相关分析pearson_spearman_kendall的区别
最新相关分析pearson_spearman_kendall的区别.优选
Pearson,Spearman和Kendall三种相关分析方法的异同线性相关性(linear correlation):又简称简单相关(simple correlation),用来度量具有线性关系的两个变量之间,相关关系的密切程度及其相关方向,适用于双变量正态分布资料。
线性相关系数,又称为简单相关系数,Pearson(皮尔逊)相关系数或相关系数。
有时也称为积差相关系数(coefficient of product-moment correlation)。
适用条件:1.样本容量大于等于30,这样才能保证计算的数据具有代表性,计算出的积差相关系数可以有效说明两个变量的相关关系。
2.两个变量的所属总体都呈正态分布,至少是接近正态的单峰分布。
3.两个变量都是由测量所得的连续性数据。
4.两个变量间的相关是线性相关。
5.排除共变因素的影响。
6.计算连续变量或是等间距测度的变量间的相关分析。
Spearman相关系数又称秩相关系数,是利用两变量的秩次大小作线性相关分析,对原始变量的分布不做要求,属于非参数统计方法,适用范围要广些。
Spearman相关系数相当于Pearson相关系数的非参数形式,它根据数据的秩而不是数据的实际值计算,适用于有序数据和不满足正态分布假设的等间隔数据。
Spearman相关系数的取值范围也在(-1,1)之间,绝对值越大相关性越强,取值符号也表示相关的方向。
对于服从Pearson相关系数的数据亦可计算Spearman相关系数,但统计效能要低一些。
适用条件:1.只有两个变量,且都为顺序变量(等级变量),或一列数据是顺序变量数据,另一列数据是连续变量数据。
2.适用于描述称名数据和顺序数据的相关情况。
3.两个连续变量观测的数据,至少有一列数据是由非测量方法粗略评估得到的。
如使用作品分析法,评价者只能在一定标准基础上,依靠自己的经验进行粗略评估。
4.从Spearman等级相关的使用条件可以看出,其不受样本大小、变量分布形态,数据是否具有连续性的条件限制,所以当数据不满足Pearson积差相关的使用条件时,可以使用Spearman等级相关。
SPSS分析技术:Pearson相关、Spearman相关及Kendall相关
SPSS分析技术:Pearson相关、Spearman相关及Kendall相关基础回顾常用的相关性分析包括:皮尔逊(Pearson)相关、斯皮尔曼(Spearman)相关、肯德尔(Kendall)相关和偏相关。
下面介绍前三种相关分析技术,并用实际案例说明如何用SPSS使用这三种相关性分析技术。
三种相关性检验技术,Pearson相关性的精确度最高,但对原始数据的要求最高。
Spearman等级相关和Kendall一致性相关的使用范围更广,但精确度较差。
Pearson相关皮尔逊相关是利用相关系数来判定数据之间的线性相关性,相关系数r的公式如下:数据要求•正态分布的定距变量;•两个数据序列的数据要一一对应,等间距等比例。
数据序列通常来自对同一组样本的多次测量或不同视角的测量。
结论分析在皮尔逊相关性分析中,能够得到两个数值:相关系数(r)和检验概率(Sig.)。
对于相关系数r,有以下判定惯例:当r的绝对值大于0.6,表示高度相关;在0.4到0.6之间,表示相关;小于0.4,表示不相关。
r大于0,表示正相关;r小于0,表示负相关。
虽然相关系数能够判别数据的相关性,但是还是要结合检验概率和实际情况进行判定,当检验概率小于0.05时,表示两列数据之间存在相关性。
Spearman相关当定距数据不满足正态分布,不能使用皮尔逊相关分析,这时,可以在相关分析中引入秩分,借助秩分实现相关性检验,即先分别计算两个序列的秩分,然后以秩分值代替原始数据,代入到皮尔逊相关系数公式中,得到斯皮尔曼相关系数公式:数据要求•不明分布类型的定距数据;•两个数据序列的数据一一对应,等间距等比例。
数据序列通常来自对同一组样本的多次测量或不同视角的测量。
结论分析在斯皮尔曼相关性分析中,也能够得到相关系数(r)和检验概率(Sig.),当检验概率小于0.05时,表示两列数据之间存在相关性。
Kendall相关当既不满足正态分布,也不是等间距的定距数据,而是不明分布的定序数据时,不能使用Pearson相关和Spearman相关。
别说相关太简单,且听松哥说相关
别说相关太简单,且听松哥说相关变量分三种,计量(数值变量、连续变量、定距变量等不同叫法)、等级(有序)和计数(分类、名义),因此变量的相关就有不同的形式。
一、两个计量资料之间的相关(一)pearson相关:必须双变量符合正态分布(二)Spearman相关:双变量不符合正态分布或者一个不符合正态分布、或者分布不清资料。
对于服从Pearson相关系数的数据也可以计算Spearman相关系数,但统计效能比Pearson相关系数要低一些(不容易检测出两者事实上存在的相关关系)。
二、两个等级资料之间相关(一)Spearman相关(二)对于行和列都包含已排序值的表,请选择伽玛(对于2 阶表,为零阶;对于 3 阶到 10 阶表,为条件)、Kendall 的 tau-b和Kendall 的tau-c。
要根据行类别预测列类别,请选择Somers 的d。
(1)伽玛 (Gamma). 两个有序变量之间的对称相关性测量,它的范围是从 -1 到 1。
绝对值接近 1 的值表示两个变量之间存在紧密的关系。
接近0 的值表示关系较弱或者没有关系。
对于双向表,显示零阶伽玛。
对于三阶表到 n 阶表,显示条件伽玛。
(2)Somers' d. 两个有序变量之间相关性测量,它的范围是从 -1 到 1。
绝对值接近 1 的值表示两个变量之间存在紧密的关系,值接近0 则表示两个变量之间关系很弱或没有关系。
Somers 的 d 是伽玛的不对称扩展,不同之处仅在于它包含了未约束到自变量上的成对的数目。
还将计算此统计的对称版本。
(3)Kendall 的 tau-b (Kendall's tau-b). 将结考虑在内的有序变量或排序变量的非参数相关性测量。
系数的符号指示关系的方向,绝对值指示强度,绝对值越大则表示关系强度越高。
可能的取值范围是从 -1 到 1,但 -1 或 +1 值只能从正方表中取得。
(4)Kendall's tau-c (Kendall's tau-c). 忽略结的有序变量的非参数相关性测量。
Pearson相关系数与Spearman相关系数的比较分析
Pearson相关系数与Spearman相关系数的比较分析Pearson相关系数和Spearman相关系数是两种常见的数据分析方法,用于研究两个变量之间的关系。
本文将对这两种方法进行比较分析,以便读者更好地了解它们的区别和适用场景。
一、Pearson相关系数Pearson相关系数是一种可度量两个连续变量之间线性关系强度的方法。
它通常被用来检验两个变量是否具有明显的相关性,并且通常被用来构建回归模型。
Pearson相关系数的取值范围为-1到1,其中1表示完全正相关,-1表示完全负相关,0则表示没有线性相关性。
Pearson相关系数的计算方法如下:$$r=\frac{\sum(x_{i}-\bar{x})(y_{i}-\bar{y})}{\sqrt{\sum(x_{i}-\bar{x})^{2}}\sqrt{\sum(y_{i}-\bar{y})^{2}}}$$二、Spearman相关系数相比之下,Spearman相关系数是一种用于度量两个变量之间非线性关系的方法。
它通常会被用来检验两个变量是否具有单调关系,即不一定是线性的,但是随着一个变量的增加,另一个变量也会增加或减少。
Spearman相关系数的取值范围同样为-1到1,其中1表示完全正相关,-1表示完全负相关,0则表示没有单调相关性。
Spearman 相关系数的计算方法如下:$$\rho=1-\frac{6\sum d^{2}}{n(n^{2}-1)}$$其中,d是排名差,n是样本的数量。
三、Pearson和Spearman之间的比较虽然这两种相关系数都是用于研究两个变量之间的关系的,但是它们有不同的适用场景。
Pearson相关系数更适合用于度量两个连续型变量之间的线性关系,而Spearman相关系数更适用于度量两个变量之间的非线性关系。
此外,Spearman相关系数也更适合用于测量可排序数据的关系,因为它使用的是排序差异,而非变量之间的差异。
统计学之三大相关性系数(pearson、spearman、kendall)
统计学之三大相关性系数(pearson、spearman、kendall)(转自微信公众号克里克学苑)三个相关性系数(pearson, spearman, kendall)反应的都是两个变量之间变化趋势的方向以及程度,其值范围为-1到+1,0表示两个变量不相关,正值表示正相关,负值表示负相关,值越大表示相关性越强。
1. person correlation coefficient(皮尔森相关性系数)公式如下:统计学之三大相关性系数(pearson、spearman、kendall)重点关注第一个等号后面的公式,最后面的是推导计算,暂时不用管它们。
看到没有,两个变量(X, Y)的皮尔森相关性系数(ρX,Y)等于它们之间的协方差cov(X,Y)除以它们各自标准差的乘积(σX, σY)。
公式的分母是变量的标准差,这就意味着计算皮尔森相关性系数时,变量的标准差不能为0(分母不能为0),也就是说你的两个变量中任何一个的值不能都是相同的。
如果没有变化,用皮尔森相关系数是没办法算出这个变量与另一个变量之间是不是有相关性的。
就好比我们想研究人跑步的速度与心脏跳动的相关性,如果你无论跑多快,心跳都不变(即心跳这个变量的标准差为0),或者你心跳忽快忽慢的,却一直保持一个速度在跑(即跑步速度这个变量的标准差为0),那我们都无法通过皮尔森相关性系数的计算来判断心跳与跑步速度到底相不相关。
我们再拔高一点,来看个更具普遍性的例子吧,其中的计算我们使用广受欢迎的R语言来运行,如果你手边也装了R语言,可以一起来做做看:假设你现在做了个生物学实验,喜得以下两个变量:X1=c(1, 2, 3, 4, 5, 6)Y1=c(0.3, 0.9, 2.7, 2, 3.5, 5)X1<-c(1, 2, 3, 4, 5, 6)Y1<-c(0.3, 0.9, 2.7, 2, 3.5, 5)mean(X1) #平均值[1] 3.5mean(Y1)[1] 2.4var(X1) #方差[1] 3.5var(Y1)[1] 2.976sd(X1) #标准差[1] 1.870829sd(Y1)[1] 1.725109cov(X1,Y1) #协方差[1] 3.06cor(X1,Y1,method=”pearson”) #皮尔森相关性系数[1] 0.9481367其值在0.9以上,说明二者非常相关,比如验证了蛋白A表达量的变化,与蛋白B表达量的变化关系很大!拿到这种有统计学论证的结果你可能很开心。
SPSS学习笔记之——相关分析
[转载]SPSS学习笔记之——相关分析(Pearson、Spearman、卡方检验一、相关分析方法的选择及指标体系(一)两个连续变量的相关分析1、Pearson相关系数最常用的相关系数,又称积差相关系数,取值-1到1,绝对值越大,说明相关性越强。
该系数的计算和检验为参数方法,适用条件如下:(1)两变量呈直线相关关系,如果是曲线相关可能不准确。
(2)极端值会对结果造成较大的影响(3)两变量符合双变量联合正态分布。
2、Spearman秩相关系数对原始变量的分布不做要求,适用范围较Pearson相关系数广,即使是等级资料,也可适用。
但其属于非参数方法,检验效能较Pearson系数低。
(二)有序分类变量的相关分析有序分类变量的相关性又称为一致性,即行变量等级高的列变量等级也高,如果行变量等级高而列变量等级低,则称为不一致。
常用的统计量有:Gamma、Kendall的tau-b、Kendall的tau-c等。
(三)无序分类变量的相关分析最常用的为卡方检验,用于评价两个无序分类变量的相关性。
根据卡方值衍生出来的指标还有列联系数、Phi、Cramer的V、Lambda系数、不确定系数等。
OR、RR也是衡量两变量之间的相关程度的指标。
二、SPSS相关操作SPSS的相关分析散布在交叉表和相关分析两个模块中。
(1)交叉表过程如下图:以上的指标很全面,解释如下:(1)“卡方”复选框:为常用的卡方检验,适用于两个无序分类变量的检验。
(2)“相关性”复选框:适用于两个连续性变量的相关分析,给出两变量的Pearson相关系数和Spearman相关系数。
(3)“有序”复选框组:包含了一组反映有序分类变量一致性的指标,只能用于两变量均为有序分类变量的情况。
(4)“名义”复选框组:包含一组分类变量相关性的指标,有序和无序分类时都可使用,但变量为有序时,检验效能没有“有序”复选框组中的统计量高。
(5)Kappa:为内部一致性系数。
简述3种常用的相关分析方法。
简述3种常用的相关分析方法。
三种常用的相关分析方法是皮尔森相关系数、Spearman等级相关系数和Kendall’s Tau测度。
皮尔森相关系数(Pearson’s correlation coefficient)是测量变量之间的线性关系度量值,它的取值范围从-1到+1。
数值正负表示两个变量之间的相关性正向或负向,其可以用来衡量两个变量之间线性相关性。
Spearman等级相关系数(Spearman rank correlation coefficient)是一种常用的非线性相关系数,如果两个变量无法观测到线性关系,则可以使用Spearman相关系数来度量。
按Spearman等级相关系数测量,两个变量之间的相关程度介于-1到+1之间,正负表示两个变量之间的关系为正向或负向。
Kendall's Tau测度(Kendall's tau coefficient)也叫Kendall比率相关系数,是一种测量变量之间的非线性关系的特殊方法,它使用变量的排好名次或排序来计算两个变量之间的相关性,是一种不太普遍但有较好的效果的非参数检验的衡量指标。
它的取值范围也是从-1到+1,正负表示两个变量之间的关系为正向或负向。
以上三种方法是常用的相关分析方法,它们不仅可以衡量两个变量之间的相关性,还能发现数据之间有规律性的潜在关系。
因此,它们在实证分析和统计学中被广泛利用,帮助研究者更深入地了解数据,发现数据中未知的信息。
PearsonKendall和Spearman三种相关分析方法的异同
两个连续变量间呈线性相关时,使用Pears on积差相关系数,不满足积差相关分析的适用条件时,使用Spearman秩相关系数来描述.Spearma n 相关系数又称秩相关系数,是利用两变量的秩次大小作线性相关分析,对原始变量的分布不作要求,属于非参数统计方法,适用范围要广些。
对于服从Pears on相关系数的数据亦可计算Spearman相关系数,但统计效能要低一些。
Pearson相关系数的计算公式可以完全套用Spearman相关系数计算公式,但公式中的x和y用相应的秩次代替即可。
Kendall's tau-b等级相关系数:用于反映分类变量相关性的指标,适用于两个分类变量均为有序分类的情况。
对相关的有序变量进行非参数相关检验;取值范围在-1-1之间,此检验适合于正方形表格;计算积距pearson相关系数,连续性变量才可采用;计算Spearman秩相关系数,适合于定序变量或不满足正态分布假设的等间隔数据;计算Kendall秩相关系数,适合于定序变量或不满足正态分布假设的等间隔数据。
」计算相关系数:当资料不服从双变量正态分布或总体分布未知,或原始数据用等级表示时,宜用spearman 或kendall 相关Pears on 相关复选项积差相关计算连续变量或是等间距测度的变量间的相关分析Kendall 复选项等级相关计算分类变量间的秩相关,适用于合并等级资料Spearman 复选项等级相关计算斯皮尔曼相关,适用于连续等级资料注:1若非等间距测度的连续变量因为分布不明-可用等级相关/也可用Pears on相关,对于完全等级离散变量必用等级相关2当资料不服从双变量正态分布或总体分布型未知或原始数据是用等级表示时,宜用Spearma n 或Ken dall 相关。
3若不恰当用了Ken dall等级相关分析则可能得出相关系数偏小的结论。
则若不恰当使用,可能得相关系数偏小或偏大结论而考察不到不同变量间存在的密切关系。
Pearson、Spearman秩相关系数、kendall等级相关系数(附python实现)
Pearson、Spearman秩相关系数、kendall等级相关系数(附python实现)⽬录:相关系数相关系数:考察两个事物(在数据⾥我们称之为变量)之间的相关程度。
如果有两个变量:X、Y,最终计算出的相关系数的含义可以有如下理解:(1)、当相关系数为0时,X和Y两变量⽆关系。
(2)、当X的值增⼤(减⼩),Y值增⼤(减⼩),两个变量为正相关,相关系数在0.00与1.00之间。
(3)、当X的值增⼤(减⼩),Y值减⼩(增⼤),两个变量为负相关,相关系数在-1.00与0.00之间。
相关系数的绝对值越⼤,相关性越强,相关系数越接近于1或-1,相关度越强,相关系数越接近于0,相关度越弱。
通常情况下通过以下取值范围判断变量的相关强度:相关系数 0.8-1.0 极强相关0.6-0.8 强相关0.4-0.6 中等程度相关0.2-0.4 弱相关0.0-0.2 极弱相关或⽆相关Pearson(⽪尔逊)相关系数⽪尔逊相关也称为积差相关(或积矩相关)是英国统计学家⽪尔逊于20世纪提出的⼀种计算直线相关的⽅法。
假设有两个变量X、Y,那么两变量间的⽪尔逊相关系数可通过以下公式计算:以上列出的四个公式等价,其中E是数学期望,cov表⽰协⽅差,N表⽰变量取值的个数。
适⽤范围当两个变量的标准差都不为零时,相关系数才有定义,⽪尔逊相关系数适⽤于:(1)、两个变量之间是线性关系,都是连续数据。
(2)、两个变量的总体是正态分布,或接近正态的单峰分布。
(3)、两个变量的观测值是成对的,每对观测值之间相互独⽴。
pearson 描述的是线性相关关系,取值[-1, 1]。
负数表⽰负相关,正数表⽰正相关。
在显著性的前提下,绝对值越⼤,相关性越强。
绝对值为0,⽆线性关系;绝对值为1表⽰完全线性相关。
Python 实现DataFrame.corr(method='pearson', min_periods=1)参数说明:method:可选值为{‘pearson’, ‘kendall’, ‘spearman’}min_periods:样本最少的数据量返回值:各类型之间的相关系数DataFrame表格。
相关关系指标
相关关系指标一、线性相关线性相关是最常见的相关分析,也叫做Pearson相关分析。
定性资料相关:当一个变量增大,另一个变量也随之增大,称为共变或相关。
两个变量有共变现象即称有相关关系。
反映两定量指标间呈线性关系趋势的关系称为线性相关,又称简单相关,统计学指标为Pearson相关系数。
两变量间的线性关系密切程度与相关方向用直线相关系数r表示(-1≤ r ≤ 1)。
r>0为正相关,r<0为负相关,r=0为零相关或无相关,|r|=1为完全相关,|r|越大说明相关程度越密切。
案例:求总胆固醇(TC)与低密度脂蛋白(LDL)间的相关性。
分析思路:散点图 »计算相关系数 »相关系数的假设检验。
SPSS相关分析模块Bivariate(双变量):用于进行两个/多个变量间的参数/非参数相关分析。
如果是多个变量,则给出两两相关的分析结果。
最常用——线性相关、秩相关。
Partial(偏相关):如果需要进行相关分析的两个变量,其取值受到其他变量的影响,则偏相关分析可以对其他变量进行控制,输出控制其他变量后的相关系数。
Distance(距离):该过程一般不单独用,作为因子分析、聚类分析和多维尺度分析的预分析过程。
SPSS » Analyze » correlate » bivariate correlation结果计算相关系数:Pearson相关系数r=0.491>0,说明正相关。
相关系数的假设检验:P<0.001,说明该r具有统计学意义。
注意事项:1、进行线性相关分析前,必须先做散点图,以初步判断两变量之间是否存在相关趋势?该趋势是否为线性趋势?以及数据中是否存在异常点?2、相关分析不一定是因果关系!例如:某夫妇生儿种树,儿长树高,相关关系有统计学意义,但非因果关系。
二、秩相关秩相关也叫等级相关或Spearman秩相关,适用于非正态/总体分布未知/分类等级资料的相关分析。
五大相关系数简介及R计算:Pearson、Spearman、Kendall、Polycho。。。
五⼤相关系数简介及R计算:Pearson、Spearman、Kendall、Polycho。
变量间Pearson、Spearman、Kendall、Polychoric、Tetrachoric、Polyserial、Biserial相关系数简介及R计算对于给定数据集中,变量之间的关联程度以及关系的⽅向,常通过相关系数衡量。
就关系的强度⽽⾔,相关系数的值在+1和-1之间变化,值±1表⽰变量之间存在完美关联程度,即完全相关时绝对值为1;随着相关系数值趋于0,意味着变量之间的关系将减弱,完全不相关时为0。
关系的⽅向由系数的符号表⽰;+号表⽰正向关系,-号表⽰负向关系。
图⽰两个变量之间的相关系数,正相关意味着图表从左到右具有向上的斜率:随着x值的增加,y值会变⼤;负相关性意味着图表从左到右具有向下的斜率:随着x值的增加,y值会变⼩;零(不相关)表⽰y不随x的变化⽽变化。
常见的变量间相关系数简介⾸先简介常见的⽤于描述变量间相关性的系数,包括Pearson、Spearman、Kendall、Polychoric、Tetrachoric、Polyserial、(Point-)Biserial等。
Pearson相关(连续变量,数值相关)Pearson相关系数(⽪尔森相关)是使⽤最⼴泛的相关性统计量,⽤于测量两组连续变量之间的线性关联程度。
Pearson相关系数计算如下:rxy,变量x和y的Pearson相关系数;n,观测对象的数量;xi,x的第i个观测值;yi,y的第i个观测值。
Pearson相关系数应⽤于连续变量,假定两组变量均为正态分布、存在线性关系且等⽅差。
线性关系假设两个变量之间是线性响应的,等⽅差假设数据在回归线上均匀分布。
Spearman秩相关(连续变量,秩相关)Spearman秩相关系数(斯⽪尔曼等级相关)是⼀种⾮参数统计量,其值与两组相关变量的具体值⽆关,⽽仅仅与其值之间的⼤⼩关系有关。
stata耦合度命令
stata耦合度命令
Stata是一款强大的统计分析软件,它具有多种功能和数据处理能力。
其中,耦合度命令是一种用于度量变量之间关系紧密程度的工具,它可以帮助用户研究变量在不同条件下的变化情况。
Stata的耦合度命令包括pearson、spearman和kendall三种方式。
pearson方法是最常用的一种,它衡量的是两个变量之间的线性相关性,两个变量越密切相关,pearson系数越接近1。
spearman方法则是通过对两个变量的等级进行比较来度量它们之间的相关性,spearman系数值介于-1和1之间。
kendall方法则是通过比较两个变量之间的差异来确定它们之间的相关性,同样也有一个介于-1和1之间的系数。
在Stata中,用户可以使用corr命令来计算这些系数。
例如,要计算两个变量X和Y之间的pearson相关系数,可以输入以下命令:
corr X Y, pearson
输出结果将包括pearson系数,p值和置信区间。
除了耦合度命令之外,Stata还提供了其他一些命令,例如
scatterplot和regress等。
scatterplot命令可以绘制变量之间的散点图,帮助用户更直观地观察它们之间的关系。
regress命令可以用于回归分析,它可以帮助用户建立一个线性模型来描述变量之间的相互作用。
总的来说,Stata的耦合度命令和其他功能强大的命令为用户提供了一种强大的分析工具,有助于更深入地研究变量之间的关系。
无论是在
学术界还是在商业领域,这些功能都为用户提供了非常有价值的帮助。
如何利用Excel的数据分析工具进行数据相关性分析和趋势数据分析工具高级使用技巧和趋势技巧
如何利用Excel的数据分析工具进行数据相关性分析和趋势数据分析工具高级使用技巧和趋势技巧数据分析在现代社会中扮演着重要的角色,而Excel作为最常用的电子表格软件之一,提供了强大的数据分析工具,可以帮助我们进行数据相关性分析和趋势数据分析。
在本文中,我将介绍如何利用Excel 的数据分析工具进行数据相关性分析和趋势数据分析,并分享一些高级使用技巧和趋势技巧。
一、数据相关性分析数据相关性分析用于确定两个或多个变量之间的关系强度以及关系的方向。
Excel提供了多种工具来进行数据相关性分析,包括相关性函数和散点图。
1. 相关性函数Excel中有三个常用的相关性函数,即PEARSON、SPEARMAN和KENDALL。
这些函数可以通过计算相关系数来量化两个变量之间的相关性。
- PEARSON函数:用于计算皮尔逊相关系数,适用于线性关系的分析。
- SPEARMAN函数:用于计算斯皮尔曼等级相关系数,适用于非线性关系的分析。
- KENDALL函数:用于计算肯德尔等级相关系数,适用于非线性关系的分析。
这些函数的使用方法相似,只需在单元格中输入函数,并选择相关的数据范围即可得到相应的相关系数。
2. 散点图散点图是一种可视化数据相关性的图表类型。
在Excel中,我们可以使用散点图来查看两个变量之间的关系及其趋势。
具体操作如下:- 选择需要绘制散点图的数据范围。
- 在"插入"选项卡中,选择"散点图"图表类型。
- 选择相应的散点图样式,如散点图、带有趋势线的散点图等。
散点图可以直观地展示数据的分布情况以及变量之间的相关性。
二、趋势数据分析趋势数据分析用于预测未来数据的趋势和模式。
Excel提供了多个工具来进行趋势数据分析,包括回归分析和移动平均法。
1. 回归分析回归分析是一种常用的趋势数据分析方法,可以通过拟合一个数学模型来预测未来的数据。
Excel中的回归分析工具可以帮助我们计算出最佳拟合的趋势线,并给出相关的统计指标。
Kendall’stau-b,pearson、spearman三种相关性的区别(有空整理信。。。
Kendall’stau-b,pearson、spearman三种相关性的区别(有空整理信。
同样可参考:测量相关程度的相关系数很多,各种参数的计算⽅法及特点各异。
连续变量的相关指标:此时⼀般⽤积差相关系数,⼜称pearson相关系数来表⽰其相关性的⼤⼩,积差相关系数只适⽤于两变量呈线性相关时。
其数值介于-1~1之间,当两变量相关性达到最⼤,散点呈⼀条直线时取值为-1或1,正负号表明了相关的⽅向,如果两变量完全⽆关,则取值为零。
作为参数⽅法,积差相关分析有⼀定的适⽤条件,当数据不能满⾜这些条件时,分析者可以考虑使⽤Spearman等级相关系数来解决问题。
有序变量的相关指标:所谓有序的等级资料的相关性/⼀致性⾼,就是指⾏变量等级⾼的列变量等级也⾼,反之亦然。
如果⾏变量等级⾼⽽列变量等级低,则被称为不⼀致。
简单相关分析:当两个连续变量在散点图上的散点呈现直线趋势时,就可以认为⼆者存在直线相关趋势,也称为简单相关趋势。
Pearson相关系数,也称乘积相关系数,就是⼈们定量描述线性相关程度好坏的⼀个常⽤指标。
积差相关系数的适⽤条件:在相关分析中⾸先要考虑的问题就是两个变量是否可能存在相关关系,如果得到了肯定的结论,那才有必要进⾏下⼀步定量的分析。
另外还必须注意以下⼏个问题:1、积差相关系数适⽤于线性相关的情形,对于曲线相关等更为复杂的情形,积差相关系数的⼤⼩并不能代表相关性的强弱。
2、样本中存在的极端值对积差相关系数的影响极⼤,因此要慎重考虑和处理,必要时可以对其进⾏剔出,或者加以变量变换,以避免因为⼀两个数值导致出现错误的结论。
3、积差相关系数要求相应得变量呈双变量正态分布,注意双变量正态分布并⾮简单的要求x变量和y变量各⾃服从正态分布,⽽是要求服从⼀个联合的双变量正态分布。
以上⼏条要求中,前两者的要求最严,第三条⽐较宽松,违反时系数的结果也是⽐较稳健的。
Spearman相关系数⼜称为秩相关系数,使利⽤两变量的秩次⼤⼩作线性相关分析,对原始变量的分布不做要求,属于⾮参数统计⽅法。
变量的相关系数
变量的相关系数
变量的相关系数是用来衡量两个变量之间线性相关程度的统计指标。
相关系数的值介于-1至1之间,数值越接近于1或-1,表示两个变量之间的线性关系越强;数值越接近于0,表示两个变量之间的线性关系越弱或不存在。
相关系数可以通过计算协方差来得到,其中协方差表示两个变量之间的关系强度和方向,但是协方差的值无法直接比较,因为它的大小受到变量单位的影响。
因此,我们需要将协方差标准化,得到的就是相关系数。
常用的相关系数包括Pearson相关系数、Spearman相关系数和Kendall相关系数。
Pearson相关系数适用于两个变量都是连续型变量的情况,Spearman和Kendall相关系数适用于至少有一个变量是序数变量的情况。
在实际应用中,相关系数可以用来衡量不同变量之间的关系,例如衡量收入与教育程度之间的相关性、衡量股票之间的相关性等。
但是需要注意的是,相关系数只能反映两个变量之间的线性关系,对于非线性关系则无法准确反映。
- 1 -。
三大相关系数法
三大相关系数法在分析指标与指标、指标与研究对象的影响程度时,很多时候会用到相关系数法,常见的三种:Pearson相关系数,Kendall相关系数和Spearman相关系数。
在这三大相关系数中,spearman和kendall 属于等级相关系数亦称为“秩相关系数”,是反映等级相关程度的统计分析指标。
最终选择哪种相关系数法,对比结果谁更符合预期效果。
Pearson相关系数:按照大学的线性数学水平来理解, 它比较复杂一点,可以看做是两组数据的向量夹角的余弦。
常见Pearson有以下几种公式皮尔森相关系数是衡量线性关联性的程度,公式定义为:两个连续变量(X,Y)的pearson相关性系数P(x,y)等于它们之间的协方差cov(X,Y)除以它们各自标准差的乘积(σX,σY)。
系数的取值总是在-1到1之间,接近0的变量被成为无相关性,接近1或者-1被称为具有正向或者负向强相关性。
那么皮尔森适用的条件是什么呢?•两个变量之间是线性关系,都是连续数据。
•两个变量的总体是正态分布,或接近正态的单峰分布。
•两个变量的观测值是成对的,每对观测值之间相互独立。
在满足这些条件后,接下来我们来看下程序,这三种相关系数均可用corr函数实现①当X与Y是构成一个矩阵时,关于两者相关系数程序格式为corr(X,Y,'type','Pearson')②当X是由多个指标数据构成的矩阵时,关于指标间相关系数程序格式为corr(X,'type','Pearson')以上三种公式皆等价,程序如下••••••X=[4.959 2.124 1.969 1.763 1.711 1.969]';Y=[1.273 1.169 0.497 1.273 1.088 0.792]';Z=corr(X,Y,'type','Pearson')运行结果:Z = 0.3715•••••••••A=[4.959 2.124 1.969 1.763 1.711 1.969 0.014 0 0.005 0.002 0.003 0.004 1.273 1.169 0.497 1.273 1.088 0.792]';B=corr(A,'type','Pearson')运行结果:B = 1.0000 0.9187 0.3715 0.9187 1.0000 0.1130 0.3715 0.1130 1.0000Kendall相关系数:是一个用来测量两个随机变量相关性的统计值,在一个肯德尔检验是一个无参数假设检验,它使用计算而得的相关系数去检验两个随机变量的统计依赖性。
相关分析pearson_spearman_kendall的区别
Pearson,Spearman和Kendall三种相关分析方法的异同线性相关性(linear correlation):又简称简单相关(simple correlation),用来度量具有线性关系的两个变量之间,相关关系的密切程度及其相关方向,适用于双变量正态分布资料。
线性相关系数,又称为简单相关系数,Pearson(皮尔逊)相关系数或相关系数。
有时也称为积差相关系数(coefficient of product-moment correlation)。
适用条件:1.样本容量大于等于30,这样才能保证计算的数据具有代表性,计算出的积差相关系数可以有效说明两个变量的相关关系。
2.两个变量的所属总体都呈正态分布,至少是接近正态的单峰分布。
3.两个变量都是由测量所得的连续性数据。
4.两个变量间的相关是线性相关。
5.排除共变因素的影响。
6.计算连续变量或是等间距测度的变量间的相关分析。
Spearman相关系数又称秩相关系数,是利用两变量的秩次大小作线性相关分析,对原始变量的分布不做要求,属于非参数统计方法,适用范围要广些。
Spearman相关系数相当于Pearson相关系数的非参数形式,它根据数据的秩而不是数据的实际值计算,适用于有序数据和不满足正态分布假设的等间隔数据。
Spearman相关系数的取值范围也在(-1,1)之间,绝对值越大相关性越强,取值符号也表示相关的方向。
对于服从Pearson相关系数的数据亦可计算Spearman相关系数,但统计效能要低一些。
适用条件:1.只有两个变量,且都为顺序变量(等级变量),或一列数据是顺序变量数据,另一列数据是连续变量数据。
2.适用于描述称名数据和顺序数据的相关情况。
3.两个连续变量观测的数据,至少有一列数据是由非测量方法粗略评估得到的。
如使用作品分析法,评价者只能在一定标准基础上,依靠自己的经验进行粗略评估。
4.从Spearman等级相关的使用条件可以看出,其不受样本大小、变量分布形态,数据是否具有连续性的条件限制,所以当数据不满足Pearson积差相关的使用条件时,可以使用Spearman等级相关。
数据分析中的相关性分析有哪些方法?
数据分析中的相关性分析是一种统计方法,用于研究两个或多个变量之间的关系。
这种关系可以是正相关(一个变量增加时,另一个也增加)或负相关(一个变量增加时,另一个减少),也可以是零相关(两个变量之间没有明确的线性关系)。
以下是数据分析中常用的相关性分析方法,每种方法都会详细解释其原理、应用场景和优缺点。
1. 皮尔逊相关系数(Pearson Correlation Coefficient)原理:皮尔逊相关系数是衡量两个连续变量之间线性关系强度和方向的一种统计量。
其值域为-1到1,其中1表示完全正相关,-1表示完全负相关,0表示无相关。
应用场景:皮尔逊相关系数常用于衡量两个连续变量之间的线性关系,如身高与体重、温度与销售额等。
优缺点:优点是计算简单,易于解释;缺点是只能衡量线性关系,对于非线性关系和非连续变量可能不准确。
2. 斯皮尔曼秩次相关系数(Spearman's Rank Correlation Coefficient)原理:斯皮尔曼秩次相关系数是衡量两个变量之间排序关系的一种统计量。
它不要求数据连续或服从正态分布,因此适用范围更广。
应用场景:斯皮尔曼秩次相关系数适用于连续但不服从正态分布的变量,以及有序分类变量(如评级、排名等)。
优缺点:优点是对数据分布要求较低,适用范围广;缺点是计算相对复杂,对极端值较敏感。
3. 肯德尔秩次相关系数(Kendall's Tau)原理:肯德尔秩次相关系数是衡量两个有序分类变量之间排序一致性的一种统计量。
通过比较一对样本在各变量上的相对大小来计算排序关系。
应用场景:肯德尔秩次相关系数常用于分析有序分类变量,如调查问卷中的等级评价、体育比赛中的排名等。
优缺点:优点是对数据分布要求较低,适用于有序分类变量;缺点是计算复杂,对样本量有一定要求。
4. 距离相关系数(Distance Correlation Coefficient)原理:距离相关系数是衡量两个变量之间整体相关性的统计量。
皮尔逊与斯皮尔曼相关性比较
皮尔逊与斯皮尔曼相关性比较在数据分析和统计学中,相关性是用来描述两个变量之间关系强度和方向的重要概念。
相关性分析是理解变量之间相互关系、预测以及建立模型的基础。
皮尔逊相关系数和斯皮尔曼相关系数是最常用的两种相关性测量方法。
尽管它们都用于评估变量之间的关系,但其适用场景、计算方法和解释方式却有显著不同。
本文将深入探讨这两种方法的理论基础、计算方式、适用范围及其优缺点,从而帮助读者更好地理解和选择合适的相关性分析方法。
一、皮尔逊相关系数1.1 定义皮尔逊相关系数(Pearson correlation coefficient),通常用符号 r 表示,是衡量两个变量之间线性关系强度和方向的统计量。
其值范围在 -1 到 1 之间,其中: - r = 1 表示完全正相关。
- r = -1 表示完全负相关。
- r = 0 表示没有线性相关关系。
1.2 计算方法皮尔逊相关系数的计算公式如下:[ r = ]其中: - ( n ) 是观测值数量; - ( x ) 和 ( y ) 分别代表两个变量。
1.3 假设条件皮尔逊相关系数的使用需要满足以下假设条件:线性关系:变量之间应存在线性关系,适用于分析连续型数据。
正态分布:变量需近似服从正态分布,尤其是样本量较小的情况下。
同方差性:数据应当具有相同的方差特性。
1.4 优缺点优点能有效测量线性关系,非常直观易懂。
在数据满足上述假设条件时,计算结果准确。
缺点对于非线性关系或极端值(离群值)敏感,可能导致误导性结论。
不适用于分类变量或顺序数据,因此局限性较大。
二、斯皮尔曼相关系数2.1 定义斯皮尔曼相关系数(Spearman’s rank correlation coefficient),通常用符号 ( ) 或 ( r_s ) 表示,是一种基于秩次(rank)的非参数测量方法,用于评估两个变量之间单调关系的强度和方向。
斯皮尔曼相关不要求数据服从特定分布,因而适用于各种类型的数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Pearson,Spearman和Kendall三种相关分析方法的异同
线性相关性(linear correlation):又简称简单相关(simple correlation),用来度量具有线性关系的两个变量之间,相关关系的密切程度及其相关方向,适用于双变量正态分布资料。
线性相关系数,又称为简单相关系数,Pearson(皮尔逊)相关系数或相关系数。
有时也称为积差相关系数(coefficient of product-moment correlation)。
适用条件:
1.样本容量大于等于30,这样才能保证计算的数据具有代表性,计算出的积差相关系数可以有效说明两个变量的相关关系。
2.两个变量的所属总体都呈正态分布,至少是接近正态的单峰分布。
3.两个变量都是由测量所得的连续性数据。
4.两个变量间的相关是线性相关。
5.排除共变因素的影响。
6.计算连续变量或是等间距测度的变量间的相关分析。
Spearman相关系数又称秩相关系数,是利用两变量的秩次大小作线性相关分析,对原始变量的分布不做要求,属于非参数统计方法,适用范围要广些。
Spearman相关系数相当于Pearson相关系数的非参数形式,它根据数据的秩而不是数据的实际值计算,适用于有序数据和不满足正态分布假设的等间隔数据。
Spearman相关系数的取值范围也在(-1,1)之间,绝对值越大相关性越强,取值符号也表示相关的方向。
对于服从Pearson相关系数的数据亦可计算Spearman相关系数,但统计效能要低一些。
适用条件:
1.只有两个变量,且都为顺序变量(等级变量),或一列数据是顺序变量数据,另一列数据是连续变量数据。
2.适用于描述称名数据和顺序数据的相关情况。
3.两个连续变量观测的数据,至少有一列数据是由非测量方法粗略评估得到的。
如使用作品分析法,评价者只能在一定标准基础上,依靠自己的经验进行粗略评估。
4.从Spearman等级相关的使用条件可以看出,其不受样本大小、变量分布形态,数据是否具有连续性的条件限制,所以当数据不满足Pearson积差相关的使用条件时,可以使用Spearman等级相关。
但Spearman等级相关需将连续性数据转换为顺序数据,会遗漏数据原有信息,没有积差相关的准确度高。
所以,当数据符合积差相关的使用条件时,不要使用等级相关进行计算。
Kendall’s tau-b等级相关系数(肯德尔):
Kendall相关系数是对两个有序变量或两个秩变量之间相关程度的度量统计量,因此也属于非参数统计范畴。
与Spearman区别在于某一比较数据需要有序,在有序情况下计算速度比Spearman快。
1.用于反映分类变量相关性的指标,适用于两个分类变量均为有序分类的情况。
2.对相关的有序变量进行非参数相关检验。
3.计算Kendall秩相关系数,适合于定序变量或不满足正态分布假设的等间隔数据。
4.若不恰当用了Kendall 等级相关分析则可能得出相关系数偏小的结论。
Person相关Spearman相关Kendal’s tau-b相关。