实验二分治法归并排序教学内容
算法分析与设计实验大纲
课程代码:《算法分析设计》课程实验教学大纲【编写】朱少林【审核】【课程类别】专业选修【课程学时】 34【开课学期】【实验学时】 16 - 34【授课专业】电子商务/信息管理/计算机科学与技术一、实验教学任务和目的无论是在计算机科学与技术的研究中,还是在计算机应用(包括管理信息系统和电子商务系统开发)中,都涉及大量的程序设计问题,而且随着研究和应用的深入,所遇到的问题越来复杂,对处理问题的效率要求也越来越高,了解和掌握求解问题的方法(算法)、设计出好的算法也就成为解决这些问题的关键,甚至成为其决定因素。
《算法分析与设计》课程的主要内容是讲授在计算机科学研究和应用中经常用到的一些算法,包括分枝法、贪心法、动态规划法、回溯法等,介绍这些算法设计的思路和算法的一般框架,并针对多个具体的应用问题设计出了相应算法。
其目的就是让学过该课程的学生掌握算法设计的基本思想和技巧,掌握几个基本和常用的算法。
《算法分析与设计》是一门实践性很强的课程,课程教学过程中,需要与课程实验相结合。
算法分析与设计实验的主要任务是针对给定的问题,设计出一个合适的算法或几个可供选择的算法,然后将算法用合适的程序设计语言实现并上机调试,并用合适的数据验证运行。
只有通过实验,通过让学生进行算法设计和编程实践并上机验证,才能让学生理解算法的思想,掌握算法设计的方法和掌握算法的精髓。
同时,通过算法实验,让学生掌握调试程序、改进算法的方法,学会通过对比选择最适合问题求解算法的方法;使学生将以前所学如《C语言程序设计》、《数据结构》等课程知识能有机结合并融会贯通;进一步培养学生的分析问题、解决问题的能力,提高学生素质,使其能更好地适应社会,满足社会对人才的需求。
二、实验教学基本要求1.程序设计语言与实验要求算法实验需要将算法转换成程序并上机验证,实验的主要工作是验证算法的正确性并测试算法的时空复杂度。
学生可以根据自己的喜好或对程序设计语言的掌握程度选择一个程序设计语言,如C/C++、PASSCAL等支持递归程序设计的语言,实验硬件环境要求是支持学生选定程序设计语言的计算机系统,(包含打印机更佳),学生应能熟练掌握计算机系统的使用,并具备熟练编写、输入和调试程序的能力。
《归并排序》教学设计
《归并排序》教学设计归并排序教学设计介绍归并排序归并排序是一种高效的排序算法,它基于分治的思想。
它将待排序的序列不断地分割成较小的子序列,直到每个子序列只有一个元素,然后将这些子序列两两合并,使得合并后的序列有序。
归并排序的时间复杂度为O(nlogn),所以在处理大规模数据排序时非常有效。
教学目标通过本教学设计,学生将能够:1. 理解归并排序的原理和过程;2. 掌握归并排序的实现方法;3. 熟练应用归并排序解决实际问题;4. 分析和评估归并排序的时间复杂度和空间复杂度。
教学内容理论讲解1. 归并排序的基本思想和过程;2. 归并排序的时间复杂度和空间复杂度分析;3. 归并排序的应用场景和优缺点。
算法实现1. 递归实现归并排序;2. 非递归实现归并排序。
实例分析通过一些实际例子,演示如何使用归并排序算法解决实际问题,例如对整数数组进行排序、对学生成绩进行排名等。
思考题和练为了加深学生对归并排序的理解和应用能力,设计一些思考题和练题,例如给定一组数据让学生手动执行归并排序算法、设计一些需要应用归并排序的问题等。
教学方法1. 理论讲解与实例分析相结合,既让学生理解归并排序的原理,又让他们看到归并排序在实际问题中的应用;2. 引导学生通过自主实践,编写归并排序的代码,并测试其正确性和效果。
评估方法1. 设计一份归并排序的小测试,包括选择题和编程题,以评估学生对归并排序的掌握程度;2. 观察学生在实践中的表现,评估其在应用归并排序解决实际问题时的能力。
参考资料- 归并排序的原理与实现方法- 《算法导论》本教学设计旨在通过理论讲解、实例分析和实践操作,帮助学生全面了解归并排序算法,掌握其实现方法,并能够应用归并排序解决实际问题。
请根据实际情况进行适当调整和补充。
算法设计与分析实验报告
实验一找最大和最小元素与归并分类算法实现(用分治法)一、实验目的1.掌握能用分治法求解的问题应满足的条件;2.加深对分治法算法设计方法的理解与应用;3.锻炼学生对程序跟踪调试能力;4.通过本次实验的练习培养学生应用所学知识解决实际问题的能力。
二、实验内容1、找最大和最小元素输入n 个数,找出最大和最小数的问题。
2、归并分类将一个含有n个元素的集合,按非降的次序分类(排序)。
三、实验要求(1)用分治法求解问题(2)上机实现所设计的算法;四、实验过程设计(算法设计过程)1、找最大和最小元素采用分治法,将数组不断划分,进行递归。
递归结束的条件为划分到最后若为一个元素则max和min都是这个元素,若为两个取大值赋给max,小值给min。
否则就继续进行划分,找到两个子问题的最大和最小值后,比较这两个最大值和最小值找到解。
2、归并分类使用分治的策略来将一个待排序的数组分成两个子数组,然后递归地对子数组进行排序,最后将排序好的子数组合并成一个有序的数组。
在合并过程中,比较两个子数组的首个元素,将较小的元素放入辅助数组,并指针向后移动,直到将所有元素都合并到辅助数组中。
五、源代码1、找最大和最小元素#include<iostream>using namespace std;void MAXMIN(int num[], int left, int right, int& fmax, int& fmin); int main() {int n;int left=0, right;int fmax, fmin;int num[100];cout<<"请输入数字个数:";cin >> n;right = n-1;cout << "输入数字:";for (int i = 0; i < n; i++) {cin >> num[i];}MAXMIN(num, left, right, fmax, fmin);cout << "最大值为:";cout << fmax << endl;cout << "最小值为:";cout << fmin << endl;return 0;}void MAXMIN(int num[], int left, int right, int& fmax, int& fmin) { int mid;int lmax, lmin;int rmax, rmin;if (left == right) {fmax = num[left];fmin = num[left];}else if (right - left == 1) {if (num[right] > num[left]) {fmax = num[right];fmin = num[left];}else {fmax = num[left];fmin = num[right];}}else {mid = left + (right - left) / 2;MAXMIN(num, left, mid, lmax, lmin);MAXMIN(num, mid+1, right, rmax, rmin);fmax = max(lmax, rmax);fmin = min(lmin, rmin);}}2、归并分类#include<iostream>using namespace std;int num[100];int n;void merge(int left, int mid, int right) { int a[100];int i, j,k,m;i = left;j = mid+1;k = left;while (i <= mid && j <= right) {if (num[i] < num[j]) {a[k] = num[i++];}else {a[k] = num[j++];}k++;}if (i <= mid) {for (m = i; m <= mid; m++) {a[k++] = num[i++];}}else {for (m = j; m <= right; m++) {a[k++] = num[j++];}}for (i = left; i <= right; i++) { num[i] = a[i];}}void mergesort(int left, int right) { int mid;if (left < right) {mid = left + (right - left) / 2;mergesort(left, mid);mergesort(mid + 1, right);merge(left, mid, right);}}int main() {int left=0,right;int i;cout << "请输入数字个数:";cin >> n;right = n - 1;cout << "输入数字:";for (i = 0; i < n; i++) {cin >> num[i];}mergesort(left,right);for (i = 0; i < n; i++) {cout<< num[i];}return 0;}六、运行结果和算法复杂度分析1、找最大和最小元素图1-1 找最大和最小元素结果算法复杂度为O(logn)2、归并分类图1-2 归并分类结果算法复杂度为O(nlogn)实验二背包问题和最小生成树算法实现(用贪心法)一、实验目的1.掌握能用贪心法求解的问题应满足的条件;2.加深对贪心法算法设计方法的理解与应用;3.锻炼学生对程序跟踪调试能力;4.通过本次实验的练习培养学生应用所学知识解决实际问题的能力。
常见算法设计实验报告(3篇)
第1篇一、实验目的通过本次实验,掌握常见算法的设计原理、实现方法以及性能分析。
通过实际编程,加深对算法的理解,提高编程能力,并学会运用算法解决实际问题。
二、实验内容本次实验选择了以下常见算法进行设计和实现:1. 排序算法:冒泡排序、选择排序、插入排序、快速排序、归并排序、堆排序。
2. 查找算法:顺序查找、二分查找。
3. 图算法:深度优先搜索(DFS)、广度优先搜索(BFS)、最小生成树(Prim算法、Kruskal算法)。
4. 动态规划算法:0-1背包问题。
三、实验原理1. 排序算法:排序算法的主要目的是将一组数据按照一定的顺序排列。
常见的排序算法包括冒泡排序、选择排序、插入排序、快速排序、归并排序和堆排序等。
2. 查找算法:查找算法用于在数据集中查找特定的元素。
常见的查找算法包括顺序查找和二分查找。
3. 图算法:图算法用于处理图结构的数据。
常见的图算法包括深度优先搜索(DFS)、广度优先搜索(BFS)、最小生成树(Prim算法、Kruskal算法)等。
4. 动态规划算法:动态规划算法是一种将复杂问题分解为子问题,通过求解子问题来求解原问题的算法。
常见的动态规划算法包括0-1背包问题。
四、实验过程1. 排序算法(1)冒泡排序:通过比较相邻元素,如果顺序错误则交换,重复此过程,直到没有需要交换的元素。
(2)选择排序:每次从剩余元素中选取最小(或最大)的元素,放到已排序序列的末尾。
(3)插入排序:将未排序的数据插入到已排序序列中适当的位置。
(4)快速排序:选择一个枢纽元素,将序列分为两部分,使左侧不大于枢纽,右侧不小于枢纽,然后递归地对两部分进行快速排序。
(5)归并排序:将序列分为两半,分别对两半进行归并排序,然后将排序好的两半合并。
(6)堆排序:将序列构建成最大堆,然后重复取出堆顶元素,并调整剩余元素,使剩余元素仍满足最大堆的性质。
2. 查找算法(1)顺序查找:从序列的第一个元素开始,依次比较,直到找到目标元素或遍历完整个序列。
二分归并排序的时间复杂度以及递推式
一、简介二分归并排序是一种常见的排序算法,它通过将问题分解为子问题,并将子问题的解合并来解决原始问题。
该算法的时间复杂度非常重要,因为它直接影响算法的效率和性能。
在本文中,我们将深入探讨二分归并排序的时间复杂度,并通过递推式来进一步分析算法的性能。
二、二分归并排序的时间复杂度1. 分析在二分归并排序中,时间复杂度可以通过以下三个步骤来分析:- 分解:将原始数组分解为较小的子数组。
- 解决:通过递归调用来对子数组进行排序。
- 合并:将排好序的子数组合并为一个整体有序的数组。
2. 时间复杂度在最坏情况下,二分归并排序的时间复杂度为O(nlogn)。
这是因为在每一层递归中,都需要将数组分解为两个规模近似相等的子数组,并且在每一层递归的最后都需要将这两个子数组合并起来。
可以通过递推式来进一步证明算法的时间复杂度。
3. 递推式分析我们可以通过递推式来分析二分归并排序的时间复杂度。
假设对规模为n的数组进行排序所需的时间为T(n),则可以得到以下递推式:T(n) = 2T(n/2) +其中,T(n/2)表示对规模为n/2的子数组进行排序所需的时间表示将两个子数组合并所需的时间。
根据递推式的定义,我们可以得到二分归并排序的时间复杂度为O(nlogn)。
三、结论与个人观点通过以上分析,我们可以得出二分归并排序的时间复杂度为O(nlogn)。
这意味着该算法在最坏情况下也能保持较好的性能,适用于大规模数据的排序。
我个人认为,二分归并排序作为一种经典的排序算法,其时间复杂度的分析对于理解算法的工作原理和性能至关重要。
通过深入研究递推式,可以更加直观地理解算法的性能表现,为进一步优化算法提供了重要的参考依据。
四、总结在本文中,我们探讨了二分归并排序的时间复杂度,通过分析和递推式的方式深入理解了该算法的性能表现。
通过对时间复杂度的分析,我们对算法的性能有了更深入的认识,并且能够更好地理解算法在实际应用中的表现。
相信通过本文的阅读,读者能够对二分归并排序有更全面、深刻和灵活的理解。
算法21--内部排序--归并排序
实现这种递归调用的关键是为过程建立递归调用工作栈。通 常,在一个过程中调用另一过程时,系统需在运行被调用过 程之前先完成3件事:
(1)将所有实参指针,返回地址等信息传递给被调用过程; (2)为被调用过程的局部变量分配存储区; (3)将控制转移到被调用过程的入口。 在从被调用过程返回调用过程时,系统也相应地要完成3件事: (1)保存被调用过程的计算结果; (2)释放分配给被调用过程的数据区; (3)依照被凋用过程保存的返回地址将控制转移到调用过程.
实际的意义:可以把一个长度为n 的无序序列看成 是 n 个长度为 1 的有序子序列 ,首先做两两归 并,得到 n/2 个长度为 2 的子序列;再做两两 归并,…,如此重复,直到最后得到一个长度为 n
的有序序列。
归并排序
初始序列
[49] [38] [65] [97 [76] [13] [27]
第一步 第二步
T(1)=1 T(n)=kT(n/m)+f(n)
2019/10/20
归并排序时间复杂性分析
• 合并趟数: log2n • 每趟进行比较的代价 n • 总的代价为 T(n) = O ( nlog2n ) • 在一般情况下:
c
n=1
T(n) =
T( n/2 ) + T( n/2 ) + cn n>1
优缺点:Ω的这个定义的优点是与O的定义对称,缺点 是当 f(N) 对自然数的不同无穷子集有不同的表达式, 且有不同的阶时,未能很好地刻画出 f(N)的下界。
2019/10/20
f(n) cg(n)
n0
n
2019/10/20
代入法解递归方程
方法的关键步骤在于预先对解答作出推测,然后用 数学归纳法证明推测的正确性。
二叉树的快速排序、归并排序方法
二叉树的快速排序、归并排序方法一、快速排序快速排序采用的是分治法策略,其基本思路是先选定一个基准数(一般取第一个元素),将待排序序列抽象成两个子序列:小于基准数的子序列和大于等于基准数的子序列,然后递归地对这两个子序列排序。
1. 递归实现(1)选定基准数题目要求采用第一个元素作为基准数,因此可以直接将其取出。
(2)划分序列接下来需要将待排序序列划分成两个子序列。
我们定义两个指针 i 和 j,从待排序序列的第二个元素和最后一个元素位置开始,分别向左和向右扫描,直到 i 和 j 相遇为止。
在扫描过程中,将小于等于基准数的元素移到左边(即与左侧序列交换),将大于基准数的元素移到右边(即与右侧序列交换)。
当 i=j 时,扫描结束。
(3)递归排序子序列完成划分后,左右两个子序列就确定了下来。
接下来分别对左右两个子序列递归调用快速排序算法即可。
2. 非递归实现上述方法是快速排序的递归实现。
对于大量数据或深度递归的情况,可能会出现栈溢出等问题,因此还可以使用非递归实现。
非递归实现采用的是栈结构,将待排序序列分成若干子序列后,依次将其入栈并标注其位置信息,然后将栈中元素依次出栈并分割、排序,直至栈为空。
二、归并排序归并排序同样采用的是分治思想。
其基本思路是将待排序序列拆分成若干个子序列,直至每个子序列只有一个元素,然后将相邻的子序列两两合并,直至合并成一个有序序列。
1. 递归实现(1)拆分子序列归并排序先将待排序序列进行拆分,具体方法是将序列平分成两个子序列,然后递归地对子序列进行拆分直至每个子序列只剩下一个元素。
(2)合并有序子序列在完成子序列的拆分后,接下来需要将相邻的子序列两两合并为一个有序序列。
我们先定义三个指针 i、j 和 k,分别指向待合并的左侧子序列、右侧子序列和合并后的序列。
在进行合并时,从两个子序列的起始位置开始比较,将两个子序列中较小的元素移动到合并后的序列中。
具体操作如下:- 当左侧子序列的第一个元素小于等于右侧子序列的第一个元素时,将左侧子序列的第一个元素移动到合并后的序列中,并将指针 i 和 k 分别加 1。
归并排序法实验报告
一、实验目的1. 理解归并排序的基本思想和原理。
2. 掌握归并排序的实现方法。
3. 分析归并排序算法的时间复杂度。
4. 学会使用归并排序解决实际问题。
二、实验内容1. 归并排序的基本思想归并排序是一种基于分治策略的排序算法,其基本思想是将待排序的序列分成若干个子序列,分别对每个子序列进行排序,然后将排序好的子序列合并成一个有序序列。
具体步骤如下:(1)将待排序的序列分成两个子序列,分别进行排序;(2)将排序好的两个子序列合并成一个有序序列;(3)递归地对合并后的序列进行步骤(1)和(2)的操作,直到整个序列有序。
2. 归并排序的实现方法归并排序算法主要分为两个步骤:归并和合并。
(1)归并:将序列分为两个子序列,对每个子序列进行归并排序;(2)合并:将排序好的两个子序列合并成一个有序序列。
以下是归并排序的Python代码实现:```pythondef merge_sort(arr):if len(arr) <= 1:return arrmid = len(arr) // 2left = merge_sort(arr[:mid])right = merge_sort(arr[mid:])return merge(left, right)def merge(left, right):merged = []i = j = 0while i < len(left) and j < len(right):if left[i] < right[j]:merged.append(left[i])i += 1else:merged.append(right[j])j += 1merged.extend(left[i:])merged.extend(right[j:])return merged```3. 归并排序的时间复杂度分析归并排序算法的时间复杂度主要由归并操作和递归调用决定。
对于长度为n的序列,归并排序需要进行n-1次归并操作,每次归并操作需要比较n/2次,因此总的比较次数为(n/2) (n-1) = n^2/2。
分治算法使用实例
分治算法使用实例分治算法是一种基本的算法思想,用于解决各种问题。
它将一个大问题分解成多个小问题,然后递归地解决这些小问题,并将结果进行合并,从而得到大问题的解决方案。
分治算法被广泛应用于各个领域,如排序、查找、计算、图像处理等。
下面以三个经典的分治算法为例,具体说明分治算法的使用场景和实现方法。
1.归并排序:归并排序是一种高效的排序算法,它使用了分治算法的思想。
该算法将待排序的数组不断地二分,直到问题被分解为最小规模的子问题。
然后,将这些子问题逐个解决,并将结果进行合并,即将两个有序的子数组合并为一个有序的数组。
最终,所有子问题都解决完毕后,得到的数组就是排序好的结果。
归并排序的实现过程如下:-分解:将待排序的数组分解为两个子数组,递归地对这两个子数组进行排序。
-解决:对两个子数组分别进行排序,可以使用递归或其他排序算法。
-合并:将两个已排序的子数组合并为一个有序的数组。
2.求解最大子数组和:给定一个整数数组,求其最大子数组和。
分治算法可以解决这个问题。
该算法将问题分解为三个子问题:最大子数组和位于左半部分、最大子数组和位于右半部分、最大子数组和跨越中间位置。
然后,递归地对这三个子问题求解,并将结果进行合并,得到最终的解。
求解最大子数组和的实现过程如下:-分解:将待求解的数组分解为两个子数组,递归地求解这两个子数组的最大子数组和。
-解决:对两个子数组分别求解最大子数组和,可以使用递归或其他方法。
-合并:找出三个子问题中的最大子数组和,返回作为最终的解。
3.汉诺塔问题:汉诺塔问题是一个著名的递归问题,可以使用分治算法解决。
假设有三个柱子,初始时,有n个盘子从小到大依次放在第一个柱子上。
目标是将这些盘子移动到第三个柱子上,并保持它们的相对顺序不变。
每次只能移动一个盘子,并且大盘子不能放在小盘子上面。
汉诺塔问题的实现过程如下:-分解:将问题分解为两个子问题,将n-1个盘子从第一个柱子移动到第二个柱子,将最大的盘子从第一个柱子移动到第三个柱子。
归并排序求逆序对
归并排序求逆序对什么是逆序对:设 A 为⼀个有 n 个数字的有序集 (n>1),其中所有数字各不相同。
如果存在正整数 i, j 使得1 ≤ i < j ≤ n ⽽且 A[i] > A[j],则 <A[i], A[j]> 这个有序对称为 A 的⼀个逆序对,也称作逆序数。
如果还是不懂请点怎么求逆序对:求逆序对就需要先介绍⼀种排序⽅法:归并排序:归并排序是利⽤归并的思想实现的排序⽅法,该算法采⽤经典的分治策略分治法将问题分成⼀些⼩的问题然后递归求解.举个例⼦:输⼊n个数,要求从⼤到⼩排序:【思路】:利⽤分治发(⼆分),从中间分开,再把左右依次分开,始终让⼩区间内的数从⼩到⼤,那么这是分治的思想(分⽽治之)图解(来⾃dreamcatcher-cs的博客):让后利⽤⼀个新的数组把数据放过去,让后再放回来代码:#include<iostream>#include<cstdio>#include<algorithm>#include<cmath>#include<queue>#include<stack>#include<vector>#include<map>#include<string>#include<cstring>using namespace std;const int maxn=999999999;const int minn=-999999999;inline int read() {char c = getchar();int x = 0, f = 1;while(c < '0' || c > '9') {if(c == '-') f = -1;c = getchar();}while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar(); return x * f;}int n,a[100152],b[100250];void doit(int l,int mid,int r) {int i,j,k;int n1=mid-l+1;int n2=r-mid;int L[n1],R[n2];for (i=0; i<n1; i++)L[i]=a[l+i];for (j=0; j<n2; j++)R[j]=a[mid+j+1];i=0;j=0;k=l;while(i<n1&&j<n2) {if(L[i]<=R[j]) {a[k]=L[i];i++;} else {a[k]=R[j];j++;}k++;}while(i<n1) {a[k]=L[i];i++;k++;}while(j<n2) {a[k]=R[j];j++;k++;}}void my_sort(int l,int r) { //分if(l<r) {int mid=(l+r)/2;my_sort(l,mid);my_sort(mid+1,r);doit(l,mid,r);}}int main() {cin>>n;for(int i=0; i<n; ++i) {cin>>a[i];}my_sort(0,n-1);for(int i=0; i<n; ++i) {cout<<a[i]<<"";}return0;}接下来终于到逆序对了:放两个题⽬:【题⽬描述】Prince对他在这⽚⼤陆上维护的秩序感到满意,于是决定启程离开艾泽拉斯。
高中信息技术 全国青少年奥林匹克联赛教案 分治法二
分治法课题:分治法目标:知识目标:分治的原理与分治的实现能力目标:分治的原理重点:分治的应用难点:分治的理解板书示意:1)分治的引入(例29)2)分治的应用(例30)授课过程:所谓分治法就是将问题分而治之。
有将问题一分为二,也有将问题一分为三或一分为N 等份。
对每一等份分别进行解决后,原问题就可以很快得以解决。
因此一个问题能否用分治法解决,关键是看该问题是否能将原问题分成n个规模较小而结构与原问题相似的子问题。
递归的解决这些子问题,然后合并其结果就得到原问题的解。
当n=2时的分治法又称二分法。
使用分治策略的问题常常要借助递归的结构,逐层求解,当问题规模达到某个简单情况时,解容易直接得出,而不必继续分解。
其过程大致如下:if 问题不可分then begin直接求解;返回问题的解;endelse begin从原问题中划出含1/n运算对象的子问题1;递归调用分治法过程,求出解1;从原问题中划出含1/n运算对象的子问题2;递归调用分治法过程,求出解2;…………从原问题中划出含1/n运算对象的子问题n;递归调用分治法过程,求出解n;将解1、解2、……、解n组合成整个问题的解;end;根据分治法的分割原则,原问题应该分为多少个子问题才较适宜?大量实践发现:在用分治法设计算法时,最好是子问题的规模大致相同。
通常可以采取二分法,因为这么划分即简单而且均匀。
使子问题规模相等的做法是出自平衡子问题的思想,一般情况下总是比子问题规模不等的做法要有效。
例29:归并排序某数列存储在对序列A[1],A[2],……,A[n],现采用归并思想进行排序。
分析:这里我们采用二分法。
先将n个元素分成两个各含⎡⎤2/n或(⎣⎦2/n)个元素的子序列;再用归并排序法对两个子序列递归的排序;最后合并两个已排序的子序列以得到排序结果。
在对子序列排序时,当其长度为1时递归结束。
单个元素被视为是已经排好的序列。
下面我们来分析一下对两个已排好序的子序列A[P..Q]和A[Q+1..R],将它们合并成一个已排好的子序列[P..R]。
归并排序-PPT优秀课件
堆排序
O(1)
归并排序
O(n)
空间复杂度
30
排序方法 直接插入排序 希尔排序 冒泡排序 快速排序 简单选择排序 堆排序 归并排序
辅助空间
稳定 不稳定 稳定 不稳定 稳定 不稳定 稳定
算法稳定性
31
10.6 内部排序方法的比较讨论
❖ 简单性
一类是简单算法,包括直接插入排序、直接 选择排序和冒泡排序,
另一类是改进后的算法,包括希尔排序、堆 排序、快速排序和归并排序,这些算法较复杂
32
10.6 内部排序方法的比较讨论
❖ 待排序记录个数比较
n越小,采用简单排序方法越合适。 n越大,采用改进的排序方法越合适。
因为n越小,O(n2)同O(nlog2n)的差距越小, 并且输入和调试简单算法比 高效算法要容易
关键码的分布情况29排序方法平均情况最好情况最坏情况时间复杂度30排序方法辅助空间空间复杂度31排序方法辅助空间稳定算法稳定性32简单性一类是简单算法包括直接插入排序直接选择排序和冒泡排序另一类是改进后的算法包括希尔排序堆排序快速排序和归并排序这些算法较复杂106内部排序方法的比较讨论33106内部排序方法的比较讨论待排序记录个数比较n越小采用简单排序方法越合适
33
10.6 内部排序方法的比较讨论
❖ 数据的信息量比较
信息量越大,移动记录所花费的时间就越多, 所以对记录的移动次数较多的算法不利。
排序方法
直接插入排序 冒泡排序
直接选择排序
最好情况 O(n) 0 0
最坏情况 O(n2) O(n2) O(n)
平均情况 O(n2) O(n2) O(n)
34
10.6 内部排序方法的比较讨论
❖ 数据的分布情况比较
二路归并排序的链式实现 -回复
二路归并排序的链式实现-回复什么是归并排序?归并排序(Merge Sort)是一种基于分治法的经典排序算法。
该算法将待排序的序列拆分成若干个子序列,分别对每个子序列进行排序,然后再将已排序的子序列合并成更大的有序序列,直到全部元素都被合并成一个有序序列为止。
归并排序采用了分治的思想,能够有效地解决大规模数据的排序问题。
为什么要使用归并排序?归并排序具有以下几个优点:1. 稳定性:由于归并排序是通过合并已排序的子序列来排序,因此相等元素的相对位置不会改变,保持了原有序列中相同元素之间的顺序。
2. 适应性:归并排序适用于各种类型的数据,以及各种大小的数据集。
3. 均匀性:归并排序相对于其他排序算法来说,在最坏情况下的时间复杂度也是相对较低的,具有较好的平均性能。
如何进行归并排序的链式实现?下面将介绍归并排序的链式实现方法。
首先,我们需要定义一个链表节点的数据结构,用于保存排序的数据和链接下一个节点。
这个节点结构可以包含两个部分:数据元素和下一个节点的指针。
然后,我们需要实现归并排序算法的核心函数:MergeSort。
这个函数将分为两个步骤:拆分和合并。
拆分步骤:1. 首先,判断链表是否为空或只有一个节点,如果是,则无需排序,直接返回。
2. 如果链表中有多个节点,则使用快慢指针法将链表一分为二。
快指针每次走两步,慢指针每次走一步,直到快指针到达链表尾部。
此时慢指针所指的位置即为链表的中间位置。
3. 将链表从中间位置断开,得到两个子链表。
4. 递归地对两个子链表分别调用MergeSort函数进行拆分,并将结果重新连接起来。
合并步骤:1. 定义一个辅助函数Merge,用于合并两个已排序的链表。
2. 创建一个新的链表作为合并结果的头节点,并初始化两个指针分别指向两个链表的头节点。
3. 通过比较两个链表当前指针所指的元素大小,将较小的元素插入到新链表的尾部,并移动相应的指针。
4. 重复上述步骤,直到有一个链表的所有元素都已插入到新链表中。
算法分析与设计第四章2分治法归并分类PPT课件
{
item=a[j];i=j-1;
while(i>=1&&item<a[i])
{
a[i+1]=a[i];i=i-1;
}
a[i+1]=item;
}
}
2008-09-01
i指示的是j之前的一位, 即当前已排序子表的 最末一个元素的下标
4
性能分析
输入数据按非增次序排列,每次内层while循 环执行j次(j=1,2,…, n-1)。
i 1 2 3 4 5 6 7 8 9 10 a[i] 6 7 8 9 2 3 4 5 0 1
i 1 2 3 4 5 6 7 8 9 10 a[i] 2 3 4 5 6 7 8 9 0 1
步骤4:length=8
i 1 2 3 4 5 6 7 8 9 10 a[i] 0 1 2 3 4 5 6 7 8 9
16
public static void MergeSort(int n,int DataLength) { //n为待合并数据个数
int i,t; //循环计数变量 i=1; //还有两段长度为DataLength的list可合并 while(i<=(n-2*DataLength+1)) {
Merge(i, i+DataLength-1, i+2*DataLength-1); i=i+2*DataLength; } if(i+DataLength<n) {//合并两段list,一段长度为DataLength,另一段长度不足DataLength Merge(i, i+DataLength-1, n); } else {//将剩下一段长度不足DataLength的list中的值不变 } }
分治算法PPT
第一步
[38 49] [65 97] [13 76] [27]
第二步 第三步
[38 49 65 97]
[13 27 76]
18
[13 27 38 49 65 76 97]
归并排序主函数
void mergesort(int A[], int l, int r, int T[]) {
if(l < r) { int mid = (l + r) / 2; //二分 mergesort(A, l, mid, T);//继续对左子序列递归排序 mergesort(A, mid+1, r, T);//继续对右子序列递归排序 merge(A, l, mid, r, T); //合并
8
方法1
假设袋中有n个金块。可以通过n-1次比较找到最重 的金块。然后可以从余下的n-1个金块中用类似的方 法通过n-2次比较找出最轻的金块。这样,比较的总 次数为2n-3。具体的实现方法如下:
max = a[1]; min = a[1]; for(i=2; i<=n; i++) //2n-2次比较 {
问题,最后合并其结果就得到原问题的解。当分解(Divide):将原问题分成一系列子问题。 解决(Conquer):递归地解各子问题。若子问题
足够小,则可直接求解。 合并(combine);将子问题的结果合并成原问题
的解。
14
分治思想
问题的分解
方法1:每枚硬币都至少进行了一次比较,而有一枚硬 币进行了15次比较
方法2:每一枚硬币只进行了一次比较 方法3:将硬币分为两组后一次比较可以将硬币的范
围缩小到了原来的一半,这样充分地利用了只有1枚 伪币的基本性质。
【精品文档】归并排序实验报告-范文模板 (13页)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==归并排序实验报告篇一:归并排序与快速排序实验报告一、实验内容:对二路归并排序和快速排序对于逆序的顺序数的排序时间复杂度比较。
二、所用算法的基本思想及复杂度分析:1、归并排序1)基本思想:运用分治法,其分治策略为:①划分:将待排序列r1,r2,……,rn划分为两个长度相等的子序列r1,……,rn/2和rn/2+1,……,rn。
②求解子问题:分别对这两个子序列进行排序,得到两个有序子序列。
③合并:将这两个有序子序列合并成一个有序子序列。
2)复杂度分析:二路归并排序的时间代价是O(nlog2n)。
二路归并排序在合并过程中需要与原始记录序列同样数量的存储空间,因此其空间复杂性O(n)。
2、快速排序:1)基本思想:运用分治法,其分治策略为:①划分:选定一个记录作为轴值,以轴值为基准将整个序列划分为两个子序列r1……ri-1和ri+1……rn,轴值的位置i在划分的过程中确定,并且前一个子序列中记录的值均小于或等于轴值,后一个子序列中记录的值均大于或等于轴值。
②求解子问题:分别对划分后的每一个子序列递归处理。
③合并:由于对子序列r1……ri-1和ri+1……rn的排序是就地进行的,所以合并不需要执行任何操作。
2)复杂度分析:快速排序在平均时间复杂性是O(nlog2n)。
最坏的情况下是O(n^2)。
三、源程序及注释:1、归并排序#include<iostream>#include<fstream>#include "windows.h"using namespace std;void Merge(int r[],int r1[],int s,int m,int t )}int MergeSort(int r[],int r1[],int s,int t){}void main()int i=s; int j=m+1; int k=s; while(i<=m&&j<=t) {} if(i<=m)while(i<=m) r1[k++]=r[i++];//第一个没处理完,进行收尾if(r[i]<=r[j])r1[k++]=r[i++];//取r[i]和r[j]中较小的放入r1[k]中 else r1[k++]=r[j++]; else while(j<=t) r1[k++]=r[j++];//第二个没处理完,进行收尾 for(int l=0;l<k;l++) { } r[l]=r1[l];//将合并完成后的r1[]序列送回r[]中 if(s==t)r1[s]=r[s]; else{int m; m=(s+t)/2;MergeSort(r,r1,s,m);//归并排序前半个子序列 MergeSort(r,r1,m+1,t); //归并排序后半个子序列 Merge(r1,r,s,m,t);//合并两个已排序的子序列 }return 0;int a[100000]; int a1[10000];int n,i;int b[3]= {1000,3000,5000};//产生3个数组。
数据结构课程设计--二路归并排序说明书
前言1.1排序的重要性生活中,无时不刻不充满这排序,比如:班级同学的成绩排名问题,公司产值高低的问题等等,解决这些问题的过程中,都涉及到了一个数据结构的构造思想过程。
数据结构中的排序,也有很多种,如:插入排序、交换排序、选择排序等等,此时我们就要注意选择具有优解的算法,将一个数据元素(或记录)的任意序列,重新排列成一个有序的排列,便于我们查找。
假设含有n个记录的序列为{R1,R2,Rn},其相应的关键字序列为{K1,K2,…,Kn}需确定1,2…n的一种排序P1,P2…Pn,使其相应的关键字满足如下的非递减的关系:Kp1≤Kp2≤…≤Kpn,即按关键字{Rp1,Rp2,…,Rpn}有序的排列,这样的一种操作称为排序。
一般情况下,排序又分为内部排序和外部排序。
而在内部排序中又含有很多排序方法,就其全面性能而言,很难提出一种被认为是最好的方法,因为每一种方法都有它的优缺点,适合在不同的环境下使用。
我们学习的排序有:直接插入排序、折半插入排序、希尔排序、快速排序、基数排序、归并排序等。
本次课题研究中,我主要进行了二路归并排序的研究和学习。
1.2设计的背景和意义排序是计算机领域的一类非常重要的问题,计算机在出来数据的过程中,有25%的时间花在了排序上,有许多的计算机设备,排序用去计算机处理数据时间的一半以上,这对于提高计算机的运行速度有一定的影响。
此时排序算法的高效率显得尤为重要。
在排序算法汇中,归并排序(Merging sort)是与插入排序、交换排序、选择排序不同的另一类排序方法。
归并的含义是将两个或两个以上的有序表组合成一个新的有序表。
归并排序可分为多路归并排序,两路归并排序,既可用于内排序,也可以用于外排序。
这里仅对内排序的两路归并排序进行讨论。
而我们这里所探究学习的二路归并排序,设计思路更加清晰、明了,程序本身也不像堆结构那样复杂,同时时间复杂度仅为0(N),同时在处理大规模归并排序的时候,排序速度也明显优于冒泡法等一些排序算法,提高排序算法的效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
int [] a = new int [8];
Seanner sea n = new Seanner (System, in);
“if (b[i]<=b[j]) temp[k++]=b[i++];
else temp[k++]=b[j++];”‘
其执行次数为:0(n],即执行一趟归并算法的时间复杂度为0(D)则归并排序算法存在以下推式:k(D)=
{ 2T(n/2)+n n> 1所以,归并排序算法的时间复杂度为'I■12。
另外,归并排序算法递归调用次数为II。
}
}
〃归并
public static void GuiB ing(int b[], int temp[], int r, int
s, int t){
int i=r,j=s+1 ,k=r; while (i<=s && j<=t){
if (b[i]<=b01)
temp[k++]=b[i++];
else
temp[k++]=b[j++];
com++;〃每比较一次,加一
}
while (i<=s)
temp[k++]=b[i++];
while (j<=t)
temp[k++]=b[j++];
}
课程
学院
专业
(班级)
设待排序记录个数为n,该算法的基本语句是归并算法的循环体的比较语句
}
System, out .println( "\n比较次数:"+com);
System, out .println(”递归调用次数:”+use);
}
〃归并排序
public static void PaiXu( int b[], int r, int t){ use++;〃每递归调用一次,加一int s;
PaiXu (a,r,t);
仅供学习与交流,如有侵权请联系网站刪除谢谢2
课程
学院
专业 (班级)
姓名
学号
日期
年月日
〃输出各个数据
System, out .println(”该8个整数从小到大是:”);
for (int i=0;i<a.length ;i++){
System, out .print(a[i]+””);
3、完成算法分析
4、用JAVA实现算法,分别运行5・10个记录的排序,分析比较次数和规模之间的尖系
5、判断运行结果是否与分析结果一致
6、和实验一的结果比较复杂性差别(用图表)
三、
1、代码如下:(n=8)
import java.util.Sea nner;
public class GuiB in gPaiXu {
int r=0, t=a. len gth -1;
int num;
System, out .printin (”请输入8个整数:”);
〃将输入的每个数记入数组
for (int i=0;i<a.length ;i++) {
num = sea n.n ext I nt ();
a[i] = num;
}
〃递归调用归并排序
实验二分治法归并排
课程
算法导论
学院
专业 (班级)
姓名
学号
日期
实验二分治法归并排序
一、
(-)实验目的
1、熟悉归并排序算法过程;
2、验证归并排序算法复杂度。
(二)实验要求
1、合理添加计数器
2、实现归并排序算法并验证复杂性
3、掌握递归方法
二、
1、设计归并排序算法
2、在算法中添加计数器,累计比较次数(注意计数器要用全局变量)和递归调用次数
3、结果如下:
:应间霆独詔OC㈣离明 呈控制台乂v已蜒止a GuiBingPaiXu [JAva应凫 序ID:\Pnn=5
|L闫圖@Javadoc空,芦明胃輦制台总1
卜已蟀止》GuiB ngPaiXu [Java应用程 请愉人5个藝厂
int [] temp = new int [b. Iength ];
if (r==t) return ;
else {
s=(r+t)/2;
PaiXu (b,r,s);
PaiXu (b,s+1 ,t);
GuiBing (b,temp,r,s,t);
for (int i=r;iv=t;i++) b[i]=temp[i];