多年冻土地区路基施工
浅谈冻土路基填筑施工技术
浅谈冻土路基填筑施工技术大兴安岭地区是我国多年冻土分布的主要地区之一,是高纬度古代冰川沉积残留物在长期历史条件下积累形成的。
多为富冰冻土、局部为含土冰层,多年冻土的上限为0.3~1.8m、下限25~38m、局部下限为90m。
在此种地质条件下新修建铁路不仅给施工带来了很大困难,而且可能产生冻胀、沉融等不良路基病害。
多年冻土具有的流变性、沉融性和冻胀性对铁路建设影响严重。
由多年冻土引起的主要地质问题有:沉融、冻胀和冰锥、冻胀丘、融冻泥流、沼泽湿地、厚层地下冰等不良地质现象。
融沉是指多年冻土融化,使建在多年冻土区的建筑物地基变形和破坏,主要表现为路基下沉、路基向阳侧边坡和路肩開裂及下滑、路堑边坡溜塌等。
冻胀是土体冻结时产生的最重要的物理一力学过程,是因为水由液体变成了固体,体积膨胀增大而产生的,表现为地表的不均匀升高变形。
伴随土的冻胀,在建筑基础表面将作用冻胀力,从而产生冻胀变形,严重时将引起建筑物的破坏。
在诸多不良冻土地质现象中,对温度变化最为敏感且对铁路路基的修筑影响最大而且不容易绕避的主要是厚层地下冰,其融化时产生大的下沉量会引起工程建筑物的严重变形和破坏。
因此如何正确合理的选择施工工艺成为了解决路基施工的技术关键。
1 多年冻土路基工程概况古莲至洛古河线古莲至月牙湖段位于黑龙江省大兴安岭地区漠河县境内。
线路自富西线古莲站中心K679+500引出,跨古莲河、漠古公路后沿古莲河南岸并行八支线溯河西进,至DK15+000m预留古莲林场站后线路继续西行,跨霍拉盆河至古莲河露天煤矿南侧边缘,经新设月牙湖站(DK31+550m),止于月牙湖站外DK33+070m。
本工程正线里程33.4公里,线路所处主要地貌为低山区,地势西高东低,一般山高在520-650米,相对高差100-130米,坡度多在10-15度,局部可达到35度。
本段路基设计个别路基工点65处(28.452公里),占线路长度84.147%,路基工点主要为多年冻土路基,其中冻土低路堤18处(4.245公里),冻土路堤30处(17.784公里),冻土路堑15处(6.184公里),冻土沼泽地段路基2处(0.239公里)。
多年冻土地区公路设计与施工技术细则ppt课件
地下冰发育 一般发育
对环境 影响 影响大
有不利影响
简单场地
<-1.5
地下冰不发 育
不发育
无影响
多年冻土地区公路设计与施工技术细则
33
4
工程地质勘察
工程地质勘察与取样 工程地质勘察适宜的时间应有利于工作,又不至于过多影响冻土环境。
冻土地质坑探
冻土岩芯
多年冻土地区公路设计与施工技术细则
34
5
一般路基设计
病 害
洞内路面结冰
洞口路堑雪害
洞口冰雪融水
涌入
多年冻土地区公路设计与施工技术细则
14
编
条件已经成熟
制 背 景
区域发展需要
自1954年青康公路第一次发现多年冻土至今,
我国多年冻我土国地多区年公冻路高土修速地筑区技技地术术域的准辽工备阔程、建资设源历丰富、经济
史已有50多落年后,,研实究现青历交藏史通高持的速续跨公30越路多式及年发东,展北特是多别西条是部省大级开高发速和公路已列入
多年冻土地区公路设计与施工技术细则 JTG/T D31-04-2012
xxx
xxxxxx
20多年1冻3土年地区公5路月设计与●施工x技x术x细则
1
提纲
1 多年冻土区公路建设存在的问题
2 《细则》编制概况
3 《细则》编制实施过程
4 《细则》总体解读
多年冻土地区公路设计与施工技术细则
2
多
年
冻
土
花大公路
区
公
路
建
设
现
状
多年冻土地区公路设计与施工技术细则
3
多 青藏公路(G109):是进藏运输的主通道,穿越750km多年冻土地带,全段
冻土路段路基施工方案专项方案
冻土路段路基施工方案专项方案
在冻土地区进行公路路基施工是一项复杂的工程,需要采取科学合理的施工方案,以确保道路的稳定性和安全性。
本文将从冻土路段特点、施工前准备、路基施工工艺、施工质量控制等方面详细介绍冻土路段路基施工的专项方案。
冻土路段特点
冻土指在寒冷地区下层土壤因低温而冰结为固态,具有一定的强度和不透水性。
在冻土路段进行路基施工时,由于冻土的特性,施工方式需要进行专项设计和施工方案制定。
施工前准备
在进入冻土路段路基施工前,首先需要做好充分的准备工作。
包括对施工区域
的勘察预测、环境评估、施工工艺选择、材料准备等工作。
在准备阶段,需要制定详细的施工计划和施工流程图,确保施工顺利进行。
路基施工工艺
在冻土路段路基施工中,应根据路段冻土层厚度、冰冻深度等因素选择合适的
施工工艺。
一般采用预埋管道输送热源,通过加热提高路基土壤温度,使其变软并具有一定的可塑性,然后进行路基填筑和夯实工作。
在施工中需要严格控制路基填筑的厚度和夯实的密实度,确保路基的稳定性和承载能力。
施工质量控制
冻土路段路基施工质量的控制是保证道路安全运营的关键。
在施工过程中,应
对路基填筑、夯实、平整等工艺进行全面监控和检查,确保施工质量符合设计要求。
同时,对施工现场环境进行监测和评估,及时处理施工中的问题和风险。
结束语
冻土路段路基施工是一项复杂的工程,需要科学的施工方案和严格的质量控制,才能确保道路的安全与稳定。
本文所介绍的专项方案旨在为冻土路段路基施工提供一些参考,希望能对相关工程人员和实践工作者有所帮助。
多年冻土地区路基施工
多年冻土地区路基施工崔巨良李德学(河南省交通建设工程有限公司,河南郑州450052)工程技术E}寅要】在我国有很多地区都是冻土地区,大多在边远地区。
解决冻土地区的施工技术问题,保证工程质量,是关系到公路在冻土地区的运输-窑x-全,对实施国家西部大开发具有极其重要的意义。
本文通过冻土区路基工.程施工实践,对冻土区路基施工技术及质量控制措施进行了总结。
[关键词]多年冻土区;路基施工技术;路基工堆多年冻土地区路基施工前应详细调查沿线冻土分布、类型、冻土上下限、冰层上限、地面水、地下水及有无其他热融(湖)塘、冰丘、冰椎等不良地质情况。
由于各永冻区的自然条件和土壤冻结条件差别显著,所以很难有统一的路基施工方案,施工方法应依据对土基冻融状态的设计要求而选定。
1在保证地基土壤处于冻结状态下的路基施工在道路施工过程中,使土基保持冻结状态,即永冻土的上限不下降,创造土基夏季不融化条件。
在施工期宜选在冬季,因此冬季必须完成大量土方工程。
如在融期施工,则应采取快速分修的施工方法,以免冻层暴露太久,冻土上限下降,引起沉隐破坏。
路基填方作业时,应采用端部卸土的方法填筑。
汽车、拖拉机等带轮子的设备,在前面尚未铺设足够的填料以支持它以前,严禁在坡道上进出。
一般应掌握:1)土基冻结深度大于30cm后开始取土;2)路堤下部各层高为05m时,按逐步向前法填土,以后的各层按纵向法施工。
净砂和砂砾石最易于作路堤填料,因为这种填料具有非冻结性,排水性能好,在冻结季节便于开挖和运输。
当路堤高度较小时,可在路堤下部先填—部分细颗粒土,厚度—般不,J、于1.0m o保证足够厚度的路堤是为了有效地对冻土隔热,国外经验有采用苯乙烯泡沫隔热层、卵石隔热层等做法,以维持地下土壤处于冻桩状态。
2限制土基融化深度的路基施工在限制土基融化深度的路段,路基应当采用当地的粘质土和无粘性的碎屑土修筑,高速公路和一级公路宜设置集中取土场;富冰冻土、饱冰冻土以及含土冰层路段确需就近解决部分土源时,必须在路基坡脚10m以外取土:斜坡地表路堤取土坑应设在上坡一侧,取土坑深度均不得超过当年多年冻土上限以上土壤厚度的80%,坑底应有坡度,积水应有出口。
多年冻土路基施工方案
省道201线室韦至阿木古郞公路室韦至拉布大林一级公路第04合同段多年冻土路基施工专项方案中国中铁航空港建设集团有限公司省道201线室韦至拉布大林公路项目土建工程第04合同段项目经理部2013年5月25日目录第一章工程概况 (3)1.1工程概况 (3)1.2施工组织机构 (3)1.3计划工期: (4)1.4计划投入机械设备: (4)第二章多年冻土路基施工方法及施工工艺 (4)2.1冻土施工具体处理方法 (4)2.2冻土施工 (5)2.3工艺特点 (7)2.4施工工艺 (7)2.5施工流程 (8)2.6操作要点 (8)2.7质量要求及控制要点 (9)第三章施工安全及环保注意事项 (10)2精选资料3.1施工安全措施 (10)3.2环境保护和水土保持措施 (14)3.3施工环境保护、水土保持措施 (15)多年冻土路基施工专项方案第一章工程概况1.1工程概况本项目沿线岛状多年冻土发育于低洼地、地表积水、塔头草生长茂盛、草炭和泥炭发育的沼泽化湿地当中。
冻土的天然上限浅,一般在0.8-2.3米,天然上限最大为2.5米,冻土厚度较小,一般为1.5-3.0米,最大厚度约为5.9米。
冻土总含水量高,一般为35-65%。
多年冻土的构造多为层状或整体构造的富冰冻土、饱冰冻土、多冰冻土。
本路段多年冻土的地温较高,处于退化阶段,极不稳定。
多年冻土的处理原则:根据区内多年冻土的构造特征、平面分布状况及所处的环境条件,为保证多年冻土地区路基的稳定和可靠性,针对不同的多年冻土工程地质条件,结合已有的多年冻土区公路建设工程经验和研究成果,处理时尽可能优先采用挖除换填处理方法,对于多年冻土埋藏较深、厚度较大的路段采取“保护冻土、控制融化速率”的设计原则。
结合本项目多年冻土的特征,对于多年冻土埋藏较深、厚度较大的路段通过计算确可修改编辑定各多年冻土路段的下临界高度hL及上临界高度hu,采用相应的特殊设计措施。
1.2施工组织机构本段落由路基施工一队负责施工,测量组负责施工放样。
多年冻土路基施工工艺方法
多年冻土是指永久冻土层在地表下冻结时间长达数年以上的地质体。
在多年冻土区施工的路基,必须考虑永久冻土的特殊性,以确保工程的稳定性和安全性。
下面将介绍几种常用的多年冻土路基施工工艺方法。
1.预处理工艺方法:多年冻土区路基的预处理是为了减轻对冻土的破坏,降低施工带来的影响。
主要方法有:草皮保护、覆土层保护和覆冻层保护。
草皮保护是通过种草或直接铺设草席来保护冻土,减缓冻土的溶解;覆土层保护是在路基表面加铺一层土,以隔离冻土和外部环境;覆冻层保护是在路基表面加铺冻结混凝土或冻土封面,提供保护层。
2.加热工艺方法:多年冻土区路基施工中,常用的加热方法有:明火加热、电加热和蒸汽加热。
明火加热是通过燃烧燃料产生的炉火热量加热路基,温度可达到200°C以上;电加热是通过电阻丝加热路基,可以实现精确控制温度;蒸汽加热则是通过将蒸汽引入路基中进行加热。
这些方法可以使路基达到一定的温度,提高冻土的温度,减少冻融循环对路基的影响。
3.预冷工艺方法:多年冻土区路基施工中,预冷的目的是降低冻土中的温度,增加冻结深度和冻土的强度。
常用的预冷方法有喷水预冷、短时电加热和冻土造冰。
喷水预冷是通过喷洒大量水对路基进行预冷,增加冻土的深度;短时电加热是通过电阻丝在冻土中加热,提高其温度,使冻结深度增加;冻土造冰则是在路基中注入冷却液冷却路基,使冻土温度降低,增加冻结深度。
4.导热材料应用工艺方法:在多年冻土路基施工中,可以使用导热材料来改善多年冻土的工程性质。
常用的导热材料有导热管、导热板和导热材料混凝土等。
导热管可以通过传导热量加热冻土,改善其强度和稳定性;导热板可通过传导热量提高路基的温度;导热材料混凝土则可以提高路基的导热性能,加快冻结速度。
综上所述,多年冻土路基施工需要根据冻土的特性选择适当的工艺方法。
预处理、加热、预冷和导热材料应用是常用的方法,可以改善多年冻土的性质,提高路基的稳定性和安全性。
这些方法需要根据具体情况进行应用,确保施工的有效性和经济性。
路基施工作业指导书
中铁四局五公司 施工作业指导书 标 题 多年冻土区路基施工 及监测作业指导书
文件编号 版 页 号 码 第 8 页共 11 页
土暴露时间短为原则。爆破施工时路堑开挖断面不得欠挖。 6-5 高含冻量冻土路堑其边坡和基底均需进行换填处理,边坡换填厚度和 基底换填厚度及换填材料要符合设计要求。 6-6 路堑换填边界线放样时,应贯彻“宁超勿欠”的原则,以确保边坡换 填存度满足设计要求。 6-7 路堑开挖至换填深度后,整平基坑表面,而后按如下方法施工: a、用细颗粒土填换时,先作 0.5m 卵碎石工作垫层并碾压,压实质量标准 同基床底层,碾压合格后,再进行细颗粒土换填层的分层填筑。 B、用粗颗粒土换填时,直接从整平的基坑底分层进行。 6-8 边坡换填至堑顶后,作堑顶包角和挡水埝,包角、挡水捻填料和压实 标准要符合设计要求。 6-9 路堑全部换填完成后,再进行边坡修整、路基面整平及坡表面处理。 最后修建侧沟及侧沟平台。 信号、 电力电缆槽开挖时, 不得破坏堑坡坡脚。 6-10 冻土路堑施工程序见下图: (见末页) 7、监测 7-1 路基填筑压实的质量检测随分层碾压施工分层进行。检测项目主要有 压实系数、K30 值或相对密度。细颗粒土检测压实系数采用核子密度湿度 仪、环刀或灌砂法;粗颗粒土检测地基系数,采用 K30 试验车或 K30 试 验仪进行检测;砂及砂卵石检测相对密度。检测合格后,方可进行下一层 填筑施工。 7-2 路基质量标准及检测
每 20m 用水准仪检查 1 点 每 20m 检查 1 点 每 20m 检查 1 点 每 20m 检查 1 个断面 每 10m 用 2.5 米直尺检查 1 点 每层沿纵向每 100m 检测 3 点 (距路边 1m 处 2 点,中间 1 点 在路肩表层进行检测,每 100m 检查 1 点 (距路基边 2m 处 1 点)
高原冻土区路基施工技术措施
高原冻土区路基施工技术措施高原冻土区路基施工技术措施一、高原多年冻土区路基施工的主要特点:多年冻土区的自然和生态环境是由地质历史时期的过程和气候条件所决定的。
在不破坏此环境的前提下,多年冻土是稳定的。
但如果多年冻土被破坏,地基多年冻土将产生衰退,甚至融化,路基地基将受到严重影响。
多年冻土区路基受施工季节影响较大,应尽量减少季节对多年冻土的热干扰。
水对路基地基影响较普通地区大。
水携带的热量较空气要大得多,水在路基工程附近的聚集,对路基地基多年冻土的热干扰很大,甚至引起多年冻土大量融化。
多年冻土工程地质条件十分复杂,在不大的范围内,各种工程类型的多年冻土可能均有分布。
本工程地处青藏高原,冻结期较长,最长达七个月。
多年冻土区路基工程受不均匀冻胀和热融下沉影响较大。
二、高原多年冻土区路基施工技术措施:根据高原多年冻土区路基的特点,必须采取相应技术措施。
路基施工中,为减小路基热融下沉,应注意减少填料蓄热对地基多年冻土的影响。
路堤较高时,宜分两次填筑。
高温多年冻土地段路堤宜在暖季时期填筑。
路堑开挖后,基底换填层下的卵碎石土工作垫层对减少路基冻胀和融沉有重要作用,所以在施工中应认真作好工作垫层。
基于多年冻土区路基工程的特殊性,多年冻土区路基工程必须满足在抗冻胀、抗融沉方面的特殊要求。
多年冻土区路基施工应充分重视多年冻土环境保护和环境保护工程的施工,严格按环保要求组织施工。
为满足环境和路基稳定要求,防止因周围环境的冻土被破坏,致使热融发生扩散而危及铁路路基稳定,要求青藏铁路取土场应离开路基500m以上,且必须由环保部门指定。
施工时尽量采用移挖作填的办法解决填料,充分利用弃碴和路堑挖方。
针对路基不同的施工部位,宜选择合适的施工季节。
高含冰量多年冻土分布地区,路堑开挖将高含冰量多年冻土直接暴露在大气中和阳光下,多年冻土的热状态受到严重干扰,高含冰量冻土的融化,甚至可使施工无法进行,所以高含冰量多年冻土路堑的开挖选择在寒冷季节,暴露的多年冻土不会融化,相反,多年冻土的温度还会下降,有利于多年冻土的稳定。
冻土地区路基处理方法
冻土地区路基处理方法冻土地区是指土壤中存在永久冻结层的地区。
由于寒冷气候和冻结土壤的特殊性质,这种地区的路基处理需要特别的考虑和方法。
以下是一些在冻土地区进行路基处理的常见方法。
1.路基设计在冻土地区进行路基设计时,需要考虑冻土地区特有的问题,如土壤冻结融化引起的沉降和不均匀变形,以及路基的热胀冷缩问题。
因此设计阶段需要进行详细的地质勘察,确认冻结层的深度和土壤类型,以便制定适当的处理方案。
2.土壤改良为了加强路基的承载力和稳定性,常常需要对冻土地区的土壤进行改良。
一种常见的方法是在路基底部铺设厚度适当的砾石层,以增加路基的抗冻和承载能力。
此外,还可以使用化学药剂或冻土专用材料来改良土壤的物理和力学性质,以增加土壤的强度和稳定性。
3.排水系统在冻土地区进行路基处理时,排水系统尤为重要。
由于冻结土壤的渗透性较低,路基上的水分常常无法迅速排出,从而导致冻胀和路基沉降。
因此,需要在路基中设置排水系统,确保在降雨或融雪时能够迅速排水。
这可以包括设置排水管道、挖掘排水沟和设立渗水孔等措施。
4.热胀冷缩控制冻土地区的路基在冬季由于寒冷气候导致土壤收缩,而在夏季由于气温升高而膨胀。
这种热胀冷缩会对路基的稳定性产生负面影响。
为了解决这个问题,可以在路基中设置适当的热胀冷缩控制层或安装热胀冷缩控制设备。
这样可以有效减少路基的变形和损坏。
5.路面材料选择在冻土地区进行路基处理时,路面材料的选择也非常重要。
寒冷气候和冻结土壤的影响会使路面材料更易受损和开裂。
因此,需要选择具有良好抗冻性和耐久性的路面材料,如沥青混凝土或水泥混凝土。
总结起来,冻土地区路基处理需要综合考虑土壤特性、排水系统、热胀冷缩和路面材料等因素。
通过合理的设计和施工,可以确保路基在冻土环境下的稳定性和可靠性,从而提高道路的使用寿命和行车安全。
浅析多年冻土路段路基施工的注意事项及处理措施
浅析多年冻土路段路基施工的注意事项及处理措施山雪兰(青海省海南天和路桥公司海南州813000)本文依托青海省共和至玉树(结古)公路改扩建工程施工GYII-SGD5合同段为背景,该项目沿线气候严寒、地势高耸,属高寒大陆性半干旱气候,气候多变,年平均气温-4.2℃,极端最低气温-48.1℃。
因此沿线季节性冻土分布比较广泛。
针对该项目中多年冻土区工程地质条件的复杂性,简要阐述多年冻土路段路基施工应注意的一些事项及本项目中采取的几种处理方法。
1 冻土路段路基施工的注意事项1.1施工前根据设计文件进行冻土地段的工程地质的现场检查和实地核对,检查沿线冻土分布、类型、冻土上下限、冰层上限、地面水、地下水以及有无其他如热融(湖、塘)、冰丘、冰堆等不良地质地段。
1.2核对土石工程类别及其分布,了解集中取土地点的位置及分散取土坑的分布情况,进行填料复查和试验;调查冻土路堑、路堤和站场的施工环境、弃土位置、填料来源和运土条件。
1.3对冻土路堑在开挖前核对查明冻土的类型、分布以及冻土的岩性成份和温度特征。
地质条件不符的,会同设计单位修改完善设计文件。
1.4路堑开挖前要正确标出边界线,按设计要求做好堑顶及路堑土石方施工排水系统,防止地表水和冻结层上水流入路堑。
1.5高含冰量冻土路堑应在9、10、11月和3、4、5月进行开挖,在6月底前完成基底和边坡的换填和保温层施工;低含冰量冻土路堑及石质冻土路堑在寒、暖季均可施工。
但表层严重风化的高含冰量石质冻土路堑宜在寒季进行开挖,暖季早期完成边坡的换填处理。
2多年冻土路段的几种处理方法本项目多年冻土路段主要采取填方路基、片块石通风路基、XPS板路基,热棒- XPS 板复合式路基等工程措施。
2.1填方路基对于少冰、多冰多年冻土区,路基填高以不小于1.8m控制,在未通过水草沼泽时,填筑30cm砂砾(或石渣)或换填80cm砂砾(或石渣),通过水草沼泽时,填筑50cm砂砾(或石渣),采用重型碾压,并冲击碾压25遍补强,然后填筑30cm 砂砾及路基填土,其上布设塑钢土工格栅。
高原多年冻土区块石路基施工技术问题探讨
高含冰量冻十或 十冰层 含 高古冰量冻土或 含土 冰 层
铁 路建 设 指挥 部组 织科 研 、 工 单位 在 青 藏 铁 路 清 水 施 河 试验 段 、 北麓 河试 验段 对块 石路 基进 行 了试 验研究 , 取得 了阶段 性试 验 成 果 , 而 使 块石 路 基 在 青 藏 铁 路 从
3 解决 措 施 。将 低 洼 地 段 路 基 范 围及 附 近 的坑 )
洼 采用 粗粒 土填 平 , 后 填筑路 拱 , 路基 坡脚 高于路 然 使
基 以外 地面 , 免地表 水进 人路 基基底 , 得 了相 当好 避 取
的效果 。 1 2 块 石 生 产 工 艺 及 质 量 控 制 .
土 的 目的。多 年 以来 , 内外 多 家科 2m 厚碎 砾 石 和 0 2m 厚 中粗砂 其 . .
反 滤层 。块 石粒 径要 求 为 2 4 i。图 1 块 石路 0~ 0 t n 为 基 横 断面设 计 图 。
了多年 冻 土 区块石 路基 的试 验 研 究 , 取 得 了丰 富 的 并
1 路拱 的作 用 。在 块 石 层 下设 土 路 拱 , 用是 防 ) 作 止 地 表水进 人路 基基 底 , 避免减 弱块 石层 的效果 。 2 现场 发现 的 问 题 。青 藏 铁 路 第 六 标 段 部 分 地 ) 段 路基 范 围地表 低洼 , 如按 3 m厚度 填筑 路拱 , 0e 则不 能 有效 防止 地表 水进 入 块 石 层 的底 部 , 减 弱 块 石路 将
1 块 石 路基 施 工
青藏 铁 路第 六和 第 十一标 段 采用 的块 石路 基设 计
措施 是在 路基 基 底设 一层 土 路拱 , 拱 最 小 厚 度 为 3 路 0
多年冻土片石通风路基施工总结
多年冻土片石通风路基施工总结219线新藏公路富冰类冻土路段长60.389公里,本施工路段沿线海拔在4800-5040米之间,严寒缺氧,一般气温递减梯度约为O.57℃/l00m,多年平均气温仅-4.42℃,全段发现了大片多年冻土,表现为不均匀沉陷、翻浆,局部雪融水造成水毁,路基鼓胀、开裂等,本着病害整治以科学整治,不诱发新的病害,不留隐患为原则,以提高公路防灾、抗灾能力为目的,2010年8月该路段开始整治建设,对全线饱冰冻土路段长40.797公里,合土冰层及厚层地下冰类冻土路段长8.970公里路基,进行了片块石填筑路基措施处理,现对片石通风路基施工总结一如下:一、片石通风路基工艺原理作为多孔介质的碎石路基,基于多孔介质中空气自然对流原理,其中的对流换热即气体流过碎石壁面时,由于气体和碎石表面的温度差所导致的热量交换现象。
碎、片石堆积体以其较大的空隙率和较强的自由对流,在寒季由于气温低于路基体内温度,形成路基外密度大的冷空气不断置换路基内密度小热空气,不断发生冷量交换,在暖季却由于气温高于路路基体内温度,仰制了对流热传导作用,产生热量屏蔽,共结果是有利于保护多年冻土,保持多年冻土上限稳定或促使多年冻土上限上升,从而达到保护冻土,保持路基稳定性的作用。
块石路堤在气温波动条件下具有热二极管效应自然对流降温效应,其随时间累加而弥补因施工等造成冻土条件的改变,甚至能使其恢复到自然状态。
这些结果均说明,碎、块片石通风路堤对多年冻土具有很好的保护作用,是一种利用自然冷能保护多年冻土的廉价材料。
另外,碎(块)石路基不仅为地下水、泉水外溢提供了通道,使地下水、泉水可以排离路基,保持了路基的水稳定性,而且在于填石路基孔隙率大,并有较强的自由对流使得冬夏冷热空气由于密度等差异而不断发生冷量交换和热量屏蔽,其结果既有利于保护多年冻土也有利于路基的热稳定性。
二、施工工艺流程及操作要点(l)、工艺流程片石通风路基:地基处理(片块石各料)运料上路-一人工码砌1.5m 边坡范围路基内堆料挖掘机摊料整平25 吨以上压路机碾压。
青藏铁路多年冻土区高含冰量地段半填半挖路基施工技术
青藏铁路多年冻土区高含冰量地段半填半挖路基施工技术背景介绍青藏高原地区是我国西部的重要交通枢纽,而青藏铁路则是连接青海、西藏等地的重要铁路。
然而,该地区特殊的地理环境给铁路的建设带来了极大的挑战。
其中一个主要的挑战就是多年冻土区高含冰量地段的施工。
为了克服这个难点,铁路工程师们通过半填半挖的方式,成功地在该地段实现了路基施工。
多年冻土区高含冰量地段的特点多年冻土区是指地下土层在两种以上的连续年份内,地温一直低于0℃,导致地下土层结冰,对于铁路建设来说,主要表现为以下两个方面:1.土壤力学性能明显变化:由于结冰过程中的冻胀效应,原本柔软的土层变得坚硬,而这种硬度是难以预测的。
2.有机质热反应:由于原生有机质的降解过程,会自然释放能量,从而使各种微观过程变得更为复杂。
针对这些特点,在施工过程中就需要采取特殊措施。
半填半挖技术半填半挖技术是指在多年冻土区高含冰量地段中,先对未结冰的冰层进行挖掘,将其填土,然后挖掘冻结层,最后填土至路面标高的一种建筑施工方法。
具体而言,步骤如下:1.在冰层上部分进行覆土,从而提高冻结层的厚度,增加总的强度和稳定性。
2.接下来,工人们进行温度控制,使得土层温度逐步升高,从而使冻结层逐步融化,便于挖掘。
3.接着进行挖掘和填土的工作,需要严格控制温度和挖掘速度,避免因温度过高或挖掘过深而破坏路基。
通过这种技术,可以保证路基的既有稳固性,同时又能够有效地应对冻土区高含冰量的地质情况,从而保证路基的安全性。
同时也减少了所需的人力和机械设备,降低了建设成本。
应用情况和未来展望自青藏铁路半填半挖技术的出现以来,受到了工程师们的高度赞赏,并被广泛应用于大型铁路建设项目。
例如,更高纬度的兴蒙铁路,也是在多年冻土区高含冰量地段成功采用该技术,实现了高质量、高效率的施工。
同时,半填半挖技术也在向更广泛的领域拓展,例如桥梁建设和隧道施工等。
未来,随着建筑技术的不断发展和工程师们对冻土区地质情况的更深入了解,半填半挖技术也将得到更广泛的应用,为更多类似工程的施工提供新的思路和保障。
浅析多年冻土地区路基桥梁施工技术
1、地质坚硬与冻土融化的矛盾
在自然环境的影响下,形成多年冻土的原因有很多种,可能由于冰雪天气、土壤水分的多少、泥潭以及地表植被等因素。在这些因素的影响下,出现冻土现象土质的硬度都是比较高的,都会在很大程度上影响到路基的开挖和钻孔施工效果,同时还浪费了很多的时间成本。总的来说,冻土要是呈现在自然环境中的时间越久,出现融化现象就会更加严重。所以,要尽最努力调控好开挖速度和冻土融化的时间,让道路桥梁在多年冻土区域顺利建设。
浅析多年冻土地区路基桥梁施工技术
摘要:在修建道路桥梁在多年冻土的土质上存在很大的困难,主要是因为冻土层比较厚,挖掘存在一定的难度,另外就是冻土层也会一定的冻融性现象,会在很大程度上影响到路基的稳定,同时在后期使用过程中埋下一定的安全隐患。在这个科学技术不断发展的时代中,我国为了使道路桥梁在多年冻土中顺利修建,不断创新理念的同时,不断引进新型设备。本文详细分析了多年冻土路基桥梁建设,并且探究了建设中存在的难处,有针对性的制定有效措施,从而使多年冻土路基桥梁建设能够顺利完成。
在实施多年冻土地区路基桥梁施工建设过程中,最好不要使用空心钻设备,做好是选用的钻孔设备就是实心冲击钻设备。由于实心冲击钻就是挤压冻土的两边,然后用新土填满冻土融化后产生的空隙,从而有利于孔壁稳定性的加强。如果使用空心钻设备就无法填满冻土融化过后产生的空隙,很容易出现冻土塌孔现象,严重影响了路基桥梁的建设质量,为后期使用埋下了一定的安全隐患。在钻孔的时候,要把握好钻孔的时间,最好的钻孔时间就是冬天,干孔钻孔的方式是最优选择的方式,其钻孔的深度最好是在泥浆淹没钻头的三、四米左右,在钻孔深度增加的同时也清理掉表层的泥浆,由于冬季温度较低,就会使快要融化的冻土重新冻结,从而有利于增强孔壁的坚固性。在钻孔成功后,为了避免冻土的快速融化,要尽快进行灌注施工操作,要是冻土融化面积较大,就会有更大的几率产生塌孔现象,所以在必要的情况下,可以充分利用人力和物力资源,采用分工分区域的进行操作,尽可能节约钻孔时间,并且在最短时间内完成混凝土灌浆工作。
多年冻土地区铁路路基设计(条文说明)
多年冻土地区铁路路基设计(条文说明)(铁路特殊路基设计规范修编草稿)7.1.2多年冻土年平均地温是多年冻土稳定性评价的一个重要指标。
青藏线根据在青藏高原多年冻土地区的科研成果,将多年冻土按年平均地温分为四个区。
7.1.3不良冻土现象是指厚层地下冰(包括厚度大于0.5m的含土冰层和厚度大于0.3m的纯冰层)、冻土沼泽、冻胀丘、冰锥、热融湖(塘)、融冻泥流等地段。
这些地段一般都需要采取特殊的处理措施,因施工困难,造价昂贵,养护也不方便,应绕避。
如必须通过时,也应选择在不良程度轻、长度短的位置通过。
当处于大型的冻胀丘、冰锥或热融湖(塘)地段时,尤其是在跨越较宽沟谷沼泽地段时,由于防治工程量大,且不易根除病害,宜设桥通过。
青藏铁路工程实践经验证明:高含冰量冻土与融区交界的地段,无论采取何种保护多年冻土的措施,路基均易开裂,且冻土融沉量大,影响路基的稳定性,不宜以路基通过。
7.1.4 根据青藏铁路工程实践及试验研究,考虑到将来全球气候变暖,采取了“主动降温、冷却地基、保护冻土”的设计原则。
改变以往采用被动保温单一的工程措施,进而采用积极主动降温的综合处理措施。
保护冻土是以冻土地基热稳定为目的,考虑到年平均地温、含冰量、冻土上限、不良冻土现象、水文地质条件、路基高度以及未来50年气温升高1℃的情况下,制定工程措施如下:1)进行路基填筑高度控制;2)小于路基合理填筑高度的低路堤,采用隔热保温材料路基;3)设置保温护道,低温区采用土质护道,高温区采用片石护道;4)IV区的高含冰量冻土、其它温区的含土冰层采用片石气冷路堤。
5)I区上限附近有较厚含土冰层或厚层地下冰地段,采用以桥代路措施。
青藏铁路工程实践表明:上述单一的路基工程措施可以起到保护多年冻土的目的,但为了进一步提高抵御升温能力,根据路基工程的设置条件划分,制定出如下工程措施:不同综合条件等级下的高含冰量冻土地段处理措施7.1.5在多年冻土地区,采用路堤通过时,不但不会破坏地基冻层,而且路堤土体也能起保温作用,有利于保护地基多年冻土的冻结状态。
多年冻土地区路基施工
重 和外 加荷载作 用 下产生 融 化下 沉和压 密 现象 ,这 将 使地 基产生 不均 匀沉 降 。 通 过对冻 土物 理力学 性 质 的研究 和分 析 ,可以
下也 不破坏 。
2 冻土 的主 要 力学特性
2. 分 类 1
( )冻 土抗 剪强 度与负 温度 、外 压力 、荷载 作 4 用 时问 以及 含水 量 的关 系 。冻 土的抗 剪强度随 着负 温 度的降低 显 著增 大 ;在一定 范围 内冻土 的抗 剪强 度 与法 向压力 呈 直线关 系 ;冻 土的抗 剪强度 比瞬 时 抗 压强度 小得 多 ;在冻 土含 冰量饱 和之前 ,其含 球 量 的增加 将增 加其 抗剪 强度 ( )冻 土 的 变 形性 质 ( 5 压缩 变形 ) :多 年 冻 土 在短 期荷 载作 用下 ,压 缩性很低 ,类 似岩石 ,一般 不计 变 形 ,但 在长 期 荷载作 用下 ,其压缩 变形相 当 大 ,两 : 相差 十倍 以上 。 ()融 化 下 沉 。在 热 力 作 用 下 ,冻 土逐 渐 融 6
包 立 新 ,等 :多 年冻 土地 区 路基物 理 、 力 学 性 质 的 变 化 , 在 自
冻 土地 区施工 应考虑 路 基沉 降量 ,并 预 留路 肩 加 宽 ,以免 路堤下 沉后路 肩 宽度不 足。本 标 段冻 土 分 布地 带 K2 1 20一+90和 K 22+30~+70 0 + 0 0 1 0 0 段施 工 均试验 确定 了 0 2 ~0 3 的路 基沉落 量 。 .0 .0m
限抗 压强度 基本 呈 现直线 变化 。 ( ) 冻 土 抗 压 强 度 与 总 含 水 量 的 关 系 。 当 负 温 2
正确 分 析 冻 土层 性 质 ,并 制 定 有 针 对 性 的 施 工 方 案 ,严 格控 制 ,以确 保路 基稳 定 。
多年冻土及岛状冻土路基施工流程
多年冻土及岛状冻土路基施工流程Constructing roads on permafrost and island permafrost poses unique challenges due to their frozen nature. The process involves careful planning, specialized equipment, and innovative techniques to ensure the durability and longevity of the infrastructure. One of the key considerations is the melting of permafrost caused by vehicle traffic and climate change, leading to sinking and instability of the road. Therefore, a thorough understanding of the ground conditions and proper design measures are essential to prevent these issues.在多年冻土和岛状多年冻土上修建道路会面临独特的挑战,因为它们都是处于冻结状态。
这个过程需要仔细的规划、专业的设备和创新的技术,以确保基础设施的耐久性和长期性。
其中一个关键考虑因素是多年冻土的融化,这是由车辆交通和气候变化引起的,导致道路下沉和不稳定。
因此,对地面状况的充分了解和适当的设计措施至关重要,以防止出现这些问题。
When constructing roads on permafrost, it is crucial to conduct thorough site investigations to assess the ground conditions and determine the depth of the permafrost layer. This information is vital for designing appropriate drainage systems to prevent melting andmaintain the stability of the road. Additionally, measures such as insulation layers and thermosyphons may be implemented to control the temperature of the ground and reduce the risk of thaw settlement.在多年冻土上修建道路时,进行彻底的现场调查是至关重要的,以评估地面状况并确定多年冻土层的深度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多年冻土地区路基施工
1 施工前应核查沿线冻土分布、类型、冻土上下限、冰层上限、地面水、地下水以及有无其它如热融(湖、塘)、冰丘、冰椎等不良地质路基地段情况。
2 施工必须严格遵循保护冻土的原则,使路基施工后仍处于热学稳定状态。
路基原则上均应采取路堤型式,尤其在厚冰发育地段,并尽可能避免零填或浅挖断面,以免造成严重热融沉陷等病害,弱融沉或不融沉的多年冻土地区,路基施工可按融化原则进行。
3 路基排水与加固除满足水力和土力条件外,还应考虑由于施工因素如排水系统修筑等引起的热力变化,不导致多年冻层上限的下降。
4 填方路基的施工应符合以下要求:
9.1 排水:当路基位于永久冻土的富冰冻土、饱冰冻土或含土冰层地段时,必须保持路基及周围的冻土处于冻结状态,排水系统与路基坡脚应保持足够距离;高含冰量冻土集中路段,严禁坡脚滞水、路侧积水,边坡应及时铺填草皮。
在少冰与多冰冻土地段,也应避免施工时破坏土基热流平衡。
排水沟与坡脚距离不应小于2m;沼泽湿地地段不应小于8m;饱冰冻土及含土冰层地段,应避免修建排水沟和截水沟,宜修建档水炼(堰),距坡脚不应小于6m,若修建排水沟则不应小于10m。
9.2 基底处理:填方基底为含冰过多的细粒土,且地下冰层不厚,可挖除并用渗水性土回填压实,再填路基。
当基底为排水困难的低洼沼泽地段时,其底部应设置毛细水隔离
层,其厚度宜在路堤沉落后至少高出水面0.5m,并在其上铺设反滤层;泥沼地段路堤基底生长塔头草时,可利用其做隔温层。
上述地段路堤应预加沉落度,并在修筑路面结构之前,路基沉降基本趋于稳定。
9.3 路基高度:应达到防止翻浆与不超过路基冻胀值要求的最小填土高度;按保持冻结原则施工的路段,应同时满足冻土上限不下降的要求。
9.4 取土:宜设置集中取土场,富冰冻土、饱冰冻土及含土冰层路段,确需就近解决部分土源时,应在路基坡脚10m以外取土;斜坡地表路堤,取土坑应设在上坡一侧。
取土坑深度均不得超过当地多年冻土上限以上土层厚度的80%,坑底应有坡度,积水应有出口,水能及时排出,同时取土坑的外露面,亦宜用草皮铺填。
9.5 填料:应选用保温隔水性能均较好的细粒土。
采用粘性土或透水性不良土填筑路堤时,要控制土的湿度,碾压时含水量不能超过最佳含水量的±2个百分点。
不得用冻土块或草皮层及沼泽地含草根的湿土填筑路基。
通过热融湖(塘)路堤,水下部分必须用渗水良好的土填筑,并应高出最高水位0.5m。
9.6 压实:压实检查应采用重型击实标准。
成型后路床强度应符合设计要求,用不小于20t的压路机或等效碾压机械进行碾压检验2~3遍,无轮迹和软弹现象。
9.7 侧向保护:靠近基底部位有饱冰冻土层且有可能融化时,宜设保温护道和护脚。
保温材料宜就地取材。
用草皮时,草根应向上一层一层叠铺,最外一层应带泥,以便拍实形成保护层;沿线两侧20m内植
被和原生地貌应严加保护。
5 挖方路基施工应符合以下要求:
9.1 排水:地下水发育地段,路基边沟均应有防渗措施。
路堑坡顶避免设置截水沟或排水沟,宜修挡水塘并与坡顶距离不小于6m。
若必须修排水沟或截水沟,距挡水埝外距离不应小于4m 。
9.2 土质边坡加固铺砌厚度均应满足保温层要求。
如用草皮铺砌,应水平叠砌,错缝嵌紧,缝隙用粘土或草皮填塞严密,连成整体。
草皮要及时铺填。
9.3 饱冰冻土、含土冰层地段路堑,为防止开挖后基底冻胀翻浆,可根据需要换填足够厚度的渗水性土。
6 路基处于其它不良地质地段时,应按下列规定施工:
冰椎、冰丘地段采用冻结、拦截、截水墙、保温渗沟排水等方法处理;热融湖(塘)地段的路堤水下部分应用渗水性土;松软基底两侧宜设反压护道;沼泽冻土地段路堤下部应设置隔离层和隔温层,并保护好两侧地表植被;水鼓丘较重路段,可在上游主流处设地下渗沟或将水引到一定距离外的地面积冰场。