空间中的垂直关系教案

合集下载

第一章1.2.3空间中的垂直关系1教案教师版

第一章1.2.3空间中的垂直关系1教案教师版

1.2.3空间中的垂直关系(一)【学习要求】1.理解直线与平面垂直的定义.2.掌握直线与平面垂直的判定定理及其性质定理.3.会应用两定理解决问题.【学法指导】借助对实例、图片的观察,提炼直线与平面垂直的定义;通过直观感知,操作确认,归纳直线与平面垂直的判定定理及性质定理;通过运用两定理感悟和体验线面垂直转化为线线垂直的思想方法.填一填:知识要点、记下疑难点1.如果两条直线相交于一点或经过平移后相交于一点,并且交角为直角,则称这两条直线互相垂直.2.如果一条直线AB和一个平面α相交于点O,并且和这个平面内过交点O的任何直线都垂直,我们就说这条直线和这个平面互相垂直.这条直线叫做平面的垂线,这个平面叫做直线得垂面,交点叫做垂足,垂线上任意一点到垂足间的线段,叫做这个点到这个平面的垂线段,垂线段的长度叫做这个点到平面的距离.3.线面垂直的判定定理:如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直.4.线面垂直的性质定理:如果两条直线垂直于同一个平面,那么这两条直线平行 .研一研:问题探究、课堂更高效[问题情境]生活中处处都有直线和平面垂直的例子,如旗杆和地面、路灯与地面等等.在判断线面平行时我们有判定定理,那么判断线面垂直又有什么好办法呢?本节我们就来研究这一问题.探究点一直线与平面垂直的定义问题1你能举出在日常生活中给人以直线与平面垂直的例子吗?答:旗杆与地面的关系,给人以直线与平面垂直的形象;大桥的桥柱与水面的位置关系,给人以直线与平面垂直的形象.问题2在平面内,如果两条直线互相垂直,则它们一定相交.在空间中,两条互相垂直的直线也一定相交吗?你能举例说明吗?答:不一定.在空间中,两条互相垂直相交的直线中,如果固定其中一条,让另一条平移到空间的某一个位置,就可能与固定的直线没有公共点,这时两条直线为异面直线,它们同样是互相垂直.小结:空间两直线垂直的定义:如果两条直线相交于一点或经过平移后相交于一点,并且交角为直角,则称这两条直线互相垂直.问题3在平面中,到线段AB两端距离相等点的集合是线段的垂直平分线,在空间中,线段AB的垂直平分线有多少条?AB的这些垂直平分线构成的集合是怎样的图形?答:容易发现,空间中线段AB的垂直平分线有无数多条,它们构成的集合是一个平面.问题4结合对下列问题的思考,试着说明直线和平面垂直的意义.(1)如图,阳光下直立于地面的旗杆AB与它在地面上的影子BC的位置关系是什么?随着太阳的移动,旗杆AB与影子BC所成的角度会发生改变吗?答:垂直关系,所成的角度不变,都为90°.(2)旗杆AB与地面上任意一条不过旗杆底部B的直线B′C′的位置关系又是什么?依据是什么?由此得到什么结论?答:垂直关系,依据是空间两直线垂直的定义.得到的结论是:如果一条直线与平面垂直,则这条直线垂直于该平面内的任意一条直线.问题5通过上述分析,你认为应该如何定义一条直线与一个平面垂直?答:直线与平面垂直的定义:如果一条直线AB和一个平面α相交于一点O,并且和这个平面内过交点O的任何直线都垂直,我们就说这条直线和这个平面垂直.这条直线叫做平面的垂线,这个平面叫做直线的垂面,交点叫做垂足,垂线上一点到垂足间的线段叫做这个点到这个平面的垂线段,垂线段的长度叫做这个点到平面的距离.问题6如何画直线与平面垂直?如何用符号表示直线与平面垂直?答:画直线与平面垂直时,通常把直线画成与表示平面的平行四边形的一边垂直.直线l和平面α互相垂直,记作l⊥α.问题7若直线与平面内的无数条直线垂直,则直线垂直于平面吗?如不是,直线与平面的位置关系如何?答:不一定垂直,有可能平行或者相交.探究点二直线与平面垂直的判定定理问题1通常定义可以作为判定的依据,那么用上述定义判定直线与平面垂直是否方便?为什么?答:不方便,因为要验证直线垂直平面内所有的直线,这实际上是很困难的.问题2请同学们准备一块三角形的纸片,我们一起来做如图所示的试验:过△ABC的顶点A翻折纸片,得到折痕AD,将翻折后的纸片竖起放置在桌面上(BD、DC与桌面接触),问:折痕AD与桌面垂直吗?如何翻折才能保证折痕AD与桌面所在平面垂直?答: 从实验可知:当AD 与BC 不垂直时,翻折后的纸片竖起放置在桌面上折痕AD 与桌面不垂直;当AD 与BC 垂直时,翻折后的纸片竖起放置在桌面上折痕AD 与桌面垂直.问题3 由折痕AD ⊥BC ,翻折之后垂直关系不变,即AD ⊥CD ,AD ⊥BD.由此你能得到什么结论?答:若平面外一条直线与平面内两条相交直线垂直且相交,则该直线垂直这个平面.问题4 如图,把AD 、BD 、CD 抽象为直线l 、m 、n ,把桌面抽象为平面α,l 与α垂直的条件是什么? 答:条件是l 与平面α内的两条相交直线m ,n 垂直且相交.问题5 如图,若α内两条相交直线m 、n 与l 无公共点且l ⊥m 、l ⊥n ,我们可以把直线l 平移到交点处,由此你能给出判定直线与平面垂直的方法吗?答:线面垂直的判定定理:如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直.问题6 如何用符号语言表示直线与平面垂直的判定定理?答: ⎭⎪⎬⎪⎫m ⊂αn ⊂αm∩n =P l ⊥m l ⊥n⇒l ⊥α即:线线垂直⇒线面垂直. 例1 已知:a ∥b ,a ⊥α.求证:b ⊥α.证明 在平面α内作两条相交直线m ,n.因为直线a ⊥α,根据直线与平面垂直的定义知a ⊥m ,a ⊥n.又因为b ∥a ,所以b ⊥m ,b ⊥n.又因为m ⊂α,n ⊂α,m ,n 是两条相交直线,所以b ⊥α.小结:推论1:如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面.跟踪训练1 已知:直线l ⊥平面α,直线m ⊥平面α,垂足分别为A 、B ,如图,求证:l ∥m.证明:假设直线m 不与直线l 平行,过直线m 与平面α的交点B ,作直线m′∥l ,由直线与平面垂直的判定定理的推论可知m′⊥α,设m 和m′确定的平面为β,α与β的交线为a ,因为直线m 和m′都垂直于平面α. 所以直线m 和m′都垂直于交线a.因为在同一平面内,通过直线上一点与已知直线垂直的直线不可能有两条,所以直线m 和m′必重合,即l ∥m.小结:推论2:如果两条直线垂直于同一个平面,那么这两条直线平行.例2 过一点和已知平面垂直的直线只有一条.已知:平面α和一点P(如下图).求证:过点P 与平面α垂直的直线只有一条.证明:不论点P 在α外或内,设PA ⊥α,垂足为A(或P).如果过点P ,除直线PA ⊥α外,还有一条直线PB ⊥α,设PA ,PB 确定的平面为β,且α∩β=a ,于是在平面β内过点P 有两条直线PA ,PB 垂直于交线a ,这是不可能的.所以过点P 与α垂直的直线只有一条.小结:如果直接证明比较难或感觉无从下手,可以假设结论不成立,然后设出成立的结论,由此推理得出矛盾,从而说明原结论成立.跟踪训练2 已知:直线l ⊥平面α,垂足为A ,直线AP ⊥l. 求证:AP 在平面α内.证明:设AP 与l 确定的平面为β,假设AP 不在平面α内,则设平面β与平面α交于直线AM ,如下图所示:因为l ⊥α,AM ⊂α,所以l ⊥AM ,又因为AP ⊥l ,所以在平面β内过一点A 存在两条直线垂直于l ,这是不可能的,所以AP 在平面α内.例3 有一根旗杆高8 m(如图),在它的顶点处系两条长10 m 的绳子,拉紧绳子并把它们的下端固定在地面上的两点(与旗杆脚不在同一条直线上).如果这两点与旗杆脚距 6m ,那么旗杆就与地面垂直,为什么?解:如题图,旗杆PO =8,两绳子长PA =PB =10,OA =OB =6,A ,O ,B 三点不共线,因此A ,O ,B 三点确定平面α,因为PO 2+AO 2=PA 2,PO 2+BO 2=PB 2,所以PO ⊥OA ,PO ⊥OB ,又OA∩OB =O.所以OP ⊥α,因此旗杆与地面垂直.小结:证明线面垂直的一般思路是依据线面垂直的判定定理,寻找满足定理的条件,当条件满足了,也就证明了线面垂直;线面垂直的定义说明了直线垂直平面,则直线垂直这个平面内的任意直线,常用此性质证,线面垂直线线垂直.跟踪训练3如图,直四棱柱A′B′C′D′—ABCD中,底面四边形满足什么条件时,A′C⊥B′D′?为什么?解:四边形ABCD的两条对角线互相垂直时,A′C⊥B′D′.因A′A⊥平面ABCD,BD⊂平面ABCD,所以A′A⊥BD,又因AC⊥BD,A′A∩AC=A,所以BD⊥A′C.由B′D′∥BD,得A′C⊥B′D′.练一练:当堂检测、目标达成落实处1.直线a⊥直线b,b⊥平面β,则a与β的关系是(D)A.a⊥β B.a∥βC.a⊂β D.a⊂β或a∥β2.直线l⊥平面α,直线m⊂α,则l与m不可能(A)A.平行B.相交C.异面D.垂直3.如图所示,AF⊥平面ABCD,DE⊥平面ABCD,且AF=DE,AD=6,则EF=________.解析:∵AF、DE垂直于同一平面ABCD,∴AF∥DE,又∵AF=DE,∴四边形ADEF为矩形,∴EF=AD=6.课堂小结:1.直线和平面垂直的判定方法(1)利用线面垂直的定义.(2)利用线面垂直的判定定理.(3)利用下面两个结论:①若a∥b,a⊥α,则b⊥α;②若α∥β,a⊥α,则a⊥β.2.直线和平面垂直的性质定理可以作为两条直线平行的判定定理,可以并入平行推导链中,实现平行与垂直的相互转化,即线线垂直⇒线面垂直⇒线线平行⇒线面平行.3.“垂直于同一平面的两条直线互相平行”、“垂直于同一直线的两个平面互相平行”都是真命题.但“垂直于同一直线的两条直线互相平行”、“垂直于同一平面的两个平面互相平行”都是假命题.。

高中数学垂直关系图解教案

高中数学垂直关系图解教案

高中数学垂直关系图解教案
目标:学生能够理解和应用垂直关系的相关知识,解决与垂直关系相关的问题。

教学内容:垂直关系
教学步骤:
1.引入:通过展示一幅包含垂直关系的图形,引出垂直关系的概念。

让学生观察图形并讨
论其中的垂直关系。

2.讲解:介绍垂直角、垂直平分线、垂直线段等概念,并通过示意图和实例进行讲解。


助学生理解这些概念在几何问题中的应用。

3.实例演练:提供一些垂直关系的练习题,让学生尝试解答并讨论解题思路。

引导他们通
过观察图形特点、运用几何知识来解决问题。

4.拓展应用:引导学生思考垂直关系在日常生活中的应用,并设计相关问题进行讨论。


励他们灵活运用垂直关系的知识解决实际问题。

5.总结:通过回顾学习内容和解题思路,总结垂直关系的重要性和应用方法。

同时鼓励学
生在今后的学习中注重观察图形特点,灵活使用垂直关系的知识。

扩展阅读:推荐一些相关的数学教材和参考书籍,帮助学生深入了解垂直关系的更多知识。

注:教师应根据实际教学情况和学生水平调整教学内容和步骤,确保教学效果。

《认识垂直》教案

《认识垂直》教案

《认识垂直》教案(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、工作计划、演讲致辞、策划方案、合同协议、规章制度、条据文书、诗词鉴赏、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work summaries, work plans, speeches, planning plans, contract agreements, rules and regulations, doctrinal documents, poetry appreciation, teaching materials, other sample essays, etc. If you want to learn about different sample formats and writing methods, please stay tuned!《认识垂直》教案《认识垂直》教案(精选2篇)《认识垂直》教案篇1教学内容:教科书第42—43页,第44页的“想想做做”的第1-3题教学目标:1、使学生结合生活情境,感知平面上两条直线的垂直关系,认识垂线、垂足。

四年级数学平行与垂直教案设计(优秀3篇)

四年级数学平行与垂直教案设计(优秀3篇)

四年级数学平行与垂直教案设计(优秀3篇)(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如主题班会、教案大全、教学反思、教学设计、工作计划、文案策划、文秘资料、活动方案、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as theme class meetings, lesson plans, teaching reflections, teaching designs, work plans, copywriting planning, secretarial materials, activity plans, speeches, other materials, etc. If you want to learn about different data formats and writing methods, please stay tuned!四年级数学平行与垂直教案设计(优秀3篇)教学内容:本内容是四年级上册第64页《垂直与平行》的第一课时。

直线与平面垂直的判定(详细教案 )

直线与平面垂直的判定(详细教案 )

2.3.1 直线与平面垂直的判定壶关一中杨贺强教材分析空间中直线与平面的三种位置关系中,垂直是相交时的一种非常重要的位置关系。

它不仅应用较多,而且是空间问题平面化的典范。

直线与平面的垂直问题是连接“线线垂直”和“面面垂直”的桥梁和纽带,可以说线面垂直是立体几何问题的重要考点之一。

三维目标(知识与技能):探究直线与平面垂直的判定定理,培养学生的空间想象能力。

(过程与方法):掌握直线与平面垂直的判定定理的应用,培养学生分析问题、解决问题的能力。

(情感态度与价值观):让学生明确直线与平面垂直在立体几何中的重要地位。

重点难点教学重点:直线与平面垂直的判定。

教学难点:灵活应用“直线与平面垂直判定定理”解决问题。

教学过程,板书设计1、探究“直线与平面垂直的定义”。

2、探究“直线与平面垂直的判定定理”。

3、使用三种语言(文字、图形、符号)描述直线与平面垂直的判定定理。

4、探究斜线在平面内的射影,讨论“直线与平面所成的角”。

教学过程一、回顾复习,情境导入已经学过的直线与平面的位置关系有哪些?-----垂直是相交时的特殊情况。

在日常生活中,我们对直线与平面垂直有很多感性认识,比如,旗杆与地面的位置关系,大桥的桥柱与水面的位置关系等,都给我们以直线与平面垂直的印象。

二、新知探究(小组活动):(一)直线与平面垂直的定义问题1:(由第1小组学生回答)你能给出直线和平面垂直的定义吗?回忆一下直线与直线垂直是如何定义的?设计意图:两直线垂直有相交垂直和异面垂直,而异面直线垂直是转化为两直线相交垂直,实质上是将空间问题转化为平面问题,让学生回忆直线与直线垂直的定义,旨在由此得到启发:用“平面化”的思想来思考问题,即能否用一条直线垂直于一个平面内的直线,来定义这条直线与这个平面垂直?问题2:(由第2小组学生回答)结合对下列问题的思考,试着给出直线和平面垂直的定义。

(1)阳光下,旗杆AB与它在地面上的影子BC所成的角度是多少?(2)随着太阳的移动,影子BC的位置也会移动,而旗杆AB与影子BC所成的角度是否会发生改变?(3)旗杆AB与地面上任意一条不过点B的直线B1C1的位置关系如何?依据是什么?(学生叙写定义,并建立文字、图形、符号这三种语言的相互转化)。

小学数学教学教案设计:《认识垂直》

小学数学教学教案设计:《认识垂直》

小学数学教学教案设计:《认识垂直》第一章:教学目标1.1 知识与技能:让学生能够识别和理解垂直的概念。

培养学生用垂直的视角观察和描述物体和图形的的能力。

1.2 过程与方法:通过实际操作和观察,让学生体验和理解垂直的特性。

运用图形和实物,培养学生的空间想象能力和思维能力。

1.3 情感态度与价值观:激发学生对数学的兴趣和好奇心,培养学生的探索精神。

培养学生的合作意识和交流能力。

第二章:教学内容2.1 教材分析:教材中应包含有关垂直的定义、特点和示例。

教材应提供丰富的实际问题和图片,帮助学生理解和应用垂直的概念。

2.2 学情分析:学生可能对垂直的概念有一定的了解,但需要进一步的引导和培养。

学生应具备基本的观察和描述能力,能够通过实际操作和观察来理解和应用垂直的概念。

第三章:教学过程3.1 导入:通过引入实际生活中的例子,如墙壁、电线杆等,引发学生对垂直的兴趣和好奇心。

引导学生观察和描述这些例子中的垂直关系,激发学生的思考和交流。

3.2 探究与实践:提供一些图形和实物,让学生通过实际操作和观察,探索和发现垂直的特点和规律。

引导学生用语言描述和解释垂直的关系,培养学生的观察和描述能力。

3.3 巩固与拓展:提供一些练习题,让学生运用垂直的概念进行解答。

引导学生通过实际操作和观察,发现和解决生活中的垂直问题,培养学生的应用能力和解决问题的能力。

第四章:教学评价4.1 课堂评价:在课堂上,通过提问和回答,观察学生的理解和掌握情况。

通过学生的实际操作和描述,评估学生对垂直的概念的理解和应用能力。

4.2 作业评价:对学生提交的练习题进行评分,评估学生对垂直的概念的理解和应用能力。

鼓励学生对自己的作品进行自我评价和反思,培养学生的自我评估和反思能力。

第五章:教学资源5.1 教材:选择适合学生年龄和水平的数学教材,包含有关垂直的定义、特点和示例。

教材应提供丰富的实际问题和图片,帮助学生理解和应用垂直的概念。

5.2 教学工具:使用直尺、量角器等工具,帮助学生观察和测量垂直关系。

《空间中的垂直关系:直线与平面垂直》参考教案

《空间中的垂直关系:直线与平面垂直》参考教案

βαm la αaα 1.2.3 直线与平面垂直教学目的:1.理解直线与平面垂直的定义;2.掌握直线与平面垂直的判定、性质定理内容及其应用;3.应用直线与平面垂直的判定、性质定理解决问题 .教学重点:直线与平面垂直的判定、性质定理内容及其应用. 教学难点:直线与平面垂直的判定、性质定理内容及论证过程教学过程:一、复习引入:1.直线和平面的位置关系是什么?观察空间直线和平面可知它们的位置关系有:(1)直线在平面内(无数个公共点);(2)直线和平面相交(有且只有一个公共点);(3)直线和平面平行(没有公共点)它们的图形分别可表示为如下,符号分别可表示为a ⊂α,a ⋂α=A ,a//α.2.线面平行的判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.推理模式:,,////l m l m l ααα⊄⊂⇒ 3.线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.推理模式://,,//l l m l αβαβ⊂⋂=⇒ 引入新课:在直线和平面相交的位置关系中,有一种相交是很特殊的,我们把它叫做垂直相交,这节课我们重点来探究这种形式的相交----引出课题.二、研探新知1.观察实例,发现新知现实生活中线面垂直的实例:旗杆与地面的关系,大桥的桥柱与水面的位置关系,房屋的屋柱与地面的关系,都给人以直线与平面垂直的形象。

2.实例研探,定义新知探究:什么叫做直线和平面垂直呢?当直线与平面垂直时,此直线与平面内的所有直线的关系又怎样呢?变换时间观察现实生活中线面垂直的实例:在阳光下观察直立于地面的旗杆及它在地面的影子,随着时间的变化,尽管影子的位置在移动,但是旗杆所在的直线始终与影子所在的直线垂直,就是说,旗杆AB所在直线与地面上任意一条过点B的直线垂直(如图),事实上,旗杆AB所在直线与地面内任意一条不过点B的直线也是垂直的。

新人教版高中数学必修第二册《空间直线、平面的垂直》教案

新人教版高中数学必修第二册《空间直线、平面的垂直》教案

空间直线、平面的垂直【第一课时】【教学目标】1.会用两条异面直线所成角的定义,找出或作出异面直线所成的角,会在三角形中求简单的异面直线所成的角2.理解并掌握直线与平面垂直的定义,明确定义中“任意”两字的重要性3.掌握直线与平面垂直的判定定理,并能解决有关线面垂直的问题【教学重难点】1.异面直线所成的角2.直线与平面垂直的定义3.直线与平面垂直的判定定理【核心素养】1.直观想象、逻辑推理、数学运算2.直观想象【教学过程】一、问题导入预习教材内容,思考以下问题:1.异面直线所成的角的定义是什么?2.异面直线所成的角的范围是什么?3.异面直线垂直的定理是什么?4.直线与平面垂直的定义是什么?5.直线与平面垂直的判定定理是什么?二、基础知识1.异面直线所成的角(1)定义:已知两条异面直线a,b,经过空间任一点O分别作直线a′∥a,b′∥b,把直线a′与b′所成的角叫做异面直线a与b所成的角(或夹角).(2)垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直.直线a与直线b垂直,记作a⊥b.(3)范围:设θ为异面直线a与b所成的角,则0°<θ≤90°.[名师点拨]当两条直线a ,b 相互平行时,规定它们所成的角为0°.所以空间两条直线所成角α的取值范围是0°≤α≤90°.注意与异面直线所成的角的范围的区别.2.直线与平面垂直定义一般地,如果直线l 与平面α内的任意一条直线都垂直,我们就说直线l 与平面α互相垂直记法l ⊥α有关概念直线l 叫做平面α的垂线,平面α叫做直线l 的垂面.它们唯一的公共点P叫做垂足图示及画法画直线与平面垂直时,通常把直线画成与表示平面的平行四边形的一边垂直名师点拨(1)直线与平面垂直是直线与平面相交的特殊情形.(2)注意定义中“任意一条直线”与“所有直线”等同但不可说成“无数条直线”.3.直线与平面垂直的判定定理文字语言如果一条直线与一个平面内的两条相交直线垂直,那么该直线与此平面垂直图形语言符号语言l ⊥a ,l ⊥b ,a ⊂α,b ⊂α,a ∩b =P ⇒l ⊥α名师点拨判定定理条件中的“两条相交直线”是关键性词语,此处强调“相交”,若两条直线平行,则直线与平面不一定垂直.三、合作探究异面直线所成的角如图,在正方体ABCD ­EFGH 中,O 为侧面ADHE 的中心.求:(1)BE 与CG 所成的角;(2)FO 与BD 所成的角.【解】(1)如图,因为CG ∥BF .所以∠EBF (或其补角)为异面直线BE 与CG 所成的角,又在△BEF 中,∠EBF =45°,所以BE 与CG 所成的角为45°.(2)连接FH ,因为HD ∥EA ,EA ∥FB ,所以HD ∥FB ,又HD =FB ,所以四边形HFBD 为平行四边形.所以HF ∥BD ,所以∠HFO (或其补角)为异面直线FO 与BD 所成的角.连接HA ,AF ,易得FH =HA =AF ,所以△AFH 为等边三角形,又知O 为AH 的中点,所以∠HFO =30°,即FO 与BD 所成的角为30°.1.[变条件]在本例正方体中,若P 是平面EFGH 的中心,其他条件不变,求OP 和CD 所成的角.解:连接EG ,HF ,则P 为HF 的中点,连接AF ,AH ,OP ∥AF ,又CD ∥AB ,所以∠BAF (或其补角)为异面直线OP 与CD 所成的角,由于△ABF 是等腰直角三角形,所以∠BAF =45°,故OP 与CD 所成的角为45°.2.[变条件]在本例正方体中,若M ,N 分别是BF ,CG 的中点,且AG 和BN 所成的角为39.2°,求AM 和BN 所成的角.解:连接MG ,因为BCGF 是正方形,所以BF═∥ CG ,因为M ,N 分别是BF ,CG 的中点,所以BM ═∥ NG ,所以四边形BNGM 是平行四边形,所以BN ∥MG ,所以∠AGM (或其补角)是异面直线AG 和BN 所成的角,∠AMG (或其补角)是异面直线AM和BN所成的角,因为AM=MG,所以∠AGM=∠MAG=39.2°,所以∠AMG=101.6°,所以AM和BN所成的角为78.4°.[规律方法]求异面直线所成的角的步骤(1)找出(或作出)适合题设的角——用平移法,遇题设中有中点,常考虑中位线;若异面直线依附于某几何体,且对异面直线平移有困难时,可利用该几何体的特殊点,使异面直线转化为相交直线.(2)求——转化为求一个三角形的内角,通过解三角形,求出所找的角.(3)结论——设由(2)所求得的角的大小为θ.若0°<θ≤90°,则θ为所求;若90°<θ<180°,则180°-θ为所求.[提醒]求异面直线所成的角,通常把异面直线平移到同一个三角形中去,通过解三角形求得,但要注意异面直线所成的角θ的范围是0°<θ≤90°.直线与平面垂直的定义(1)直线l⊥平面α,直线m⊂α,则l与m不可能()A.平行.相交C.异面.垂直(2)设l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥m D.若l∥α,m∥α,则l∥m【解析】(1)因为直线l⊥平面α,所以l与α相交.又因为m⊂α,所以l与m相交或异面.由直线与平面垂直的定义,可知l⊥m.故l与m不可能平行.(2)对于A,直线l⊥m,m并不代表平面α内任意一条直线,所以不能判定线面垂直;对于B,因为l⊥α,则l垂直于α内任意一条直线,又l∥m,由异面直线所成角的定义知,m与平面α内任意一条直线所成的角都是90°,即m⊥α,故B正确;对于C,也有可能是l,m异面;对于D,l,m还可能相交或异面.【答案】(1)A(2)B[规律方法]对线面垂直定义的理解(1)直线和平面垂直的定义是描述性定义,对直线的任意性要注意理解.实际上,“任何一条”与“所有”表达相同的含义.当直线与平面垂直时,该直线就垂直于这个平面内的任何直线.由此可知,如果一条直线与一个平面内的一条直线不垂直,那么这条直线就一定不与这个平面垂直.(2)由定义可得线面垂直⇒线线垂直,即若a⊥α,b⊂α,则a⊥b.直线与平面垂直的判定如图,PA⊥平面ABCD,底面ABCD为矩形,AE⊥PB于点E,AF⊥PC于点F.(1)求证:PC⊥平面AEF;(2)设平面AEF交PD于点G,求证:AG⊥PD.【证明】(1)因为PA⊥平面ABCD,BC⊂平面ABCD,所以PA⊥BC.又AB⊥BC,PA∩AB=A,所以BC⊥平面PAB,AE⊂平面PAB,所以AE⊥BC.又AE⊥PB,PB∩BC=B,所以AE⊥平面PBC,PC⊂平面PBC,所以AE⊥PC.又因为PC⊥AF,AE∩AF=A,所以PC⊥平面AEF.(2)由(1)知PC⊥平面AEF,又AG⊂平面AEF,所以PC⊥AG,同理CD⊥平面PAD,AG⊂平面PAD,所以CD⊥AG,又PC∩CD=C,所以AG⊥平面PCD,PD⊂平面PCD,所以AG⊥PD.1.[变条件]在本例中,底面ABCD是菱形,H是线段AC上任意一点,其他条件不变,求证:BD⊥FH.证明:因为四边形ABCD是菱形,所以BD⊥AC,又PA ⊥平面ABCD ,BD ⊂平面ABCD ,所以BD ⊥PA ,因为PA ∩AC =A ,所以BD ⊥平面PAC ,又FH ⊂平面PAC ,所以BD ⊥FH .2.[变条件]若本例中PA =AD ,G 是PD 的中点,其他条件不变,求证:PC ⊥平面AFG .证明:因为PA ⊥平面ABCD ,DC ⊂平面ABCD ,所以DC ⊥PA ,又因为ABCD 是矩形,所以DC ⊥AD ,又PA ∩AD =A ,所以DC ⊥平面PAD ,又AG ⊂平面PAD ,所以AG ⊥DC ,因为PA =AD ,G 是PD 的中点,所以AG ⊥PD ,又DC ∩PD =D ,所以AG ⊥平面PCD ,所以PC ⊥AG ,又因为PC ⊥AF ,AG ∩AF =A ,所以PC ⊥平面AFG .3.[变条件]本例中的条件“AE ⊥PB 于点E ,AF ⊥PC 于点F ”,改为“E ,F 分别是AB ,PC 的中点,PA =AD ”,其他条件不变,求证:EF ⊥平面PCD .证明:取PD 的中点G ,连接AG ,FG .因为G ,F 分别是PD ,PC 的中点,所以GF ═∥ 12CD ,又AE ═∥ 12CD ,所以GF ═∥ AE ,所以四边形AEFG 是平行四边形,所以AG ∥EF .因为PA =AD ,G 是PD 的中点,所以AG ⊥PD ,所以EF ⊥PD ,易知CD ⊥平面PAD ,AG ⊂平面PAD ,所以CD ⊥AG ,所以EF ⊥CD .因为PD ∩CD =D ,所以EF ⊥平面PCD .(1)线线垂直和线面垂直的相互转化(2)证明线面垂直的方法①线面垂直的定义.②线面垂直的判定定理.③如果两条平行直线的一条直线垂直于一个平面,那么另一条直线也垂直于这个平面.④如果一条直线垂直于两个平行平面中的一个平面,那么它也垂直于另一个平面.[提醒]要证明两条直线垂直(无论它们是异面还是共面),通常是证明其中的一条直线垂直于另一条直线所在的一个平面.【课堂检测】1.若直线a⊥平面α,b∥α,则a与b的关系是()A.a⊥b,且a与b相交B.a⊥b,且a与b不相交C.a⊥bD.a与b不一定垂直解析:选C.过直线b作一个平面β,使得β∩α=c,则b∥c.因为直线a⊥平面α,c⊂α,所以a⊥c.因为b∥c,所以a⊥b.当b与a相交时为相交垂直,当b与a不相交时为异面垂直.2.在正方体ABCD­A1B1C1D1中,与AD1垂直的平面是()A.平面DD1C1C B.平面A1DB1C.平面A1B1C1D1D.平面A1DB解析:选B.因为AD1⊥A1D,AD1⊥A1B1,且A1D∩A1B1=A1,所以AD1⊥平面A1DB1.3.空间四边形的四边相等,那么它的对角线()A.相交且垂直B.不相交也不垂直C.相交不垂直D.不相交但垂直解析:选D.如图,空间四边形ABCD,假设AC与BD相交,则它们共面α,从而四点A,B,C,D都在α内,这与ABCD为空间四边形矛盾,所以AC与BD不相交;取BD的中点O,连接OA与OC,因为AB=AD=DC=BC,所以AO⊥BD,OC⊥BD,从而可知BD⊥平面AOC,故AC⊥BD.4.已知a,b是一对异面直线,而且a平行于△ABC的边AB所在的直线,b 平行于边AC所在的直线,若∠BAC=120°,则直线a,b所成的角为________.解析:由a∥AB,b∥AC,∠BAC=120°,知异面直线a,b所成的角为∠BAC 的补角,所以直线a,b所成的角为60°.答案:60°【第二课时】【教学目标】1.了解直线和平面所成的角的含义,并知道其求法2.理解直线和平面垂直的性质定理,并能用文字、符号和图形语言描述定理,能应用线面垂直的性质定理解决有关的垂直问题【教学重难点】1.直线与平面所成的角2.直线与平面垂直的性质【核心素养】1.直观想象、逻辑推理、数学运算2.直观想象、逻辑推理【教学过程】一、问题导入预习教材内容,思考以下问题:1.直线与平面所成的角的定义是什么?2.直线与平面所成的角的范围是什么?3.直线与平面垂直的性质定理的内容是什么?4.如何求直线到平面的距离?5.如何求两个平行平面间的距离?二、基础知识1.直线与平面所成的角(1)定义:如图,一条直线PA和一个平面α相交,但不与这个平面垂直,这条直线叫做这个平面的斜线,斜线和平面的交点A叫做斜足.过斜线上斜足以外的一点P向平面α引垂线PO,过垂足O和斜足A的直线AO叫做斜线在这个平面上的射影.平面的一条斜线和它在平面上的射影所成的角,叫做这条直线和这个平面所成的角.(2)规定:一条直线垂直于平面,称它们所成的角是90°;一条直线和平面平行,或在平面内,称它们所成的角是0°.(3)范围:直线与平面所成的角θ的取值范围是0°≤θ≤90°.名师点拨把握定义应注意两点:①斜线上不同于斜足的点P的选取是任意的;②斜线在平面上的射影是过斜足和垂足的一条直线而不是线段.2.直线与平面垂直的性质定理文字语言垂直于同一个平面的两条直线平行符号语言Error!⇒a∥b图形语言作用①线面垂直⇒线线平行②作平行线名师点拨(1)直线与平面垂直的性质定理给出了判定两条直线平行的另一种方法.(2)定理揭示了空间中“平行”与“垂直”关系的内在联系,提供了“垂直”与“平行”关系转化的依据.3.线面距与面面距(1)一条直线与一个平面平行时,这条直线上任意一点到这个平面的距离,叫做这条直线到这个平面的距离.(2)如果两个平面平行,那么其中一个平面内的任意一点到另一个平面的距离都相等,我们把它叫做这两个平行平面间的距离.三、合作探究直线与平面所成的角在正方体ABCD­A1B1C1D1中,E是棱DD1的中点,求直线BE与平面ABB1A1所成的角的正弦值.【解】取AA1的中点M,连接EM,BM.因为E是DD1的中点,四边形ADD1A1为正方形,所以EM∥AD.又在正方体ABCD­A1B1C1D1中,AD⊥平面ABB1A1,所以EM⊥平面ABB1A1,从而BM为直线BE在平面ABB1A1内的射影,∠EBM即为直线BE与平面ABB1A1所成的角.设正方体的棱长为2,则EM=AD=2,BE=22+22+12=3.于是在Rt△BEM中,sin∠EBM=EMBE=23,即直线BE与平面ABB1A1所成的角的正弦值为2 3.[规律方法]线面垂直的性质定理的应用如图,已知正方体A1C.(1)求证:A1C⊥B1D1;(2)M,N分别为B1D1与C1D上的点,且MN⊥B1D1,MN ⊥C1D,求证:MN∥A1C.【证明】(1)如图,连接A1C1.因为CC 1⊥平面A 1B 1C 1D 1,B 1D 1⊂平面A 1B 1C 1D 1,所以CC 1⊥B 1D 1.因为四边形A 1B 1C 1D 1是正方形,所以A 1C 1⊥B 1D 1.又因为CC 1∩A 1C 1=C 1,所以B 1D 1⊥平面A 1C 1C .又因为A 1C ⊂平面A 1C 1C ,所以B 1D 1⊥A 1C .(2)如图,连接B 1A ,AD 1.因为B 1C 1═∥ AD ,所以四边形ADC 1B 1为平行四边形,所以C 1D ∥AB 1,因为MN ⊥C 1D ,所以MN ⊥AB 1.又因为MN ⊥B 1D 1,AB 1∩B 1D 1=B 1,所以MN ⊥平面AB 1D 1.由(1)知A 1C ⊥B 1D 1.同理可得A 1C ⊥AB 1.又因为AB 1∩B 1D 1=B 1,所以A 1C ⊥平面AB 1D 1.所以A 1C ∥MN . [规律方法](1)若已知一条直线和某个平面垂直,证明这条直线和另一条直线平行,可考虑利用线面垂直的性质定理,证明另一条直线和这个平面垂直,证明时注意利用正方形、平行四边形及三角形中位线的有关性质.(2)直线与平面垂直的其他性质①如果一条直线和一个平面垂直,则这条直线和这个平面内任一条直线垂直;②若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面;③若l ⊥α于A ,AP ⊥l ,则AP ⊂α;④垂直于同一条直线的两个平面平行;⑤如果一条直线垂直于两个平行平面中的一个,则它必垂直于另一个平面.求点到平面的距离如图,四棱锥P ­ABCD 中,底面ABCD 为矩形,PA⊥平面ABCD ,E 为PD 的中点.(1)证明:PB ∥平面AEC ;(2)设AP =1,AD =3,三棱锥P ­ABD 的体积V =34,求A 到平面PBC 的距离.【解】(1)证明:如图,设BD 与AC 的交点为O ,连接EO .因为四边形ABCD 为矩形,所以点O 为BD 的中点.又点E 为PD 的中点,所以EO ∥PB .因为EO ⊂平面AEC ,PB ⊄平面AEC ,所以PB ∥平面AEC .(2)V =16AP ·AB ·AD =36AB .由V =34,可得AB =32.作AH ⊥PB 于点H .由题设知BC ⊥平面PAB ,所以BC ⊥AH ,故AH ⊥平面PBC ,即AH 的长就是点A 到平面PBC 的距离.因为PB =AP 2+AB 2=132,所以AH =AP ·AB PB =31313,所以点A 到平面PBC 的距离为31313.[规律方法]从平面外一点作一个平面的垂线,这个点与垂足间的距离就是这个点到这个平面的距离.当该点到已知平面的垂线不易作出时,可利用线面平行、面面平行的性质转化为与已知平面等距离的点作垂线,然后计算,也可以利用等换法转换求解.【课堂检测】1.若斜线段AB 是它在平面α内射影长的2倍,则AB 与平面α所成角的大小为()A .60°B .45°C .30°D .90°解析:选A .斜线段、垂线段以及射影构成直角三角形.如图所示,∠ABO 即是斜线段与平面所成的角.又AB =2BO ,所以cos ∠ABO =OB AB =12,所以∠ABO =60°.2.已知PA ⊥矩形ABCD 所在的平面,则下列结论中不正确的是()A .PB ⊥BC B .PD ⊥CD C .PD ⊥BDD .PA ⊥BD解析:选C .PA ⊥平面ABCD ⇒PA ⊥BD ,D 正确;Error!⇒BC ⊥平面PAB ⇒BC ⊥PB .故A 正确;同理B 正确;C 不正确.3.如图,正方体ABCD ­A 1B 1C 1D 1中,M 是棱DD 1的中点,则过M 且与直线AB 和B 1C 1都垂直的直线有()A .1条B .2条C .3条D .无数条解析:选A .显然DD 1是满足条件的一条,如果还有一条l 满足条件,则l ⊥B 1C 1,l ⊥AB .又AB ∥C 1D 1,则l ⊥C 1D 1.又B 1C 1∩C 1D 1=C 1,所以l ⊥平面B 1C 1D 1.同理DD 1⊥平面B 1C 1D 1,则l ∥DD 1.又l 与DD 1都过M ,这是不可能的,因此只有DD 1一条满足条件.4.如图,已知AD ⊥AB ,AD ⊥AC ,AE ⊥BC 交BC 于点E ,D 是FG 的中点,AF =AG ,EF =EG .求证:BC ∥FG .证明:连接DE .因为AD ⊥AB ,AD ⊥AC ,所以AD ⊥平面ABC .又BC ⊂平面ABC ,所以AD⊥BC.又AE⊥BC,所以BC⊥平面ADE.因为AF=AG,D为FG的中点,所以AD⊥FG.同理ED⊥FG.又AD∩ED=D,所以FG⊥平面ADE.所以BC∥FG.【第三课时】【学习目标】1.理解二面角的有关概念,会求简单的二面角的大小2.理解两平面垂直的定义,掌握两平面垂直的判定定理3.理解平面和平面垂直的性质定理,并能用文字、符号和图形语言描述定理,能应用面面垂直的性质定理解决有关的垂直问题【学习重难点】1.二面角2.平面与平面垂直的判定定理3.平面与平面垂直的性质定理【核心素养】1.直观想象、数学运算2.直观想象、数学运算【教学过程】一、问题导入预习教材内容,思考以下问题:1.二面角的定义是什么?2.如何表示二面角?3.二面角的平面角的定义是什么?4.二面角的范围是什么?5.面面垂直是怎样定义的?6.面面垂直的判定定理的内容是什么?7.面面垂直的性质定理的内容是什么?二、基础知识1.二面角(1)定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面.(2)图形和记法图形:记作:二面角α­AB­β或二面角α­l­β或二面角P­AB­Q或二面角P­l­Q.2.二面角的平面角(1)定义:在二面角α­l­β的棱l上任取一点O,以点O为垂足,在半平面α和β内分别作垂直于棱l的射线OA和OB,则射线OA和OB构成的∠AOB叫做二面角的平面角.(2)图形、符号及范围图形:符号:Error!⇒∠AOB是二面角的平面角.范围:0°≤∠AOB≤180°.(3)规定:二面角的大小可以用它的平面角来度量,二面角的平面角是多少度,就说这个二面角是多少度.平面角是直角的二面角叫做直二面角.名师点拨(1)二面角的大小与垂足O在l上的位置无关.一个二面角的平面角有无数个,它们的大小是相等的.(2)构成二面角的平面角的三要素:“棱上”“面内”“垂直”.即二面角的平面角的顶点必须在棱上,角的两边必须分别在两个半平面内,角的两边必须都与棱垂直,这三个条件缺一不可.这三个要素决定了二面角的平面角大小的唯一性和平面角所在的平面与棱垂直.3.平面与平面垂直(1)定义:一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直,平面α与β垂直,记作α⊥β.(2)判定定理文字语言图形语言符号语言如果一个平面过另一个平面的垂线,那么这两个平面垂直Error!⇒α⊥β名师点拨定理的关键词是“过另一个平面的垂线”,所以应用的关键是在平面内寻找另一个平面的垂线.4.平面与平面垂直的性质定理文字语言两个平面垂直,如果一个平面内有一直线垂直于这两个平面的交线,那么这条直线与另一个平面垂直符号语言Error!⇒a ⊥β图形语言作用①面面垂直⇒线面垂直②作面的垂线名师点拨对面面垂直的性质定理的理解(1)定理的实质是由面面垂直得线面垂直,故可用来证明线面垂直.(2)已知面面垂直时,可以利用此定理转化为线面垂直,再转化为线线垂直.三、合作探究二面角的概念及其大小的计算(1)在正方体ABCD ­A 1B 1C 1D 1中,截面A 1BD 与底面ABCD 所成锐二面角A 1­BD ­A 的正切值为()A .32B .22C .2D .3(2)一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,则这两个二面角的大小关系为()A .相等B .互补C .相等或互补D .不确定【解析】(1)如图所示,连接AC 交BD 于点O ,连接A 1O ,O 为BD 的中点,因为A 1D =A 1B ,所以在△A 1BD 中,A 1O ⊥BD .又因为在正方形ABCD 中,AC ⊥BD ,所以∠A 1OA 为二面角A 1­BD ­A 的平面角.设AA 1=1,则AO =22.所以tan ∠A 1OA =122=2.(2)反例:如图,在正方体ABCD ­A 1B 1C 1D 1中,E ,F 分别是CD ,C 1D 1的中点,二面角D ­AA 1­E 与二面角B 1­AB ­C 的两个半平面就是分别对应垂直的,但是这两个二面角既不相等,也不互补.【答案】(1)C (2)D(1)求二面角大小的步骤简称为“一作二证三求”.(2)作出二面角的平面角的方法方法一:(定义法)在二面角的棱上找一个特殊点,在两个半平面内分别作垂直于棱的射线.如图所示,∠AOB 为二面角α­a ­β的平面角.方法二:(垂线法)过二面角的一个面内一点作另一个平面的垂线,过垂足作棱的垂线,连接该点与垂足,利用线面垂直可找到二面角的平面角或其补角.如图所示,∠AFE为二面角A­BC ­D 的平面角.方法三:(垂面法)过棱上一点作棱的垂直平面,该平面与二面角的两个半平面产生交线,这两条交线所成的角即为二面角的平面角.如图所示,∠AOB 为二面角α­l ­β的平面角.[提醒]二面角的平面角的大小与顶点在棱上的位置无关,通常可根据需要选择特殊点作平面角的顶点.平面与平面垂直的判定角度一利用定义证明平面与平面垂直如图,在四面体ABCD 中,BD =2a ,AB =AD =CB =CD=AC =a .求证:平面ABD ⊥平面BCD .【证明】因为△ABD 与△BCD 是全等的等腰三角形,所以取BD 的中点E ,连接AE ,CE ,则AE ⊥BD ,BD⊥CE .在△ABD 中,AB =a ,BE =12BD =22a ,所以AE = AB 2-BE 2=22a .同理CE =22a ,在△AEC 中,AE =CE =22a ,AC =a .由于AC 2=AE 2+CE 2,所以AE ⊥CE ,∠AEC 是二面角A ­BD ­C 的平面角,又因为∠AEC =90°,所以二面角A ­BD ­C 为直二面角,所以平面ABD ⊥平面BCD .角度二利用判定定理证明平面与平面垂直如图,在四棱锥P ­ABCD 中,若PA ⊥平面ABCD 且四边形ABCD 是菱形.求证:平面PAC ⊥平面PBD .【证明】因为PA ⊥平面ABCD ,BD ⊂平面ABCD ,所以BD ⊥PA .因为四边形ABCD是菱形,所以BD⊥AC.又PA∩AC=A,所以BD⊥平面PAC.又因为BD⊂平面PBD,所以平面PAC⊥平面PBD.[规律方法]证明平面与平面垂直的两种常用方法(1)利用定义:证明二面角的平面角为直角,其判定的方法是:①找出两相交平面的平面角;②证明这个平面角是直角;③根据定义,这两个相交平面互相垂直.(2)利用面面垂直的判定定理:要证面面垂直,只要证线面垂直.即在其中一个平面内寻找一条直线与另一个平面垂直.这是证明面面垂直的常用方法,其基本步骤是:面面垂直的性质定理的应用已知P是△ABC所在平面外的一点,且PA⊥平面ABC,平面PAC⊥平面PBC,求证:BC⊥AC.【证明】如图,在平面PAC内作AD⊥PC于点D,因为平面PAC⊥平面PBC,平面PAC∩平面PBC=PC,AD⊂平面PAC,且AD⊥PC,所以AD⊥平面PBC,又BC⊂平面PBC,所以AD⊥BC.因为PA ⊥平面ABC ,BC ⊂平面ABC ,所以PA ⊥BC ,因为AD ∩PA =A ,所以BC ⊥平面PAC ,又AC ⊂平面PAC ,所以BC ⊥AC . [反思归纳]利用面面垂直的性质定理应注意的问题若所给题目中有面面垂直的条件,一般要利用面面垂直的性质定理将其转化为线面垂直、线线垂直.应用面面垂直的性质定理,应注意三点:①两个平面垂直是前提条件;②直线必须在其中一个平面内;③直线必须垂直于它们的交线.垂直关系的综合问题如图,△ABC 为正三角形,EC ⊥平面ABC ,BD ∥CE ,且CE=CA =2BD ,M 是EA 的中点,求证:(1)DE =DA ;(2)平面BDM ⊥平面ECA ;(3)平面DEA ⊥平面ECA .【证明】(1)如图,取EC 的中点F ,连接DF .因为EC ⊥平面ABC ,BC ⊂平面ABC ,所以EC ⊥BC .同理可得BD ⊥AB ,易知DF ∥BC ,所以DF ⊥EC .在Rt △EFD 和Rt △DBA 中,因为EF =12EC ,EC =2BD ,所以EF =BD .又FD =BC =AB ,所以Rt △EFD ≌Rt △DBA ,故DE =DA .(2)取CA 的中点N ,连接MN ,BN ,则MN ∥EC ,且MN =12EC .因为EC ∥BD ,BD =12EC ,所以MN綊BD,所以N点在平面BDM内.因为EC⊥平面ABC,所以EC⊥BN.又CA⊥BN,EC∩CA=C,所以BN⊥平面ECA.因为BN在平面MNBD内,所以平面MNBD⊥平面ECA,即平面BDM⊥平面ECA.(3)由(2)易知DM∥BN,BN⊥平面ECA,所以DM⊥平面ECA.又DM⊂平面DEA,所以平面DEA⊥平面ECA.[规律方法]垂直关系的转化在关于垂直问题的论证中要注意线线垂直、线面垂直、面面垂直的相互转化.每一种垂直的判定都是从某一垂直开始转向另一垂直,最终达到目的,其转化关系如下:【课堂检测】1.给出以下四个命题,其中真命题的个数是()①如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行;②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面;③如果两条直线都平行于一个平面,那么这两条直线相互平行;④如果一个平面经过另一个平面的一条垂线,那么这两个平面相互垂直.A.4B.3C.2 D.1解析:选B.①②④正确.①线面平行的性质定理;②线面垂直的判定定理;③这两条直线可能相交或平行或异面;④面面垂直的判定定理.2.在下列关于直线m,l和平面α,β的说法中,正确的是()A.若l⊂β,且α⊥β,则l⊥αB.若l⊥β,且α∥β,则l⊥αC.若l⊥β,且α⊥β,则l∥αD.若α∩β=m,且l∥m,则l∥α解析:选B.A项中l与α可以平行或斜交,A项错.B项中,l⊥β且α∥β,所以l⊥α正确.C项中,l可在α内,C项错.D项中,l可在α内,D项错.3.在三棱锥P­ABC中,PA=PB=AC=BC=2,PC=1,AB=23,则二面角P­AB­C的大小为W.解析:取AB的中点M,连接PM,MC,则PM⊥AB,CM⊥AB,所以∠PMC就是二面角P­AB­C的平面角.在△PAB中,PM=22-(3)2=1,同理MC=PC=1,则△PMC是等边三角形,所以∠PMC=60°.答案:60°4.已知平面α,β和直线m,l,则下列说法:①若α⊥β,α∩β=m,l⊥m,则l⊥β;②若α∩β=m,l⊂α,l⊥m,则l⊥β;③若α⊥β,l⊂α,则l⊥β;④若α⊥β,α∩β=m,l⊂α,l⊥m,则l⊥β.其中正确的说法序号为W.解析:对于说法①缺少了条件:l⊂α;说法②缺少了条件:α⊥β;说法③缺少了条件:α∩β=m,l⊥m;说法④具备了面面垂直的性质定理的所有条件.答案:④5.如图,四边形ABCD,BD=23,AB=2,AD=4,将△CBD沿BD折起到△EBD的位置,使平面EDB⊥平面ABD.求证:AB⊥DE.证明:在△ABD中,因为AB=2,AD=4,BD=23,所以AB2+BD2=AD2,所以AB⊥BD.又因为平面EBD⊥平面ABD,平面EBD∩平面ABD=BD,AB⊂平面ABD,所以AB⊥平面EBD.因为DE⊂平面EBD,所以AB⊥DE.。

第一章1.2.3空间中的垂直关系2教案学生版

第一章1.2.3空间中的垂直关系2教案学生版

1.2.3空间中的垂直关系(二)【学习要求】1.理解面面垂直的定义,并能画出面面垂直的图形.2.掌握面面垂直的判定定理及性质定理,并能进行空间垂直的相互转化.3.掌握面面垂直的证明方法,并能在几何体中应用.【学法指导】借助对实例、图片的观察,提炼平面与平面垂直的定义;通过直观感知,操作确认,归纳平面与平面垂直的判定定理及性质定理;通过运用两定理感悟和体验面面垂直转化为线线垂直的思想方法.填一填:知识要点、记下疑难点1.两平面垂直的定义:如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直,就称这两个平面互相垂直.两个平面α,β互相垂直,记作:α⊥β .2.面面垂直的判定定理:如果一个平面过另一个平面的一条垂线,则这两个平面互相垂直.3.面面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.研一研:问题探究、课堂更高效[问题情境]在第一大节,我们曾直观地看到,当一个平面通过另一个平面的垂线时,就给我们两个平面垂直的形象.这一小节我们将进一步研究平面与平面垂直的判定与性质.探究点一两平面垂直的定义及判断问题1如图,已知α∩β=CD,BA⊥CD, BE⊥CD.那么直线CD与平面ABE有怎样的关系?为什么?问题2在问题1的图中,当∠ABE是什么角时,给我们两平面互相垂直的印象?问题3由问题2,你能总结出两平面垂直的定义吗?问题4在问题1的图形中,已知∠ABE为直角,那么直线BA与平面β有怎样的关系?为什么?问题5在问题1的图中,如果平面α过平面β的垂线BA,那么这两个平面是否相互垂直呢?说明理由.问题6由问题5你能得出怎样的结论?问题7如何画两个平面互相垂直的直观图?例1如图,已知:平面α⊥平面β,在α与β的交线上取线段AB=4 cm,AC,BD分别在平面α和平面β内,它们都垂直于交线AB,并且AC=3 cm,BD=12 cm,求CD的长.跟踪训练1如图,在三棱锥V-ABC中,VC⊥底面ABC,D是AB的中点,且AC=BC,求证:平面V AB⊥平面VCD.例2已知Rt△ABC中,AB=AC=a,AD是斜边BC上的高,以AD为折痕使∠BDC成直角(如图).求证:(1)平面ABD⊥平面BDC,平面ACD⊥平面BDC;(2)∠BAC=60°.跟踪训练2如图,在四面体ABCD中,BD=2a,AB=AD=BC=CD=AC=a.求证:平面ABD⊥平面BCD.探究点二两平面垂直的性质问题1设平面α与平面β垂直,α∩β=CD,BA⊂α,BA⊥CD,那么BA是否垂直平面β?问题2由问题1你能归纳出怎样的结论?例3如图所示,P是四边形ABCD所在平面外的一点,ABCD是∠DAB=60°且边长为a的菱形.侧面PAD为正三角形,其所在平面垂直于底面ABCD.(1)若G为AD边的中点,求证:BG⊥平面PAD;(2)求证:AD⊥PB.跟踪训练3如图,已知平面PAB⊥平面ABC,平面PAC⊥平面ABC,AE⊥平面PBC,E点为垂足.(1)求证:PA⊥平面ABC;(2)当E为△PBC的垂心时,求证:△ABC是直角三角形.练一练:当堂检测、目标达成落实处1.下列命题中正确的是()A.平面α和β分别过两条互相垂直的直线,则α⊥βB.若平面α内的一条直线垂直于平面β内的两条平行直线,则α⊥βC.若平面α内的一条直线垂直于平面β内的两条相交直线,则α⊥βD.若平面α内的一条直线垂直于平面β内的无数条直线,则α⊥β2.设两个平面互相垂直,则()A.一个平面内的任何一条直线都垂直于另一个平面B.过交线上一点垂直于一个平面的直线必在另一个平面内C.过交线上一点垂直于交线的直线必垂直于另一个平面D.分别在两个平面内的两条直线互相垂直3.已知四边形ABCD是平行四边形,直线SC⊥平面ABCD,E是SA的中点,求证:平面EBD⊥平面ABCD.课堂小结:1.判定面面垂直的方法主要有:(1)面面垂直的定义(使用较少);(2)面面垂直的判定定理(使用最多).在证明两个平面垂直时,一般先从现有的直线中寻找平面的垂线,若这样的直线在现有的图中不存在,则可通过作辅助线来解决.2.空间中的垂直关系相互转化图:3.运用两个平面垂直的性质定理时,一般需作辅助线,基本作法是过其中一个平面内一点作交线的垂线,这样把面面垂直转化为线面垂直或线线垂直.。

小学数学教学教案设计:《认识垂直》

小学数学教学教案设计:《认识垂直》

小学数学教学教案设计:《认识垂直》教学目标:1. 让学生通过观察和操作,理解垂直的含义。

2. 培养学生用垂直的眼光观察世界,提高空间想象力。

3. 培养学生合作交流的能力,提高解决问题的能力。

教学重点:1. 理解垂直的含义。

2. 能够用垂直的眼光观察世界。

教学难点:1. 理解垂直的概念。

2. 能够正确判断垂直关系。

教学准备:1. 教学课件或黑板。

2. 图片或实物。

教学过程:一、导入(5分钟)1. 引导学生观察教室里的物体,如墙壁、桌子、椅子等,找出垂直的物体。

2. 让学生举例说明生活中垂直的例子。

二、新课导入(10分钟)1. 介绍垂直的概念:两条直线相交成直角时,这两条直线叫做互相垂直。

2. 讲解垂直的表示方法:用符号“⊥”表示。

3. 展示垂直的图片或实物,让学生判断是否垂直。

三、课堂练习(10分钟)1. 让学生在纸上画出垂直的两条直线。

2. 互相交换检查,判断是否垂直。

3. 选取部分学生的作品进行展示,讲解正确与错误之处。

四、巩固练习(10分钟)1. 出示一些图片或实物,让学生判断是否垂直。

2. 让学生分组讨论,总结判断垂直的方法。

3. 各组汇报讨论结果,教师点评并总结。

五、课堂小结(5分钟)1. 让学生回顾本节课所学的内容,总结垂直的含义和表示方法。

2. 强调垂直在生活中的应用,提高学生的空间想象力。

教学反思:本节课通过观察、操作、练习等形式,让学生理解垂直的含义,并能正确判断垂直关系。

在教学过程中,要注意引导学生用垂直的眼光观察世界,培养学生的空间想象力。

注重学生合作交流能力的培养,提高解决问题的能力。

六、课堂活动(15分钟)活动设计:让学生分成小组,每组用积木搭建一个垂直的建筑物。

活动步骤:1. 每组领取积木,讨论搭建方案。

2. 按照讨论的方案,搭建垂直建筑物。

3. 搭建完成后,各组进行展示,讲解搭建过程中的垂直关系。

活动意义:通过实践活动,让学生更好地理解垂直的概念,培养学生的空间想象力和动手能力。

空间中的垂直关系(优质课)教案

空间中的垂直关系(优质课)教案

1.6空间中的垂直关系(优质课)教案教学目标:理解空间中三种垂直关系的定义;掌握空间中三种垂直关系判定及性质;用空间中三种垂直关系的定义、判定及性质解决垂直问题.教学过程:一、直线与平面垂直1.如果两条直线相交于一点或经过平移后相交于一点,并且交角为直角,则称这两条直线互垂直.2.如果一条直线(AB)和一个平面(α)相交于点O,并且和这个平面内过点O的任何直线都垂直,我们就说这条直线和这个平面互相垂直,记作AB⊥α,直线叫做平面的垂线,平面叫做直线的垂面,交点叫做垂足.垂线上任一点到垂足间的线段,叫做这点到这个平面的垂线段.垂线段的长度叫做这点到平面的距离3.直线和平面垂直的判定4.(1)判定定理:如果一条直线和一个平面内的任何两条相交直线都垂直,那么这条直线垂直于这个平面.符号语言:l⊥a,l⊥b,a∩b=A,a⊂α,b⊂α⇒l⊥α,如图:(2)如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一个平面.符号语言:a∥b,a⊥α⇒b⊥α,如图:5.直线与平面垂直的性质(1)性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.符号语言:a⊥α,b⊥α⇒a∥b,如图:(2)一条直线垂直于一个平面,它就和平面内的任意一条直线垂直.符号语言:a⊥α,b⊂α⇒a⊥b,如图:6.设P是三角形ABC所在平面α外一点,O是P在α内的射影(1)若PA=PB=PC,则O为△ABC的外心.特别地当∠C=90°时,O为斜边AB中点.(2)若PA、PB、PC两两垂直,则O为△ABC的垂心.(3)若P到△ABC三边距离相等,则O为△ABC的内心.7.(1)过一点有且只有一条直线与已知平面垂直.(2)过一点有且只有一个平面与已知直线垂直.二、直线和平面平行1.平面与平面垂直的定义:如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直,就称这两个平面互相垂直.平面α、β互相垂直,记作α⊥β.2.两个平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.符号表示:a⊥α,a⊂β⇒α⊥β,如图:3.两个平面垂直的性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线,垂直于另一个平面.符号表示:α⊥β,α∩β=CD,BA⊂α,BA⊥CD,B为垂足⇒BA⊥β,如图:推论:如果两个平面垂直,那么过第一个平面内的一点垂直于第二个平面的直线,在第一个平面内.类型一线面垂直例1:如图,直角△ABC 所在平面外一点S ,且SA =SB =SC ,点D 为斜边AC 的中点. (1)求证:SD ⊥平面ABC ;(2)若AB =BC ,求证:BD ⊥平面SAC.解析:由于D 是AC 中点,SA =SC ,∴SD 是△SAC 的高,连接BD ,可证△SDB ≌△SDA .由AB =BC ,则Rt △ABC 是等腰直角三角形,则BD ⊥AC ,利用线面垂直的判定定理即可得证. 答案:(1)∵SA =SC ,D 为AC 的中点, ∴SD ⊥AC .在Rt △ABC 中,连接BD ,则AD =DC =BD ,又∵SB =SA ,SD =SD , ∴△ADS ≌△BDS .∴SD ⊥BD .又AC ∩BD =D , ∴SD ⊥面ABC .(2)∵BA =BC ,D 为AC 中点,∴BD ⊥AC . 又由(1)知SD ⊥面ABC ,∴SD ⊥BD .于是BD 垂直于平面SAC 内的两条相交直线, ∴BD ⊥平面SAC . 练习1:((2014·河南南阳一中高一月考)如图所示,在四棱锥P -ABCD 中, 底面ABCD 是矩形,侧棱P A ⊥平面ABCD ,E 、F 分别是AB 、PC 的中点, P A =AD .求证:EF ⊥平面PCD .答案:如图,取PD 的中点H ,连接AH 、HF .∴FH12CD , ∴FH AE ,∴四边形AEFH 是平行四边形,∴AH ∥EF . ∵底面ABCD 是矩形,∴CD ⊥AD . 又∵PA ⊥底面ABCD , ∴PA ⊥CD ,PA ∩AD =A , ∴CD ⊥平面PAD .又∵AH ⊂平面PAD ,∴CD ⊥AH .又∵PA =AD ,∴AH ⊥PD ,PD ∩CD =D , ∴AH ⊥平面PCD ,又∵AH ∥EF ,∴EF ⊥平面PCD .练习2:如右图,在正方体1111ABCD A B C D -中,P 为1DD 的中点,O 为ABCD 的中心, 求证:1B O ⊥平面PAC 答案:连结111,,PO PB B D ,OP D 1C 1B 1A 1D CA由正方体的性质可知,1,AC BD AC BB ⊥⊥,且1BD BB B =∴AC ⊥面11BDD B 又∵BO ⊂面11BDD B ∴1B O AC ⊥ 设AB a =,则11121,2,2OB OD a B D a PD PD a ===== ∵2222222222221113113,22424OB OB BB a a a OP PD DO a a a =+=+==+=+= 222222111119244PB B D PD a a a =+=+=∴2221OB PO PB += ∴1B O PO ⊥ ∵PO AC O =∴1B O ⊥平面PAC练习3:在如右图,在空间四边形ABCD 中,,AB AD BC CD ==, 求证:AC BD ⊥答案:设E 为BD 的中点,连结,AE EC∵AB AD = ∴BD AE ⊥ 同理可证:BD EC ⊥ 又∵AEEC E = ∴BD ⊥面AEC∵AE ⊂面AEC ∴BD AC ⊥例2:如图在△ABC 中,∠B =90°,SA ⊥平面ABC , 点A 在SB 和SC 上的射影分别是N 、M ,求证:MN ⊥SC . 解析:根据直线平面垂直的性质,找到所求垂直的线段中的 一条与另一条所在的平面垂直,即可证明这两条线段互相垂直. 答案:证明:∵SA ⊥平面ABC , ∴SA ⊥BC ,又∠ABC =90°, ∴BC ⊥AB ,∴BC ⊥平面SAB , ∴AN ⊥BC ,又AN ⊥SB ,∴AN ⊥平面SBC , ∴AN ⊥SC ,又AM ⊥SC , ∴SC ⊥平面AMN , ∴MN ⊥SC .练习1:如图,在正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为A 1D 、AC 上的点,且EF ⊥A 1D ,EF ⊥AC .求证:EF ∥BD 1. 答案:如图所示,连接A 1C 1、C 1D 、BD 、B 1D 1. 由于AC ∥A 1C 1,EF ⊥AC ,∴EF ⊥A 1C 1. 又EF ⊥A 1D ,A 1D ∩A 1C 1=A 1, ∴EF ⊥平面A 1C 1D .①E ABCD∵BB 1⊥平面A 1B 1C 1D 1,A 1C 1⊂平面A 1B 1C 1D 1, ∴BB 1⊥A 1C 1.又∵四边形A 1B 1C 1D 1为正方形,∴A 1C 1⊥B 1D 1. ∵BB 1∩B 1D 1=B 1,∴A 1C 1⊥平面BB 1D 1D . 而BD 1⊂平面BB 1D 1D ,∴BD 1⊥A 1C 1. 同理,DC 1⊥BD 1,DC 1∩A 1C 1=C 1, ∴BD 1⊥平面A 1C 1D .②由①②可知EF ∥BD 1.练习2:在空间中,下列命题:①平行于同一条直线的两条直线平行;②垂直与同一直线的两条直线平行;③平行与同一平面的两条直线平行;④垂直于同一平面的两条直线平行.其中正确的由___ . 答案:①④练习3:已知,,a b c 及平面β,则下列命题正确的是( )A 、////a a b b ββ⎫⇒⎬⊂⎭B 、a a b b ββ⊥⎫⇒⊥⎬⊥⎭C 、//a c a b b c ⊥⎫⇒⎬⊥⎭D 、//a a b b ββ⊂⎫⇒⎬⊂⎭ 答案:B例3:如图,在底面为直角梯形的四棱锥P -ABCD 中,AD ∥BC , ∠ABC =90°,PA ⊥平面ABCD ,PA =3,AD =2,AB =23,BC =6.求证:BD ⊥平面PAC .解析:通过计算得到直角,进而得到垂直. 答案:∵PA ⊥平面ABCD ,BD ⊂平面ABCD ,∴BD ⊥PA .∵∠BAD 和∠ABC 都是直角,∴tan ∠ABD =AD AB =33,tan ∠BAC =BCAB=3, ∴∠ABD =30°,∠BAC =60°.∴∠AEB =90°,即BD ⊥AC , 又PA ∩AC =A ,∴BD ⊥平面PAC .练习1:在正方体中ABCD -A 1B 1C 1D 1中,P 为DD 1的中点, O 为底面ABCD 的中心.求证:B 1O ⊥平面PAC . 答案:如图所示,连接AB 1、CB 1、B 1D 1、PB 1、PO .设AB =a ,则AB 1=CB 1=B 1D 1=2a ,AO =OC =22a , ∴B 1O ⊥AC .∵B 1O 2=OB 2+BB 21=⎝⎛⎭⎪⎫22a 2+a 2=32a 2,PB 21=PD 21+B 1D 21=⎝ ⎛⎭⎪⎫12a 2+(2a )2=94a 2,OP 2=PD 2+DO 2=⎝ ⎛⎭⎪⎫12a +⎝⎛⎭⎪⎫22a 2=34a 2,∴B 1O 2+OP 2=PB 21,∴B 1O ⊥OP . 又PO ∩AC =O ,∴B 1O ⊥平面PAC .练习2: 如图,若测得旗杆PO =4,P A =PB =5,OA =OB =3,则旗杆PO 和地面α的关系是________.答案:∵PO =4,OA =OB =3,P A =PB =5,∴PO 2+AO 2=P A 2,PO 2+OB 2=PB 2, ∴PO ⊥OA ,PO ⊥OB .又OA ∩OB =O ,∴PO ⊥平面AOB ,∴PO ⊥地面α.类型二 平面与平面垂直例4:(2014·山东临沂高一期末测试)如图,在底面为正三角形的直三棱柱ABC -A 1B 1C 1中,点D 是BC的中点,求证:平面AC 1D ⊥平面BCC 1B 1. 解析:运用平面垂直的判定.答案:∵△ABC 为正三角形,D 为BC 的中点,∴AD ⊥BC .又∵CC 1⊥底面ABC ,AD ⊂平面ABC , ∴CC 1⊥AD .又BC ∩CC 1=C , ∴AD ⊥平面BCC 1B 1. 又AD ⊂平面AC 1D ,∴平面AC 1D ⊥平面BCC 1B 1.练习1:三棱锥S -ABC 中,∠BSC =90°,∠ASB =60°,∠ASC =60°,SA =SB =SC . 求证:平面ABC ⊥平面SBC .答案:解法一:取BC 的中点D ,连接AD 、SD .由题意知△ASB 与△ASC 是等边三角形,则AB =AC . ∴AD ⊥BC ,SD ⊥BC .令SA =a ,在△SBC 中,SD =22a , 又∵AD =AC 2-CD 2=22a ,∴AD 2+SD 2=SA 2. 即AD ⊥SD .又∵AD ⊥BC ,∴AD ⊥平面SBC . ∵AD ⊂平面ABC ,∴平面ABC ⊥平面SBC .解法二:∵SA =SB =SC =a , 又∵∠ASB =∠ASC =60°,∴△ASB 、△ASC 都是等边三角形. ∴AB =AC =a .作AD ⊥平面SBC 于点D ,∵AB =AC =AS ,∴D 为△SBC 的外心. 又∵△BSC 是以BC 为斜边的直角三角形, ∴D 为BC 的中点,故AD ⊂平面ABC . ∴平面ABC ⊥平面SBC .练习2:如右图,在四面体ABCD 中,2,BD a AB AD CB CD a =====.求证:平面ABD ⊥平面BCD . 答案:取BD 的中点E ,连结,AE EC∵AB AD = ∴AE BD ⊥ 同理CE BD ⊥ 在△ABD 中,12,2AB a BE BD a === ∴2222AE AB BE a =-=同理22CE a = 在△AEC 中,2,2AE CE a AC a === ∴222AC AE CE =+ ∴AE CE ⊥ ∵BDCE E = ∴AE ⊥平面BCD ∵AE ⊂平面ABD ∴平面ABD ⊥平面BCD练习3:空间四边形ABCD 中,若,AD BC BD AD ⊥⊥,那么有( ) A 、平面ABC ⊥平面ADC B 、平面ABC ⊥平面ADBC 、平面ABC ⊥平面DBCD 、平面ADC ⊥平面DBC 答案:D例5:已知P 是△ABC 所在平面外的一点,且P A ⊥平面ABC ,平面P AC ⊥平面PBC ,求证:BC ⊥AC .解析:已知条件是线面垂直和面面垂直,要证明两条直线垂直,应将两条直线中的一条放入一平面中,使另一条直线与该平面垂直,即由线面垂直得到线线垂直.在空间图形中,高一级的垂直关系蕴含着低一级的垂直关系,通过本题可以看到:面面垂直⇒线面垂直⇒线线垂直. 答案:如图,在平面P AC 内作AD ⊥PC 于点D ,∵平面P AC ⊥平面PBC ,AD ⊂平面P AC ,且AD ⊥PC , ∴AD ⊥平面PBC ,又BC ⊂平面PBC ,∴AD ⊥BC .∵P A ⊥平面ABC ,BC ⊂平面ABC , ∴P A ⊥BC ,∵AD ∩P A =A ,∴BC ⊥平面P AC , 又AC ⊂平面P AC ,∴BC ⊥AC .练习1:已知三棱锥P -ABC 中,侧面PAC 与底面ABC 垂直,PA =PB =PC . (1)求证:AB ⊥BC ;(2)若AB =BC ,过点A 作AF ⊥PB 于点F ,连接CF ,求证:平面PBD ⊥平面AFC . 答案:如图所示:(1)取AC 的中点D ,连接PD 、BD , ∵PA =PC ,∴PD ⊥AC ,又平面PAC ⊥平面ABC ,且平面PAC ∩平面ABC =AC , ∴PD ⊥平面ABC ,D 为垂足. ∵PA =PB =PC , ∴DA =DB =DC ,∴AC 为△ABC 的外接圆的直径,故AB ⊥BC . (2)∵PA =PC ,AB =BC ,PB =PB , ∴△ABP ≌△CBP .ABCDE∵AF⊥PB,∴CF⊥PB,又AF∩CF=F,∴PB⊥平面AFC,又PB⊂平面PBD,∴平面PBD⊥平面AFC.练习2:已知平面P AB⊥平面ABC,平面P AC⊥平面ABC,如图所示.求证:P A⊥平面ABC.答案:如图所示,在平面ABC内任取一点D,作DF⊥AC于点F,作DG⊥AB于点G,∵平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,∴DF⊥平面PAC,又∵PA⊂平面PAC,∴PA⊥DF,同理可证:DG⊥PA,∵DF∩DG=D,且DF⊂平面ABC,DG⊂平面ABC,∴PA⊥平面ABC.1.一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是( ) A.平行B.垂直C.相交不垂直D.不确定答案:B2.若一条直线l上有两个点到平面α的距离相等,则l与α的关系是( )A.平行B.相交C.垂直D.不确定答案:D3.已知直线l⊥平面α,直线m⊂平面β,给出下列四个命题:①α∥β,l⊄β⇒l⊥m②α⊥β⇒l∥m③l∥m⇒α⊥β④l⊥m⇒α∥β其中正确的两个命题是( )A.①②B.③④C.②④D.①③答案:D4.如图,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥A-BCD中,下列命题正确的是( )A.平面ABD⊥平面ABCB.平面ADC⊥平面BDCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABC答案:D5.若有直线m、n和平面α、β,下列四个命题中,正确的是( )A.若m∥α,n∥α,则m∥nB.若m⊂α,n⊂α,m∥β,n∥β,则α∥βC.若α⊥β,m⊂α,则m⊥βD.若α⊥β,m⊥β,m⊄α,则m∥α答案:D6. Rt △ABC 所在平面α外一点P 到直角顶点的距离为24,到两直角边的距离都是610,那么点P 到平面α的距离等于__________.答案: 12_________________________________________________________________________________ _________________________________________________________________________________基础巩固1.已知一平面平行于两条异面直线,一直线与两异面直线都垂直,那么这个平面与这条直线的位置关系是( )A .平行B .垂直C .斜交D .不能确定 答案:B2.直线a ⊥直线b ,a ⊥平面β,则b 与β的位置关系是( )A .b ⊥βB .b ∥βC .b ⊂βD .b ⊂β或b ∥β 答案:D 3.下列命题①⎭⎪⎬⎪⎫a ⊥αb ⊂α⇒a ⊥b ; ②⎭⎪⎬⎪⎫a ⊥αa ∥b ⇒b ⊥α; ③⎭⎪⎬⎪⎫a ⊥αb ∥α⇒a ⊥b; ④⎭⎪⎬⎪⎫a ⊥ba ⊥b b ⊂αc ⊂α⇒a ⊥α; ⑤⎭⎪⎬⎪⎫a ∥αa ⊥b ⇒b ⊥α; ⑥⎭⎪⎬⎪⎫a ⊥αb ⊥a ⇒b ∥α. 其中正确命题的个数是( )A .3B .4C .5D .6 答案:A4..若平面α∥平面β,直线a ⊂α,直线b ⊂β,那么a 、b 的位置关系是( )A .无公共点B .平行C .既不平行也不相交D .相交答案:A5.直线a 与平面α内的两条直线都垂直,则a 与α的位置关系是( )A .垂直B .平行C .a 在平面α内D .不确定 答案:D6.若平面α⊥平面β,且平面α内的一条直线a 垂直于平面β内的一条直线b ,则( )A .直线a 必垂直于平面βB .直线b 必垂直于平面αC .直线a 不一定垂直于平面βD.过a的平面与过b的平面垂直答案:C7.长方体ABCD-A1B1C1D1中,MN在平面BCC1B1内,MN⊥BC于M,则MN与AB的位置关系为____________________.答案:MN⊥AB8.如图所示,已知正三棱柱ABC-A1B1C1的面对角线A1B⊥B1C,求证B1C⊥C1A.答案:如图所示,连接A1C,交AC1于点D,则点D是A1C的中点.取BC的中点N,连接AN、DN,则DN∥A1B.又A1B⊥B1C,∴B1C⊥DN.又△ABC是正三角形,∴AN⊥BC.又平面ABC⊥平面BB1C1C,平面ABCD∩平面BB1C1C=BC,AN⊂平面ABC,∴AN⊥平面BB1C1C.又B1C⊂平面BB1C1C,∴B1C⊥AN.又AN⊂平面AND,DN⊂平面AND,AN∩DN=N,∴B1C⊥平面AND.又C1A⊂平面AND,∴B1C⊥AC1.能力提升9.若两直线a与b异面,则过a且与b垂直的平面()A.有且只有一个B.至多有一个C.有无数多个D.一定不存在答案:B10.已知三棱锥S-ABC的各顶点都在一个半径为r的球面上,球心O在AB上,SO⊥底面ABC,AC=2r,则球的体积与三棱锥体积之比是()A.πB.2πC.3πD.4π答案:D11. (2014·浙江文,6)设m,n是两条不同的直线,α、β是两个不同的平面()A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α答案:C12.已知平面ABC外一点P,且PH⊥平面ABC于H.给出下列4个命题:①若P A⊥BC,PB⊥AC,则H是△ABC的垂心;②若P A、PB、PC两两互相垂直,则H是△ABC的垂心;③若∠ABC=90°,H是AC的中点,则P A=PB=PC;④若P A=PB=PC,则H是△ABC的外心.其中正确命题的个数为()A.1B.2C.3D.4答案:D13. 平面α的斜线AB 交α于点B ,过定点A 的动直线l 与AB 垂直,且交α于点C ,则动点C 的轨迹为________.(填直线、圆、其它曲线)答案:直线14. 如图所示,已知矩形ABCD 中,AB =1,BC =a ,P A ⊥平面ABCD ,若在BC 上只有一个点Q 满足PQ ⊥QD ,则a 的值等于________.答案:215. 如图所示,在四棱锥P -ABCD 中,P A ⊥底面ABCD .底面各边都相等,M 是PC 上的一动点,当点M 满足________________时,平面MBD ⊥平面PCD .(注:只要填写一个你认为正确的即可)答案:BM ⊥PC (其它合理答案亦可)16. 如图所示,△ABC 为正三角形,CE ⊥平面ABC ,BD ∥CE ,且CE =AC =2BD ,M 是AE 的中点.(1)求证:DE =DA ;(2)求证:平面BDM ⊥平面ECA ;(3)求证:平面DEA ⊥平面ECA .答案:(1)取EC 的中点F ,连接DF .∵CE ⊥平面ABC ,∴CE ⊥BC .易知DF ∥BC ,∴CE ⊥DF .∵BD ∥CE ,∴BD ⊥平面ABC .在Rt △EFD 和Rt △DBA 中,EF =12CE =DB ,DF =BC =AB , ∴Rt △EFD ≌Rt △DBA .故DE =DA .(2)取AC 的中点N ,连接MN 、BN ,则MN CF .∵BD CF ,∴MN BD ,∴N ∈平面BDM .∵EC ⊥平面ABC ,∴EC ⊥BN .又∵AC ⊥BN ,EC ∩AC =C ,∴BN ⊥平面ECA .又∵BN ⊂平面BDM ,∴平面BDM ⊥平面ECA .(3)∵DM ∥BN ,BN ⊥平面ECA ,∴DM ⊥平面ECA .又∵DM ⊂平面DEA ,∴平面DEA ⊥平面ECA .。

四年级数学教案——《垂直》

四年级数学教案——《垂直》

四年级数学教案——《垂直》教学内容:垂直--教材第130-131页的例,做一做题目及练习二十九1-5题与6*-7*。

教学目的:1.认识垂线,理解互相垂直和垂足的含义。

2.会用三角板画已知直线的垂线。

3.培养学生的操作能力。

4.进一步发展学生的空间概念。

5.培养学生规范作图的习惯。

6.培养学生的合作精神,进行集体观念的教育。

教学重、难点:认识垂线和画垂线。

理解互相垂直的含义。

教学过程:一、铺垫孕伏1.问答:学过哪几种角?直角、平角分别是多少度?2.谈话:同学们,在学习新课之前,同桌之间做一个互相出题的游戏。

同桌之间,你是他的同学,他又是你的同学,你和同桌之间是互相关系。

互相出题又是什么意思?3.游戏:(1)师生拿出两根木条制成的活动学具,教师在小黑板上演示(交点固定在小黑板上)。

问:这两条直线相交形成了几个角?学生回答后教师在小黑板上标ang;1、ang;2、ang;3、ang;4(如图)(2)出示游戏规则:两人中一人把两根木条叉开,让另一人说四个角分别是哪种角?然后,两人互换角色。

(3)学生活动时教师注意巡视,找一下有没有两条直线相交成直角的一组学生。

二、探究新知1.揭示课题一人或教师继续演示:两条直线的交点不动,转动其中的一条直线,使ang;1变成直角。

(如图)教师:这时ang;2、ang;3、ang;4变成了什么角?为什么变成了直角呢?今天我们就来研究当两条直线相交成直角这两条直线的位置关系棗垂直(板书:垂直)2.认识垂线(1)教师:两条直线相交成直角时,这两条直线叫做互相垂直(板书:a、b互相垂直)互相是什么意思?引导学生回答后强调:互相的意思是如果a直线垂直b直线,那么b直线也垂直a直线。

提示学生互相垂直是对两条直线说的。

(2)练习:下面图形,哪两条直线是互相垂直的,为什么?(投影片2)学生回答后教师强调:判断两条直线是否互相垂直的关键是两条直线相交是否成直角。

与两条直线放置的方向无关。

空间直线平面的垂直教案

空间直线平面的垂直教案

空间直线平面的垂直教案主题:空间直线平面的垂直关系教学目标:1. 理解空间中直线、平面的定义及其特点。

2. 理解什么是直线与平面的垂直关系。

3. 能够判断直线与平面是否垂直,并举例说明。

教学重点:1. 直线与平面的定义及特点。

2. 直线与平面的垂直关系。

教学难点:1. 判断直线与平面是否垂直。

教学准备:1. 教师准备黑板、彩色粉笔或白板、标杆等教具。

教学过程:Step 1:导入新知识教师可以利用日常生活中的实例,引导学生思考两个平面相交于一根直线的情况,并提问学生如何判断这根直线与两个平面的关系。

Step 2:直线与平面的定义及特点教师简单明了地给出直线与平面的定义,并介绍直线与平面的特点,如直线无始无终、平面无边无角等。

Step 3:直线与平面的垂直关系教师引导学生思考直线与平面的垂直关系,并给出垂直的定义。

然后从两者的定义入手,解释直线与平面垂直的条件。

Step 4:判断直线与平面的垂直关系教师通过具体的实例,展示判断直线与平面垂直关系的方法。

同时,引导学生参与讨论,并解答他们的疑问。

Step 5:例题练习教师以练习题的形式进行针对直线与平面垂直关系的测试。

鼓励学生积极思考,独立完成。

Step 6:总结归纳教师对直线与平面的垂直关系进行总结归纳,并强调学生在实际问题中的应用。

Step 7:拓展延伸根据学生的学习情况,教师可以引导学生思考直线与平面的垂直关系在实际生活中的应用,如建筑、几何建模等领域。

Step 8:作业布置教师布置相关的习题作为课后作业,鼓励学生独立解答,并批改作业,及时给予反馈。

教学资源:黑板、彩色粉笔或白板、标杆等教具。

评估方式:教师通过观察学生的回答、讨论和作业的完成情况,评估学生对于直线与平面垂直关系的理解与应用能力。

延伸活动:教师可以组织学生进行小组讨论,挑选一些实际问题,引导他们应用直线与平面垂直关系的知识,一起尝试解决问题。

注意事项:在教学过程中,教师需要引导学生思考,并鼓励他们提出问题和分享观点。

《直线,平面垂直的判定及其性质》教案(新人教必修)

《直线,平面垂直的判定及其性质》教案(新人教必修)

§2.3.1直线与平面垂直的判定一、教案目标1、知识与技能(1)使学生掌握直线和平面垂直的定义及判定定理;(2)使学生掌握判定直线和平面垂直的方法;(3)培养学生的几何直观能力,使他们在直观感知,操作确认的基础上学会归纳、概括结论。

2、过程与方法(1)通过教案活动,使学生了解,感受直线和平面垂直的定义的形成过程;(2)探究判定直线与平面垂直的方法。

3、情态与价值培养学生学会从“感性认识”到“理性认识”过程中获取新知。

二、教案重点、难点直线与平面垂直的定义和判定定理的探究。

三、教案设计(一)创设情景,揭示课题1、教师首先提出问题:在现实生活中,我们经常看到一些直线与平面垂直的现象,例如:“旗杆与地面,大桥的桥柱和水面等的位置关系”,你能举出一些类似的例子吗?然后让学生回忆、思考、讨论、教师对学生的活动给予评价。

2、接着教师指出:一条直线与一个平面垂直的意义是什么?并通过分析旗杆与它在地面上的射影的位置关系引出课题内容。

(二)研探新知1、为使学生学会从“感性认识”到“理性认识”过程中获取新知,可再借助长方体模型让学生感知直线与平面的垂直关系。

然后教师引导学生用“平面化”的思想来思考问题:从直线与直线垂直、直线与平面平行等的定义过程得到启发,能否用一条直线垂直于一个平面内的直线来定义这条直线与这个平面垂直呢?并组织学生交流讨论,概括其定义。

如果直线L与平面α内的任意一条直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。

如图2.3-1,直线与平面垂直时,它们唯一公共点P叫做垂足。

并对画示表示进行说明。

Lpα图2-3-12、老师提出问题,让学生思考:(1)问题:虽然可以根据定义判定直线与平面垂直,但这种方法实际上难以实施。

有没有比较方便可行的方法来判断直线和平面垂直呢?(2)师生活动:请同学们准备一块三角形的纸片,我们一起来做如图2.3-2实验:过△ABC的顶点A翻折纸片,得到折痕AD,将翻折后的纸片竖起放置在桌面上(BD、DC与桌面接触),问如何翻折才能保证折痕AD与桌面所在平面垂直?AB D C图2.3-2(3)归纳结论:引导学生根据直观感知及已有经验(两条相交直线确定一个平面),进行合情推理,获得判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

认识垂直

认识垂直

《认识垂直》教案教学目标:1、让学生结合生活情景,感知平面上两条直线的垂直关系,认识垂直、垂足。

2、让学生通过自主探索和合作交流,学会用合适的方法作出一组垂线,能够借助直尺、三角尺、量角器等工具画出已知直线的垂线。

3、让学生经历从现实空间中抽象出垂线的过程,发展空间观念,培养学习兴趣。

教学重点:掌握垂直、垂线、垂足的概念及画垂线的方法。

教学难点:理解垂直和画垂线。

教学过程:1、二人小组,复述回顾2、判断下面每组中两条直线,其中哪一组比较特殊?追问:这两条相交的直线到底是什么位置关系?今天我们进一步研究两条直线的关系。

3、在现实情景中感知并认识垂直。

A观察教材中的两幅照片,b让学生观察两幅照片中的两条相交的直线,c你有什么发现?同桌交流:两条直线相交成4个角;4个角都是直角。

4、让学生用三角尺上的直角去验证。

5、什么是垂线、垂足、互相垂直?观察图理解:两条直线相交成直角时,这两条直线互相垂直,其中一条直线是另一条直线的垂线,这两条直线的交点叫垂足。

6、判断下面的两条直线是互相垂直吗?7、寻找生活中的垂线。

问:你能说出生活中一些互相垂直的例子吗?学生回答的时候,注意及时修正学生回答中一些不正确的表达。

(反思:遵循学生的认知规律,按照“具体场景——抽象出标准图形——回归生活举例。

”的顺序。

从生活中来,到生活中去,帮助学生建立对垂直的科学认识,增强学生用数学的眼光观察周围世界的意识。

)8、探讨垂线作法。

a折一折。

指导学生把一张长方形纸按照课本上的方法对折两次,再打开,观察两条折痕有什么关系?b 完成“做一做”。

问:下面图形中哪些线段是互相垂直的?让同桌互相说一说,再指名说一说。

追问:判断是否互相垂直,关键要看什么?c画一画。

(1)让学生自己想办法画两条互相垂直的线段,(2)在小组里交流。

学生尝试。

集体交流方法。

有的学生利用方格纸画,有的学生用量角器画,让学生上来边演示边介绍方法,同时让其他学生对介绍的方法作出评价。

《垂直与平行》的教案设计优秀3篇

《垂直与平行》的教案设计优秀3篇

《垂直与平行》的教案设计优秀3篇《垂直与平行》的教案设计篇一教学目标:1、引导学生通过观察、讨论、感知生活中的垂直与平行的现象。

2、帮助学生初步理解垂直与平行是同一平面内两条直线的两种位置关系,初步认识垂线和平行线。

3、培养学生的空间观念及空间想象能力,引导学生具有合作探究的学习意识。

教学重点:正确理解“相交”“互相平行”“互相垂直”等概念,发展学生的空间想象能力。

教学难点:正确理解“在同一平面内”“永不相交”等概念的本质属性。

教学过程教具、学具准备:课件、水彩笔、尺子、三角板、量角器、小棒(10根),一张长方形纸和一张正方形纸。

一、画图感知,研究两条直线的位置关系。

导入:同学们,在前面我们已经学习了直线、射线和线段三种图形,谁来说一说这三种图形的特征呢?生答。

师:在这三种图形中,你最喜欢哪一种图形呢?为什么?生答。

师:老师也特别喜欢直线,因为它没有端点,可以向两端无限延伸,想长就长,想短就短。

今天我们继续学习直线的有关知识。

师:老师和同学们一样都有这样一张纸,请大家拿出来摸一摸这个平面。

学生活动。

师:我们一起来做个小的想象活动,想象一下把这个面变大会是什么样子?师:请同学们闭上眼睛,我们一起来想象:这个面变大了,又变大了,变的无限大,在这个无限大的平面上,出现了一条直线,又出现了一条直线,你想象的这两条直线的位置是怎样的?睁开眼睛把它们画在纸上吧。

学生活动。

(可以先用两个小棒摆一摆,再画下来)二、观察分类,了解平行与垂直的特征。

(一)展示各种情况师:同学们,画完了吗?同桌交流一下,看看你们画的怎么样?谁的想法与众不同?小组交流。

师:你们画的一样吗?生答。

师:是吗?举起来让老师看看,噢,真的都不一样,谁愿意上来把你的作品展示给大家看看?请学生上展示台展示。

2、师:仔细观察,你们画的跟他们一样吗?如果不一样,可以上来补充!学生补充不同情况。

好,请同学看大屏幕,我把同学们说的图形都画出来了!(二)、进行分类1、师:同学们的想象力可真丰富,你们所想象的`两条直线画下来会有这么多种情况。

垂直与平行教学设计(10篇)

垂直与平行教学设计(10篇)

垂直与平行教学设计(10篇)垂直与平行教学设计篇一[教学目标]知识与技能目标:1、初步理解垂直与平行是同一平面内两条直线的两种位置关系,初步熟悉垂线和平行线。

培养学生的空间观念及空间想象能力,。

2、培养学生用数学语言往表达数学中的概念,并会举出恰当的例子。

过程与方法目标:通过观察、分类、比较、举例等环节,感知生活中垂直于平行的现象,情感态度和价值观目标:引导学生具有自主思考、合作探究的学习意识,体会到垂直与平行的应用和美感,激发学生学习数学的热情。

[教学重点]正确理解“相交”“互相平行”“互相垂直”等概念,发展学生的空间想象能力。

[教学难点]正确判定同一平面内两条直线之间的位置关系并进行分类。

[教具、学具预备]每人:尺子、三角板、量角器、小棒、点子图。

每组:长方形白纸4张、小正方体。

[教学过程]一、画图感知,研究两条直线的位置关系导进:老师在黑板上画了什么(直线)?谁来说说它的性质是什么?(没有端点,无穷延长)(一)学生想象在无穷大的平面上两条直线的位置关系师:假如让你画两条直线,你会怎么画?(学生短暂思考并猜想)师:听清老师的要求,把你的想法画在白纸上,每张纸只画一种,用马克笔画。

(二)学生画出同一平面内两条直线的各种位置关系学生试画,教师巡视,并把学生所画的选出具有代表性的贴到黑板上。

二、观察分类,初步明确同一平面内两条直线的位置关系(一)展示各种情况师:老师把大家画的几种情况贴在黑板上,看看它们有什么不同?1、平行2、交叉3、交叉且垂直4、不平行但还没有交叉(二)进行分类师:你能根据它们的特点来分分类吗?把你的想法和小组成员交流一下。

(小组讨论、交流)1.小组汇报分类情况:①和④是一类,②和③是一类。

师:请说说你的想法。

(学生根据表面现象相交与没有相交分类,当学生在汇报过程中出现“交叉”一词时,教师随即解释:也就是说两条直线碰一块儿了,形成了一个交点,就叫两条直线相交,相交就是相互交叉。

并在适当时机板书:相交)2.引导学生正确分类。

空间中的垂直关系教案

空间中的垂直关系教案

空间中的垂直关系教案一、教学目标1. 让学生理解垂直关系的概念,能够识别和描述物体之间的垂直关系。

2. 培养学生运用垂直关系解决实际问题的能力。

3. 培养学生的观察能力、动手能力和合作意识。

二、教学内容1. 垂直关系的定义及识别2. 垂直关系的应用3. 实际问题解决三、教学重点与难点1. 教学重点:让学生能够识别和描述物体之间的垂直关系,运用垂直关系解决实际问题。

2. 教学难点:培养学生运用垂直关系解决实际问题的能力。

四、教学方法1. 采用观察、讨论、实践、解决问题的教学方法。

2. 利用教具、模型等辅助教学。

五、教学准备1. 教具:垂直关系模型、实物图片等。

2. 学具:学生用书、练习本、画笔等。

六、教学过程1. 导入新课:通过展示实际生活中的垂直关系实例,引导学生发现和关注垂直关系。

2. 教学新课:讲解垂直关系的定义,让学生观察和描述实例中的垂直关系。

3. 实践操作:学生分组讨论,运用教具模型演示垂直关系,并互相评价。

4. 解决问题:引导学生运用垂直关系解决实际问题,如计算物体的高度、距离等。

5. 巩固拓展:出示不同类型的题目,让学生独立完成,提高运用垂直关系解决问题的能力。

七、课堂小结八、课后作业1. 完成学生用书上的练习题。

2. 观察生活中的垂直关系,拍照或绘图,下节课分享。

九、教学反思教师在课后对自己的教学进行反思,分析教学效果,针对学生的掌握情况调整教学策略。

十、章节测试设计一份章节测试题,检测学生对空间中垂直关系的掌握程度。

六、教学内容与活动1. 活动一:探索垂直关系的性质目的:让学生通过实践探索垂直关系的性质。

过程:学生分组,每组使用不同的材料(如直尺、三角板、绳子等)来构建垂直关系,并记录观察到的性质。

反馈:小组之间分享观察结果,讨论垂直关系的共同特点。

2. 活动二:垂直关系的应用游戏目的:培养学生将垂直关系应用于实际情境中。

过程:设计一个游戏,要求学生在游戏中识别和利用垂直关系,如在建筑游戏中使用垂直关系来构建稳定的结构。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《空间中的垂直关系一》复习课教案
临潼区华清中学:张胜利
一.教学目标
1、知识与技能
(1).以立体几何的定义、公理和定理为出发点,认识和理解空间中线、面垂直的有关性质与判定定理.
◆一条直线与一个平面内的两条相交直线垂直,则该直线与此平面垂直。

◆ 一个平面过另一个平面的垂线,则两个平面垂直。

◆出垂直于同一个平面的两条直线平行
◆两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。

(2).能运用公理、定理及已获得的结论证明一些空间图形垂直关系的简单命题.
(3).能用向量方法证明立体几何中有关线面位置关系的一些简单定理(包括三垂线定理)
2、过程与方法:
(1)通过本节课的复习培养学生应用空间中三种垂直关系的定义、判定及性质解决相关问题的能力。

(2)通过师生共同探讨培养学生对知识的归纳总结能力,对知识的灵活应用能力。

3、情感态度与价值观:
培养学生发现问题的意识和运用知识的意识,让学生参与解决相关问题的全过程,享受成功的喜悦,感受数学的魅力,激发学生学习数学的兴趣。

二、重、难点分析:
1、重点:理解空间中三种垂直关系的定义;掌握空间中三种垂直关系判定及性质;用空间中三种垂直关系的定义、判定及性质解决垂直问题。

2、难点:空间中三种垂直关系的判定及性质综合应用。

三、教学方法与学法分析:
1、教学方法:本节课是高三第一轮复习中的《空间中的垂直关系
的复习课》,重点是理解空间中三种垂直关系的定义;掌握空间中三种垂直关系判定及性质;用空间中三种垂直关系的定义、判定及性质解决垂直问题。

2、教学手段:利用多媒体和导学案,导学案把大容量的信息提前呈现给学生,让学生提前思考,培养学生自学能力;多媒体演示使空间图形更加直观;利用黑板适当的板书弥补导学案在即时信息,反馈和信息的储存方面的不足。

3、学法指导:根据高三学生已具备了一定分析问题、解决问题的能力和积极参与意识,自主探索意识,由本节课的内容特点及学生已有的知识、能力、情感等因素定为问题探究式学法。

四.要点精讲
1.线线垂直
判断线线垂直的方法:
(1)定义:所成的角是直角,两直线垂直;
(2)垂直于平行线中的一条,必垂直于另一条。

(3)三垂线定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。

其作用是证两异面直线垂直
(4)三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那麽它也和这条斜线的射影垂直。

其作用是证两异面直线垂直
推理模式: ,,PO O PA A a AO a a AP αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭
I 。

注意:三垂线定理及其逆定理实质上是证明线面垂直,进而得出线线垂直。

(5)向量法:两直线的方向向量的数量积等于零。

(6)线面垂直的性质:线垂直于面,则线垂直于面内的任意一条直线。

例:已知正方体''''D C B A ABCD -,求证:
AC BD ⊥' 你有几种证明方法
学生小组讨论(教师指导) a
P αO A
2.线面垂直
(1)定义:如果一条直线l和一个平面α相交,并且和平面α内的任意
..一条直线都垂直,我们就说直线l和平面α互相垂直其中直线l叫做平面的垂线,平面α叫做直线l的垂面,直线与平面的交点叫做垂足。

直线l与平面α垂直记作:l⊥α。

注意:任一条
...直线并不.等同于无数条
...直线;
(2)线面垂直的判定方法:
①判定定理:如果一条直线和一个平面内的两条相交
....直线都垂直,那么这条直线垂直于这个平面。

②两条平行线中有一条直线和一个平面垂直,那么另一条直线也和这个平面垂直。

③若两个平面互相垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面。

(面面垂直⇒线面垂直)
以上内容的图形及符号表示见多媒体课件
④向量法:直线的方向向量与平面的法向量为共线向量。

(3)线面垂直的性质:
①如果一条直线和一个平面垂直,那么这条直线和这个平面内所有直线都垂直。

②性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

例:已知正方体
'
'
'
'D
C
B
A
ABCD-,求证:⊥
'
BD平面D
C
A''
你有几种方法证明
学生小组讨论完成,(用几何画板展示)3.面面垂直
(1)两个平面垂直的定义:相交成直二面角的两个平面叫做互相垂直的平面。

(2)两个平面垂直的判定方法:
①两平面垂直的判定定理:(线面垂直⇒面面垂直)如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

②定义法:即证两个相交平面所成的二面角为直二面角;
③向量法:两个平面的法向量互相垂直也即数量积等于零;
(3)两平面垂直的性质
定理:若两个平面互相垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面。

(面面垂直⇒线面垂直)
例:已知正方体''''D C B A ABCD -,点E 为'AA 的中点。

求证:平面⊥BDE 平面'BDC
练习 :1、如图所示,四棱锥P -ABCD 中,底面ABCD 是矩形,PA ⊥平面ABCD ,M 、N 分别是AB 、PC
的中点,PA =AD =a .
(1)求证:MN ⊥平面PCD ;
(2)求证:平面PMC ⊥平面PCD .
2、如图,△ABC 为正三角形,EC ⊥平面ABC ,BD ∥CE ,CE =
CA =2 BD ,M 是EA 的中点,求证:(1)DE =DA ;(2)平面BDM
⊥平
面ECA;(3)平面DEA⊥平面ECA。

五课堂小结:
①本节课主要复习了空间中三种垂直关系的定义、判定及性质。

②运用三种垂直关系的定义、判定及性质解决空间中与垂直相关的问题。

六课后作业
优化探究:P116。

相关文档
最新文档