6 第6讲 对数与对数函数

合集下载

对数及对数函数要点及解题技巧讲解

对数及对数函数要点及解题技巧讲解

的最大值与最小值之差为12,则 a 等于( )

A. 2
B.2 或12

B

C.2 2
D.4 或14
分析:∵a>1 与 0<a<1 时,f(x)的单调性不同,∴最
小值、最大值也不同,故需分类讨论.
第2章 函数
高考数学总复习
解析:当 0<a<1 时,f(x)在[a,2a]上单调递减,由题意
得,logaa-loga2a=12,∴loga2=-12,∴a=14.
人 教
B
当 a>1 时,∴f(x)=logax 在[a,2a]上为增函数,

∴loga2a-logaa=12,解得 a=4,故选 D.
答案:D
第2章 函数
(2011·江苏四市联考)已知函数 f(x)=|log2x|,正实 数 m、n 满足 m<n,且 f(m)=f(n),若 f(x)在区间[m2,
高考数学总复习
二、对数函数的图象与性质
定义
y=logax(a>0,a≠1)
人 教
B

图象
第2章 函数
高考数学总复习
(1)定义域:(0,+∞) (2)值域:R
(3)过点(1,0),即当 x=1 时,y=0.

性质 (4)当 a>1 时,在(0,+∞)是增函数;

B
当 0<a<1 时,在(0,+∞)上是减函数.
B

(2)原式=llgg23+llgg29·llgg34+llgg38
=llgg23+2llgg23·2llgg32+3llgg32=32llgg23·56llgg32=54.
答案:(1)2

【高中数学】第六节 对数与对数函数

【高中数学】第六节 对数与对数函数

第六节对数与对数函数学习要求:1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数,了解对数在化简运算中的作用.2.理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点.3.知道对数函数是一类重要的函数模型.4.了解指数函数y=a x与对数函数y=log a x互为反函数(a>0,且a≠1).1.对数的概念(1)对数的定义:一般地,如果①a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作②x=logN ,其中③ a 叫做对数的底数,④N 叫做真数.a(2)几种常见的对数:对数形式特点记法一般对数底数为a(a>0,且a≠1) ⑤log a N常用对数底数为10 ⑥lg N自然对数底数为e ⑦ln N2.对数的性质与运算法则(1)对数的性质:a log a N=⑧N ;log a a N=⑨N .(a>0,且a≠1)(2)对数的重要公式:换底公式:⑩log b N =log a N(a,b均大于0且不等于1);log a b,log a b·log b c·log c d=log a d (a,b,c均大于0且不等于1,d大于相关结论:log a b=1log b a0).(3)对数的运算法则:如果a >0且a ≠1,M >0,N >0,那么 log a (MN )= log a M +log aN; log a MN = log a M -log a N ; log a M n = n log a M (n ∈R); lo g a m M n =nm log a M (m ,n ∈R,且m ≠0). 3.对数函数的图象与性质a >1 0<a <1图象性质定义域:(0,+∞) 值域:R图象恒过点(1,0),即x =1时,y =0 当x >1时,y >0; 当0<x <1时,y <0 当x >1时,y <0; 当0<x <1时,y >0 是(0,+∞)上的增函数 是(0,+∞)上的减函数4.反函数指数函数y =a x (a >0,且a ≠1)与对数函数 y =log a x (a >0,且a ≠1)互为反函数,它们的图象关于直线 y =x 对称. 知识拓展对数函数的图象与底数大小的比较如图,作直线y =1,则该直线与四个函数图象交点的横坐标为相应的底数,故0<c <d <1<a <b.由此我们可得到以下规律:在第一象限内,从左到右底数逐渐增大.1.判断正误(正确的打“√”,错误的打“✕”). (1)log a (MN )=log a M +log a N. ( ) (2)log a x ·log a y =log a (x +y ). ( )(3)log 2x 2=2log 2x. ( ) (4)若log a m <log a n ,则m <n. ( )(5)函数y =ln 1+x1-x 与函数y =ln(1+x )-ln(1-x )的定义域相同.( )(6)对数函数y =log a x (a >0,且a ≠1)的图象过定点(1,0),且过点(a ,1),(1a ,-1),其图象经过第一,四象限.( )答案 (1)✕ (2)✕ (3)✕ (4)✕ (5)√ (6)√ 2.log 525+1612=( )A.94 B.6 C.214 D.9答案 B log 525+1612=log 552+(42)12=2log 55+4=6.故选B . 3.下列各式中正确的是( )A.log a 6log a3=log a 2 B.lg 2+lg 5=lg 7 C.(ln x )2=2ln x D.lg √x 35=35lg x答案 D 对于A 选项,由换底公式得log a 6log a3=log 36=1+log 32,故A 错;对于B 选项,lg 2+lg 5=lg(2×5)=1,故B 错; 对于C 选项,(ln x )2=ln x ×ln x ≠2ln x ,故C 错;对于D选项,lg √x 35=lg x 35=35lg x ,故D 正确.故选D.4.(2020安徽月考)已知a =log 23,b =(12)12,c =(13)13,则a ,b ,c 的大小关系是 ( )A.a <b <cB.a <c <bC.b <c <aD.c <b <a 答案 D 因为a =log 23>log 22=1,0<b =(12)12<(12)0=1,0<c =(13)13<(13)0=1, 又b 6=(12)3=18,c 6=(13)2=19,所以b 6>c 6,所以b >c ,即c <b <a.故选D.5.(2020河北唐山第十一中学期末)函数f (x )=lg(x -2)的定义域为 ( )A.(-∞,+∞)B.(-2,2)C.[2,+∞)D.(2,+∞)答案 D 函数f (x )=lg(x -2)的定义域为x -2>0,即x >2,所以函数f (x )=lg(x -2)的定义域为(2,+∞),故选D .6.(易错题)已知a >0,且a ≠1,则函数f (x )=a x 与函数g (x )=log a x 的图象可能是( )答案 B 由函数f (x )=a x 与函数g (x )=log a x 互为反函数,得图象关于y =x 对称,从而排除A,C,D.易知当a >1时,两函数图象与B 选项中的图象相同.故选B. 易错分析 忽视反函数的定义.对数的概念、性质与运算角度一 对数的概念与性质典例1 (1)若log a 2=m ,log a 5=n (a >0,且a ≠1),则a 3m +n = ( )A.11B.13C.30D.40 (2)已知2a =5b =10,则a+bab = . (3)设52log 5(2x -1)=9,则x = . 答案 (1)D (2)1 (3)2 角度二 对数的运算典例2 计算:(1)(lg 2)2+lg 2·lg 50+lg 25; (2)log 3√2743+lg 5+7log 72+log 23·log 94+lg 2; (3)(log 32+log 92)·(log 43+log 83).解析 (1)原式=(lg 2)2+(1+lg 5)·lg 2+lg 52=(lg 2+lg 5+1)·lg 2+2lg 5=(1+1)·lg 2+2lg 5=2(lg 2+lg 5)=2.(2)原式=log 3334-1+lg 5+2+lg3lg2·2lg22lg3+lg 2=34-1+(lg 5+lg 2)+2+1=-14+1+3=154.(3)原式=log 32·log 43+log 32·log 83+log 92·log 43+log 92·log 83 =lg2lg3·lg32lg2+lg2lg3·lg33lg2+lg22lg3·lg32lg2+lg22lg3·lg33lg2=12+13+14+16=54. 规律总结对数运算的求解思路(1)首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后利用对数的运算性质求解.(2)将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算性质,将其转化为同底数对数的真数的积、商、幂的运算.1.(lg 5)2+lg 2·lg 5+lg 20-log 23·log 38+2(1+log 25)= . 答案 9解析 原式=lg 5·(lg 5+lg 2)+lg 2+lg 10-log 23·log 28log 23+2·2log 25=1+1-3+10=9.2.如果45x =3,45y =5,那么2x +y = . 答案 1解析 ∵45x =3,45y =5,∴x =log 453,y =log 455,∴2x +y =2log 453+log 455=log 459+log 455=log 45(9×5)=1.对数函数的图象及应用典例3 (1)函数f (x )=ln|x -1|的大致图象是( )(2)当0<x ≤12时,4x <log a x (a >0,且a ≠1),则a 的取值范围是 ( )A.(0,√22) B.(√22,1) C.(1,√2) D.(√2,2)(3)已知函数f (x )=4+log a (x -1)(a >0,且a ≠1)的图象恒过定点P ,则点P 的坐标是 .答案 (1)B (2)B (3)(2,4)解析 (1)当x >1时, f (x )=ln(x -1),又f (x )的图象关于直线x =1对称,所以选B .(2)易知0<a <1,函数y =4x与y =log a x 的大致图象如图所示,则由题意可知只需满足log a 12>412,解得a >√22,∴√22<a <1,故选B .方法技巧对数函数图象的应用方法一些对数型方程、不等式的问题常转化为相应函数的图象问题,利用数形结合求解.1.(2020黑龙江齐齐哈尔第六中学模拟)函数f(x)=|log a(x+1)|(a>0,且a≠1)的大致图象是()答案C函数f(x)=|log a(x+1)|的定义域为{x|x>-1},且对任意的x∈(-1,+∞),均有f(x)≥0,结合对数函数的图象可知选C.2.函数y=x-a与函数y=log a x(a>0,且a≠1)在同一坐标系中的图象可能是()答案C当a>1时,对数函数y=log a x为增函数,当x=1时,函数y=x-a的值为负,故A、D错误; 当0<a<1时,对数函数y=log a x为减函数,当x=1时,函数y=x-a的值为正,故B错误,C正确.故选C.对数函数的性质及应用角度一比较对数值的大小典例4(1)(2018天津,5,5分)已知a=log2e,b=ln 2,c=lo g1213,则a,b,c的大小关系为()A.a >b >cB.b >a >cC.c >b >aD.c >a >b(2)已知f (x )满足f (x )-f (-x )=0,且在(0,+∞)上单调递减,若a =(79)-14,b =(97)15,c =log 219,则f (a ), f (b ), f (c )的大小关系为 ( )A.f (b )<f (a )<f (c )B.f (c )<f (b )<f (a )C.f (c )<f (a )<f (b )D.f (b )<f (c )<f (a ) 答案 (1)D (2)C解析 (1)由已知得c =log 23,∵log 23>log 2e>1,b =ln 2<1,∴c >a >b ,故选D . (2)∵f (x )-f (-x )=0,∴f (x )=f (-x ), ∴f (x )为偶函数.∵c =log 219<0,∴f (c )=f (-log 219) =f (-log 219)=f (log 29),∵log 29>log 24=2,2>(97)1>a =(79)-14=(97)14>(97)15=b >0,∴log 29>a >b.∵f (x )在(0,+∞)单调递减, ∴f (log 29)<f (a )<f (b ), 即f (c )<f (a )<f (b ). 故选C .角度二 解简单的对数不等式典例5 (1)函数f (x )=√(log 2x )-1的定义域为 ( )A.(0,12)B.(2,+∞)C.(0,12)∪(2,+∞) D.(0,12]∪[2,+∞) (2)函数y =√log 3(2x -1)+1的定义域是 ( )A.[1,2]B.[1,2)C.[23,+∞)D.(23,+∞) 答案 (1)C (2)C角度三 对数函数性质的综合应用典例6 已知函数f (x )=log a (ax 2-x +1)(a >0,且a ≠1). (1)若a =12,求函数f (x )的值域;(2)当f (x )在[14,32]上为增函数时,求a 的取值范围. 解析 (1)当a =12时,ax 2-x +1=12x 2-x +1=12[(x -1)2+1]>0恒成立, 故函数f (x )的定义域为R,∵12x 2-x +1=12[(x -1)2+1]≥12,且函数y =lo g 12x 在(0,+∞)上单调递减,∴lo g 12(12x 2-x +1)≤lo g 1212=1,即函数f (x )的值域为(-∞,1]. (2)由题意可知,①当a >1时,由复合函数的单调性可知,必有y =ax 2-x +1在[14,32]上单调递增,且ax 2-x +1>0对任意的x ∈[14,32]恒成立,所以{x =12a ≤14,a ·(14)2-14+1>0,解得a ≥2;②当0<a <1时,同理可得必有y =ax 2-x +1在[14,32]上单调递减,且ax 2-x +1>0对任意的x ∈[14,32]恒成立,所以{x =12a ≥32,a ·(32)2-32+1>0,解得29<a ≤13.综上,a 的取值范围是(29,13]∪[2,+∞).规律总结1.比较对数值大小的方法(1)若底数为同一常数,则可由对数函数的单调性直接进行判断;若底数为同一字母,则需对底数进行分类讨论.(2)若底数不同,真数相同,则可以先用换底公式化为同底后,再进行比较. (3)若底数与真数都不同,则常借助1,0等中间值进行比较.2.对数不等式的类型及解法(1)形如log a x >log a b (a >0,且a ≠1)的不等式,需借助y =log a x 的单调性求解,如果a 的取值不确定,那么需要分为a >1与0<a <1两种情况讨论.(2)形如log a x >b (a >0,且a ≠1)的不等式,需先将b 化为以a 为底的对数式的形式,再求解.1.设a =log 36,b =log 510,c =log 714,则 ( )A.c >b >aB.b >c >aC.a >c >bD.a >b >c答案 D ∵a =log 36=1+log 32=1+1log 23,b =log 510=1+log 52=1+1log 25,c =log 714=1+log 72=1+1log 27,且log 27>log 25>log 23>0,∴a >b >c.2.(2019山东高考模拟)已知f (x )=e x -1+4x -4,若正实数a 满足f (log a 34)<1,则a 的取值范围是( )A.a >34 B.0<a <34或a >43 C.0<a <34或a >1 D.a >1答案 C 因为y =e x -1与y =4x -4都是在R 上的增函数,所以f (x )=e x -1+4x -4是在R 上的增函数,又因为f (1)=e 1-1+4-4=1,所以f (log a 34)<1等价于log a 34<1,所以log a 34<log a a ,当0<a <1时,y =log a x 在(0,+∞)上单调递减,所以a <34,故0<a <34; 当a >1时,y =log a x 在(0,+∞)上单调递增,所以a >34,故a >1, 综上所述,a 的取值范围是0<a <34或a >1.故选C.3.(2020上海高三专题练习)函数y=√log0.5(4x2-3x)的定义域为.答案[-14,0)∪(34,1]解析由题意可知0<4x2-3x≤1,解得x∈[-14,0)∪(34,1].4.函数f(x)=lo g13(-x2+2x+3)的单调递增区间是.答案[1,3)解析令u=-x2+2x+3,由u>0,解得-1<x<3,即函数f(x)的定义域为(-1,3),根据二次函数的图象与性质可知函数u=-x2+2x+3在(-1,1)上单调递增,在[1,3)上单调递减, 因为函数f(x)=lo g13u为单调递减函数,所以根据复合函数的单调性可得函数f(x)的单调递增区间为[1,3).5.已知函数f(x)=ln(√1+9x2-3x)+1,求f(lg 2)+f(lg12)的值.解析由√1+9x2-3x>0恒成立知函数f(x)的定义域为R,因为f(-x)+f(x)=[ln(√1+9x2+3x)+1]+[ln(√1+9x2-3x)+1]=ln [(√1+9x2+3x)·(√1+9x2-3x)]+2=ln 1+2=2,所以f(lg 2)+f(lg12)=f(lg 2)+f(-lg 2)=2.A组基础达标1.已知函数f(x)=log2(x2-2x+a)的最小值为2,则a= ()A.4B.5C.6D.7答案 B2.log29×log34+2log510+log50.25= ()A.0B.2C.4D.6答案 D 原式=2log 23×(2log 32)+log 5(102×0.25)=4+log 525=4+2=6. 3.(2020河北冀州中学模拟)函数y =√log 3(2x -1)+1的定义域是 ( ) A.[1,2] B.[1,2) C.[23,+∞) D.(23,+∞) 答案 C4.log 6[log 4(log 381)]的值为( )A.-1B.1C.0D.2 答案 C5.(2019河南郑州模拟)设a =log 50.5,b =log 20.3,c =log 0.32,则 ( )A.b <a <cB.b <c <aC.c <b <aD.a <b <c答案 B a =log 50.5>log 50.2=-1,b =log 20.3<log 20.5=-1,c =log 0.32>log 0.3103=-1,log 0.32=lg2lg0.3,log 50.5=lg0.5lg5=lg2-lg5=lg2lg0.2.∵-1<lg 0.2<lg 0.3<0,∴lg2lg0.3<lg2lg0.2,即c <a ,故b <c <a.故选B .6.若lg 2=a ,lg 3=b ,则log 418= ( ) A.a+3b a 2B.a+3b 2aC.a+2b a 2D.a+2b 2a答案 D log 418=lg18lg4=lg2+2lg32lg2.因为lg 2=a ,lg 3=b ,所以log 418=a+2b 2a.故选D .7.已知函数f (x )=lg 1-x1+x ,若f (a )=12,则f (-a )= ( ) A.2 B.-2 C.12 D.-12答案 D ∵f (x )=lg 1-x1+x 的定义域为{x |-1<x <1},且f (-x )=lg 1+x1-x =-lg 1-x1+x =-f (x ), ∴f (x )为奇函数,∴f (-a )=-f (a )=-12.8.设f (x )=lg(10x +1)+ax 是偶函数,则a 的值为 ( ) A.1 B.-1 C.12 D.-12答案 D 函数f (x )=lg(10x+1)+ax 的定义域为R,因为f (x )为偶函数,所以f (x )-f (-x )=0,即lg(10x +1)+ax -[lg(10-x +1)+a (-x )]=(2a +1)x =0,所以2a +1=0,解得a =-12.B 组 能力拔高9.已知f (x )=lo g 12x ,则不等式(f (x ))2>f (x 2)的解集为 ( ) A.(0,14) B.(1,+∞) C.(14,1) D.(0,14)∪(1,+∞)答案 D 由(f (x ))2>f (x 2)得(lo g 12x )2>lo g 12x 2⇒lo g 12x ·(lo g 12x -2)>0,即lo g 12x >2或lo g 12x <0,解得原不等式的解集为(0,14)∪(1,+∞).10.若x 、y 、z 均为正数,且2x =3y =5z ,则 ( ) A.2x <3y <5z B.5z <2x <3y C.3y <5z <2x D.3y <2x <5z答案 D 令2x =3y =5z =k (k >1),则x =log 2k ,y =log 3k ,z =log 5k ,∴2x 3y =2lgklg2·lg33lgk =lg9lg8>1,则2x >3y ,2x 5z =2lgklg2·lg55lgk =lg25lg32<1,则2x <5z ,故选D . 11.(2020福建莆田第六中学模拟)已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则nm = . 答案 9解析 ∵f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),∴0<m <1<n ,-log 3m =log 3n ,∴mn =1. ∵f (x )在区间[m 2,n ]上的最大值为2,且函数f (x )在[m 2,1)上是减函数,在(1,n ]上是增函数, ∴-log 3m 2=2或log 3n =2.若-log 3m 2=2,则m =13(舍负),故n =3, 此时log 3n =1=-log 3m ,符合题意, 即nm =3÷13=9;若log 3n =2,则n =9,故m =19,此时-log 3m 2=4>2,不符合题意.故nm =9.C 组 思维拓展12.(2020四川攀枝花第七中学模拟)设函数f (x )=|log a x |(0<a <1)的定义域为[m ,n ](m <n ),值域为[0,1],若n -m 的最小值为13,则实数a 的值为 . 答案 23解析 作出y =|log a x |(0<a <1)的大致图象如图所示,令|log a x |=1,得x =a 或x =1a ,又1-a -(1a -1)=1-a -1-a a=(1-a )(a -1)a<0,所以1-a <1a -1,所以n -m 的最小值为1-a =13,即a =23.13.若log a (a 2+1)<log a (2a )<0,则a 的取值范围是 . 答案 (12,1)解析 由题意得a >0且a ≠1,故必有a 2+1>2a ,又log a (a 2+1)<log a (2a )<0,所以0<a <1,又2a >1,所以a >12.综上,实数a 的取值范围为(12,1).14.已知2x ≤16且log 2x ≥12,求函数f (x )=log 2x2·lo g √2√x2的值域. 解析 由2x ≤16得x ≤4,∴log 2x ≤2, 又log 2x ≥12,∴12≤log 2x ≤2,f (x )=log 2x2·lo g √2√x 2=(log 2x -1)·(log 2x -2) =(log 2x )2-3log 2x +2 =(log 2x -32)2-14,∴当log 2x =32时, f (x )min =-14.又当log 2x =12时, f (x )=34; 当log 2x =2时, f (x )=0, ∴当log 2x =12时, f (x )max =34. 故函数f (x )的值域是[-14,34].15.已知函数f (x )=3-2log 2x ,g (x )=log 2x.(1)当x ∈[1,4]时,求函数h (x )=[f (x )+1]·g (x )的值域;(2)如果对任意的x ∈[1,4],不等式f (x 2)·f (√x )>k ·g (x )恒成立,求实数k 的取值范围. 解析 (1)h (x )=(4-2log 2x )·log 2x =-2(log 2x -1)2+2. 因为x ∈[1,4],所以log 2x ∈[0,2], 故函数h (x )的值域为[0,2]. (2)由f (x 2)·f (√x )>k ·g (x )得 (3-4log 2x )·(3-log 2x )>k ·log 2x. 令t =log 2x ,因为x ∈[1,4], 所以t =log 2x ∈[0,2],所以(3-4t )·(3-t )>k ·t 对任意的t ∈[0,2]恒成立. 当t =0时,k ∈R; 当t ∈(0,2]时,k <(3-4t )(3-t )t 恒成立,即k <4t +9t -15恒成立. 因为4t +9t ≥12,当且仅当4t =9t ,即t =32时取等号, 所以(4t +9t -15)min =-3,则k <-3.综上,实数k 的取值范围是(-∞,-3).高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。

第二章 第六节 对数与对数函数

第二章 第六节 对数与对数函数

A.a>0>b
B.a>b>0
C.b>a>0
D.b>0>a
(1)D
(2)A



(1)a

log315

log3
3×5
= 1 + log35>1 , b = log420 =
log44×5
=1+log45>1,c=log21.9<1,因为
log35=llgg
5 3
lg 5 >lg 4
=log45,所以 a>b>c.
B.b<c<a
C.c<a<b
D.c<b<a
D
解析:画出函数 f(x)=|lg x|,∵f(2)=|lg 2|=|-lg 2|=lg
1 2
,且14
1 <3
1 <2

∴f14
1 >f3
1 >f2
,即 a>b>c.
5.(多选)函数 y=loga(x+c)(a,c 为常数,其中 a>0,a≠1)的图象如图所示, 则下列结论成立的是( )
第二章 函 数 第六节 对数与对数函数
必备知识 增分策略 关键能力 精准突破
栏目索引
必备知识 增分策略
必备知识 1.对数的概念 如果 ab=N(a>0,且 a≠1),那么 b 叫作以 a 为底,(正)数 N 的对数,记作 b =logaN.这里,a 叫作对数的_底__数_,N 叫作对数的真数.
答案:0,
2 2
解析:若方程 4x=logax 在0,12 上有解,则函数 y=4x 与

新高考一轮复习人教A版第二章第六讲对数与对数函数课件(58张)

新高考一轮复习人教A版第二章第六讲对数与对数函数课件(58张)

【名师点睛】对数运算的一些结论 (1)logam bn=mn logab. (2)logab·logba=1. (3)logab·logbc·logcd=logad.
3.对数函数的图象与性质
y=logax
a>1
图象
0<a<1
定义域 值域
(0,+∞) R
(续表)
y=logax
a>1
0<a<1
过定点(1,0),即 x=1 时,y=0
题组一 走出误区 1.(多选题)下列结论错误的是( )
A.2lg 3≠3lg 2 B.若 MN>0,则 loga(MN)=logaM+logaN C.y=log2x2 不是对数函数,而 y=log2(-x)是对数函数 D.函数 y=ln 11+-xx与 y=ln(1+x)-ln(1-x)的定义域 相同 答案:ABC
解析:原式=1-2log63+log63lo2g+64log663×log66×3 =1-2log63+lologg63642+1-log632=212-lolgo6g263 =log6l6o-g6l2og63=lloogg6622=1.
答案:1
3.已知 2x=12,log231=y,则 x+y 的值为________. 答案:2 4.设 2a=5b=m,且1a+1b=2,则 m=________.
[例 4](1)(2020 年新高考Ⅱ)已知函数 f(x)=lg(x2-4x-
5)在(a,+∞)单调递增,则 a 的取值范围是( )
A.(-∞,-1]
B.(-∞,2]
C.[2,+∞)
D.[5,+∞)
解析:由 x2-4x-5>0,得 x<-1 或 x>5,即函数 f(x)的定义域为(-∞,-1)∪(5,+∞).令t=x2-4x-5, 则t=(x-2)2-9,所以函数t在(-∞,-1)上单调递减, 在(5,+∞)上单调递增,又函数y=lg t在(0,+∞)上 单调递增,从而函数f(x)的单调递增区间为(5,+∞), 由题意知(a,+∞)⊆(5,+∞),∴a≥5.

对数与对数函数知识点及例题讲解

对数与对数函数知识点及例题讲解

对数与对数函数1.对数(1)对数的定义:)对数的定义:如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b . (2)指数式与对数式的关系:a b =N Ûlog a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化. (3)对数运算性质: ①log a (MN )=log a M +log a N . ②log a NM =log a M -log a N . ③log a M n =n log a M .(M >0,N >0,a >0,a ≠1)④对数换底公式:log b N =bNN a a log log log (a >0,a ≠1,b >0,b ≠1,N >0). 2.对数函数(1)对数函数的定义)对数函数的定义函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1 对数函数的底数为什么要大于0且不为1呢?在一个普通对数式里在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值的。

但是,根据对数定义: : loglog a a=1;如果a=1或=0那么log a a 就可以等于一切实数(比如log 1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n = nlog a M 如果a<0,那么这个等式两边就不会成立 (比如,log (-2) 4^(-2) 就不等于(-2)*log (-2) 4;一个等于1/16,另一个等于-1/16) (2)对数函数的图象)对数函数的图象O xyy = l o g x a > Oxy<a <a y = l o g x a 1111( ())底数互为倒数的两个对数函数的图象关于x 轴对称. (3)对数函数的性质: ①定义域:(0,+∞). ②值域:R . ③过点(1,0),即当x =1时,y =0. ④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数. 基础例题1.函数f (x )=|log 2x |的图象是的图象是1 1 1-1 1111 1 xxxxy y y y O OOOA BC D解析:f (x )=îíì<<-³.10,log ,1,log 22x x x x答案:A 2.若f --1(x )为函数f (x )=lg (x +1)的反函数,则f --1(x )的值域为___________________. 解析:f -1(x )的值域为f (x )=lg (x +1)的定义域.由f (x )=lg (x +1)的定义域为(-1,+∞),∴f --1(x )的值域为(-1,+∞). 答案:(-1,+∞)∞)3.已知f (x )的定义域为[0,1],则函数y =f [log 21(3-x )]的定义域是__________. 解析:由0≤log 21(3-x )≤1Þlog 211≤log 21(3-x )≤log 2121Þ21≤3-x ≤1Þ2≤x ≤25. 答案:[2,25]4.若log x7y=z ,则x 、y 、z 之间满足之间满足A.y 7=x zB.y =x 7zC.y =7x zD.y =z x解析:由logx 7y=z Þx z=7y Þx 7z=y ,即y =x 7z. 答案:B 5.已知1<m <n ,令a =(log n m )2,b =log n m 2,c =log n (log n m ),则,则A.a <b <cB.a <c <bC.b <a <cD.c <a <b解析:∵1<m <n ,∴0<log n m <1. ∴log n (log n m )<0. 答案:D 6.若函数f (x )=log a x (0<a <1)在区间[a ,2a ]上的最大值是最小值的3倍,则a 等于等于 A.42 B.22 C.41 D.21解析:∵0<a <1,∴f (x )=log a x 是减函数.∴log a a =3·log a 2a . ∴log a 2a =31.∴1+log a 2=31.∴log a 2=-32.∴a =42. 答案:A 7.函数y =log 2|ax -1|(a ≠0)的对称轴方程是x =-2,那么a 等于A. 21 B.-21 C.2 D.-2 解析:y =log 2|ax -1|=log 2|a (x -a1)|,对称轴为x =a1,由a1=-2 得a =-21. 答案:B 注意:此题还可用特殊值法解决,如利用f (0)=f (-4), 可得0=log 2|-4a -1|.∴|4a +1|=1.∴4a +1=1或4a +1=-1. ∵a ≠0,∴a =-21. 8.函数f (x )=log 2|x |,g (x )=-x 2+2,则f (x )·g (x )的图象只可能是能是OxyOxyOxyOxyABC D解析:∵f (x )与g (x )都是偶函数,∴f (x )·g (x )也是偶函数,)111-1O xy注意:研究函数的性质时,利用图象会更直观. 【例3】 已知f (x )=log 31[3-(x -1)2],求f (x )的值域及单调区间. 解:∵真数3-(x -1)2≤3,∴log 31[3-(x -1)2]≥log 313=-1,即f (x )的值域是[-1,+∞).又3-(x -1)2>0,得1-3<x <1+3,∴x ∈(1-3,1]时,]时,3-(x -1)2单调递增,从而f (x )单调递减;x ∈[1,1+3)时,f (x )单调递增. 注意:讨论复合函数的单调性要注意定义域. 【例4】已知y =log a (3-ax )在[0,2]上是x 的减函数,求a 的取值范围. 解:∵a >0且a ≠1,∴t =3-ax 为减函数.依题意a >1,又t =3-ax 在[0,2]上应有t >0,∴3-2a >0.∴a <23.故1<a <23. 【例5】设函数f (x )=lg (1-x ),g (x )=lg (1+x ),在f (x )和)和 g (x )的公共定义域内比较|f (x )|与|g (x )|的大小. 解:f (x )、g (x )的公共定义域为(-1,1). |f (x )|-|g (x )|=|lg (1-x )|-|lg (1+x )|. (1)当0<x <1时,|lg (1-x )|-|lg (1+x )|=-lg (1-x 2)>0; (2)当x =0时,|lg (1-x )|-|lg (1+x )|=0;(3)当-1<x <0时,|lg (1-x )|-|lg (1+x )|=lg (1-x 2)<0. 综上所述,当0<x <1时,|f (x )|>|g (x )|;当x =0时,|f (x )|=|g (x )|;当-1<x <0时,|f (x )|<|g (x )|. 【例6】 求函数y =2lg (x -2)-lg (x -3)的最小值. 解:定义域为x >3,原函数为y =lg 3)2(2--x x . 又∵3)2(2--x x x =3442-+-x x x =31)3(2)3(2-+-+-x x x =(x -3)+31-x +2≥4, ∴当x =4时,y min =lg4. 【例7】 (2003年北京宣武第二次模拟考试)在f 1(x )=x 21,f 2(x )=x 2,f 3(x )=2x ,f 4(x )=log 21x 四个函数中,x 1>x 2>1时,能使21[f(x 1)+f (x 2)]<f (221x xx x +)成立的函数是)成立的函数是A.f 1(x )=x 21B.f 2(x )=x 2C.f 3(x )=2xD.f 4(x )=log 21x解析:由图形可直观得到:只有f 1(x )=x 21为“上凸”的函数. 答案:A 探究创新1.若f (x )=x 2-x +b ,且f (log 2a )=b ,log 2[f (a )]=2(a ≠1). (1)求f (log 2x )的最小值及对应的x 值;值;(2)x 取何值时,f (log 2x )>f (1)且log 2[f (x )]<f (1)?)? 解:(1)∵f (x )=x 2-x +b ,∴f (log 2a )=log 22a -log 2a +b . 由已知有log 22a -log 2a +b =b ,∴(log 2a -1)log 2a =0. ∵a ≠1,∴log 2a =1.∴a =2.又log 2[f (a )]=2,∴f (a )=4. ∴a 2-a +b =4,b =4-a 2+a =2.故f (x )=x 2-x +2,127m +m -+m )-+m+2m ≥+xm+2m )+x m ≥2m (当且仅当=xm ,即=m 时等号成立)+x m +2m )=4m ,即4m ≥≥169. 可以首先将它们与零比较,分出正负;正数通常都再与1比较分出大于1还是小于1,然后在各类中间两两相比较. 3.在给定条件下,求字母的取值范围是常见题型,要重视不等式知识及函数单调性在这类问题上的应用. 。

6对数与对数函数(教师版)

6对数与对数函数(教师版)

对数及对数函数一、教学目标掌握对数及对数函数的概念,掌握对数函数的性质并且能灵活运用,熟悉判断函数的单调性奇偶性,值域等,并且掌握部分含参问题的解决方法。

二、教学重难点重点:对数中的计算以及对数函数的大小比较、函数的性质运用,含参问题,对数的综合运用难点:对数函数的值域、单调性问题,利用函数的性质求参数取值范围三、知识点梳理1、对数:定义:如果a N a a b=>≠()01且,那么数b 就叫做以a 为底的对数,记作b N a =l o g (a 是底数,N 是真数,lo g a N 是对数式。

) 由于N a b=>0故lo g a N 中N 必须大于0。

当N 为零或负数时对数不存在。

2、对数的性质: ①负数和零没有对数;②1的对数是零,底数的对数等于1,即01log ,1log ==a a a ③常用对数和自然对数:对数)1,0(log ≠>a a N a 的底数 (1)a=10时,叫做常用对数,记作N lg(2)a=e 时,叫做自然对数,记作N ln ,其中e 为无理数,e ≈2.71828 3、对数的运算法则:①()()l o g l o g l o g a a aM N M N M N R =+∈+, ②()l o g l o g l o g a a aMNM N M N R =-∈+, ③()()l o g l o g a naN n N N R =∈+b a b a =log ④()l o g l o g a naN nNNR =∈+1⑤N a Na =log4、对数换底公式:bNb N N a a b lg lg log log log ==()21828.2(log lg ==e N N e 其中称为N 的自然对数由换底公式推出一些常用的结论: (1)l o g l o g l o g l o g a b a bb a b a ==11或· (2)log log a ma n bmnb =(3)l o g l o g ana nb b = (4)lo g a mn a m=定义:指数函数y a a a x =>≠()01且的反函数y x a =l o g x ∈+∞(,)0叫做对数函数。

高三数学一轮 第二章 第六节 对数、对数函数课件 理

高三数学一轮 第二章 第六节 对数、对数函数课件 理

与对数函数有关的复合函数的单调性的求解步 骤为:
(1)确定定义域;
(2)弄清函数是由哪些基本初等函数复合而成 的,将复合函数分解成基本初等函数y=f(u), u=g(x);
(3)分别确定这两个函数的单调区间;
(4)若这两个函数同增或同减,则y=f[g(x)]为 增函数,若一增一减,则y=f[g(x)]为减函数, 即“同增异减”.
【解析】 (1)由题设,3-ax>0 对一切 x∈[0,2]恒成立,a>0 且 a≠1, ∵a>0,∴g(x)=3-ax 在[0,2]上为减函 数,
从而 g(2)=3-2a>0,∴a<32, ∴a 的取值范围为(0,1)∪1,32.
(2)假设存在这样的实数 a,由题设知 f(1) =1,
即 loga(3-a)=1,∴a=32, 此时 f(x)=log323-32x, 当 x=2 时,f(x)没有意义,故这样的实 数不存在.
【答案】 A
4.已知 loga(3a-1)有意义,那么实数 a 的取值范围是________.
a>0
【解析】 由a≠1 3a-1>0
,可得 a>31且
a≠1.
【答案】 a>13且 a≠1
5.函数 y= log1(3x-2)的定义域是________.
2
【解析】 要使 y= log1(3x-2)有意义
(3)令 u(x)=xx+ -bb,则函数 u(x)=1+x2-bb 在(-∞,-b)和(b,+∞)上分别为减函 数,所以当 0<a<1 时,f(x)在(-∞,- b)和(b,+∞)上分别为增函数;当 a>1 时,f(x)在(-∞,-b)和(b,+∞)上分 别为减函数.
(4)解关于 x 的方程 y=logaxx+ -bb,得 x= b(ay+1)

2021高三统考北师大版数学一轮第2章第6讲对数与对数函数含解析

2021高三统考北师大版数学一轮第2章第6讲对数与对数函数含解析

2021高三统考北师大版数学一轮课时作业:第2章第6讲对数与对数函数含解析课时作业1.(2019·四川泸州一诊)2lg 2-lg 错误!的值为()A.1 B.2C.3 D.4答案B解析2lg 2-lg 错误!=lg错误!=lg 100=2,故选B.2.函数f(x)=错误!的定义域是()A.(-3,0)B.(-3,0]C.(-∞,-3)∪(0,+∞)D.(-∞,-3)∪(-3,0)答案A解析因为f(x)=错误!,所以要使函数f(x)有意义,需使错误!即-3<x〈0.3.若函数y=f(x)是函数y=a x(a>0,且a≠1)的反函数,且f(2)=1,则f(x)=()A.log2x B.错误!C.log错误!x D.2x-2答案A解析由题意知f(x)=log a x(x>0).∵f(2)=1,∴log a2=1。

∴a=2。

∴f(x)=log2x.4.已知函数f(x)=log错误!x,x∈错误!,则f(x)的值域是()A.错误!B.错误!C.[0,2]D.错误!答案A解析函数f(x)=log错误!x,x∈错误!是减函数,所以函数的最小值为f错误!=log错误!错误!=错误!,函数的最大值为f错误!=log错误!错误!=2。

所以函数f(x)的值域为错误!.故选A.5.若x log23=1,则3x+3-x=()A.错误!B.错误!C.错误!D.错误!答案B解析因为x log23=1,所以log23x=1,所以3x=2,3-x=错误!,所以3x+3-x=2+错误!=错误!。

故选B.6.(2019·河北保定模拟)已知a=log23+log2错误!,b=log29-log2错误!,c=log32,则a,b,c的大小关系是()A.a=b〈c B.a=b〉cC.a〈b<c D.a〉b>c答案B解析a=log23+log2错误!=log23错误!,b=log29-log2错误!=log23错误!,因此,a=b,而log23错误!>log22=1,log32〈log33=1,所以a=b>c,故选B.7.(2020·北京东城区综合练习)已知函数f(x)=错误!则f(2+log23)的值为()A .24B .16C .12D .8答案 A解析 因为3〈2+log 23〈4,所以f (2+log 23)=f (3+log 23)=23+log 23=8×2log 23=24.故选A .8.函数y =log 13 |x +3|的单调递增区间为( )A .(-∞,3)B .(-∞,-3)C .(-3,+∞)D .(-∞,-3)∪(-3,+∞)答案 B解析 因为函数y =log 错误!x 为减函数,y =|x +3|在(-∞,-3)上是减函数,所以函数y =log 错误!|x +3|的单调递增区间为(-∞,-3).9.(2019·合肥模拟)若log a 错误!〈1(a >0且a ≠1),则实数a 的取值范围是( )A .错误!B .错误!C .错误!∪(1,+∞)D .错误!∪(1,+∞) 答案 D解析 因为log a 23〈1,所以log a 错误!<log a a .若a >1,则上式显然成立;若0〈a <1,则应满足23>a 〉0.所以a 的取值范围是错误!∪(1,+∞).故选D .10.(2019·安阳模拟)函数f (x )=log a (6-ax )(a 〉0且a ≠1)在[0,2]上为减函数,则实数a 的取值范围是( )A.(0,1) B.(1,3)C.(1,3]D.[3,+∞)答案B解析设u=6-ax,由题意得该函数是减函数,且u>0在[0,2]上恒成立,∴错误!∴1<a<3。

高考数学一轮复习 第2章 函数的概念与基本初等函数 第6讲 对数与对数函数课件 文

高考数学一轮复习 第2章 函数的概念与基本初等函数 第6讲 对数与对数函数课件 文

(1)确定函数的定义域,研究或利用函数的性质,都要在其定义 域上进行. (2)如果需将函数解析式变形,一定要保证其等价性,否则结论 错误. (3)在解决与对数函数相关的比较大小或解不等式问题时,要优 先考虑利用对数函数的单调性来求解.在利用单调性时,一定 要明确底数 a 的取值对函数增减性的影响,及真数必须为正的 限制条件.
A.3
B.13
C. 3
D.
3 3
解析:选 D.因为 xlog34=1,即 log34x=1.所以 4x=3.即 2x= 3,
所以
2-x=
1= 3
3 3.
12/11/2021
(必修 1 P71 例 7(1)改编)函数 y=log2x2 的大致图象是( )
解析:选 D.法一:f(-x)=log2(-x)2=log2x2=f(x). 所以 y=log2x2 的图象关于 y 轴对称,故选 D. 法二:y=log2x2=2log2|x|=22lloogg22x(,-x> x)0, ,x<0. 作出图象可知选 D.
【答案】
(1)D
1 (2)4
12/11/2021
(1)在识别函数图象时,要善于利用已知函数的性质、函数图象 上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合 要求的选项. (2)一些对数型方程、不等式问题常转化为相应的函数图象问 题,利用数形结合法求解.
12/11/2021
【对点通关】 1.(必修 1 P73 练习 T1 改编)若函数 y=a|x|(a>0,且 a≠1)的值 域为{y|y≥1},则函数 y=loga|x|的图象大致是( )
12/11/2021
【对点通关】
1.(2016·高考全国卷Ⅰ)若 a>b>0,0<c<1,则( )

数学(文)一轮教学案:第二章第6讲 对数与对数函数 Word版含解析

数学(文)一轮教学案:第二章第6讲 对数与对数函数 Word版含解析

第6讲 对数与对数函数 考纲展示 命题探究1 对数的概念如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.2 对数的性质与运算法则 (1)对数的性质几个恒等式(M ,N ,a ,b 都是正数,且a ,b ≠1)①a log a N =N ;②log a a N=N ;③log b N =log a N log ab ;④log am b n=n m log a b ;⑤log a b =1log ba ,推广log ab ·log bc ·log cd =log a d .(2)对数的运算法则(a >0,且a ≠1,M >0,N >0)①log a (M ·N )=log a M +log a N ;②log a MN =log a M -log a N ;③log a M n=n log a M (n ∈R );④log anM =1n log a M .3 对数函数的图象及性质a >10<a <1图 象续表a >10<a <1性 质定义域:(0,+∞)值域:R过点(1,0),即x =1时,y =0当x >1时,y >0 当0<x <1时,y <0 当x >1时,y <0 当0<x <1时,y >0 在(0,+∞)上是增函数在(0,+∞)上是减函数注意点 对数的运算性质及公式成立的条件对数的运算性质以及有关公式都是在式子中所有的对数符号有意义的前提下才成立的,不能出现log 212=log 2[(-3)×(-4)]=log 2(-3)+log 2(-4)等错误.1.思维辨析(1)若log 2(log 3x )=log 3(log 2y )=0,则x +y =5.( ) (2)2log 510+log 5(3)已知函数f (x )=lg x ,若f (ab )=1,则f (a 2)+f (b 2)=2.( ) (4)当x >1时,log a x >0.( ) (5)函数y =ln 1+x1-x与y =ln (1+x )-ln (1-x )的定义域相同.( )(6)若log a m <log a n ,则m <n .( )答案 (1)√ (2)× (3)√ (4)× (5)√ (6)× 2.函数y =ln (x +1)-x 2-3x +4 的定义域为( ) A .(-4,-1) B .(-4,1) C .(-1,1) D .(-1,1]答案 C解析 要使函数有意义,须使⎩⎪⎨⎪⎧x +1>0,-x 2-3x +4>0,解得-1<x <1,所以函数的定义域为(-1,1).3.(1)若2a =5b =10,则1a +1b =________. (2)已知a 23 =49(a >0),则log 23 a =________.答案 (1)1 (2)3解析 (1)∵2a=5b=10,∴a =log 210,b =log 510,∴1a =lg 2,1b =lg 5,∴1a +1b =lg 2+lg 5=1.(2)因为a 23 =49(a >0),所以a =⎝ ⎛⎭⎪⎫49 32 =⎝ ⎛⎭⎪⎫233,故log 23 a =log 23⎝ ⎛⎭⎪⎫233=3.[考法综述] 考查对数运算,换底公式及对数函数的图象和性质,对数函数与幂指数函数相结合.综合考查利用单调性比较大小、解不等式等是高考热点.主要以选择题、填空题形式出现.典例 (1)函数f (x )=2ln x 的图象与函数g (x )=x 2-4x +5的图象的交点个数为( )A .3B .2C .1D .0(2)⎝ ⎛⎭⎪⎫1681 -34+log 354+log 345=________. (3)已知a >0,b >0,ab =8,则当a 的值为________时,log 2a ·log 2(2b )取得最大值.[解析] (1)在同一直角坐标系下画出函数f (x )=2ln x 与函数g (x )=x 2-4x +5=(x -2)2+1的图象,如图所示.∵f (2)=2ln 2>g (2)=1,∴f (x )与g (x )的图象的交点个数为2.(2)原式=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫234-34 +log 3⎝ ⎛⎭⎪⎫54×45=⎝ ⎛⎭⎪⎫23-3+log 31=278.(3)当log 2a 与log 2(2b )有一个为负数时,log 2a ·log 2(2b )<0显然不是最大值.当log 2a 与log 2(2b )都大于零时,log 2a ·log 2(2b )≤⎣⎢⎡⎦⎥⎤log 2a +log 2(2b )22=⎣⎢⎡⎦⎥⎤log 2(2ab )22=4,当且仅当a =2b ,即a =4,b =2时“=”成立.[答案] (1)B (2)278 (3)4【解题法】 对数运算及对数函数问题解题策略(1)将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算.(2)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想求解.(3)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.1.设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝ ⎛⎭⎪⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( )A .q =r <pB .p =r <qC .q =r >pD .p =r >q答案 B解析 ∵0<a <b ,∴a +b2>ab ,又f (x )=ln x 在(0,+∞)上单调递增,故f (ab )<f ⎝⎛⎭⎪⎫a +b 2,即q >p ,∵r =12(f (a )+f (b ))=12(ln a +ln b )=ln ab =f ()ab =p ,∴p =r <q .故选B.2.函数f (x )=log 12 (x 2-4)的单调递增区间为( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2) 答案 D解析 由x 2-4>0得x >2或x <-2,因此函数定义域为(-∞,-2)∪(2,+∞).令t =x 2-4,当x ∈(-∞,-2)时,t 随x 的增大而减小,y =log 12 t 随t 的增大而减小,所以y =log 12 (x 2-4)随x 的增大而增大,即f (x )在(-∞,-2)上单调递增.故选D.3.设a =log 37,b =2,c ,则( )A .b <a <cB .c <a <bC .c <b <aD .a <c <b答案 B解析 由3<7<9得log 33<log 37<log 39,∴1<a <2,由2>21=2得b 0=1得c <1,因此c <a <b ,故选B.4.已知关于x 的方程⎝ ⎛⎭⎪⎫12x =1+lg a1-lg a有正根,则实数a 的取值范围是( )A .(0,1)D .(10,+∞)答案 C解析 当x >0时,0<⎝ ⎛⎭⎪⎫12x <1,∵关于x 的方程⎝ ⎛⎭⎪⎫12x =1+lg a1-lg a有正根,∴0<1+lg a1-lg a <1,∴⎩⎪⎨⎪⎧1+lg a1-lg a<1,1+lg a1-lg a >0,解得-1<lg a <0,∴a <1.故选C.5.函数y =2log 4(1-x )的图象大致是( )答案 C解析 函数y =2log 4(1-x )的定义域为(-∞,1),排除A 、B ;又函数y =2log 4(1-x )在定义域内单调递减,排除D.选C.6.若a =log 43,则2a +2-a =________. 答案433解析 ∵a =log 43=log 23,∴2a +2-a=2log 23 +2-log 23 =3+13=433.函数y =log 12(x 2-2x )的单调递减区间是________.[错解][错因分析] 易出现两种错误:一是不考虑定义域,二是应用复合函数的单调性法则时出错.[正解] 由x 2-2x >0,得函数y =log 12(x 2-2x )的定义域为(-∞,0)∪(2,+∞).令u =x 2-2x ,则u 在(-∞,0)上是减函数,在(2,+∞)上是增函数,又y =log 12u 在(0,+∞)上是减函数,所以函数y =log 12(x 2-2x )在(-∞,0)上是增函数,在(2,+∞)上是减函数.故函数y =log 12(x 2-2x )的单调递减区间是(2,+∞).故填(2,+∞).[心得体会]………………………………………………………………………………………………时间:60分钟基础组1.[2016·衡水中学模拟]已知log 7[log 3(log 2x )]=0,那么x - 12等于( )A.13B.36C.33D.24答案 D解析 由log 7[log 3(log 2x )]=0,得log 3(log 2x )=1,即log 2x =3,解得x =8,所以x - 12 =8- 12 =18=122=24.故选D.2.[2016·武邑中学仿真]lg 51000-8 23 =( ) A.235 B .-175 C .-185 D .4答案 B解析 lg 51000-8 23 =lg 5103-8 23 =lg 1035 -(23) 23 =35-4=-175.3.[2016·冀州中学猜题]已知x =log 23,y =log 4π,z ,则( ) A .x <y <z B .z <y <x C .y <z <x D .y <x <z答案 A解析 y =log 4π=log 2πlog 24=log 2π>log 23,即y >x ,z >1,所以x <y <z .故选A.4.[2016·枣强中学期中]已知函数f (x )=log 2x ,若在[1,8]上任取一个实数x 0,则不等式1≤f (x 0)≤2成立的概率是( )A.14B.13C.27D.12答案 C解析 1≤f (x 0)≤2⇒1≤log 2x 0≤2⇒2≤x 0≤4,∴所求概率为4-28-1=27.5. [2016·衡水二中仿真]已知函数g (x )是偶函数,f (x )=g (x -2),且当x ≠2时其导函数f ′(x )满足(x -2)f ′(x )>0,若1<a <3,则( )A .f (4a )<f (3)<f (log 3a )B .f (3)<f (log 3a )<f (4a )C .f (log 3a )<f (3)<f (4a )D .f (log 3a )<f (4a )<f (3) 答案 B解析 ∵(x -2)f ′(x )>0,∴x >2时,f ′(x )>0;x <2时,f ′(x )<0.∴f (x )在(2,+∞)上递增,在(-∞,2)上递减.∵g (x )是偶函数,∴g (x -2)关于x =2对称,即f (x )关于x =2对称,∵1<a <3,∴f (3)<f (log 3a )<f (4a ).故选B.6.[2016·枣强中学期末]已知函数f (x )=|log 12 x |,若m <n ,有f (m )=f (n ),则m +3n 的取值范围是( )A .[23,+∞)B .(23,+∞)C .[4,+∞)D .(4,+∞)答案 D解析 ∵f (x )=⎪⎪⎪⎪⎪⎪log 12 x ,若m <n ,有f (m )=f (n ),∴log 12 m =-log 12n .∴mn =1.∴0<m <1,n >1.∴m +3n =m +3m 在m ∈(0,1)上单调递减.当m =1时,m +3n =4,∴m +3n >4.7.[2016·衡水二中模拟]已知函数f (x )=log(x 2-ax +3a )在[2,+∞)上单调递减,则a 的取值范围是( )A .(-∞,4]B .[4,+∞)C .[-4,4]D .(-4,4]答案 D解析 令t =g (x )=x 2-ax +3a ,∵f (x )=log t 在定义域上为减函数,要使f (x )=log(x 2-ax +3a )在[2,+∞)上单调递减,则t =g (x )=x 2-ax +3a 在[2,+∞)上单调递增,且t =g (x )=x 2-ax +3a >0,即⎩⎨⎧--a 2≤2,g (2)>0,∴⎩⎪⎨⎪⎧a ≤4,a >-4,即-4<a ≤4,选D. 8.[2016·武邑中学预测]函数y =lg 1|x +1|的大致图象为( )答案 D解析 y =lg 1|x |是偶函数,关于y 轴对称,且在(0,+∞)上单调递减,而y =lg1|x +1|的图象是由y =lg 1|x |的图象向左平移一个单位长度得到的.故选D.9.[2016·冀州中学仿真]函数y =ax 2+bx 与y =log x (ab ≠0,|a |≠|b |)在同一直角坐标系中的图象可能是( )答案 D解析 从对数的底数入手进行讨论,结合各个选项的图象从抛物线对称轴的取值范围进行判断,D 选项0<⎪⎪⎪⎪⎪⎪b a <1,0<⎪⎪⎪⎪⎪⎪b 2a <12,0<-b 2a <12或-12<-b2a <0,故选D.10. [2016·武邑中学猜题]若直角坐标平面内的两个不同点M ,N 满足条件:①M ,N 都在函数y =f (x )的图象上; ②M ,N 关于原点对称.则称点对[M ,N ]为函数y =f (x )的一对“友好点对”.(注:点对[M ,N ]与[N ,M ]为同一“友好点对”)已知函数f (x )=⎩⎪⎨⎪⎧log 3x (x >0),-x 2-4x (x ≤0),此函数的“友好点对”有( )A .0对B .1对C .2对D .3对答案 C解析 由题意,当x >0时,将f (x )=log 3x 的图象关于原点对称后可知,g (x )=-log 3(-x )(x <0)的图象与x ≤0时f (x )=-x 2-4x 的图象存在两个交点,如图所示,故“友好点对”的个数为2,故选C.11.[2016·衡水二中期末]已知a >0且a ≠1,若函数f (x )=alg (x2-2x+3)有最大值,则不等式log a (x 2-5x +7)>0的解集为________. 答案 (2,3)解析 因为x 2-2x +3=(x -1)2+2≥2有最小值2,所以lg (x 2-2x +3)≥lg 2,所以要使函数f (x )有最大值,则函数f (x )必须单调递减,所以0<a <1.由log a (x 2-5x +7)>0得0<x 2-5x +7<1,即⎩⎪⎨⎪⎧0<x 2-5x +7,x 2-5x +7<1,解得2<x <3,即原不等式的解集为(2,3). 12.[2016·冀州中学预测]已知函数f (x )=log 12 (x 2-2ax +3).(1)若函数f (x )的定义域为(-∞,1)∪(3,+∞),求实数a 的值; (2)若函数f (x )的定义域为R ,值域为(-∞,-1],求实数a 的值; (3)若函数f (x )在(-∞,1]上为增函数,求实数a 的取值范围. 解 (1)由题意可知,x 2-2ax +3=0的两根为x 1=1, x 2=3,∴x 1+x 2=2a ,∴a =2.(2)因为函数f (x )的值域为(-∞,-1],则f (x )max =-1, 所以y =x 2-2ax +3的最小值为y min =2, 由y =x 2-2ax +3=(x -a )2+3-a 2,得3-a 2=2, 所以a 2=1,所以a =±1.(3)f (x )在(-∞,1]上为增函数,则y =x 2-2ax +3在(-∞,1]上为减函数,有y >0,所以⎩⎪⎨⎪⎧ a ≥1,1-2a +3>0,即⎩⎪⎨⎪⎧a ≥1,a <2,故1≤a <2.所以实数a 的取值范围是[1,2).能力组13.[2016·枣强中学模拟]设a =log 32,b =ln 2,c =5- 12 ,则( )A .a <b <cB .b <c <aC .c <a <bD .c <b <a 答案 C解析 ∵12<log 32=ln 2ln 3<ln 2,而c =5- 12 =15<12,∴c <a <b . 14. [2016·衡水二中期中]已知函数f (x )=⎩⎪⎨⎪⎧|2x +1|,x <1log 2(x -m ),x >1,若f (x 1)=f (x 2)=f (x 3)(x 1,x 2,x 3互不相等),且x 1+x 2+x 3的取值范围为(1,8),则实数m 的值为________.答案 1解析 作出f (x )的图象,如图所示,可令x 1<x 2<x 3,则由图知点(x 1,0),(x 2,0)关于直线x =-12对称,所以x 1+x 2=-1.又1<x 1+x 2+x 3<8,所以2<x 3<9.由f (x 1)=f (x 2)=f (x 3)(x 1,x 2,x 3互不相等),结合图象可知点A 的坐标为(9,3),代入函数解析式,得3=log 2(9-m ),解得m =1.15.[2016·衡水中学热身]已知函数f (x )=log a (8-ax )(a >0,a ≠1),若f (x )>1在区间[1,2]上恒成立,则实数a 的取值范围为________.答案 ⎝ ⎛⎭⎪⎫1,83 解析 当a >1时,f (x )=log a (8-ax )在[1,2]上是减函数, 由f (x )>1恒成立,则f (x )min =log a (8-2a )>1,解之得1<a <83,若0<a <1时,f (x )在x ∈[1,2]上是增函数, 由f (x )>1恒成立,则f (x )min =log a (8-a )>1, 且8-2a >0,所以a >4,且a <4,故不存在.综上可知,实数a 的取值范围是⎝⎛⎭⎪⎫1,83. 16.[2016·武邑中学月考]已知f (x )=log a x (a >0且a ≠1),如果对于任意的x ∈⎣⎢⎡⎦⎥⎤13,2都有|f (x )|≤1成立,试求a 的取值范围. 解 ∵f (x )=log a x ,则y =|f (x )|的图象如右图.由图知,要使x ∈⎣⎢⎡⎦⎥⎤13,2时恒有|f (x )|≤1,只需|f (13)|≤1, 即-1≤log a 13≤1,即log a a -1≤log a 13≤log a a .当a >1时,得a -1≤13≤a ,即a ≥3; 当0<a <1时得a -1≥13≥a ,得0<a ≤13.综上所述,a 的取值范围是⎝ ⎛⎦⎥⎤0,13∪[3,+∞).。

对数与对数函数

对数与对数函数

A. ①③
4.若 0<a<1, 则函数 y=loga(x+5)的图象不经过( A ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 5.如果 loga3>logb3>0, 则( B ) A. 0<a<b<1 B. 1<a<b C. 0<b<a<1 D. 1<b<a
6.函数 f(x)=ax+loga(x+1) 在[0, 1]上的最大值与最小值之和为 a, 则 a 的值为( B ) 1 A. 1 B. C. 2 D. 4 2 4
1.化简下列各式: (1) (lg5)2+lg2· lg50; (2) 2(lg 2 )2+lg 2 · lg5+ (lg 2 )2-lg2+1 ; (3) lg5(lg8+lg1000)+(lg2 3 )2+lg 1 +lg0.06. 6 解: (1)原式=(lg5)2+lg2(lg2+2lg5) =(lg5)2+(lg2)2+2lg2lg5 =(lg5+lg2)2 =1. (2)原式=lg 2 (2lg 2 +lg5)+ (lg 2 -1)2 =lg 2 (lg2+lg5)+(1-lg 2 ) =lg 2 +1-lg 2 =1. (3)原式=lg5(3lg2+3)+3lg22-lg6+lg6-2 =3lg5lg2+3lg5+3lg22-2 =3lg2(lg5+lg2)+3lg5-2 =3(lg2+lg5)-2 =1.
三、对数恒等式
alogaN=N(a>0 且 a1, N>0).

函数及其性质:第6讲对数函数

函数及其性质:第6讲对数函数

对数函数对数的运算 【知识简介】对数的运算在高考中单独出现的频率不高,通过对数运算,可以降低运算级别,把积、商、幂转化成和、差、倍运算,常与等差数列、等比数列结合考查,难度不大. 【典例】 1(1)(2013·四川文,11)lg 5+lg 20的值是________. (2)(2014·安徽文,11)⎝⎛⎭⎫1681-34+log 354+log 345=________. 【解析】 (1)lg 5+lg 20=lg 100=lg 10=1. (2)原式=⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫234-34+log 3⎝⎛⎭⎫54×45=⎝⎛⎭⎫23-3+log 31=278. 【答案】 (1)1 (2)278(2013·陕西文,3)设a ,b ,c 均为不等于1的正实数,则下列等式中恒成立的是( ) A .log a b ·log c b =log c a B .log a b ·log c a =log c b C .log a (bc )=log a b ·log a c D .log a (b +c )=log a b +log a cB 由对数换底公式可知A 错误.log a b ·log c a =log a b ·1log a c =log a b log a c =log c b ,故B 正确.因为log a (bc )=log a b+log a c ,所以C ,D 均错误,故选B.,对数运算的一般思路(1)首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算性质化简合并.(2)将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算. 对数函数 【知识简介】对数函数的图象与性质是每年高考的必考内容之一,主要考查比较对数值的大小,解简单的对数不等式,有时考查判断对数型函数的单调性、奇偶性及最值问题.多以选择题或填空题的形式考查,难度低、中、高档都有.【典例】2(1)(2013·湖南,5)函数f(x)=2ln x的图象与函数g(x)=x2-4x+5的图象的交点个数为() A.3B.2C.1D.0(2)(2014·山东文,6)已知函数y=log a(x+c)(a,c为常数,其中a>0,a≠1)的图象如图,则下列结论成立的是()A.a>1,c>1 B.a>1,0<c<1C.0<a<1,c>1 D.0<a<1,0<c<1【解析】(1)在同一直角坐标系下画出函数f(x)=2ln x与函数g(x)=x2-4x+5=说(x-2)2+1的图象,如图所示.【答案】(1)B(2)D(2015·山东威海一模,13)已知a>0且a≠1,若函数f(x)=log a(ax2-x)在[3,4]上是增函数,则a的取值范围是________.【答案】 (1,+∞),对数值大小比较的主要方法 (1)化同底数后利用函数的单调性; (2)化同真数后利用图象比较;(3)借用中间量(0或1等)进行估值比较.与对数函数有关的复合函数问题的求解策略利用对数函数的性质,求与对数函数有关的复合函数的值域和单调性问题,首先要确定函数的定义域,所有问题必须在定义域内讨论;其次分析底数与1的大小关系,底数大于1与底数小于1的两个函数的性质截然不同;最后考虑复合函数的构成,分析它是由哪些基本初等函数复合而成的. 综合应用 【知识简介】综合考查指数、对数运算,及指数函数、对数函数的单调性、图象等,高考中常以选择题、填空题形式出现,难度中等.【典例】 3(1)(2014·辽宁,3)已知a =2-13,b =log 213,c =log 1213,则( )A .a >b >cB .a >c >bC .c >a >bD .c >b >a(2)(2015·四川,8)设a ,b 都是不等于1的正数,则“3a >3b >3”是“log a 3<log b 3”的( ) A .充要条件 B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件(3)(2013·课标Ⅰ,11)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln (x +1),x >0,若|f (x )|≥ax ,则a 的取值范围是( )A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]【解析】 (1)由于0<2-13<20,所以0<a <1;由于log 213<log 21=0,所以b <0;由于log 1213>log 1212=1,所以c >1.综上,c >a >b .(2)由3a >3b >31,得a >b >1,∴log 3a >log 3b >0. 由换底公式得,1log a 3>1log b 3>0,即log a 3<log b 3. 而由log a 3<log b 3不能推出a >b >1,例如,当a <1,b >1时,满足log a 3<log b 3,但此时3b >3>3a . 故“3a >3b >3”是“log a 3<log b 3”的充分不必要条件.【答案】 (1)C (2)B (3)D 【名师点睛】题(3)恒成立问题首先想到分离参数,所以当x ≤0时,把x 2-2x ≥ax 化为x [(x -2)-a ]≥0,得到(x -2)-a ≤0,就达到了参变分离的效果;当x >0时,采用画图,通过数形结合就可以看出a 的范围. (2012·课标全国文,11)当0<x ≤12时,4x <log a x ,则a 的取值范围是( )A.⎝⎛⎭⎫0,22 B.⎝⎛⎭⎫22,1 C .(1,2) D .(2,2) B 方法一:由题意得,当0<a <1时,要使得4x <log a x ⎝⎛⎭⎫0<x ≤12,即当0<x ≤12时,函数y =4x 的图象在函数y =log a x 图象的下方.又当x =12时,412=2,即函数y =4x 的图象过点⎝⎛⎭⎫12,2,把点⎝⎛⎭⎫12,2代入函数y =log a x ,得a =22,若函数y =4x 的图象在函数y =log a x 图象的下方,则需22<a <1(如图所示).当a >1时,不符合题意,舍去. 所以实数a 的取值范围是⎝⎛⎭⎫22,1.解决不等式有解或恒成立问题的方法对于较复杂的不等式有解或恒成立问题,可借助函数图象解决,具体做法为: (1)对不等式变形,使不等号两边对应两函数f (x ),g (x ); (2)在同一坐标系下作出两函数y =f (x )及y =g (x )的图象;(3)比较当x 在某一范围内取值时图象的上下位置及交点的个数来确定参数的取值或解的情况.利用对数函数的图象可求解的两类问题(1)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想求解.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解. 【针对训练】1.(2015·山东日照质检,3)2lg 2-lg 125的值为( )A .1B .2C .3D .41.B 2lg 2-lg 125=lg 4+lg 25=lg 100=2.2.(2016·河北石家庄二模,3)已知a =312,b =log 1312,c =log 213,则( )A .a >b >cB .b >c >aC .c >b >aD .b >a >c2.A 因为a =3>1,0<b =log 1312=log 32<1,c =log 213=-log 23<0,故a >b >c ,故选A.3.(2016·山东烟台一模,5)已知函数f (x )=a x -2,g (x )=log a |x |(其中a >0且a ≠1),若f (4)g (-4)<0,则f (x ),g (x )在同一坐标系内的大致图象是()3.B ∵f (4)=a 4-2=a 2>0,又f (4)g (-4)<0,∴g (-4)=log a |-4|=log a 4<0,∴0<a <1,∴f (x )在R 上单调递减,过点(2,1),g (x )为偶函数,其图象在(0,+∞)上单调递减,故选B.4.(2016·山西太原五中质检,9)若函数f (x )=log a (x 3-ax )(a >0且a ≠1)在区间⎝⎛⎭⎫-12,0内单调递增,则 a 的取值范围是( ) A.⎣⎡⎭⎫14,1 B.⎣⎡⎭⎫34,1 C.⎣⎡⎭⎫94,+∞ D.⎝⎛⎭⎫1,945.(2015·河南安阳模拟,15)已知函数f (x )=⎩⎪⎨⎪⎧|ln x |(0<x ≤e ),2-ln x (x >e ).若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则a +b +c 的取值范围为________.5.【解析】 画出函数f (x )的图象,如图.不妨令a <b <c ,由已知和图象可知,0<a <1<b <e <c <e 2. ∵-ln a =ln b ,∴ab =1.∵ln b =2-ln c ,∴bc =e 2, ∴a +b +c =b +e 2+1b (1<b <e),∵⎝⎛⎭⎫b +e 2+1b ′=1-e 2+1b 2<0,故其在(1,e)上为减函数,∴2e +1e <a +b +c <e 2+2,∴a +b +c 的取值范围是⎝⎛⎭⎫1e +2e ,2+e 2. 【答案】 ⎝⎛⎭⎫1e +2e ,2+e 2【点击高考】1.(2016·课标Ⅰ,8,中)若a >b >1,0<c <1,则( ) A .a c <b c B .ab c <ba c C .a log b c <b log a c D .log a c <log b c2.(2014·福建,4,易)若函数y =log a x (a >0,且a ≠1)的图象如图所示,则下列函数图象正确的( )2.B 由题图可知y =log a x 过点(3,1), ∴log a 3=1,∴a =3.对A ,y =⎝⎛⎭⎫13x在R 上为减函数,错误; 对B ,y =x 3,符合;对C ,y =-x 3在R 上为减函数,错误;对D ,y =log 3(-x )在(-∞,0)上为减函数,错误.3.(2013·课标Ⅱ,8,中)设a =log 36,b =log 510,c =log 714,则( ) A .c >b >a B .b >c >a C .a >c >b D .a >b >c3.D 由对数运算法则得a =log 36=1+log 32,b =1+log 52,c =1+log 72,由对数函数图象得log 32>log 52>log 72,所以a >b >c ,故选D.4.(2014·四川,9,难)已知f (x )=ln(1+x )-ln(1-x ),x ∈(-1,1).现有下列命题: ①f (-x )=-f (x );②f ⎝⎛⎭⎫2x1+x 2=2f (x );③|f (x )|≥2|x |.其中的所有正确命题的序号是( ) A .①②③ B .②③ C .①③ D .①②当x ∈[0,1)时,|f (x )|=ln(1+x )-ln(1-x )=ln 1+x1-x ,2|x |=2x ,令g (x )=ln 1+x1-x-2x ,则g ′(x )=2x 21-x 2≥0,∴g (x )在[0,1)上为增函数,∴g (x )≥g (0)=0,即|f (x )|≥2|x |;当x ∈(-1,0)时,|f (x )|=ln(1-x )-ln(1+x )=-ln 1+x1-x ,2|x |=-2x ,令h (x )=2x -ln 1+x1-x ,则h ′(x )=-2x 21-x 2<0,∴h (x )在(-1,0)上为减函数, ∴h (x )>0,即|f (x )|>2|x |.∴当x ∈(-1,1)时,|f (x )|≥2|x |,故③正确.5.(2016·浙江,12,中)已知a >b >1,若log a b +log b a =52,a b =b a ,则a =________,b =________.【答案】 4 26.(2015·浙江,12,易)若a =log 43,则2a +2-a =________. 6.【解析】 ∵a =log 43=12log 23,∴2a +2-a =212log 23+2-12log 23=(2log 23)12+(2log 23)-12=312+3-12=3+13=433.【答案】4337.(2014·重庆,12,易)函数f (x )=log 2x ·log2(2x )的最小值为________.1【答案】-4。

高三数学复习(理):第6讲 对数与对数函数

高三数学复习(理):第6讲 对数与对数函数

第6讲对数与对数函数[学生用书P30]1.对数概念如果a x=N(a>0,且a≠1),那么数x叫做以a为底数N的对数,记作x=log a N,其中a叫做对数的底数,N叫做真数,log a N 叫做对数式性质对数式与指数式的互化:a x=N⇔x=log a N(a>0,且a≠1) log a1=0,log a a=1,a log aN=N(a>0,且a≠1)运算法则log a(M·N)=log a M+log a Na>0,且a≠1,M>0,N>0log aMN=log a M-log a Nlog a M n=n log a M(n∈R)换底公式log a b=log c blog c a(a>0,且a≠1,c>0,且c≠1,b>0)2.对数函数的图象与性质a>10<a<1图象性质定义域:(0,+∞)值域:R过定点(1,0)当x>1时,y>0当0<x<1时,y<0当x>1时,y<0 当0<x<1时,y>0在(0,+∞)上是增函数在(0,+∞)上是减函数3.反函数指数函数y=a x与对数函数y=log a x互为反函数,它们的图象关于直线y=x 对称.常用结论1.换底公式的三个重要结论(1)log a b=1log b a;(2)log a m b n=nm log a b;(3)log a b·log b c·log c d=log a d.2.对数函数的图象与底数大小的关系如图,作直线y=1,则该直线与四个函数图象交点的横坐标为相应的底数.故0<c<d<1<a<b.由此我们可得到以下规律:在第一象限内与y=1相交的对数函数从左到右底数逐渐增大.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)log a(MN)=log a M+log a N.()(2)log a x·log a y=log a(x+y).()(3)函数y=log2x及y=log133x都是对数函数.()(4)对数函数y=log a x(a>0且a≠1)在(0,+∞)上是增函数.()(5)函数y =ln1+x1-x与y =ln(1+x )-ln(1-x )的定义域相同.( ) (6)对数函数y =log a x (a >0且a ≠1)的图象过定点(1,0),且过点(a ,1),⎝ ⎛⎭⎪⎫1a ,-1,函数图象只经过第一、四象限.( ) 答案:(1)× (2)× (3)× (4)× (5)√ (6)√ 二、易错纠偏常见误区|K(1)对数函数图象的特征不熟致误; (2)忽视对底数的讨论致误; (3)忽视对数函数的定义域致误.1.已知a >0,a ≠1,函数y =a x 与y =log a (-x )的图象可能是________.(填序号)解析:函数y =log a (-x )的图象与y =log a x 的图象关于y 轴对称,符合条件的只有②.答案:②2.函数y =log a x (a >0,a ≠1)在[2,4]上的最大值与最小值的差是1,则a =________.解析:分两种情况讨论:①当a >1时,有log a 4-log a 2=1,解得a =2;②当0<a <1时,有log a 2-log a 4=1,解得a =12.所以a =2或12.答案:2或123.函数y =log 23(2x -1)的定义域是________. 解析:由log 23(2x -1)≥0,得0<2x -1≤1.所以12<x ≤1.所以函数y =log 23(2x -1)的定义域是⎝ ⎛⎦⎥⎤12,1.答案:⎝ ⎛⎦⎥⎤12,1[学生用书P31]对数式的化简与求值(自主练透) 1.(2020·高考全国卷Ⅰ)设a log 34=2,则4-a =( ) A.116 B .19 C.18D.16解析:选B.方法一:因为a log 34=2,所以log 34a =2,则有4a =32=9,所以4-a =14a =19,故选B.方法二:因为a log 34=2,所以-a log 34=-2,所以log 34-a =-2,所以4-a=3-2=132=19,故选B.方法三:因为a log 34=2,所以a 2=1log 34=log 43,所以4a2=3,两边同时平方得4a =9,所以4-a =14a =19,故选B.方法四:因为a log 34=2,所以a =2log 34=log 39log 34=log 49,所以4-a =14a =19,故选B.方法五:令4-a =t ,两边同时取对数得log 34-a =log 3t ,即a log 34=-log 3t =log 31t ,因为a log 34=2,所以log 31t =2,所以1t =32=9,所以t =19,即4-a =19,故选B.方法六:令4-a =t ,所以-a =log 4t ,即a =-log 4t =log 41t .由a log 34=2,得a =2log 34=log 39log 34=log 49,所以log 41t =log 49,所以1t =9,t =19,即4-a =19,故选B.2.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2-m 1=52lg E 1E 2,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为( )A. 1010.1 B . 10.1 C. lg 10.1D. 10-10.1解析:选A.根据题意,设太阳的星等与亮度分别为m 1与E 1,天狼星的星等与亮度分别为m 2与E 2,则由已知条件可知m 1=-26.7,m 2=-1.45,根据两颗星的星等与亮度满足m 2-m 1=52lg E 1E 2,把m 1与m 2的值分别代入上式得,-1.45-(-26.7)=52lg E 1E 2,得lg E 1E 2=10.1,所以E 1E 2=1010.1,故选A.3.计算(lg 2)2+lg 2·lg 50+lg 25的结果为________.解析:原式=lg 2(lg 2+lg 50)+lg 25=2lg 2+lg 25=lg 4+lg 25=2. 答案:24.已知2x =3,log 483=y ,则x +2y 的值为________.解析:由2x =3,log 483=y 得x =log 23,y =log 483=12log 283,所以x +2y =log 23+log 283=log 28=3.答案:35.设2a =5b =m ,且1a +1b =2,则m =________. 解析:由2a =5b =m 得a =log 2m ,b =log 5m , 所以1a +1b =log m 2+log m 5=log m 10. 因为1a +1b =2,所以log m 10=2. 所以m 2=10,所以m =10.答案:106.已知log 23=a ,3b =7,则log 37221的值为________.解析:由题意3b =7,所以log 37=b . 所以log 37221=log6384=log 284log 263=log 2(22×3×7)log 2(32×7)=2+log 23+log 23·log 372log 23+log 23·log 37=2+a +ab2a +ab .答案:2+a +ab2a +ab对数运算的一般思路(1)拆:首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后利用对数运算性质化简合并.(2)合:将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算.对数函数的图象及应用(典例迁移)(1)已知函数f (x )=log a (2x +b -1)(a >0,a ≠1)的图象如图所示,则a ,b满足的关系是( )A .0<a -1<b <1B .0<b <a -1<1C .0<b -1<a <1D .0<a -1<b -1<1(2)方程4x =log a x 在⎝ ⎛⎦⎥⎤0,12上有解,则实数a 的取值范围为________.【解析】 (1)由函数图象可知,f (x )为单调递增函数,故a >1.函数图象与y轴的交点坐标为(0,log a b ),由函数图象可知-1<log a b <0,解得1a <b <1.综上有0<1a <b <1.(2)若方程4x=log a x 在⎝ ⎛⎦⎥⎤0,12上有解,令f (x )=4x ,g (x )=log a x ,则函数f (x )=4x 和函数g (x )=log a x 在⎝ ⎛⎦⎥⎤0,12上有交点,由图象知⎩⎪⎨⎪⎧0<a <1,log a 12≤2,解得0<a ≤22.【答案】 (1)A (2)⎝⎛⎦⎥⎤0,22【迁移探究】 (变条件)在本例(2)中,若4x <log a x 在⎝ ⎛⎦⎥⎤0,12上恒成立,则实数a 的取值范围是________.解析:当0<x ≤12时,令f (x )=4x ,g (x )=log a x ,则函数f (x )=4x 的图象在函数y =log a x 图象的下方,又当x =12时,412=2,即函数y =4x 的图象过点⎝ ⎛⎭⎪⎫12,2,把点⎝ ⎛⎭⎪⎫12,2代入g (x )=log a x ,得a =22.若函数f (x )=4x 的图象在函数g (x )=log a x 图象的下方,则需22<a <1(如图所示).当a >1时,不符合题意,舍去. 所以实数a 的取值范围是⎝ ⎛⎭⎪⎫22,1.答案:⎝ ⎛⎭⎪⎫22,1对数函数图象的识别及应用方法(1)在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.1.函数f (x )=lg(|x |-1)的大致图象是( )解析:选B.由函数f (x )的值域为R ,可以排除C ,D ,当x >1时,f (x )=lg(x -1)在(1,+∞)上单调递增,排除A ,选B.2.若不等式x 2-log a x <0对x ∈⎝ ⎛⎭⎪⎫0,12恒成立,则实数a 的取值范围是________.解析:只需f 1(x )=x 2在⎝ ⎛⎭⎪⎫0,12上的图象恒在f 2(x )=log a x 图象的下方即可.当a >1时,显然不成立; 当0<a <1时,如图所示,要使x 2<log a x 在x ∈⎝ ⎛⎭⎪⎫0,12上恒成立,只需f 1⎝ ⎛⎭⎪⎫12≤f 2⎝ ⎛⎭⎪⎫12,所以有⎝ ⎛⎭⎪⎫122≤log a 12,解得a ≥116,所以116≤a <1.即实数a 的取值范围是⎣⎢⎡⎭⎪⎫116,1.答案:⎣⎢⎡⎭⎪⎫116,1对数函数的性质及应用(多维探究) 角度一 解对数方程、不等式(1)方程log 2(x -1)=2-log 2(x +1)的解为________.(2)设f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0,则方程f (a )=f (-a )的解集为________.【解析】 (1)原方程变形为log 2(x -1)+log 2(x +1)=log 2(x 2-1)=2,即x 2-1=4,解得x =±5,又x >1,所以x = 5.(2)当a >0时,由f (a )=log 2a =log 12⎝ ⎛⎭⎪⎫1a =f (-a )=log 12a ,得a =1;当a <0时,由f (a )=log 12(-a )=log 2⎝ ⎛⎭⎪⎫-1a =f (-a )=log 2(-a ),得a =-1.所以方程f (a )=f (-a )的解集为{1,-1}. 【答案】 (1)x =5 (2){1,-1}【迁移探究】 (变问法)本例(2)中,f (a )>f (-a )的解集为________. 解析:由题意,得⎩⎪⎨⎪⎧a >0,log 2a >log 12a或⎩⎨⎧a <0,log 12(-a )>log 2(-a ), 解得a >1或-1<a <0. 答案:(-1,0)∪(1,+∞)对于形如log a f (x )>b 的不等式,一般转化为log a f (x )>log a a b ,再根据底数的范围转化为f (x )>a b 或0<f (x )<a b .而对于形如log a f (x )>log b g (x )的不等式,一般要转化为同底的不等式来解.角度二 对数函数性质的综合应用已知函数f (x )=log a (3-ax ).(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.【解】 (1)因为a >0且a ≠1,设t (x )=3-ax , 则t (x )=3-ax 为减函数,x ∈[0,2]时,t (x )的最小值为3-2a , 当x ∈[0,2]时,f (x )恒有意义, 即x ∈[0,2]时,3-ax >0恒成立. 所以3-2a >0.所以a <32.又a >0且a ≠1,所以a ∈(0,1)∪⎝ ⎛⎭⎪⎫1,32.(2)t (x )=3-ax ,因为a >0, 所以函数t (x )为减函数.因为f (x )在区间[1,2]上为减函数, 所以y =log a t 为增函数,所以a >1,当x ∈[1,2]时,t (x )最小值为3-2a ,f (x )最大值为f (1)=log a (3-a ),所以⎩⎪⎨⎪⎧3-2a >0,log a (3-a )=1,即⎩⎪⎨⎪⎧a <32,a =32.故不存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1.利用对数函数的性质,求与对数函数有关的函数值域、最值和复合函数的单调性问题,必须弄清三方面的问题:一是定义域,所有问题都必须在定义域内讨论;二是底数与1的大小关系;三是复合函数的构成,即它是由哪些基本初等函数复合而成的.另外,解题时要注意数形结合、分类讨论、转化与化归思想的使用.1.若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上单调递减,则a 的取值范围为( )A .[1,2)B .[1,2]C .[1,+∞)D .[2,+∞)解析:选A.令函数g (x )=x 2-2ax +1+a =(x -a )2+1+a -a 2,对称轴为x =a ,要使函数在(-∞,1]上单调递减,则有⎩⎪⎨⎪⎧g (1)>0,a ≥1,即⎩⎪⎨⎪⎧2-a >0,a ≥1,解得1≤a <2,即a ∈[)1,2.2.已知函数f (x )=log 12(x 2-2ax +3).(1)若f (-1)=-3,求f (x )的单调区间;(2)是否存在实数a ,使f (x )在(-∞,2)上为增函数?若存在,求出a 的范围;若不存在,说明理由.解:(1)由f (-1)=-3,得log 12(4+2a )=-3.所以4+2a =8,所以a =2. 则f (x )=log 12(x 2-4x +3),由x 2-4x +3>0,得x >3或x <1.故函数f (x )的定义域为(-∞,1)∪(3,+∞).令μ=x 2-4x +3,则μ在(-∞,1)上单调递减,在(3,+∞)上单调递增. 又y =log 12μ在(0,+∞)上单调递减,所以f (x )的单调递增区间是(-∞,1),单调递减区间是(3,+∞). (2)令g (x )=x 2-2ax +3,要使f (x )在(-∞,2)上为增函数,应使g (x )在(-∞,2)上单调递减,且恒大于0.因此⎩⎪⎨⎪⎧a ≥2,g (2)≥0,即⎩⎪⎨⎪⎧a ≥2,7-4a ≥0,a 无解.所以不存在实数a ,使f (x )在(-∞,2)上为增函数.比较指数式、对数式的大小(师生共研)(1)(2021·广州调研)已知a =⎝ ⎛⎭⎪⎫1213,b =log 23,c =log 46,则a ,b ,c 的大小关系为( )A .a >c >bB .a <b =cC .a >b >cD .a <c <b(2)(2020·高考全国卷Ⅲ)已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( )A .a <b <cB .b <a <cC .b <c <aD .c <a <b【解析】 (1)a =⎝ ⎛⎭⎪⎫1213<⎝ ⎛⎭⎪⎫120=1,b =log 23>log 22=1,c =log 46>log 44=1,所以a 为三者中的最小值.由于 c =log 46=12log 26=log 26<log 23=b ,所以a <c <b .故选D.(2)因为45=log 8845,b =log 85,(845)5=84>55,所以845>5,所以45=log 8845>log 85=b ,即b <45.因为45=log 131345,c =log 138,(1345)5=134<85,所以1345<8,所以45=log 131345<log 138=c ,即c >45.又2 187=37<55=3 125,所以lg 37<lg 55,所以7lg 3<5lg 5,所以lg 3lg 5<57,所以a =lg 3lg 5<57<45,而85<57,所以5lg 8<7lg 5,所以lg 5lg 8>57,所以b =lg 5lg 8>57,所以c >b >a .【答案】 (1)D (2)A(1)比较指数式和对数式的大小,可以利用函数的单调性,引入中间量;有时也可用数形结合的方法.(2)解题时要根据实际情况来构造相应的函数,利用函数单调性进行比较,如果指数相同,而底数不同则构造幂函数,若底数相同而指数不同则构造指数函数,若引入中间量,一般选0或1.1.(2020·六校联盟第二次联考)设a =log 30.4,b =log 23,则( ) A .ab >b 且a +b >0 B .ab <0且a +b >0 C .ab >0且a +b <0D .ab <0且a +b <0解析:选 B.因为-1=log 313<log 30.4<log 31=0,所以a ∈(-1,0),b =log 23>log 22=1,所以ab <0,a +b >0,选B.2.(2020·全国统一考试(模拟卷))若a >b >c >1且ac <b 2,则( ) A .log a b >log b c >log c a B .log c b >log b a >log a c C .log b c >log a b >log c aD .log b a >log c b >log a c解析:选B.因为a >b >c >1,所以log a b <log a a =1,log b c <log b b =1,log c a >log c c=1,排除选项A ,C ;log a b -log b c =lg b lg a -lg c lg b =(lg b )2-lg a lg clg a lg b,因为lg a lgc <⎝ ⎛⎭⎪⎫lg a +lg c 22=⎝ ⎛⎭⎪⎫lg ac 22<⎝ ⎛⎭⎪⎫lg b 222=(lg b )2,所以(lg b )2-lg a lg c lg a lg b >0,所以log a b >log b c ,所以log c b >log b a ,排除选项D.所以选B.3.已知函数f (x )=|x |,且a =f ⎝ ⎛⎭⎪⎫ln 32 ,b =f (log 213),c =f (2-1),则a ,b ,c的大小关系为( )A .a <c <bB .b <c <aC .c <a <bD .b <a <c解析:选A.ln 32<ln e =12,log 23>12, 所以log 23>12>ln 32.又f (x )是偶函数,在(0,+∞)上为增函数, 所以f ⎝ ⎛⎭⎪⎫ln 32<f ⎝ ⎛⎭⎪⎫12<f (log 23)=f ⎝ ⎛⎭⎪⎫log 213,所以a <c <b .[学生用书P33]思想方法系列5 数形结合法在对数函数问题中的应用 设方程10x =|lg(-x )|的两个根分别为x 1,x 2,则( ) A .x 1x 2<0 B .x 1x 2=0 C .x 1x 2>1D .0<x 1x 2<1【解析】 作出y =10x 与y =|lg(-x )|的大致图象,如图. 显然x 1<0,x 2<0.不妨令x 1<x 2, 则x 1<-1<x 2<0,所以10 x 1=lg(-x 1),10 x 2=-lg(-x 2), 此时10x 1<10 x 2,即lg(-x 1)<-lg(-x 2), 由此得lg(x 1x 2)<0,所以0<x 1x 2<1,故选D. 【答案】 D一些对数型函数、方程、不等式问题的求解,需转化为相应函数图象问题,利用数形结合法求解.设实数a ,b 是关于x 的方程|lg x |=c 的两个不同实数根,且a <b <10,则abc 的取值范围是________.解析:由题意知,在(0,10)上,函数y =|lg x |的图象和直线y =c 有两个不同交点,所以ab =1,0<c <lg 10=1,所以abc 的取值范围是(0,1).答案:(0,1)[学生用书P283(单独成册)][A 级 基础练]1.函数y =log 3(2x -1)+1的定义域是( ) A .[1,2] B .[1,2) C.⎣⎢⎡⎭⎪⎫23,+∞ D.⎝ ⎛⎭⎪⎫23,+∞解析:选C.由⎩⎪⎨⎪⎧log 3(2x -1)+1≥0,2x -1>0,即⎩⎪⎨⎪⎧log 3(2x -1)≥log 313,x >12,解得x ≥23.2.(2020·河北九校第二次联考)设a =4-12,b =log 1213,c =log 32,则a ,b ,c的大小关系是( )A .a <b <cB .a <c <bC .c <a <bD .c <b <a解析:选B.a =4-12=1412=12,b =log 1213=log 23>log 22=1,c =log 32>log 33=12,且c =log 32<log 33=1,即12<c <1,所以a <c <b ,故选B.3.函数y =ln 1|2x -3|的图象为( )解析:选A.易知2x -3≠0,即x ≠32,排除C ,D. 当x >32时,函数为减函数; 当x <32时,函数为增函数,所以选A. 4.若0<a <1,则不等式1log a x >1的解是( )A .x >aB .a <x <1C .x >1D .0<x <a解析:选B.由题意知0<log a x <1,又0<a <1,所以a <x <1.5.若函数y =log a (x 2-ax +1)有最小值,则a 的取值范围是 ( ) A .0<a <1 B .0<a <2,a ≠1 C .1<a <2D .a ≥2解析:选C.当a >1时,y 有最小值,则说明x 2-ax +1有最小值,故x 2-ax +1=0中Δ<0,即a 2-4<0,所以1<a <2.当0<a <1时,y 有最小值,则说明x 2-ax +1有最大值,与二次函数性质相互矛盾,舍去.综上可知,故选C.6.已知函数f (x )=x 3+a log 3x ,若f (2)=6,则f ⎝ ⎛⎭⎪⎫12=________.解析:由f (2)=8+a log 32=6,解得a =-2log 32,所以f ⎝ ⎛⎭⎪⎫12=18+a log 312=18-a log 32=18+2log 32×log 32=178.答案:1787.已知2x =72y=A ,且1x +1y =2,则A 的值是________.解析:由2x =72y=A 得x =log 2A ,y =12log 7A ,则1x +1y =1log 2A +2log 7A =log A 2+2log A 7=log A 98=2,A 2=98.又A >0,故A =98=7 2. 答案:7 28.已知函数f (x )=|log 3 x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则nm =________.解析:因为f (x )=|log 3x |,正实数m ,n 满足m <n ,且f (m )=f (n ),所以-log 3m =log 3n ,所以mn =1.因为f (x )在区间[m 2,n ]上的最大值为2,函数f (x )在[m 2,1)上是减函数,在(1,n ]上是增函数,所以-log 3m 2=2或log 3n =2.若-log 3m 2=2,得m =13,则n =3,此时log 3n =1,满足题意.那么n m =3÷13=9.同理.若log 3n=2,得n =9,则m =19,此时-log 3m 2=4>2,不满足题意.综上可得nm =9.答案:99.设f (x )=log a (1+x )+log a (3-x )(a >0,且a ≠1),且f (1)=2.(1)求a 的值及f (x )的定义域; (2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,32上的最大值.解:(1)因为f (1)=2,所以log a 4=2(a >0,且a ≠1),所以a =2. 由⎩⎪⎨⎪⎧1+x >0,3-x >0,得-1<x <3, 所以函数f (x )的定义域为(-1,3). (2)f (x )=log 2(1+x )+log 2(3-x )=log 2[(1+x )(3-x )]=log 2[-(x -1)2+4], 所以当x ∈(-1,1]时,f (x )是增函数; 当x ∈(1,3)时,f (x )是减函数,故函数f (x )在⎣⎢⎡⎦⎥⎤0,32上的最大值是f (1)=log 24=2. 10.已知函数f (x )=log a x (a >0且a ≠1)的图象过点(4,2). (1)求a 的值;(2)若g (x )=f (1-x )+f (1+x ),求g (x )的解析式及定义域; (3)在(2)的条件下,求g (x )的单调减区间.解:(1)函数f (x )=log a x (a >0且a ≠1)的图象过点(4,2), 可得log a 4=2,解得a =2.(2)g (x )=f (1-x )+f (1+x )=log 2(1-x )+log 2(1+x )=log 2(1-x 2), 由1-x >0且1+x >0,解得-1<x <1, 可得g (x )的定义域为(-1,1). (3)g (x )=log 2(1-x 2),由t =1-x 2在(-1,0)上单调递增,(0,1)上单调递减, 且y =log 2t 在(0,+∞)上单调递增, 可得函数g (x )的单调减区间为(0,1).[B 级 综合练]11.(2020·高考全国卷Ⅰ)若2a +log 2a =4b +2log 4b ,则( ) A .a >2b B .a <2b C .a >b 2D .a <b 2解析:选B.方法一:令f (x )=2x +log 2x ,因为y =2x 在(0,+∞)上单调递增,y =log 2x 在(0,+∞)上单调递增,所以f (x )=2x +log 2x 在(0,+∞)上单调递增.又2a +log 2a =4b +2log 4b =22b +log 2b <22b +log 2(2b ),所以f (a )<f (2b ),所以a <2b .故选B.方法二:(取特值法)由2a +log 2a =4b +2log 4b =4b +log 2b ,取b =1,得2a +log 2a =4,令f (x )=2x +log 2x -4,则f (x )在(0,+∞)上单调递增,且f (1)<0,f (2)>0,所以f (1)f (2)<0,f (x )=2x +log 2x -4在(0,+∞)上存在唯一的零点,所以1<a <2,故a >2b =2,a <b 2都不成立,排除A ,D ;取b =2,得2a +log 2a =17,令g (x )=2x +log 2x -17,则g (x )在(0,+∞)上单调递增,且g (3)<0,g (4)>0,所以g (3)g (4)<0,g (x )=2x +log 2x -17在(0,+∞)上存在唯一的零点,所以3<a <4,故a >b 2=4不成立,排除C.故选B.12.已知x 1=log 132,x 2=2-12,x 3满足⎝ ⎛⎭⎪⎫13x 3=log 3x 3,则( )A .x 1<x 2<x 3B .x 1<x 3<x 2C .x 2<x 1<x 3D .x 3<x 1<x 2解析:选A.由题意可知x 3是函数y 1=⎝ ⎛⎭⎪⎫13x与y 2=log 3x 的图象交点的横坐标,在同一直角坐标系中画出函数y 1=⎝ ⎛⎭⎪⎫13x与y 2=log 3 x 的图象,如图所示,由图象可知x 3>1,而x 1=log 132<0,0<x 2=2-12<1,所以x 3>x 2>x 1.故选A.13.设函数f (x )=|log a x |(0<a <1)的定义域为[m ,n ](m <n ),值域为[0,1],若n -m 的最小值为13,则实数a 的值为________.解析:作出y =|log a x |(0<a <1)的大致图象如图所示,令|log a x |=1.得x =a 或x =1a ,又1-a -⎝ ⎛⎭⎪⎫1a -1=1-a -1-a a =(1-a )(a -1)a <0,故1-a <1a -1,所以n -m 的最小值为1-a =13,a =23.答案:2314.已知函数f (x )=log a (2x -a )在区间⎣⎢⎡⎦⎥⎤12,23上恒有f (x )>0,则实数a 的取值范围是________.解析:当0<a <1时,函数f (x )在区间⎣⎢⎡⎦⎥⎤12,23上是减函数,所以log a (43-a )>0,即0<43-a <1.解得13<a <43,故13<a <1;当a >1时,函数f (x )在区间⎣⎢⎡⎦⎥⎤12,23上是增函数,所以log a (1-a )>0,即1-a >1, 解得a <0,此时无解.综上所述,实数a 的取值范围是⎝ ⎛⎭⎪⎫13,1.答案:⎝ ⎛⎭⎪⎫13,115.已知函数f (x )=lgx -1x +1.(1)计算:f (2 020)+f (-2 020);(2)对于x ∈[2,6],f (x )<lg m (x +1)(7-x )恒成立,求实数m 的取值范围. 解:(1)由x -1x +1>0,得x >1或x <-1.所以函数f (x )的定义域为{x |x >1或x <-1}.又f (x )+f (-x )=lg ⎝ ⎛⎭⎪⎪⎫x -11+x ·-x -11-x =0,所以f (x )为奇函数. 所以f (2 020)+f (-2 020)=0.(2)当x ∈[2,6]时,f (x )<lg m (x +1)(7-x )恒成立可化为x -11+x<m (x +1)(7-x )恒成立, 即m >(x -1)(7-x )在[2,6]上恒成立.又当x ∈[2,6]时,(x -1)(7-x )=-x 2+8x -7=-(x -4)2+9.所以当x =4时,[(x -1)(7-x )]max =9,所以m >9.即实数m 的取值范围是(9,+∞).[C 级 提升练]16.我们知道,互为反函数的指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)的图象关于直线y =x 对称,而所有偶函数的图象都关于y 轴对称.现在我们定义:如果函数y =f (x )的图象关于直线y =x 对称,即已知函数f (x )的定义域为D ,∀x ∈D ,若y =f (x ),x =f (y )也成立,则称函数f (x )为“自反函数”.显然斜率为-1的一次函数f (x )=-x +b 都是“自反函数”,它们都是单调递减的函数.你认为是否还存在其他的“自反函数”?如果有,请举例说明,并对该“自反函数”的基本性质提出一些猜想;如果没有,请说明理由.解:有.举例如下:根据“自反函数”的定义,函数f (x )=k x (k ≠0)是“自反函数”.“自反函数”f(x)=kx(k≠0)的定义域、值域均为(-∞,0)∪(0,+∞);当k>0时,f(x)=kx(k≠0)在区间(-∞,0),(0,+∞)上为减函数;当k<0时,f(x)=kx(k≠0)在区间(-∞,0),(0,+∞)上为增函数;f(x)=kx(k≠0)是奇函数,但不是周期函数.。

2024届新高考一轮复习北师大版 第三章 第六节 对数与对数函数 课件(42张)

2024届新高考一轮复习北师大版 第三章 第六节 对数与对数函数 课件(42张)
(0,+∞)
.
(2)对数函数y=logax(a>0,且a≠1)的图象与性质
图象和性质
图象
a>1
0<a<1
图象和
a>1
性质
(1)定义域:(0,+∞)
(2)值域:R
性质
(3)过定点(1,0),即当x=1时,y=0
(4)当x>1时,y>0;当0<x<1时,y<0
(5)在定义域(0,+∞)上是增函数
当x值趋近于正无穷大时,函数值
②自然对数:当对数的底数a=
记为 ln N .
e 时,通常称之为自然对数,并把logeN简
2.对数的性质
(1)负数和0没有对数;
(2)loga1= 0
,loga a= 1
;
(3)对数恒等式: lo g =N (a>0,a≠1,N>0).
3.对数的运算性质
(1)若 a>0,且 a≠1,M>0,N>0,b∈R,那么:①loga(M·N)= logaM+logaN ;
2.若a>0,a≠1,b>0,b≠1,c>0,则logab·logbc=logac.(
)
3.若函数 g(x)的最大值为 m,则函数 f(x)=log 1 g(x)的最大值是 log 1 m.
2
4.函数f(x)=loga(ax-1)(a>0,a≠1)在其定义域上单调递增.(
2
)
( × )
题组二 双基自测
2
能量为E1,门源县地震所释放的能量为E2, 则 的近似值为(
1
A.15
B.20
C.32

《课堂新坐标》高考数学一轮总复习课件:第二章 第六节 对数与对数函数(共39张PPT)

《课堂新坐标》高考数学一轮总复习课件:第二章 第六节 对数与对数函数(共39张PPT)

=(llgg 23+2llgg23)·(2llgg32+3llgg32)
=32llgg 23·56llgg 32=54.
高考体验·明
探究·提知能
课后作
菜单
新课标 ·文科数学(广东专用)
1.对数运算法则是在化为同底的情况下进行的,因 落实·固基础此经常用到换底公式及其推论;在对含字母的对数式化 高考体验·明
在(0,+∞)上为 ___增__函__数____
当0<x<1时,y>0; 当x>1时,___y_<__0__.
课后作
在(0,+∞)上为 ____减_函__数____
菜单
新课标 ·文科数学(广东专用)
4.反函数 指数函数y=ax(a>0且a≠1)与对数函数 __y_=__lo_g_a_x____(a 落实·固基>础 0且a≠1)互为反函数,它们的图象关于直线______y_=对x称.高考体验·明
|lg x| 落实·固基础-21x+6
0<x≤10,
x>10,
若 a、b、c 互不相等,且 f(a)=f(b高) 考体验·明
=f(c),则 abc 的取值范围是( )
A.(1,10)
B.(5,6)
C.(10,12)
D.(20,24)
【思路点拨】 (1)根据函数 y=ax2+bx 与 x
探究·提知能 轴的交点确定|ba|的范围.
【答案】 2
探究·提知能
课后作
菜单
新课标 ·文科数学(广东专用)
落实·固基础
(1)计算(1-log63)lo2g+64log62·log618; (2)计算(log32+log92)·(log43+log83).
高考体验·明
【思路点拨】 (1)根据乘法公式和对数运算性质进行计

2022版新高考数学人教A版一轮课件:第三章 第六节 对数、对数函数

2022版新高考数学人教A版一轮课件:第三章 第六节 对数、对数函数
得 x=3 或 3.如图所示,
12 可知(b-a)min=1-3 =3 .
2 答案:3
考点突破·典例探究
对数式的化简与求值
【典例 1】(1)已知函数 f(x)=2x,x≥4, f(x+1),x<4,
则 f(2+log23)的值为(
)
A.24 B.16 C.12 D.8
(2)(2021·通州区模拟)某同学在数学探究活动中确定研究主题是“an(a>1,n∈N*) 是几位数”,他以 2n(n∈N*)为例做研究,得出相应的结论,其研究过程及部分研 究数据如表: 试用该同学的研究结论判断 450 是几位数 (参考数据 lg 2≈0.301 0)( ) A.101 B.50 C.31 D.30
【微思考】
(1)试利用换底公式分析logab与logba(其中a>0且a≠1,b>0且b≠1)的关 系.
(2)试利用换底公式化简logambn(其中a>0且a≠1,b>0且b≠1,m,n∈R,
m≠0).
提示:(1)
logab=lloogg
b=b
ba
Hale Waihona Puke .1log b a
(2)
logambn=llooggaaabmn=
【解析】当 x=2 时,函数 y=loga(x-1)+2(a>0,且 a≠1)的值为 2, 所以图象恒过定点(2,2). 答案:(2,2)
3 4.若 loga4 <1(a>0 且 a≠1),则实数 a 的取值范围是________.
3
3
【解析】当 0<a<1 时,loga4 <logaa=1,所以 0<a<4 ;
3
lg 25 lg (2 2) lg 9 lg 52 lg2 2 lg 32
= lg 2 · lg 3

第6讲 对数与对数函数 课件(共82张PPT)

第6讲 对数与对数函数  课件(共82张PPT)

解析 由 alog34=2 可得 log34a=2,所以 4a=9,所以 4-a=19,故选 B.
解析 答案
2.已知 a>0,a≠1,函数 y=ax 与 y=loga(-x)的图象可能是( )
解析 若 a>1,则 y=ax 是增函数,y=loga(-x)是减函数;若 0<a<1, 则 y=ax 是减函数,y=loga(-x)是增函数,故选 B.
且 a≠1)互为反函数,它们的图象关于直线 10 ___y_=__x___对称.
1.对数的性质(a>0 且 a≠1) (1)loga1=0;(2)logaa=1;(3)alogaN=N. 2.换底公式及其推论 (1)logab=llooggccba(a,c 均大于 0 且不等于 1,b>0); (2)logab·logba=1,即 logab=log1ba(a,b 均大于 0 且不等于 1); (3)logambn=mn logab; (4)logab·logbc·logcd=logad.
增区间.
∵当 x∈(4,+∞)时,函数 t=x2-2x-8 为增函数,
∴函数 f(x)的单调递增区间为(4,+∞).故选 D.
解析 答案
6.计算:log23×log34+( 3)log34=________. 答案 4 解析 log23×log34+( 3)log34 =llgg 32×2llgg32+3 log34=2+3log32=2+2=4.
8 5
<lg152·lg
3+lg 2
82=
lg
3+lg 2lg 5
82=llgg
22452<1,∴a<b.由
b=log85,得
8b=5,由
55<84,得
85b
<84,∴5b<4,可得 b<45.由 c=log138,得 13c=8,由 134<85,得 134<135c,

高考数学一轮复习讲义(提高版) 专题2.6 对数及对数函数(原卷版)

高考数学一轮复习讲义(提高版) 专题2.6 对数及对数函数(原卷版)

第六讲 对数及对数函数一.对数的概念 (1)对数的定义①一般地,如果a (a >0,a ≠1)的b 次幂等于N ,即a b=N ,那么称b 是以a 为底N 的对数,记作b =log a N ,其中,a 叫做对数的底数,N 叫做真数.②底数的对数是1,即log a a =1,1的对数是0,即log a 1=0. (2)几种常见对数4.对数的性质与运算法则 (1)对数的性质 ①log a Na=N (a >0且a ≠1,N >0);②log a a N=N (a >0且a ≠1). (2)对数的重要公式①换底公式:log b N =log a Nlog a b (a ,b 均大于零且不等于1,N >0);②log a b =1log b a (a ,b 均大于零且不等于1).(3)对数的运算法则如果a >0且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N ; ②log a M N=log a M -log a N ; ③log a M n=n log a M (n ∈R ); ④log m na M =n mlog a M .二.对数函数的定义1.形如y =log a x (a >0,a ≠1)的函数叫作对数函数,其中x 是自变量,函数的定义域是(0,+∞). 2.对数函数的图象与性质定义域:(0,+∞)3.反函数指数函数y =a x(a >0且a ≠1)与对数函数y =log a x (a >0且a ≠1)互为反函数,它们的图象关于直线y =x 对称.考向一 对数的运算【例1】(1)lg 22·lg 250+lg 25·lg 40= . (2)若3a=5b=225,则1a +1b= 。

(4)若log a 2=m ,log a 5=n ,则a 3m+n =( 。

【举一反三】1.已知a =log 32,那么log 38-2log 36用a 表示为 .2.若3x =4y=36,则2x +1y= .3. 设2a =5b=m ,且1a +1b=2,则m = .4.计算:(1-log 63)2+log 62·log 618log 64= .5.已知均不为1的正数a ,b ,c 满足a x =b y =c z,且1x +1y +1z=0,求abc 的值.6.设log a C ,log b C 是方程x 2-3x +1=0的两根,求log a bC 的值.7.方程33x -56=3x -1的实数解为 .考向二 对数函数的判断【例2】函数f(x)=(a 2+a −5)log a x 为对数函数,则f(18)等于( ) A .3 B .−3 C .−log 36 D .−log 38【举一反三】1.下列函数是对数函数的是( )A .y =log 3(x +1)B .y =log a (2x) (a >0,a ≠1)C .y =lnxD .y =log a x 2 (a >0,a ≠1) 2.下列函数,是对数函数的是A .y=lg10xB .y=log 3x 2C .y=lnxD .y=log13(x –1)3.在M=log (x –3)(x+1)中,要使式子有意义,x 的取值范围为A .(–∞,3]B .(3,4)∪(4,+∞)C .(4,+∞)D .(3,4)考向三 对数的单调性【例3】(1)函数f(x)=lg(6x −x 2)的单调递减区间为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第6讲 对数与对数函数1.对数指数函数y =a x 与对数函数y =log a x 互为反函数,它们的图象关于直线y =x 对称.判断正误(正确的打“√”,错误的打“×”) (1)若MN >0,则log a (MN )=log a M +log a N .( ) (2)log a x ·log a y =log a (x +y ).( )(3)函数y =log 2x 及y =log 133x 都是对数函数.( )(4)对数函数y =log a x (a >0且a ≠1)在(0,+∞)上是增函数.( )(5)对数函数y =log a x (a >0且a ≠1)的图象过定点(1,0)且过点(a ,1),⎝⎛⎭⎫1a ,-1,函数图象只在第一、四象限.( )答案:(1)× (2)× (3)× (4)× (5)√ 函数y =x ln(1-x )的定义域为( )A .(0,1)B .[0,1)C .(0,1]D .[0,1]解析:选B .因为y =x ln(1-x ),所以⎩⎪⎨⎪⎧x ≥0,1-x >0,解得0≤x <1.函数f (x )=log12(x 2-4)的单调递增区间为( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)解析:选D.设t =x 2-4,因为y =log 12t 在定义域上是减函数,所以求原函数的单调递增区间,即求函数t =x 2-4的单调递减区间,结合函数的定义域,可知所求区间为(-∞,-2). lg 52+2lg 2-⎝⎛⎭⎫12-1=________.解析:lg 52+2lg 2-⎝⎛⎭⎫12-1=lg 5-lg 2+2lg 2-2=(lg 5+lg 2)-2=1-2=-1. 答案:-1(教材习题改编)函数y =loga (4-x )+1(a >0,且a ≠1)的图象恒过点________. 解析:当4-x =1即x =3时,y =log a 1+1=1. 所以函数的图象恒过点(3,1). 答案:(3,1)对数式的化简与求值[典例引领]计算下列各式:(1)lg 25+lg 2·lg 50+(lg 2)2; (2)(log 32+log 92)·(log 43+log 83).【解】 (1)原式=(lg 2)2+(1+lg 5)lg 2+lg 52 =(lg 2+lg 5+1)lg 2+2lg 5=(1+1)lg 2+2lg 5 =2(lg 2+lg 5)=2.(2)原式=⎝⎛⎭⎫lg 2lg 3+lg 2lg 9⎝⎛⎭⎫lg 3lg 4+lg 3lg 8=⎝⎛⎭⎫lg 2lg 3+lg 22lg 3⎝⎛⎭⎫lg 32lg 2+lg 33lg 2=3lg 22lg 3·5lg 36lg 2=54.[提醒] 对数的运算性质以及有关公式都是在式子中所有的对数符号有意义的前提下才成立的,不能出现log 212=log 2[(-3)×(-4)]=log 2(-3)+log 2(-4)的错误.[通关练习]1.(2018·湖北省仙桃中学月考)计算2log 63+log 64的结果是( ) A .log 62 B .2 C .log 63D .3解析:选B .2log 63+log 64=log 69+log 64=log 636=2.故选B . 2.若x log 23=1,则3x +3-x =( )A.53B.52C.32D.23解析:选B.因为x log 23=1, 所以log 23x =1, 所以3x =2,3-x =12,所以3x +3-x =2+12=52.故选B.3.化简12lg 3249-43lg 8+lg 245=__________.解析:12lg 3249-43lg 8+lg 245=12×(5lg 2-2lg 7)-43×32lg 2+12(lg 5+2lg 7) =52lg 2-lg 7-2lg 2+12lg 5+lg 7 =12lg 2+12lg 5=12lg(2×5)=12. 答案:124.设2a =5b =m ,且1a +1b =2,则m =________.解析:因为2a =5b =m >0,所以a =log 2m ,b =log 5m ,所以1a +1b =1log 2m +1log 5m =log m 2+log m 5=log m 10=2.所以m 2=10,所以m =10.答案:10对数函数的图象及应用[典例引领](1)(2018·沈阳市教学质量检测(一))函数f (x )=ln(x 2+1)的图象大致是( )(2)(数形结合思想)当0<x ≤12时,4x <log a x ,则a 的取值范围是( )A .(0,22) B .(22,1) C .(1,2) D .(2,2)【解析】 (1)函数f (x )的定义域为R ,由f (-x )=ln[(-x )2+1]=ln(x 2+1)=f (x )知函数f (x )是偶函数,则其图象关于y 轴对称,排除C ;又由f (0)=ln 1=0,可排除B ,D .故选A . (2)构造函数f (x )=4x 和g (x )=log a x ,当a >1时不满足条件,当0<a <1时,画出两个函数在(0,12]上的图象,可知f (12)<g (12),即2<log a 12,则a >22,所以a 的取值范围为(22,1).【答案】 (1)A (2)B1.若本例(2)变为:方程4x =log a x 在⎝⎛⎦⎤0,12上有解,求实数a 的取值范围. 解:构造函数f (x )=4x 和g (x )=log a x ,当a >1时不满足条件,当0<a <1时,画出两个函数在⎝⎛⎦⎤0,12上的图象(见例题(2)解析图象),可知,只需两图象在⎝⎛⎦⎤0,12上有交点即可,则f ⎝⎛⎭⎫12≥g ⎝⎛⎭⎫12,即2≥log a 12,则a ≤22,所以a 的取值范围为⎝⎛⎦⎤0,22. 2.若本例(2)变为:若不等式x 2-log a x <0对x ∈⎝⎛⎭⎫0,12恒成立,求实数a 的取值范围. 解:由x 2-log a x <0得x 2<log a x , 设f 1(x )=x 2,f 2(x )=log a x ,要使x ∈⎝⎛⎭⎫0,12时,不等式x 2<log a x 恒成立, 只需f 1(x )=x 2在⎝⎛⎭⎫0,12上的图象在f 2(x )=log a x 图象的下方即可.当a >1时,显然不成立; 当0<a <1时,如图所示,要使x 2<log a x 在x ∈⎝⎛⎭⎫0,12上恒成立, 需f 1(12)≤f 2⎝⎛⎭⎫12, 所以有⎝⎛⎭⎫122≤log a12,解得a ≥116,所以116≤a <1. 即实数a 的取值范围是⎣⎡⎭⎫116,1.利用对数函数的图象可求解的两类热点问题(1)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想求解.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.本例(2)充分体现四大数学思想,不等式4x <log a x 转化为两函数y =4x 和y =log a x 问题,还要对a 的取值再讨论.最后借助图象确定结果.[通关练习])1.已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图象如图所示,则下列结论成立的是( ) A .a>1,c>1 B .a>1,0<c<1 C .0<a<1,c>1 D .0<a<1,0<c<1解析:选D.由对数函数的性质得0<a <1,因为函数y =log a (x +c )的图象在c >0时是由函数y =log a x 的图象向左平移c 个单位得到的,所以根据题中图象可知0<c <1.2.已知函数f (x )=log a (x +b )(a >0且a ≠1)的图象过两点(-1,0)和(0,1),则log b a =________. 解析:f (x )的图象过两点(-1,0)和(0,1). 则f (-1)=log a (-1+b )=0且f (0)=log a (0+b )=1,所以⎩⎪⎨⎪⎧b -1=1,b =a ,即⎩⎪⎨⎪⎧b =2,a =2.所以log b a =1.答案:13.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x ,x ≤0,关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a的取值范围是________.解析:问题等价于函数y =f (x )与y =-x +a 的图象有且只有一个交点,结合函数图象可知a >1. 答案:(1,+∞)对数函数的性质及应用(高频考点)对数函数的性质是每年高考的必考内容之一,多以选择题或填空题的形式考查,难度低、中、高档都有.高考对对数函数性质的考查主要有以下三个命题角度: (1)比较对数值的大小; (2)解简单的对数不等式或方程; (3)对数型函数的综合问题.[典例引领]角度一 比较对数值的大小(2018·福州市综合质量检测)已知a =16ln 8,b =12ln 5,c =ln 6-ln 2,则( )A .a <b <cB .a <c <bC .c <a <bD .c <b <a【解析】 因为a =16ln 8,b =12ln 5,c =ln 6-ln 2,所以a =ln 2,b =ln 5,c =ln 62=ln 3.又对数函数y =ln x 在(0,+∞)上为单调递增函数,由2<3<5,得ln 2<ln 3<ln 5,所以a <c <b ,故选B. 【答案】 B角度二 解简单的对数不等式或方程若log a (a 2+1)<log a 2a <0,则a 的取值范围是( )A .(0,1) B.⎝⎛⎭⎫0,12 C.⎝⎛⎭⎫12,1D .(0,1)∪(1,+∞)【解析】 由题意得a >0且a ≠1,故必有a 2+1>2a , 又log a (a 2+1)<log a 2a <0,所以0<a <1, 同时2a >1,所以a >12.综上,a ∈⎝⎛⎭⎫12,1. 【答案】 C角度三 对数型函数的综合问题已知函数f (x )=log a (x +1)-log a (1-x ),a >0,且a ≠1.(1)求f (x )的定义域;(2)判断f (x )的奇偶性,并予以证明; (3)当a >1时,求使f (x )>0的x 的取值范围. 【解】 (1)因为f (x )=log a (x +1)-log a (1-x ),所以⎩⎪⎨⎪⎧x +1>0,1-x >0,解得-1<x <1.故所求函数的定义域为{x |-1<x <1}. (2)f (x )为奇函数.证明如下:由(1)知f (x )的定义域为{x |-1<x <1},且f (-x )=log a (-x +1)-log a (1+x )=-[log a (x +1)-log a (1-x )]=-f (x ). 故f (x )为奇函数.(3)因为当a >1时,f (x )在定义域{x |-1<x <1}上是增函数,由f (x )>0,得x +11-x >1,解得0<x <1.所以x 的取值范围是(0,1).(1)比较对数值的大小的方法(2)解对数不等式的函数及方法①形如log a x >log a b 的不等式,借助y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况讨论.②形如log a x >b 的不等式,需先将b 化为以a 为底的对数式的形式. (3)解决与对数函数有关的函数的单调性问题的步骤[通关练习]1.(2017·高考全国卷Ⅱ)函数f (x )=ln(x 2-2x -8)的单调递增区间是( ) A .(-∞,-2) B .(-∞,1) C .(1,+∞)D .(4,+∞)解析:选D.由x 2-2x -8>0,得x <-2或x >4.因此,函数f (x )=ln(x 2-2x -8)的定义域是(-∞,-2)∪(4,+∞).注意到函数y =x 2-2x -8在(4,+∞)上单调递增,由复合函数的单调性知,f (x )=ln(x 2-2x -8)的单调递增区间是(4,+∞),选D.2.若f (x )=lg x ,g (x )=f (|x |),则g (lg x )>g (1)时,x 的取值范围是________.解析:当g (lg x )>g (1)时,f (|lg x |)>f (1),由f (x )为增函数得|lg x |>1,从而lg x <-1或lg x >1,解得0<x <110或x >10.答案:⎝⎛⎭⎫0,110∪(10,+∞) 3.已知函数f (x )=log a (8-ax )(a >0,a ≠1),若f (x )>1在区间[1,2]上恒成立,则实数a 的取值范围是________.解析:当a >1时,f (x )=log a (8-ax )在[1,2]上是减函数, 由f (x )>1恒成立,则f (x )min =log a (8-2a )>1, 解之得1<a <83,当0<a <1时,f (x )在x ∈[1,2]上是增函数, 由f (x )>1恒成立,则f (x )min =log a (8-a )>1, 即8-2a <0,所以a >4,又0<a <1,故不存在. 综上可知,实数a 的取值范围是⎝⎛⎭⎫1,83. 答案:⎝⎛⎭⎫1,83对数函数图象的特点(1)当a >1时,对数函数的图象呈上升趋势; 当0<a <1时,对数函数的图象呈下降趋势.(2)对数函数y =log a x (a >0,且a ≠1)的图象过定点(1,0),且过点(a ,1),⎝⎛⎭⎫1a ,-1,函数图象只在第一、四象限.(3)在直线x =1的右侧,当a >1时,底数越大,图象越靠近x 轴;当0<a <1时,底数越小,图象越靠近x 轴,即“底大图低”.几个常用的结论(1)函数y =log a |x |的图象关于y 轴对称.(2)函数y =a x 与y =log a x 互为反函数,它们的图象关于直线y =x 对称.即若f (x )的图象上有一点(a ,b ),则(b ,a )必在其反函数图象上. (3)函数f (x )=|log a x |的定义域为(0,+∞),值域为[0,+∞),在(0,1)上单调递减,在(1,+∞)上单调递增.易错防范(1)在对数式中,真数必须是大于0的,所以对数函数y =log a x 的定义域应为(0,+∞).对数函数的单调性取决于底数a 与1的大小关系,当底数a 与1的大小关系不确定时,要分0<a <1与a >1两种情况讨论.(2)在运算性质log a M α=αlog a M 中,要特别注意条件,在无M >0的条件下应为log a M α=αlog a |M |(α∈N *,且α为偶数).1.函数y =log 23(2x -1)的定义域是( )A .[1,2]B .[1,2) C.⎣⎡⎦⎤12,1D.⎝⎛⎦⎤12,1解析:选D .要使该函数有意义,需⎩⎪⎨⎪⎧2x -1>0,log 23(2x -1)≥0,解得:12<x ≤1,故定义域为⎝⎛⎦⎤12,1. 2.若函数y =f (x )是函数y =a x (a >0且a ≠1)的反函数,且f (2)=1,则f (x )=( ) A .log 2x B .12xC .log 12xD .2x -2解析:选A.由题意知f (x )=log a x ,因为f (2)=1,所以log a 2=1.所以a =2.所以f (x )=log 2x . 3.若函数y =a |x |(a >0,且a ≠1)的值域为{y |0<y ≤1},则函数y =log a |x |的图象大致是( )解析:选A.函数y =a |x |(a >0,且a ≠1)的值域为{y |0<y ≤1},则0<a <1,由此可知y =log a |x |的图象大致是A.4.(2018·河南新乡模拟)设a =60.4,b =log 0.40.5,c =log 80.4,则a ,b ,c 的大小关系是( ) A .a <b <c B .c <b <a C .c <a <bD .b <c <a解析:选B.因为a =60.4>1,b =log 0.40.5∈(0,1),c =log 80.4<0,所以a >b >c .故选B. 5.(2018·河南平顶山模拟)函数f (x )=log a |x +1|(a >0,a ≠1),当x ∈(-1,0)时,恒有f (x )>0,则( )A .f (x )在(-∞,0)上是减函数B .f (x )在(-∞,-1)上是减函数C .f (x )在(0,+∞)上是增函数D .f (x )在(-∞,-1)上是增函数解析:选D.由题意,函数f (x )=log a |x +1|(a >0且a ≠1),则说明函数f (x )关于直线x =-1对称,当x ∈(-1,0)时,恒有f (x )>0,即|x +1|∈(0,1),f (x )>0,则0<a <1.又u =|x +1|在(-∞,-1)上是减函数,(-1,+∞)上是增函数,结合复合函数的单调性可知,f (x )在(-∞,-1)上是增函数,选D.6.已知函数y =log a (x -1)(a >0,a ≠1)的图象过定点A ,若点A 也在函数f (x )=2x +b 的图象上,则f (log 23)=________.解析:由题意得A (2,0),因此f (2)=4+b =0,b =-4,从而f (log 23)=3-4=-1. 答案:-17.已知2x =3,log 483=y ,则x +2y 的值为________. 解析:由2x =3,log 483=y 得x =log 23,y =log 483=12log 283,所以x +2y =log 23+log 283=log 28=3.答案:38.若函数f (x )=log a 2-1(2x +1)在⎝⎛⎭⎫-12,0上恒有f (x )>0,则实数a 的取值范围是________. 解析:因为x ∈⎝⎛⎭⎫-12,0, 所以2x +1∈(0,1),且log a 2-1(2x +1)>0,所以0<a 2-1<1,解得-2<a <-1或1<a <2;所以实数a 的取值范围是(-2,-1)∪(1,2).答案:(-2,-1)∪(1,2)9.设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2.(1)求a 的值及f (x )的定义域;(2)求f (x )在区间⎣⎡⎦⎤0,32上的最大值. 解:(1)因为f (1)=2,所以log a 4=2(a >0,a ≠1),所以a =2.由⎩⎪⎨⎪⎧1+x >0,3-x >0,得-1<x <3, 所以函数f (x )的定义域为(-1,3).(2)f (x )=log 2(1+x )+log 2(3-x )=log 2[(1+x )(3-x )]=log 2[-(x -1)2+4],所以当x ∈(-1,1]时,f (x )是增函数;当x ∈(1,3)时,f (x )是减函数,故函数f (x )在⎣⎡⎦⎤0,32上的最大值是f (1)=log 24=2. 10.已知f (x )=log a (a x -1)(a >0且a ≠1).(1)求f (x )的定义域;(2)判断函数f (x )的单调性.解:(1)由a x -1>0,得a x >1,当a >1时,x >0;当0<a <1时,x <0.所以当a >1时,f (x )的定义域为(0,+∞);当0<a <1时,f (x )的定义域为(-∞,0).(2)当a >1时,设0<x 1<x 2,则1<ax 1<ax 2,故0<ax 1-1<ax 2-1,所以log a (ax 1-1)<log a (ax 2-1).所以f (x 1)<f (x 2).故当a >1时,f (x )在(0,+∞)上是增函数.类似地,当0<a <1时,f (x )在(-∞,0)上为增函数.综上知,函数f (x )在定义域上单调递增.1.若函数f (x )=log a ⎝⎛⎭⎫x 2+32x (a >0,a ≠1)在区间⎝⎛⎭⎫12,+∞内恒有f (x )>0,则f (x )的单调递增区间为( )A .(0,+∞)B .(2,+∞)C .(1,+∞)D .(12,+∞)解析:选A.令M =x 2+32x ,当x ∈⎝⎛⎭⎫12,+∞时,M ∈(1,+∞),f (x )>0,所以a >1,所以函数y =log a M 为增函数,又M =⎝⎛⎭⎫x +342-916,因此M 的单调递增区间为⎝⎛⎭⎫-34,+∞.又x 2+32x >0,所以x >0或x <-32.所以函数f (x )的单调递增区间为(0,+∞). 2.函数f (x )=|log 2x |,若0<a <1<b 且f (b )=f (a )+1,则a +2b 的取值范围为( )A .[4,+∞)B .(4,+∞)C .[5,+∞)D .(5,+∞) 解析:选D.画出f (x )=|log 2x |的图象如图:因为0<a <1<b 且f (b )=f (a )+1,所以|log 2b |=|log 2a |+1,所以log 2b =-log 2a +1,所以log 2(ba )=1,所以ab =2.所以y =a +2b =a +4a(0<a <1), 因为y =a +4a 在(0,1)上为减函数,所以y >1+41=5, 所以a +2b 的取值范围为(5,+∞),故选D.3.若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上递减,则a 的取值范围为________.解析:令函数g (x )=x 2-2ax +1+a =(x -a )2+1+a -a 2,对称轴为x =a ,要使函数在(-∞,1]上递减,则有⎩⎪⎨⎪⎧g (1)>0,a ≥1,即⎩⎪⎨⎪⎧2-a >0,a ≥1,解得1≤a <2,即a ∈[1,2). 答案:[1,2)4.函数f (x )=log 2x ·log 2(2x )的最小值为________.解析:显然x >0,所以f (x )=log 2x ·log2(2x )=12log 2x ·log 2(4x 2)=12log 2x ·(log 24+2log 2x )=log 2x +(log 2x )2=⎝⎛⎭⎫log 2x +122-14≥-14.当且仅当x =22时,有f (x )min =-14. 答案:-14 5.已知函数f (x )是定义在R 上的偶函数,且f (0)=0,当x >0时,f (x )=log 12x .(1)求函数f (x )的解析式;(2)解不等式f (x 2-1)>-2.解:(1)当x <0时,-x >0,则f (-x )=log 12(-x ).因为函数f (x )是偶函数,所以f (-x )=f (x )=log 12(-x ),所以函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧log 12x ,x >0,0,x =0,log 12(-x ),x <0.(2)因为f (4)=log 124=-2,f (x )是偶函数,所以不等式f (x 2-1)>-2转化为f (|x 2-1|)>f (4).又因为函数f (x )在(0,+∞)上是减函数,所以|x 2-1|<4,解得-5<x <5,即不等式的解集为(-5,5).6.设f (x )=|lg x |,a ,b 为实数,且0<a <b .(1)求方程f (x )=1的解;(2)若a ,b 满足f (a )=f (b )=2f ⎝⎛⎭⎫a +b 2,求证:a ·b =1,a +b2>1.解:(1)由f (x )=1,得lg x =±1,所以x =10或110.(2)证明:结合函数图象,由f (a )=f (b )可判断a ∈(0,1),b ∈(1,+∞),从而-lg a =lg b ,从而ab=1.又a +b 2=1b +b 2, 令φ(b )=1b+b (b ∈(1,+∞)),任取1<b 1<b 2, 因为φ(b 1)-φ(b 2)=(b 1-b 2)·⎝⎛⎭⎫1-1b 1b 2<0, 所以φ(b 1)<φ(b 2),所以φ(b )在(1,+∞)上为增函数.所以φ(b )>φ(1)=2.所以a +b 2>1.。

相关文档
最新文档