上(k >0)【或向下(k <0)】平移|k |个单位y=a (x-h )2+ky=a (x-h )2y=ax 2+ky=ax 22. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成⼋个字“左加右减,上加下减”.⽅法⼆:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)三、⼆次函数()2y a x h k =-+与2y ax bx c =++的⽐较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配⽅可以得到前者,即2 2424b ac b y a x a a -?=++,其中2424b ac b h k a a -=-=,. 四、⼆次函数2y ax bx c =++图象的画法五点绘图法:利⽤配⽅法将⼆次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开⼝⽅向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.⼀般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下⼏点:开⼝⽅向,对称轴,顶点,与x 轴的交点,与y 轴的交点.五、⼆次函数2y ax bx c =++的性质1.当0a >时,抛物线开⼝向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ??--,.当2b x a <-时,y 随x 的增⼤⽽减⼩;当2bx a>-时,y 随x 的增⼤⽽增⼤;当2bx a=-时,y 有最⼩值244ac b a -. 2. 当0a <时,抛物线开⼝向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ??--,.当2b x a <-时,y 随x 的增⼤⽽增⼤;当2b x a >-时,y 随x 的增⼤⽽减⼩;当2b=-时,y 有最⼤值244ac b a-.六、⼆次函数解析式的表⽰⽅法1.⼀般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何⼆次函数的解析式都可以化成⼀般式或顶点式,但并⾮所有的⼆次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以⽤交点式表⽰.⼆次函数解析式的这三种形式可以互化.七、⼆次函数的图象与各项系数之间的关系1. ⼆次项系数a⼆次函数2y ax bx c =++中,a 作为⼆次项系数,显然0a ≠.⑴当0a >时,抛物线开⼝向上,a 的值越⼤,开⼝越⼩,反之a 的值越⼩,开⼝越⼤;⑵当0a <时,抛物线开⼝向下,a 的值越⼩,开⼝越⼩,反之a 的值越⼤,开⼝越⼤.总结起来,a 决定了抛物线开⼝的⼤⼩和⽅向,a 的正负决定开⼝⽅向,a 的⼤⼩决定开⼝的⼤⼩.2. ⼀次项系数b在⼆次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧;当0b =时,02ba-=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴a=在y 轴左边则0>ab ,在y 轴的右侧则0总结:3.常数项c⑴当0c >时,抛物线与y 轴的交点在x 轴上⽅,即抛物线与y 轴交点的纵坐标为正;⑵当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶当0c <时,抛物线与y 轴的交点在x 轴下⽅,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯⼀确定的.⼆次函数解析式的确定:根据已知条件确定⼆次函数解析式,通常利⽤待定系数法.⽤待定系数法求⼆次函数的解析式必须根据题⽬的特点,选择适当的形式,才能使解题简便.⼀般来说,有如下⼏种情况:1. 已知抛物线上三点的坐标,⼀般选⽤⼀般式;2.已知抛物线顶点或对称轴或最⼤(⼩)值,⼀般选⽤顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,⼀般选⽤两根式;4. 已知抛物线上纵坐标相同的两点,常选⽤顶点式.⼋、⼆次函数图象的对称⼆次函数图象的对称⼀般有五种情况,可以⽤⼀般式或顶点式表达1.关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3.关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然⽆论作何种对称变换,抛物线的形状⼀定不会发⽣变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或⽅便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开⼝⽅向,再确定其对称抛物线的顶点坐标及开⼝⽅向,然后再写出其对称抛物线的表达式.⼆次函数图像参考:⼗⼀、y=2(x-4)2-3y=2(x-4)2y=2x 2y=x 22y=2x 2y=x 2y=-2x 2y= -x 2y= -x 22y=2x 2-4y=2x 2+2y=2x 2y=3(x+4)2y=3(x-2)2y=3x 2y=-2(x+3)2y=-2(x-3)2y=-2x 2【例题精讲】⼀、⼀元⼆次函数的图象的画法【例1】求作函数64212++=x x y 的图象【解】 )128(21642122++=++=x x x x y14]-4)[(21 2222+=+=x x以4-=x 为中间值,取x 的⼀些值,列表如下:x … -7 -6 -5 -4 -3 -2-1…y … 25 0 23- -2 23- 0 25 …【例2】求作函数342+--=x x y 的图象。
二次函数图像性质表格
二次函数图像性质表格二次函数的图像二次函数是一种常见的函数形式,其解析式可以写成一般式或顶点式。
其中,顶点式更加方便描述抛物线的性质。
一、二次函数的性质二次函数的图像是一条抛物线,其性质如下:1.当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
2.抛物线的对称轴是直线x=h,顶点坐标为(h,k)。
3.当xh时,y随着x的增大而减小。
4.抛物线有最小值或最大值,当x=h时取到。
当a>0时,y有最小值;当a<0时,y有最大值。
二、二次函数解析式的几种形式二次函数的解析式可以写成一般式、顶点式或交点式。
1.一般式:y=ax^2+bx+c,其中a、b、c为常数,a≠0.2.顶点式:y=a(x-h)^2+k,其中a、h、k为常数,a≠0.顶点坐标为(h,k)。
3.交点式:y=a(x-x1)(x-x2),其中x1、x2为抛物线与x轴交点的横坐标,且a≠0.三、求抛物线的顶点、对称轴和最值的方法1.配方法:将解析式化为顶点式,顶点坐标为(h,k),对称轴为直线x=h。
当a>0时,y有最小值,最小值为k;当a<0时,y有最大值,最大值为k。
2.公式法:直接利用顶点坐标公式求其顶点。
对称轴是直线x=h。
当a>0时,y有最小值,最小值为k;当a<0时,y有最大值,最大值为k。
总之,二次函数的图像是一条抛物线,其性质可以通过解析式或顶点式求得。
求解顶点、对称轴和最值的方法有配方法和公式法两种。
最小值和最大值公式如下:最小值为y=-△/(4a),最大值为y=△/(4a),其中△=b^2-4ac。
当抛物线为y=ax^2+bx+c(a≠0)时,与x轴交点情况如下:①当△=b^2-4ac>0时,抛物线与x轴有两个交点;②当△=b^2-4ac=0时,抛物线与x轴有一个交点,即为顶点;③当△=b^2-4ac<0时,抛物线与x轴无交点。
求根公式如下:x=(-b±√△)/2a。
二次函数图像性质表格
二次函数的图象1、二次函数的性质2、二次函数解析式的几种形式:①一般式:y = ax bx c( a、b、c为常数,a丰0)2y =a(x_h) k( a、h、k为常数,0),其中(h, k)为顶点坐标。
②顶点式:③交点式:y 二a(x _ xj(x _ X 2),其中Xi , X 2是抛物线与x 轴交点的横坐标,即一2元二次方程axbx ・c=0的两个根,且a 丰0,(也叫两根式)。
3、求抛物线的顶点、对称轴和最值的方法2 2①配方法:将解析式 y 二ax bx c化为y 二a(x-h) k 的形式,顶点坐标为(h ,k ),对称轴为直线x=h ,若a > 0, y 有最小值,当x = h 时,y最小值=k;若a v 0, y 有最大值,当x = h 时,y最大值=k。
4、抛物线与x 轴交点情况:2对于抛物线y =ax bx c (a ^0)2③当F : =b -4ac ::: 0时,抛物线与x 轴无交点,反之也成立。
5、求根公式:-b 土 Jb 2 - 4acx =2a②公式法:直接利用顶点坐标公式(b2a4ac -b 24a ),求其顶点;对称轴是直线xa 0, y 有最小值,当2a ,若2a时,y最小值-4ac - b 24ax =时, 最大值,当2a4ac-b 2 y 最大值= ■4a2①当八=b -4ac 0时,抛物线与x 轴有两个交点,反之也成立。
②当厶二b 2 -4ac = 0时,抛物线与x 轴有一个交点,反之也成立,此交点即为顶点。
二次函数图像与性质完整归纳
二次函数图像与性质完整归纳二次函数的图像与性质 一、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:a 的绝对值越大,抛物线的开口越小。
2.2y ax c=+的性质:上加下减。
a的符号 开口方向 顶点坐标对称轴性质 0a > 向上()00,y轴x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值0.a < 向下()00,y轴x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值0.a的符号 开口方向 顶点坐标对称轴性质3.()2y a x h =-的性质:左加右减。
a > 向上()0c ,y轴x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值c .a < 向下()0c ,y轴x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值c .a的符号 开口方向 顶点坐标对称轴性质 0a > 向上()0h ,X=hx h>时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值0.a < 向下()0h ,X=hx h>时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值0.4.()2y a x h k=-+的性质:二、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k=-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:a的符号 开口方向 顶点坐标对称轴性质 0a > 向上()h k ,X=hx h>时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值k .a < 向下()h k ,X=hx h>时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值k .向右(h >0)【或左(h <0)】平移 |k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向右(h >0)【或左(h <0)】平移|k|个单位向右(h >0)【或左(h <0)】平移|k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向上(k >0)【或向下(k <0)】平移|k |个单位y=a (x-h )2+ky=a (x-h )2y=ax 2+ky=ax 22. 平移规律在原有函数的基础上“h 值正右移,负左移;k值正上移,负下移”.概括成八个字“左加右减,上加下减”. 方法二: ⑴cbx axy ++=2沿y 轴平移:向上(下)平移m 个单位,cbx ax y ++=2变成mc bx ax y +++=2(或mc bx axy -++=2) ⑵cbx axy ++=2沿轴平移:向左(右)平移m 个单位,cbx ax y ++=2变成cm x b m x a y ++++=)()(2(或cm x b m x a y +-+-=)()(2)三、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y axbx c=++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a-=-=,.四、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.五、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y随x 的增大而增大;当2b x a =-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y有最大值244ac b a-.六、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系 1. 二次项系数a二次函数2y axbx c=++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧;当0b =时,02b a -=,即抛物线的对称轴就是y轴;当0b <时,02b a ->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02b a->,即抛物线的对称轴在y 轴右侧;当0b =时,02b a -=,即抛物线的对称轴就是y轴;当0b <时,02b a -<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab的符号的判定:对称轴a b x 2-=在y 轴左边则>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴当0c>时,抛物线与y轴的交点在x轴上方,即抛物线与y轴交点的纵坐标为正;⑵当0c=时,抛物线与y轴的交点为坐标原点,即抛物线与y轴交点的纵坐标为0;⑶当0c<时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐标为负.总结起来,c决定了抛物线与y轴交点的位置.总之,只要a b c,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.八、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于x轴对称2=++关于x轴对称后,得到的解析式是y ax bx c2=---;y ax bx c()2y a x h k=-+关于x轴对称后,得到的解析式是()2=---;y a x h k2. 关于y轴对称2=++关于y轴对称后,得到的解析式是y ax bx c2y ax bx c=-+;()2=-+关于y轴对称后,得到的解析式是y a x h k()2=++;y a x h k3. 关于原点对称2=++关于原点对称后,得到的解析式是y ax bx c2y ax bx c=-+-;()2y a x h k=-+关于原点对称后,得到的解析式是()2y a x h k=-+-;4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c=++关于顶点对称后,得到的解析式是222by axbx c a=--+-; ()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k=--+.5. 关于点()m n ,对称()2y a x h k=-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.二次函数图像参考:十一、【例题精讲】一、一元二次函数的图象的画法【例1】求作函数64212++=x x y 的图象【解】 )128(21642122++=++=x x x x y2-4)(214]-4)[(21 2222+=+=x x以4-=x 为中间值,取x 的一些值,列表如下:x …-7 -6-5-4-3-2 -1…y=2(x-4)2-3y=2(x-4)2y=2x 2y=x 22y=2x y=x 2y=-2x 2y= -x 2y= -x 22y=2x 2-4y=2x +2y=2x 2y=3(x+4)2y=3(x-2)2y=3x 2y=-2(x+3)2y=-2(x-3)2y=-2x 2y (2)50 23--2 23- 0 25…【例2】求作函数342+--=x xy 的图象。
二次函数九种类型
二次函数九种类型
二次函数是一种形式为f(x) = ax^2 + bx + c的函数,其中a、 b、c是实数且a ≠ 0。
下面将介绍九种常见的二次函数类型。
1.普通二次函数:
f(x) = ax^2 + bx + c,a、 b、 c是实数且a ≠ 0。
2.单调递增二次函数:
当a>0时,二次函数开口向上,且图像为单调递增曲线。
3.单调递减二次函数:
当a<0时,二次函数开口向下,且图像为单调递减曲线。
4.对称轴与x轴平行的二次函数:
当c=0时,二次函数的图像与x轴平行,也称为抛物线。
5.对称轴垂直于x轴的二次函数:
当b=0时,二次函数的对称轴为y轴,图像左右对称。
6.对称轴为y=k的二次函数:
当对称轴为y=k时,二次函数的图像关于直线y=k对称。
7.最值与顶点:
当a>0时,二次函数的最小值为顶点,当a<0时,二次函数的最大值
为顶点。
8.关于x轴对称的二次函数:
当对称轴为x轴时,二次函数与x轴关于原点对称。
9.关于y轴对称的二次函数:
当对称轴为y轴时,二次函数与y轴关于原点对称。
这些是常见的二次函数类型,每种类型都有独特的特点和性质。
通过研究这些类型,可以更好地理解和分析二次函数的图像和特性。
在实际应用中,二次函数常用于描述抛物线运动、曲线拟合以及经济学、物理学等领域中的问题。
二次函数的性质
二次函数的性质二次函数是一种常见的数学函数形式,它的一般表达式为f(x) =ax^2 + bx + c,其中a、b、c为实数且a ≠ 0。
二次函数具有许多独特的性质,下面将逐一阐述。
一、图像特征二次函数的图像通常是一个开口向上或向下的抛物线。
当 a > 0时,抛物线开口向上;当a < 0时,抛物线开口向下。
抛物线的顶点坐标为(-b/(2a), f(-b/(2a))),其中f(-b/(2a))为抛物线的最值。
二、轴对称性二次函数具有轴对称性,即抛物线以垂直于x轴的线为轴对称。
轴对称线的方程为x = -b/(2a)。
三、零点与解析式二次函数的零点即为方程f(x) = 0的解。
通过求解二次方程ax^2 +bx + c = 0,可以得到二次函数的零点。
解析式为x = (-b ± √(b^2 -4ac))/(2a)。
四、判别式二次函数的判别式可以帮助我们判断二次方程的根的情况。
判别式的值为D = b^2 - 4ac,根据判别式的不同情况,可得到以下结论:1. 当D > 0时,方程有两个不相等的实数根;2. 当D = 0时,方程有两个相等的实数根;3. 当D < 0时,方程没有实数根,但有两个共轭复根。
五、函数的增减性与极值点对于二次函数f(x) = ax^2 + bx + c,它的增减性与a的正负有关。
当a > 0时,函数在抛物线的开口上方是递增的;当a < 0时,函数在抛物线的开口下方是递增的。
同时,函数的极值点即为抛物线的顶点,极值点的纵坐标为函数的最值。
六、对称轴与对称性二次函数的对称轴是垂直于x轴的轴线x = -b/(2a),对称轴将抛物线分为两个对称的部分。
对称性质表明,若抛物线上存在点(x, y),那么对称轴上也存在对应的点(-x, y)。
七、二次函数与二次方程的关系二次函数与二次方程紧密相关。
二次函数y = ax^2 + bx + c的图像和性质与二次方程ax^2 + bx + c = 0的解密切相关,二者是一一对应的关系。
二次函数性质知识点归纳
二次函数性质知识点归纳二次函数性质知识点归纳一、y=ax²(a是常数,a≠0)函数图象开口方向:a>0向下,a<0向上。
y轴(0,0)对称轴。
顶点坐标。
函数有最小值为0(a>0时),有最大值为0(a<0时)。
函数值的增减性:a>0,x=0时,a>0;x0时,函数值y随x的增大而增大。
a0时,函数值y随x的增大而减小。
二、y=ax²+k(a、k常数,a≠0)函数图象开口方向:a>0向下,a<0向上。
y轴(0,k)对称轴。
顶点坐标。
函数有最小值为k(a>0时),有最大值为k(a<0时)。
函数值的增减性:a>0,x=0时,a>0;x0时,函数值y随x的增大而增大。
a0时,函数值y随x的增大而减小。
三、y=a(x-h)²(a、h为常数,a≠0)函数图象开口方向:a>0向上,a<0向下。
直线x=h为对称轴。
顶点坐标为(h,0)。
函数有最小值为0(a>0时),无最大值;有最大值为0(a<0时),无最小值。
函数值的增减性:a>0,x=h时,a>0;xh时,函数值y随x的增大而增大。
ah时,函数值y随x的增大而减小。
四、y=a(x-h)²+k(a、h、k为常数,a≠0)函数图象开口方向:a>0向上,a<0向下。
直线x=h为对称轴。
顶点坐标为(h,k)。
函数有最小值为k(a>0时),无最大值;有最大值为k (a<0时),无最小值。
函数值的增减性:a>0,xh时,函数值y随x的增大而增大。
ah时,函数值y随x的增大而减小。
五、y=ax²+bx+c(a、b、c为常数,a≠0)函数图象开口方向:a>0向上,a<0向下。
对称轴为直线x=-b/2a。
顶点坐标为(-b/2a,c-b²/4a)。
函数有最小值为c-b²/4a(a>0时),无最大值;有最大值为c-b²/4a(a<0时),无最小值。
二次函数图像与性质完整归纳
二次函数图像与性质完整归纳二次函数的图像与性质 一、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:a 的绝对值越大,抛物线的开口越小。
2. 2y axc=+的性质:上加下减。
a的符号 开口方向 顶点坐标对称轴性质 0a > 向上()00,y轴x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值0.a < 向下()00,y轴x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值0.a的符号 开口方向 顶点坐标对称轴性质3. ()2y a x h =-的性质:左加右减。
a > 向上()0c ,y轴x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值c .a < 向下()0c ,y轴x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值c .a的符号 开口方向 顶点坐标对称轴性质 0a > 向上()0h ,X=hx h>时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值0.a < 向下()0h ,X=hx h>时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值0.4. ()2y a x h k=-+的性质:二、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k=-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:a的符号 开口方向 顶点坐标对称轴性质 0a > 向上()h k ,X=hx h>时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值k .a < 向下()h k ,X=hx h>时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值k .向右(h >0)【或左(h <0)】平移 |k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向右(h >0)【或左(h <0)】平移|k|个单位向右(h >0)【或左(h <0)】平移|k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向上(k >0)【或向下(k <0)】平移|k |个单位y=a (x-h )2+ky=a (x-h )2y=ax 2+ky=ax 22. 平移规律在原有函数的基础上“h 值正右移,负左移;k值正上移,负下移”.概括成八个字“左加右减,上加下减”. 方法二: ⑴cbx axy ++=2沿y 轴平移:向上(下)平移m 个单位,cbx ax y ++=2变成mc bx ax y +++=2(或mc bx axy -++=2) ⑵cbx axy ++=2沿轴平移:向左(右)平移m 个单位,cbx ax y ++=2变成cm x b m x a y ++++=)()(2(或cm x b m x a y +-+-=)()(2)三、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k=-+与2y axbx c=++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a-=-=,.四、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.五、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y随x 的增大而增大;当2b x a =-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y有最大值244ac b a-.六、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠); 3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y axbx c=++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.⑴ 在0a >的前提下,当0b >时,02ba -<,即抛物线的对称轴在y 轴左侧;当0b =时,02b a -=,即抛物线的对称轴就是y轴;当0b <时,02b a ->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba->,即抛物线的对称轴在y 轴右侧;当0b =时,02b a -=,即抛物线的对称轴就是y轴;当0b <时,02b a -<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab的符号的判定:对称轴a b x 2-=在y 轴左边则>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结: 3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0;⑶当0c 时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐标为负.总结起来,c决定了抛物线与y轴交点的位置.总之,只要a b c,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.八、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于x轴对称2=++关于x轴对称后,得到的解析式是y ax bx c2=---;y ax bx c()2y a x h k=-+关于x轴对称后,得到的解析式是()2=---;y a x h k2. 关于y轴对称2y ax bx c=++关于y轴对称后,得到的解析式是2=-+;y ax bx c()2=-+关于y轴对称后,得到的解析式是y a x h k()2y a x h k=++;3. 关于原点对称2=++关于原点对称后,得到的解析式是y ax bx c2=-+-;y ax bx c()2=-+关于原点对称后,得到的解析式是y a x h k()2=-+-;y a x h k4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y axbx c=++关于顶点对称后,得到的解析式是222by axbx c a=--+-; ()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k=--+.5. 关于点()m n ,对称()2y a x h k=-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k=-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.二次函数图像参考:y=2(x-4)2-3y=2(x-4)2y=2x 2y=x 22y=2x y=x 2y=-2x 2y= -x 2y= -x 22y=2x 2-4y=2x 2+2y=2x 2y=3(x+4)2y=3(x-2)2y=3x 2y=-2(x+3)2y=-2(x-3)2y=-2x 2十一、【例题精讲】一、一元二次函数的图象的画法 【例1】求作函数64212++=x xy 的图象【解】 )128(21642122++=++=x x x xy2-4)(214]-4)[(21 2222+=+=x x以4-=x 为中间值,取x 的一些值,列表如下:x… -7-6-5-4 -3-2-1 …y…25 0 23- -2 23- 0 25… 【例2】求作函数342+--=x xy 的图象。
二次函数的性质总结回顾
二次函数的性质总结回顾二次函数是高中数学中常见的一种函数形式,它的一般形式可以写作f(x) = ax^2 + bx + c,其中a、b、c为常数,且a ≠ 0。
在学习二次函数的过程中,我们需要掌握和了解其一些性质,本文将对二次函数的性质进行总结回顾。
一、函数图像和对称性质1. 对称轴:二次函数的图像总是关于一个垂直线对称的,称为对称轴。
对称轴的方程可以通过求出二次函数的顶点坐标得到,对称轴的公式为x = -b/(2a)。
2. 顶点:二次函数的图像的最低点或最高点称为顶点。
顶点的横坐标为对称轴的坐标x = -b/(2a),纵坐标可以通过将该横坐标代入函数得到。
3. 开口方向:二次函数的开口方向取决于系数a的正负。
当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。
二、零点和解的情况1. 零点:二次函数的零点是函数图像与x轴的交点,即使得f(x) = 0的x值。
可以通过求解二次方程ax^2 + bx + c = 0得到零点。
零点可能有0个、1个或2个,具体个数取决于二次方程的判别式Δ。
- 当Δ>0时,二次函数有两个不同的实根,即零点为x1和x2;- 当Δ=0时,二次函数有一个实根,即零点为x1=x2;- 当Δ<0时,二次函数没有实根,零点为0个。
2. 解的情况:根据二次函数的零点可以得出三种不同的解的情况。
- 当零点为x1=x2=0时,解的情况为函数图像与x轴有一个公共切点;- 当零点为x1≠x2且函数图像与x轴有两个交点时,解的情况为函数图像与x轴有两个不同的交点;- 当零点为无实数解时,解的情况为函数图像与x轴没有交点。
三、单调性和极值点1. 单调性:二次函数的单调性与系数a的正负有关。
当a>0时,函数单调递增;当a<0时,函数单调递减。
2. 极值点:函数图像的最高点或最低点即为极值点。
对于二次函数,若a>0,则函数的最低点为极值点;若a<0,则函数的最高点为极值点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数性质一览表
表达式 (a ≠0)
a 值
图像
开口 方向
对称轴
顶点 坐标
增减性 最值 举 例
#
①y=ax 2
a >0
向上
y 轴 (0,0)
①当x >0时,y 随x
的增大而增大 ②当x <0时,y 随x 的增大而减小 当x=0时,y 有最小值,即y 最小值=0
y=4
3
x 2
$
y=3x 2
a <0
向下
y 轴
(0,0)
①当x >0时,y 随x
的增大而减小 ②当x <0时,y 随x 的增大而增大 当x=0时,y 有最大值,即y 最大值=0
:
y=-5x 2 y=3
1
-
x 2
②y=ax 2+k
a >0
向上 y 轴 (0,k )
①当x >0时,y 随x
的增大而增大 ②当x <0时,y 随x 的增大而减小 &
当x=0时,y 有最小值,即y 最小值=k
y=4x 2+5 y=3x 2-1
a <0
向下 y 轴 (0,k )
①当x >0时,y 随x 的增大而减小
…
②当x <0时,y 随x 的增大而增大
当x=0时,y 有最大值,即y 最大值=k
y=-2x 2+3 y=-3x 2-2
③y=a(x-h)2
a >0
向上
直线
x=h
(h ,0)
.
①当x >h 时,y 随x 的增大而增大 ②当x <0时,y 随x 的增大而减小
当x=h 时,y 有最小值,即y 最小值=0
y=2(x-3)2
y=21(x+2)2
a <0
向下
直线
x=h —
(h ,0)
①当x >h 时,y 随x
的增大而减小
②当x <0时,y 随x 的增大而增大
当x=h 时,y 有最大值,即y 最大值=0
y=-3(x-2)2 y=-2(x+1)2
④y=a(x-h)2+k
a >0
向上 ?
直线x=h
(h ,k )
①当x >h 时,y 随x 的增大而增大 ②当x <h 时,y 随x 的增大而减小 当x=h 时,y 有最小值,即y 最小值=k
y=5(x-2)2+1 y=2(x-1)2-3 y=3(x+1)2+2 y=4(x+2)2-4 a <0
—
向下
直线
x=h
(h ,k )
①当x >h 时,y 随x
的增大而减小 ②当x <h 时,y 随x 的增大而增大
当x=h 时,y 有最大值,即y 最大值=k
y=-2(x-1)2+3 y=-3(x-2)2+1 y=-4(x+1)2+3 y=-5(x+2)2+4 ⑤
y=ax 2+bx+c 可化为:
#
y=a(x+)2a
b 2
+
a
b a
c 442-
a >0
向上
直线
x=-a
b 2
(-a
b 2,a
b a
c 442
-) ①当x >-
a
b 2时,y
随x 的增大而增大 ②当x <-a
b 2时,y
随x 的增大而减小
当x=-a b 2时,y 有最小值,即y 最小值
=
a
b a
c 442-
y=2x 2+3x+4
(
y=3x 2-3x+4 y=4x 2-3x-4 y=5x 2+3x-4
a<0向下
直线
x=-
a
b
2
(-
a
b
2
,
a
b
ac
4
42
-
)
①当x>-
a
b
2
时,y
随x的增大而减小
《
②当x<-
a
b
2
时,y
随x的增大而增大
当x=-
a
b
2
时,y有最
大值,即
y最大值
=
a
b
ac
4
42
-
y=-2x2+3x+4
y=-3x2-3x+4
y=-4x2-3x-4
y=-5x2+3x-4
二次函数的有关知识
一、用代定系数法求二次函数表达式的方法(a≠0):
1、一般式:y=ax2+bx+c [已知抛物线任意三点(x1,y1),(x2,y2),(x3,y3)可设一般式求得]
2、顶点式:y=a(x-h)2+k [已知顶点坐标(h,k)和任意一点(x,y)可设顶点式求得]
3、两根式:y=a(x-x1)(x-x2) [已知抛物线与x轴是的两个交点(x1,0),(x2,0)和任意一点(x,y)可设两根式求得]
.
二、二次函数图象平移变换关系:
}
三、二次函数图象(抛物线)与x轴交点情况的判断:
y=ax2+bx+c (a≠0,a、b、c都是常数)
四、二次函数与一元二次方程、一元二次不等式的解之间的关系:
1、二次函数y=ax2+bx+c的图象与x轴交点的横坐标是一元二次方程ax2+bx+c=0的解。
因此利用二次函数图象可求以x为未知
数的一元二次方程ax2+bx+c=0的解(从图象上进行判断)。
2、二次函数y=ax2+bx+c在x轴上方的图象上的点的横坐标是一元二次不等式ax2+bx+c>0的解;在x轴下方的图象上的点的横
坐标是一元二次不等式ax2+bx+c<0的解。
五、关于x轴、y轴对称的二次函数图象的关系:
二次函数y=ax2+bx+c与y=-ax2+bx+c关于x轴对称,即关于x轴对称的两个二次函数其二次项系数互为相反数,一次项系数和常数项相同。
六、二次函数y=ax2+bx+c,当a、b同号时,对称轴直线x=-
a
b
2
在x轴的负半轴,即y轴的左则;当a、b异号时,对称轴直线x=
-
a
b
2
在x轴的正半轴,即y轴的右则;当c>0时,图象交于y轴的正半轴;当c=0时图象一定过原点;当c<0时,图象交于y轴的负半轴。
七、任意一个二次函数y=ax2+bx+c(a≠0,不考虑b和c的取值)都可以化为y=a(x+)2a b2+a b
ac
4
42
-的形式,即顶点坐标为(
a
b
2
-,
a
b
ac
4
42
-),
当x=-
a
b
2
时,y有最值,即y最值=
a
b
ac
4
42
-,对称轴是直线x=-
a
b
2
.。