数学思维形成
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
讲座(1)考好数学的基点
―木桶原理‖已经广为人所知晓。但真要在做件事时找到自身的短处,下意识地有针对性地采取措施,以求得满意的结果。实在是一件不容易的事。
非数学专业的本科学生与数学专业学生的最基本差别,在于概念意识。
数学科学从最严密的定义出发,在准确的概念与严密的逻辑基础上层层叠叠,不断在深度与广度上发展。各向齐茂,形成一棵参天大树。
在《高等数学》中,出发点处就有函数,极限,连续,可导,可微等重要概念。
在《线性代数》的第一知识板块中,最核心的概念是矩阵的秩。而第二知识板块中,则是矩阵的特征值与特征向量。
在《概率统计》中,第一重要的概念是分布函数。不过,《概率》不是第一层次基础课程。学习《概率》需要学生有较好的《高等数学》基础。
非数学专业的本科学生大多没有概念意识,记不住概念。更不会从概念出发分析解决问题。基础层次的概念不熟,下一层次就云里雾里了。这是感到数学难学的关键。
大学数学教学目的,通常只是为了满足相关本科专业的需要。教师们在授课时往往不会太重视,而且也没时间来进行概念训练。
考研数学目的在于选拔,考题中基本概念与基本方法并重。这正好击中考生的软肋。在考研指导课上,往往会有学生莫名惊诧,―与大一那会儿学的不一样。‖原因就在于学过的概念早忘完了。
做考研数学复习,首先要在基本概念与基本运算上下足功夫。
按考试时间与分值来匹配,一个4分的选择题平均只有5分钟时间。而这些选择题却分别来自三门数学课程,每个题又至少有两个概念。你的大脑要饱受交混回想的检验。你可以由此体验选拔考试要求你对概念的熟悉程度。
从牛顿在硕士生二年级的第一篇论文算起,微积分有近四百年历史。文献浩如烟海,知识千锤百炼。非数学专业的本科生们所接触的,只是初等微积分的一少部分。方法十分经典,概念非常重要。学生们要做的是接受,理解,记忆,掌握计算方法,学会简单推理。首先是要记得住。
你要玩好游戏,你也得先了解游戏规则,把它记得滚瓜烂熟啊。
你要考得满意吗?基点不在于你看了多少难题,关键在于你是否对基本概念与基本运算非常熟悉。
数学专业的学生面壁苦修的一个方式是画―联络图‖。每学完一章,抽一定时间复习小结,静心地用笔理线索。
先默写出各个定义,中心定理,辅助定理,简单结论,思考其相互关系。再回顾主要定理证明——关键步骤是哪步,有无特色细节,可否模仿。哪些可以收编为练习。条件能否削弱,有无相应反例。在主要参考书上,有没有更细化的评注或说明或应用。
有没有重要算法与公式。如果有,是否有前提条件,是否要判断分类,……。
这是一个下意识的系统消化手段,也是一个有效的记忆方法。记住了而还没有消化好的内容,则一点一点地成为定向思维的材料。
当然要做题。有了一定的知识准备后,首先做教科书习题。演练简单的题目,体念并熟悉概念与公式。剖析复杂的题目,了解如何综合考查自己,学习分步逻辑推理。把典型题目与相关概念或定理或典型方法归纳记忆在一起。进一步做参考书及资料上的题,感受了解考研题目如何考查自己。逐渐形成用―猎奇‖的眼光去挑选典型题目的能力
数学专业的学生面壁苦修的又一个方式是积累一个―材料库‖。尽可能熟悉课程讨论的
基本对象。就如我将在讲解时(微积分部分)推荐的,―三个典型的(极限)不存在‖,―x 趋于+∞ 时,指数函数,幂函数,对数函数的无穷大阶数比较。‖―三个典型的不可导‖,―四个典型的不可积‖,……,等等。
概念记得越准确,观察判断的眼光越犀利。基本定理,基本方法记得越清晰,分析题目时方向越明白。
当你面对一个题目时,你的自然反应是,―这个题目涉及的概念是……‖,而非―在哪儿做过这道题‖,才能算是有点入门了。
讲座(2)笔下生花花自红
在爱搞运动的那些年代里,数学工作者们经常受到这样的指责,―一支笔,一张纸,一杯茶,鬼画桃符,脱离实际。‖发难者不懂基础研究的特点,不懂得考虑数学问题时―写‖与―思‖同步的重要性。
也许是计算机广泛应用的影响,今天的学生们学习数学时,也不太懂得―写‖的重要性。考研的学生们,往往拿着一本厚厚的考研数学指导资料,看题看解看答案,或看题想解翻答案。动笔的时间很少。
数学书不比小说。看数学书和照镜子差不多,镜子一拿走,印象就模糊。
科学的思维是分层次的思维。求解一个数学问题时,你不能企图一眼看清全路程。你只能踏踏实实地考虑如何迈出第一步。
或―依据已知条件,我首先能得到什么?‖(分析法);
或―要证明这个结论,就是要证明什么?‖(综合法)。
在很多情形下,写出第一步与不写的感觉是完全不同的。下面是一个简单的例。
―连续函数与不连续函数的和会怎样?‖
写成―连续A + 不连续B = ?‖后就可能想到,只有两个答案,分别填出来再说。(穷尽法)。
如果,―连续A + 不连续B = 连续C‖则― 连续C -连续A = 不连续B‖
这与定理矛盾。所以有结论:连续函数与不连续函数的和一定不连续。
有相当一些数学定义,比如―函数在一点可导‖,其中包含有计算式。能否掌握并运用这些定义,关键就在于是否把定义算式写得滚瓜烂熟。比如,
题面上有已知条件f ′(1) > 0,概念深,写得熟的人立刻就会先写出
h 趋于0 时,lim( f(1+h) - f(1)) / h > 0
然后由此自然会联想到,下一步该运用极限的性质来推理。而写不出的人就抓瞎了又比如《线性代数》中特征值与特征向量有定义式Aα=λα,α≠ 0,要是移项写成(A-λE)α= 0,α≠ 0,
这就表示α是齐次线性方程组(A-λE)X = 0 的非零解,进而由理论得到算法。
数学思维的特点之一是―发散性‖。一个数学表达式可能有几个转换方式,也许从其中一个方式会得到一个新的解释,这个解释将导引我们迈出下一步。
车到山前自有路,你得把车先推到山前啊。望山跑死马。思考一步写一步,观测分析迈下步。路只能一步步走。陈景润那篇名扬世界的―1+2‖论文中有28个―引理‖,那是他艰难地走向辉煌的28步。
对于很多考生来说,不熟悉基本计算是他们思考问题的又一大障碍。
《高等数学》感觉不好的考生,第一原因多半是不会或不熟悉求导运算。求导运算差,讨论函数的图形特征,积分,解微分方程等,反应必然都慢。