07磁场的高斯定理和安培环路定理

合集下载

高斯定理和环路定理

高斯定理和环路定理

高斯定理和环路定理高斯定理和环路定理是电磁学中两个重要的基本定律。

它们描述了电场和磁场的分布和变化规律,是理解电磁现象的基础。

本文将对高斯定理和环路定理进行详细介绍。

一、高斯定理高斯定理又称为高斯电场定理,它是描述电场分布的基本原理之一。

高斯定理表明,电场通过一个闭合曲面的通量等于该曲面内部电荷的代数和与真空介电常数的乘积。

具体来说,如果一个闭合曲面内部有正电荷和负电荷,那么通过这个曲面的电场通量将等于正电荷和负电荷的代数和除以真空介电常数。

高斯定理的数学表达式为:∮E·dA = Q/ε0其中,∮E·dA表示曲面上的电场通量,Q表示曲面内部的电荷总量,ε0为真空介电常数。

高斯定理的应用非常广泛。

例如,在计算电场分布时,可以通过选择适当的高斯曲面来简化计算。

通过高斯定理,可以快速得到电场在各个位置的大小和方向。

高斯定理也被用于推导其他电场分布的公式,如电偶极子和球壳电场的公式。

二、环路定理环路定理又称为安培环路定理,它是描述磁场分布的基本原理之一。

环路定理表明,磁场沿着一个闭合回路的线积分等于该回路内部电流的代数和乘以真空磁导率。

具体来说,如果一个闭合回路内部有电流通过,那么沿着这个回路的磁场线积分将等于电流的代数和除以真空磁导率。

环路定理的数学表达式为:∮B·dl = μ0I其中,∮B·dl表示回路上的磁场线积分,μ0为真空磁导率,I表示回路内部的电流。

环路定理的应用也非常广泛。

例如,在计算磁场分布时,可以通过选择适当的环路来简化计算。

通过环路定理,可以快速得到磁场在各个位置的大小和方向。

环路定理也被用于推导其他磁场分布的公式,如长直导线和环形线圈的磁场公式。

三、高斯定理与环路定理的关系高斯定理和环路定理是电磁学中两个基本定理,它们描述了电场和磁场的分布与变化规律。

虽然它们描述的是不同的物理量,但在某些情况下,它们是相互关联的。

例如,在静电场中,高斯定理可以推导出库仑定律,即电荷间的相互作用力与它们之间的距离成反比。

高斯定理和安培环路定理

高斯定理和安培环路定理

r R 时在圆柱面内做一圆周
B cos dl B dl B 2r 0
L L
dI ' dI
P
B0
例 无限大平面电流的磁场.有一无限大的导体平面,均匀地 流着自下而上的面电流.设其电流线密度(垂直于电流线的单 位长度上的电流)为a,求距平面为d的任一点的磁感应强度B.
2、任意两条磁力线在空间不相交。 3、磁力线与电流方向之间可以用右手定则表示。
二.磁通量
磁场的高斯定理
静电场: e E dS qi / 0 S 磁 场: B dS ?
B dN dS

d B dS BS cos
m
通过面元的磁力线条数 —— 通过该面元的磁通量
(1)设闭合曲线L在垂直于无限长载流导线的平面内,电流I穿 过L. 设闭合回路 L为圆形回路( L 与 I 成右螺旋)
载流长直导线的磁感强 度为 0I B 2π R 0I l B d l 2 π R d l 0I l B d l 2 π R l d l
即在真空的稳恒磁场中,磁感应强度 B 沿任
讨论 (1) 积分回路方向与电流方向呈右手螺旋关系 满足右螺旋关系时 I i 0 反之 I i 0
(2) 安培环路定理只适用于闭合的载流导线,对于任意设想 的一段载流导线不成立
例如 图中载流直导线, 设 θ 1 θ 2 / 4 则 L 的环流为:
B dl
L
I
2
L 4a cos1 cos 2 dl
2 2 2a
0 I
a

0 I
4a
2
0 2I
2
L
0 I

磁场的高斯定理和安培环路定理

磁场的高斯定理和安培环路定理
L
解:
Bp
发生变化. 发生变化.
I2 I1

L
B dl 不发生变化 P
L
例如: 例如: I1 >0 L I2<0 I1 I2 I3 L I L
I3

L
B dl = o ( I1 I 2 )

L
B dl = o ( I1 + I 3 )
∫ B dl
l
= 4 0 I
二,安培环路定理
∑Ii
i =0
§8-4
稳恒磁场的高斯定理与 安培环路定理
一,稳恒磁场的高斯定理
由磁感应线的闭合性可知, 对任意闭合曲面, 由磁感应线的闭合性可知 , 对任意闭合曲面 , 穿入的磁感应线条数与穿出的磁感应线条数相同, 穿入的磁感应线条数与穿出的磁感应线条数相同 , 因此,通过任何闭合曲面的磁通量为零. 因此,通过任何闭合曲面的磁通量为零.
Φ = BS 2 = (6i + 3 j + 1.5k ) (0.15) i = 0.135Wb ( 2) z Φ = ∫∫ B dS = 0
S
O l
x
l
l
一长直导线通有电流I 距其d 例,一长直导线通有电流I,距其d处有 一长为a 宽为b的长方形, 一长为a,宽为b的长方形,求通过这个 长方形的磁通量. 长方形的磁通量.
n
闭合回路所包围的所有电流 的代数和. 的代数和. 所取的闭合路径上各点的磁 感强度值, 感强度值,是由闭合路径内 外所有的电流产生的. 外所有的电流产生的.即是 由空间所有的电流产生的. 由空间所有的电流产生的.
B
二,安培环路定理
定理的物理意义 由安培环路定理可以看出, 由安培环路定理可以看出,由于 磁场中的磁感强度的环流一般不 为零,所以磁场是非保守场 非保守场. 为零,所以磁场是非保守场.

高二物理竞赛课件:磁场的高斯定理和安培环路定理

高二物理竞赛课件:磁场的高斯定理和安培环路定理
13
作一安培回路如图: bc和 da两边被电流平面 等分。ab和cd 与电流平 面平行,则有
dB' dB
dB''
dl'
l pd c
o dl''
ab
方向如图所示。
结果:在无限大均匀平面电流的两侧的磁场都 为均匀磁场,并且大小相等,但方向相反。
14
是与环共轴的一系列同心圆。
11
设螺绕环的半径为
,共有N 匝线圈。
以平均半径 作圆为安培回路 L得:
R
L
n 为单位长度上的匝数。
其磁场方向与电流满足右手螺旋。 同理可求得在螺绕管外部的磁场为零:
12
例4:设一无限大导体薄平板垂直于纸面放置,
其上有方向垂直于纸面朝外的电流通过,面电流
密度为 j ,求无限大平板电流的磁场分布。
其方向与电流满足右手螺旋法则。
10
例3: 求载流螺绕环内的磁场。 解:设环很细,环的平均半径为R , 总匝数为N,通有电流强度为 I。
磁场的结构与长直螺旋管类似, 环内磁场只能平行于线圈的轴线 (即每一个圆线圈过圆心的垂线)
根据对称性知,在与环共轴的
圆周上磁感应强度的大小相等,
p
方向沿圆周的切线方向。磁感线
表达式
符号规定:穿过回路 L 的电
流方向与 L 的环绕方向服从右 手关系的,I 为正,否则为负。
不穿过回路边界所围面积的电流不计在内。
3
2. 安培环路定理的证明:无限长直电流的磁场 在围绕单根载流导线的垂直平面内的圆回路 。
在围绕单根载流导线的 垂直平面内的任一回路。
r
4
闭合路径L不包围电流 ,在垂直平面内的任一回路

磁场的高斯定理和安培环路定理课件

磁场的高斯定理和安培环路定理课件

03
安培环路定理的介绍与推导
安培环路定理的基本概念
总结词
安培环路定理是描述磁场散布的重要定理之一,它指出磁场线总是闭合的,且穿过任意一个封闭曲面的磁通量为 零。
详细描述
安培环路定理是电磁学中的基本定理之一,它描述了磁场线的性质和散布规律。根据安培环路定理,磁场线总是 闭合的,即磁场线不会中断或消失,而是形成一个完整的闭合曲线。此外,安培环路定理还指出,穿过任意一个 封闭曲面的磁通量为零,即磁场线不会从一个区域穿入另一个区域。
磁力线
磁感应强度
描述磁场强弱的物理量,单位是特斯 拉或高斯。
描述磁场散布的几何图形,磁力线闭 合且不相交,磁力线的疏密程度表示 磁场强弱。
高斯定理的背景与定义
高斯定理的背景
磁场在空间中的散布具有闭合性 ,即穿过某一封闭曲面S的磁通量 等于零或无穷大。
高斯定理的定义
穿过任意封闭曲面S的磁通量等于 该封闭曲面所包围的净磁荷量。
04
高斯定理与安培环路定理的比较与联系
两者之间的类似之处
闭合曲面的磁场通量
高斯定理和安培环路定理都涉及到闭合曲面的磁场通量。在高斯定理中,磁场 通量是通过闭合曲面进入或离开某一区域的量,而在安培环路定理中,磁场通 量与电流和闭合曲面的关系是关键。
无源磁场
高斯定理适用于无源磁场,即没有电流源的磁场。同样地,安培环路定理也适 用于无源磁场的情况。
高斯定理的应用场景
01
02
03
磁场散布分析
通过高斯定理可以分析磁 场在空间中的散布情况, 确定磁力线的走向和强弱 。
磁荷检测
高斯定理可以用于检测磁 场中的磁荷散布,例如磁 铁、发电机和电动机中的 磁荷散布。
磁场屏蔽

高二物理竞赛课件:磁场的高斯定理及安培环路定理

高二物理竞赛课件:磁场的高斯定理及安培环路定理

l Bdl
0 I dl
2πR
0 I
B
dl
R
l
2) 复杂点情形——任意形状的环路
在r 处
B 0I 2 r
B dl Bdl cos Brd
L
2 0I d 0 2
0I
思考:若I 反向或环路反向?
B dl l
0 I
I

d
B
r dl
O
d
r
PB
N
M dl
➢环路不包围直导线
B dl B dl B dl
磁场的高斯定理及安培环路定理
磁场的高斯定理及安培环路定理
一、磁力线 (磁场线、磁感线)
1. 磁场线的大小与方向 方向:切线方向表示该点处的磁场方向 2. 磁场线的性质 (1) 任意两条磁场线不相交 (2) 任意磁场线都是闭合曲线
大小:B dN m
dS
(3) 磁场线与形成磁场的电流互相套连,成右螺关系
dS1
1
B1
B2
dΦ1 B1 dS1 0
当磁力线穿入时
2
2
B d S 0——磁场高斯定理
S
dΦ2 B2 dS2 0
意义:说明磁场是无源场
例1、如图所示,求均匀磁场中下曲面的 磁通量
解法一:直接求解
B
n S2
m dm B dS 很难计算
S1
解法二:利用高斯定理
B d S 0 S
S1
将顶端圆面补全,构成一个闭合曲面。
B d S B d S B d S 0 B d S BSB2cdosS
S
S1
S2
S1
S2
三、安培环路定理
l E dl 0 l B dl ?

7.磁场的高斯定理和安培环路定理

7.磁场的高斯定理和安培环路定理

I
µ0 I v v B ⋅ dl = L ( cosθ1 + cosθ2 ) dl ∫ 4πa L ∫
=
θ2
v a
µ0 I 2 2 2πa 4πa 2
=
µ0 2I
2
≠ µ0 I
L
θ1
五. 安培环路定理的应用
求无限长圆柱面电流的磁场分布。 圆柱面电流的磁场分布 例 求无限长圆柱面电流的磁场分布。 系统有轴对称性, 解 系统有轴对称性,圆周上各点的 B 相同
R
P
r > R 时过圆柱面外P 点做一圆周
r
B cosθ dl ∫
L
= B dl = B2πr = µ0 I ∫
L
I
L
B=
µ0 I
2πr
r<R
L
时在圆柱面内做一圆周 时在圆柱面内做一圆周 圆柱面
B cosθ dl ∫
= B dl ∫
L
= B2πr
=0
B=0

求无限长圆柱体均匀载流直导线的磁场分布 求无限长圆柱体均匀载流直导线的磁场分布 圆柱体均匀载流
§7.3 磁场的高斯定理和安培环路定理
[如何形象描述磁场?] 如何形象描述磁场? 如何形象描述磁场 一. 磁感应线
1. 规定 (1) 方向:切线方向 方向: (2) 大小:疏密程度 大小:
B= dN dS ⊥
v B 的单位面积上穿过的磁力线条数
垂直
2. 磁感应线的特征 (1) 磁感应线不相交 (2) 无头无尾的闭合曲线 无头无尾的闭合曲线
S
为平行直线的空间中, 例 证明在 磁力线 为平行直线的空间中,同一根磁力线 上各 点的磁感应强度值相等。 点的磁感应强度值相等。

磁场中的高斯定理和安培环路定理

磁场中的高斯定理和安培环路定理

规定:
与L 绕向成右旋关系 与L 绕向成左旋关系
Ii 0 Ii 0
例如:
Ii I1 2I2
(穿 过L )
注意:

L
B dl
0 Ii
(穿 过L)
B:
与空间所有电流有关

B 的环流:只与穿过环路的电流代数和有关


穿过 L的电流:对 B 和 B dl 均有贡献 L
2
r1
2
d r1 r2
2.26 106 wb
二、安培环路定理(Ampere’s circulation theorem)
1.导出: 可由毕 — 沙定律出发严格推证
采用: 以无限长直电流的磁场为例验证
推广到任意稳恒电流磁场(从特殊到一般)
1)选在垂直于长直载流导线的平面内,以导线与 平面交点o为圆心,半径为 r 的圆周路径 L,其指向 与电流成右旋关系。
B 0I 2r
练习:同 求轴B的的两分筒布状。导线通有等值反向的电流I,
(1) r R2 , B 0
R2
R1
(2)
R1

r

R2 ,
B

0I 2r
I
rI
(3) r R1, B 0
2.长直载流螺线管的磁场分布
已知:I、n(单位长度导线匝数) 分析对称性 管内磁力线平行于管轴 管外靠近管壁处磁场为零

dl


0I


0
d

0I
对任意形状的回路
B dl
0I
rd

0I
d
2π r

磁场的高斯定理和安培环路定理

磁场的高斯定理和安培环路定理

. . . . . . . . ..
第4节
. . . .. . .. B . ∮H ·dl = 2rH = NI . . . . . H = NI/2r, r . . . . R 1 . . B = o NI/2r . . R 2 . . .. . 环管截面 r R, . .. . . ... B o NI/2R = o n I 解:1、环管内:
第八章
I
R
r B
R
r
第4节
第八章
直线电流的磁力线
I
I B
第4节
例8-5 求通电螺绕环的磁场分布。设环管 的轴线半径为 R,环上均匀密绕 N 匝线圈, 线圈中通有电流 I,管内磁导率为 o 。
第八章
I
I
. . . . . . ..
. . . .. . .. . . R1 R2
..
. . . ...
第八章
第4节
第八章
通电螺线管的模型
I
第4节
思考题: 如果通电螺线管的磁力线如下所示,图 中环路积分 ∮H ·dl = ?
第八章
I
L
I
二、磁场的安培环路定理 1、真空中 根据闭合电流产生的磁场公式,即安 培 — 拉普拉氏定律,可证明真空中磁场 B 沿闭合回路 L 的积分,即环流为: ∮L B ·dl =μoΣI 此式称为真空中磁场的安培环流定理,式 中ΣI 是闭合回路 L 所包围的所有闭合电流 I 的代数和。 物理意义:磁场 B 是有旋场,非保守场
第八章
I
R
o dS
B
Io
r
第4节
2、r>R ∮H ·dl =∮H dl = 2rH ΣIo = I H = I /2r ,B = oI /2r 上式表明,从导线外部看, 磁场分布与全部电流 I 集中 在轴线上相同。 μ I B H 2 πR I μ 0I 2 R π 2 πR 0 r 0

磁场的高斯定理和安培环路定律

磁场的高斯定理和安培环路定律

0I
是否成立???
设任意回路L在垂直于导线的平面内,与电流
成右手螺旋。
l B dl Bdl cos
0I
2πr
dlc
os
d
B
I
dl
r
0I
2πr
rd
0I

d
l
B dl
l
0I
dl cos rd
闭合回路不环绕电流时
B1
0I
2 π r1
B2
0I
2 π r2
B1
B2
d
I
dl1
r1
dl2
I
I
解:取垂直纸面向里为法
B
线方向,以导线1所在位
置为坐标原点,建立如图 所示的坐标轴。
x
l
取细长条面元,面元内为
均匀磁场
a aa
B
0I 2x
2
0I
3a
x
o
x
窄条形面元的元磁通为
dm B dS BdS Bldx I
通过矩形面积内的磁通量
m
dm
2a
Bldx
a1
2a
a
0I 2x
2
0I
o
B 0I
2π x
B // S
x
方向垂直于纸面向里
dΦ BdS 0I ldx I
2π x
B
Φ
S
B dS
0Il

d2
d1
dx x
l
Φ 0Il ln d2
2π d1
d1 d2
o
x
例2 两平行的无限长直导线通有电流 I , 相距3a,
矩形线框宽为a,高为l与直导线共面,求通过线框的

磁场的高斯定理和安培环路定理.

磁场的高斯定理和安培环路定理.

第二4节 、磁场的安培环路定理
第八章
1、真空中
根据闭合电流产生的磁场公式,即安
培 — 拉普拉氏定律,可证明真空中磁场 B
沿闭合回路 L
∮L B ·dl =μoΣI 此式称为真空中磁场的安培环流定理,式
中ΣI 是闭合回路 L 所包围的所有闭合电流
I 的代数和。
物理意义:磁场 B 是有旋场,非保守场
第4节
第八章
电流正负符号按右手螺旋定则:
电流方向与 L 的绕行方向符合右手螺
旋关系时,此电流为正,否则为负。
举例说明:
+I I
+ I1 + I2
- I3
L
第24、节 有磁介质
第八章
∮L B ·dl =μoΣI = μoΣIo +μoΣI’
式中ΣIo 和ΣI’ 分别是穿过安培环路 L 的自 由电流和束缚电流的总和。
其中 n = N/2R 为螺绕环单位长度的匝数。
2、环管外:ΣIo = 0,H// = 0,B// = 0 此式说明密绕螺绕环外部无磁场。
第特4节 例:当
R


第八章
时,即为无限长螺线管。
因此,长直螺线管内磁感应强度公式为:
B = o n I 此式表明,理想长直螺线管内部的磁感应强
注意:螺绕环和螺线管的外部磁场为零的结 论是在假定它们由许多不相连的圆环密集排 列组成的模型下得出的。实际上圆环以螺旋 线形式相连形成螺绕环和螺线管,沿螺绕环 和螺线管有一电流分量通过,即等效一圆电 流和长直载流导线,因此它们的外部磁场不 为零。但相比内部磁场而言,则相对很小。
2π R
μ 0I
2π R
第八章
I R
r

磁场中的高斯定理及安培环路定理

磁场中的高斯定理及安培环路定理

P
r B
则 B dN -磁感应线密度
dS
2. 几种典型的磁感应线
I
直线电流
圆电流
载流长螺线管
3. 磁感应线特性
磁感应线是环绕电流的无头尾的闭合曲线,无起点无终点; 磁感应线不相交。
二. 磁通量(magnetic flux)
1. 定义 通过磁场中任一给定面的
磁感线数目称为通过该面的 磁通量,用 表示。 2. 磁通量的计算 ① 磁场不均匀,S 为任意曲面
a
b
B
eeeeeeeeeeeee
Ñ B dl μ0 NI
l
B 0 NI
2 r
Amperian loop
B
o R1 R2 r
若 R1、R2 R2 R1
n N N
2 R1 2 r

B
μ 0
nI
B 0 NI 2 r
I
R2
R1
例题3 :
设在无限大导体薄板中有均匀电流沿平面流动, 在垂直于电流方向的单位长度上流过的电流为i (电流密度)。求此电流产生的磁场。
因而,同静电场中利用高斯定理确定已知电荷分 布的电场分布一样,需要满足一定的对称性。
例题1 :
已知:I 、R,电流沿轴向在截面上均匀分布, 求“无限长”载流圆柱导体内外磁场的分布
解: 首先分析对称性
电流分布——轴对称
I
磁场分布——轴对称
R
r
dS1
dB
dB2 dB1
O
l
P
dS2
电流及其产生的磁场具有轴对称分布时
B 0I 2 x
方向:
I
a
阴影部分通过的磁通量为:
rr B dS

磁场的高斯定理和安培环路定理

磁场的高斯定理和安培环路定理
磁场是无源场 磁场是 无源场 比较 静电场 稳恒 磁场 磁感应线闭合成环,无头无尾 不存在磁单极。 磁感应线闭合成环,或两端伸向 不存在磁单极(?) 高斯定理 环路定理

3. 磁场的高斯定理
1 E dS
S
0
q
有源场 无源场
E dl 0
L
保守场
B dS 0
三.安培环路定理的应用
—— 求解具有某些对称性的磁场分布
LB dl 0 I i
( 穿过L )
适用条件:稳恒电流的磁场 求解条件:电流分布(磁场分布)具有某些对称性,
以便可以找到恰当的安培环路L,使 LB dl 能积
出,从而方便地求解 B 。
[例一] 无限长均匀载流圆柱体 I , R 内外磁场.
无限长直螺线管内为均匀磁场
思考: 如果要计管外磁场(非线密绕)对以上结果有无影响?
I

n
B内 0nI


B
I //

0 //
I B 2r
练习: 半径 R 无限长均匀带电圆筒绕轴线匀速旋转
.R. 求: 内部 B ?
已知:
解:


R
等效于长直螺线管 B 0 nI 单位长度上电流 nI ?
I
i
I1 I 2 I 3
(穿过L )
I
i
注意:
LB dl 0 I i
( 穿过L )
B 的环流:只与穿过环路的电流代数和有关 穿过 L 的电流:对 B 和 B dl 均有贡献
L
B : 与空间所有电流有关
不穿过 L 的电流:对 L 上各点 B有贡献; 对 LB dl 无贡献

磁场中的高斯定理及安培环路定理

磁场中的高斯定理及安培环路定理

0
l
l
μI
Ñl 2π0R dl
R
l
v B
r
μI 0
2πR=μ
I
2πR
0
若l 绕行方向与图示方向相反,则
B 0I 2R
dl
v
Ñ B
v dl
Ñ Bdl
cos
π=μ 0
(
I
)
Ñ l
l
赋予电流代数含义,则
v B
dlv=μ
I
0
l
2. 无限长直电流通过垂直平面内的任一回路
r
Ñ B
r dl
Ñ B
cosθdl
若 R1、R2 R2 R1
n N N
2 R1 2 r

B
μ 0
nI
B 0 NI 2 r
I
R2
R1
例题3 :
设在无限大导体薄板中有均匀电流沿平面流动, 在垂直于电流方向的单位长度上流过的电流为i (电流密度)。求此电流产生的磁场。
a
b
B
eeeeeeeeeeeee
d
c
讨论
关于安培环路定理的应用
BdS
0 I
adx
d x
2 x
通过矩形线圈的磁通量为:
dx
d
d b
0I adx
0Ia ln d b
d 2 x
2 d
15.4 安培环路定理
rv
一. 引言:稳恒磁场的环流 Ñl B dl ?
二. 定理推导
1. 无限长直电流通过圆形回路圆心且垂直于该回路
I
v
Ñ B
v dl
Ñ Bdl
cos
当电流分布以至于磁场分布具有高度对称性时, 可以应用安培环路定理计算磁感应强度的分布。

磁场中的高斯定理和安培环路定律

磁场中的高斯定理和安培环路定律

写成
L Bdl cos B dl 0 I
B 0 I
dl
要求环路上各点 B 大小相等,B 的方向
与环路方向一致, B // dl , cos 1 22
或 Bdl , cos 0
环路要经过所研究的场点。
五、解题方法
1.场对称性分析; 2.选取环路; 3.确定环路内电流的代数和 I ; 4.应用环路定理列方程求解。
2.环流
Bdl
只与环路内的电流有关,
而与环路外电流无关。
3. B为环路上一点的磁感应强度,它与环路内外电流
都有关。

Bdl 0
并不一定说明环路上各点的 B 都为 0。

B dl 0 环路内并不一定无电流。
4.环路定理只适用于闭合电流或无限电流,
16
例2:利用安培环路定律计算载流无限长直导线外一点 的磁感应强度。
由于环路上各点的 B 大小相等; 且 B // dl ;θ=0
B dl
L
0 I 2r
2r
0 I
B
Ir
L
I 向下时为负值。
13
当L B环 d路l 为 任0 意I形左状边时=:右边定理成立I。
LB dl LBdlcos
由于 Bdlcos Brd
2 0I rd
0 2r
0I
d r
L
θ
B
dl
当电流不在环路内时
r
选择如图所示的环路
b c d a
B dl ( )B dl
a
b
c
d
24
其中
c a
B dl B dl 0,
m dm B dS
/2
n
规定闭合面的外法线方向为正

磁的高斯定理和安培环路定理讲述

磁的高斯定理和安培环路定理讲述
S
3. 磁场的高斯定理(磁通连续原理) (Gauss law of magnetic field )
通过任意闭合曲面的 磁通量恒为零。
B dS 0
S
此式说明磁场是无源场, 磁感应线是闭合曲线,磁 单极即磁荷不存在。
真空中稳恒磁场的安培环路定理
从静电场的电场线是非闭合的,静电场的环流
E dl 0 E 是保守场 →电势
③ 安培环路定律中的 B 是空间总磁感应强
度 ——空间所有电流都对 B 有贡献,但公式右
边只有环路内所包围的 I内 对 环流有贡献。
I1
I2
B dl 0 Ii
L
i
L
I3
P
0 (I1 I2 )
I4
P点的 BP是这四个电流 共同产生的 ,且随电流
分布的变化而变化。
三、环路定律的应用
在静电场中:
B dl 0 Ii
L
i
——磁场为涡旋场 (有旋场)
——磁场为非保守场
证明:
我们以无限长直导线的特例来证明。
I
1. 安培环路包围导线(电流)
且在垂直于导线的平面内
o
L
在L路径上取一线元
d
L d L d cos
0rd
L 2r
(d cos rd)
B
0
2
d 0
I○· d r
dl
若I反向,则 为 钝角,d cos rd
第三节
Gauss theorem and Ampere circuital theorem in magnetic field
磁场的高斯定理 ( Gauss law of magnetic field )
1.磁感应线(magnetic induction line)

《大学物理》第二节 磁场的高斯定理与安培环路定理

《大学物理》第二节 磁场的高斯定理与安培环路定理

用磁场叠加原理作对称性分析:
I
PI
B
B1
B2
解:1) 对称性分析:螺线管内的磁感线是一组平行于 轴线的直线;且距轴线同远的点其 B 的大小相同;外 部磁感强度趋于零 ,即 B = 0。
++++++++++++
2) 选回路 L
回路 L 方向与所包围的 B
电流 I 成右螺旋。
N
O
M
LP
B dl B dl B dl B dl B dl
L B dl 0 I
安培环路定理
两点说明(1)稳恒磁场是非保守场
(2)若电流回路为螺旋形,而电流N次穿过积分环路 则
B dl L
0NI
L N
讨论题
1 通以电流 I 的线圈如图所
示,在图中有四条闭合曲
线,则其环流分别为
B • dl 0I
L1
B • dl 20I
L2
B • dl 20I
d
R1 R2 R r R
B
0
N
2 R
I
0nI
R
注意:密绕细螺线管内部磁场与长直载流螺线管内部 的磁场相同。
例3 无限长均匀载流圆柱体的磁场
解:1) 对称性分析 2) 选取回路
rR
B dl L
0I
2 rB 0I
××××
××××× ××××××
L
×××××××
××××××
×××××
××××
B 0I 2 r
0r2 rB
0r 2
R2
I
B
0 Ir 2 R2
I
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6
左边= B dl L Bdl cos L 由于环路上各点的磁感应强 度大小相等;且 B // dl 0, cos 1 0 I 2r 0 I 左边= B dl 2r L 右边= 0 I 0 I
左边=右边 定理成立。 推广到任意路径都成立,证毕。
2
en
B
m d m
S

S
B dS

规定:取闭合面外法线方向为正向。 磁感应线穿出闭合面为正通量, en 磁感应线穿入闭合面为负通量。 2

B
4
3、磁场中的高斯定理 定理表述:穿过任意闭合面的磁通量等于零。
m
S
B dS 0
a
9
例2: 一矩形截面的空心环形螺线管,尺寸如图所示, 其上均匀绕有N 匝线圈,线圈中通有电流I。试求: (1)环内距轴线为r 处的磁感应强度;(2)通过螺 线管截面的磁通量。 I 解:在管内作环路半径为 r的圆环 , 环路内电流代数和为: I NI r B dl I
证明: 由于磁力线为闭合曲线,穿入穿出闭合 面的磁力线根数相同,正负通量抵消。 磁场中的高斯定理阐明了磁场的性质:
•磁场是无源场,磁力线为闭合曲线。
5
二、安培环路定理
1、定理表述 磁感应强度沿闭合回路的线积分等于环路所包围的 电流代数和乘以 0。
数学表达式: 2、明确几点

L
B dl 0 I
(1)电流正负规定:电流方向与环路方向满足右手定 则时电流 I 取正;反之取负。 (2)B 为环路上一点的磁感应强度,不是任意点的, 它与环路内外电流都有关。 (3)环路定理只适用于闭合恒定流或无限电流。有限 电流不适用环路定理,只能用毕奥—萨伐尔定律。 (4)安培环路定理说明磁场性质—磁场是有旋场。
B dl
I r2 2 r 2 I I 2 R R
Bdl
cos
L
11
R
r
由于环路上各点 磁感应强度 大小相 等,方向与环路一致。
B // dl , cos 1
2 r B dl B dl B2r 0 I 0 2 I R 0 I B r r 2 2R
或 B 的方向与环路方向垂直, B dl , cos 0 B dl 0
L
L


dl
8
例1:长直密绕载流螺线管通有电流为 I,线圈密度 为 n,求管内一点的磁感应强度 。. .. . .. . .. . .. . ..
解:理想密绕螺线管,管内的磁 场是均匀的,管外的磁场为 0 ; 作闭合环路 abcda,环路内的 电流代数和为: I nabI
3
2、磁通量 磁通量: 通过任一曲面的磁感应线的条数。 1)穿过一面元的磁通量d m
d m
B
d m B dS 单位:韦伯,Wb
2)穿过某一曲面的磁通量
dS
S
m
S
d m B dS BdS cos
S
S
3)穿过闭合曲面的磁通量


a
b
B
d
c
B外 0
c d a b B dl a B dl b B dl c B dl d B dl c a B d l , cos 0 b B dl d B dl 0, d B 0nI B 螺线管外: 外 0, B dl 0 c b B dl B dl Bab 0 I 0nabI
特例:以无限长载流直导线为例。 长直导线周围的B 线为一系列的同心圆,选取 路径方向与磁感应强度方向相同;
I
L
B
7
安培环路定理为我们提供了求磁感应强度的另一种 方法。但利用安培环路定理求磁感应强度要求磁场具有 高度的对称性 。 利用安培环路定理求磁感应强度的关健:根据磁 场分布的对称性,选取合适的闭合环路。 3、选取环路原则 (1)环路要经过所研究的场点。 (2)环路的长度便于计算; (3)要求环路上各点 B 大小相等,B 的方向与环路 方向一致, 0 I I 写成 B 目的是将: B dl 0
13
dl ' B dl B 2l o jl L o j B 方向如图所示。 2
结果
作一安培回路如图: bc和 da两边被电流平 面等分。ab和cd 与电 流平面平行,则有:
dB
dB ' dB' '
p
l
d
c
o
dl ' '
a
b
在无限大均匀平面电流的两侧的磁场都为均 匀磁场,并且大小相等,但方向相反。
d m
dS
磁感应强度大小为磁感应线的面密度。 可用磁感应线的疏密程度表示磁感应强度的大小。
2
d m B dS
B
(2)磁感应线形状 •直线电流的磁感应线分布
•载流螺线管的磁感应线分布
I
(3)磁感应线的性质 1)磁感应线为闭合曲线或两头伸向无穷远; 2)磁感应线密处 B 大;磁感应线疏处 B 小; 3)闭合的磁感应线和载流回路象锁链互套在一起; 4)磁感应线和电流满足右手螺旋法则。
2)圆柱体外一点 r > R 区域在圆柱体外作一环路, 环路内电流代数和为: I I 同理:
I
B dl B dl B2r 0 I 0 I 1 B B 2r r I 0
分布曲线:
L
R
r
r
2R B r
o
1 B r
L
R
r
12
例4:无限大平板电流的磁场分布。设一无限大导体 薄平板垂直于纸面放置,其上有方向垂直于纸面朝外 的电流通过,面电流密度(即指通过与电流方向垂直 的单位长度的电流)到处均匀。大小为 j 。 解:视为无限多平行长 dB ' 直电流的场。 p dB 分析求场点p的对称性 dB' ' 做 po 垂线,取对称的长 直电流元,其合磁场方 dl ' o dl ' ' 向平行于电流平面。 无数对称元在 p点的总磁场方向平行于电流平面。 因为电流平面是无限大,故与电流平面等距离的各点B 的大小相等。在该平面两侧的磁场方向相反。
磁通量 磁场的高斯定理 磁场的安培环路定理
1
1、磁感应线 BB BA 为形象的描绘磁场分布的而引 入的一组有方向的空间曲线。 B A (1)规定 •方向:磁感应线上某点的切线方向为该点磁场方向。
•大小:通过磁场中某点垂直于磁 感应强度的单位面积的磁感应线根 数等于该点磁感应强度的大小。
一、磁场的高斯定理
14

L
0

B2r 0 NI Φm B dS
S
1 2
0 NI B 2r
d1 2drrFra bibliotek0 N I h d 2 dr 0 N I h ln d1 d 2 r 2 d2 2
d2 2
Bhdr
d2 d1
h
10
例3:圆柱形载流导体半径为 R ,通有电流为 I ,电 流在导体横载面上均匀分布,求圆柱体内、外的磁感 应强度的分布。 解:导体内外的磁场是以中心轴线为对称分布的。 I 1)圆柱体内部 r < R 区域选取半径为 r 的环路, 环路内电流代数和为:
相关文档
最新文档