动力学中的运动学与静力学的关系
(完整word版)机器人学导论复习题及参考答案(word文档良心出品)
西安高学考试复习题及参考答案机器人学导论一、名词解释题:1.自由度:2.机器人工作载荷:3.柔性手:4.制动器失效抱闸:5.机器人运动学:6.机器人动力学:7.虚功原理:8.PWM驱动:9.电机无自转:10.直流伺服电机的调节特性:11.直流伺服电机的调速精度:12.PID控制:13.压电元件:14.图像锐化:15.隶属函数:16.BP网络:17.脱机编程:18.AUV:二、简答题:1.机器人学主要包含哪些研究内容?2.机器人常用的机身和臂部的配置型式有哪些?3.拉格朗日运动方程式的一般表示形式与各变量含义?4.机器人控制系统的基本单元有哪些?5.直流电机的额定值有哪些?6.常见的机器人外部传感器有哪些?7.简述脉冲回波式超声波传感器的工作原理。
8.机器人视觉的硬件系统由哪些部分组成?9.为什么要做图像的预处理?机器视觉常用的预处理步骤有哪些?10.请简述模糊控制器的组成及各组成部分的用途。
11.从描述操作命令的角度看,机器人编程语言可分为哪几类?12.仿人机器人的关键技术有哪些?三、论述题:1.试论述机器人技术的发展趋势。
2.试论述精度、重复精度与分辨率之间的关系。
3.试论述轮式行走机构和足式行走机构的特点和各自适用的场合。
4.试论述机器人静力学、动力学、运动学的关系。
5.机器人单关节伺服控制中,位置反馈增益和速度反馈增益是如何确定的?6.试论述工业机器人的应用准则。
四、计算题:(需写出计算步骤,无计算步骤不能得分):1.已知点u的坐标为[7,3,2]T,对点u依次进行如下的变换:(1)绕z轴旋转90°得到点v;(2)绕y轴旋转90°得到点w;(3)沿x轴平移4个单位,再沿y轴平移-3个单位,最后沿z轴平移7个单位得到点t。
求u, v, w, t各点的齐次坐标。
xyzOuvwt2.如图所示为具有三个旋转关节的3R 机械手,求末端机械手在基坐标系{x 0,y 0}下的运动学方程。
自然界中的力学原理
自然界中的力学原理自然界中的力学原理是关于物体运动和相互作用的科学原理。
力学原理可以分为静力学和动力学两个方面。
静力学研究的是物体在外力作用下保持平衡的原理,而动力学则研究运动物体的受力和受力后的运动规律。
力学原理的基础是牛顿三大定律。
第一定律是惯性定律,它表明一个物体如果没有外力作用,将保持静止或匀速直线运动。
第二定律是运动定律,它阐述了力和物体运动之间的关系,即力等于物体质量乘以加速度。
第三定律是作用与反作用定律,它表明任何一个物体施加给另一个物体的力,必然受到另一个物体施加的同大小异方向的力。
力学原理的一个重要应用是机械的运动学和动力学。
机械的运动学研究物体的位置、速度和加速度之间的关系。
根据运动定律和作用与反作用原理,可以推导出机械的运动学方程。
机械的动力学研究物体受力后的运动规律,进一步包括转动运动和弹性碰撞等问题。
力学原理也适用于流体的运动研究。
流体的运动学研究流体的速度和压力之间的关系,根据欧拉方程和伯努利方程可以描述流体的运动。
流体的动力学研究流体受力后的运动规律,涉及到流体的惯性力和阻力等问题。
力学原理也适用于电磁学和热力学等领域。
在电磁学中,根据洛伦兹力和库仑定律可以研究带电粒子的运动规律。
在热力学中,根据牛顿冷却定律和理想气体状态方程可以研究物体的温度变化和气体的压力变化。
除了牛顿力学原理外,还有其他力学原理被广泛应用。
例如,能量守恒定律指出系统的总能量在没有外界能量输入或输出的情况下保持不变;动量守恒定律指出系统的总动量在没有外界动量输入或输出的情况下保持不变。
另外,还有很多力学原理用于描述特定的物理现象。
例如,霍金效应说明了微观粒子能够通过量子隧穿现象从一个区域跃迁到另一个区域;黑洞的力学研究表明黑洞也具有质量、角动量和电荷等物理量。
总而言之,力学原理是研究物体运动和相互作用的科学原理,包括静力学和动力学两个方面。
牛顿三大定律是力学原理的基础,同时还有其他力学原理和方程用于解释不同的物理现象。
机器人复习题及参考答案
课程考试复习题及参考答案机器人学导论一、名词解释题:1.自由度:2.机器人工作载荷:3.柔性手:4.制动器失效抱闸:5.机器人运动学:6.机器人动力学:7.虚功原理:8.PWM驱动:9.电机无自转:10.直流伺服电机的调节特性:11.直流伺服电机的调速精度:12.PID控制:13.压电元件:14.图像锐化:15.隶属函数:16.BP网络:17.脱机编程:18.AUV:二、简答题:1.机器人学主要包含哪些研究内容?2.机器人常用的机身和臂部的配置型式有哪些?3.拉格朗日运动方程式的一般表示形式与各变量含义?4.机器人控制系统的基本单元有哪些?5.直流电机的额定值有哪些?6.常见的机器人外部传感器有哪些?7.简述脉冲回波式超声波传感器的工作原理。
8.机器人视觉的硬件系统由哪些部分组成?9.为什么要做图像的预处理?机器视觉常用的预处理步骤有哪些?10.请简述模糊控制器的组成及各组成部分的用途。
11.从描述操作命令的角度看,机器人编程语言可分为哪几类?12.仿人机器人的关键技术有哪些?三、论述题:1.试论述机器人技术的发展趋势。
2.试论述精度、重复精度与分辨率之间的关系。
3.试论述轮式行走机构和足式行走机构的特点和各自适用的场合。
4.试论述机器人静力学、动力学、运动学的关系。
5.机器人单关节伺服控制中,位置反馈增益和速度反馈增益是如何确定的?6.试论述工业机器人的应用准则。
四、计算题:(需写出计算步骤,无计算步骤不能得分):1.已知点u的坐标为[7,3,2]T,对点u依次进行如下的变换:(1)绕z轴旋转90°得到点v;(2)绕y轴旋转90°得到点w;(3)沿x轴平移4个单位,再沿y轴平移-3个单位,最后沿z轴平移7个单位得到点t。
求u, v, w, t各点的齐次坐标。
xyzOuvwt2.如图所示为具有三个旋转关节的3R 机械手,求末端机械手在基坐标系{x 0,y 0}下的运动学方程。
《理论力学》之“静力学”知识大总结
静力学知识要点绪论:1.理论力学研究对象:刚体;物体的运动效应(外效应)。
静力学:物体在力的作用下保持平衡条件;2. 三部分内容的研究对象:运动学:只从几何角度研究物体的运动,不研究其运动产生的原因;动力学:研究受力物体力与运动之间的关系;静力学第一章静力学公理和物体受力分析1.四大公理和二大推论的具体内容。
(熟记+理解)2.二力杆的正确判断,受力方向的确定。
3.三力平衡汇交定理的应用。
4.各种常用的约束和约束反力(I)光滑接触面约束作用点在接触点,方向沿公法线,指向受力物体,受压。
(II)柔索约束作用点在接触点,方向沿绳索背离物体,受拉。
(III)光滑圆柱铰链约束a)中间铰:方向不定用两个正交分力来表示;FxFb)固定铰:方向不定用两个正交分力来表示;Fc)滚动铰支座:限制法线方向运动,通过铰链中心垂直于支撑面,指向不定;N F(IV) 轴承约束a) 向心轴承:方向不定,用两个正交分力来表示;FFb) 止推轴承:三个正交分力;y Fz Fx F(V) 固定端约束:5. 正确画出物体或整体的受力分析图:例题1-1,1-2,1-4(注意内力\外力,作用力\反作用力;正确识别二力杆);6. P21页 思考题 1-2、3、4 作业题:1-1(c 、e 、f 、j )、1-2(c 、f )第二章 平面力系几何条件:力多边形自行封闭;1. 平面汇交力系平衡条件 解析条件: Fx ∑=0Fy ∑=02. 应用平衡条件解题(例题2-3)3. 平面力偶系 力矩的定义,方向判别(为负)平行也无合力。
平面力偶的的两个要素:力偶矩的大小;力偶的转向。
力偶的等效定理:力偶可在平面内任意移动,只要力偶矩的大小、方向不变。
i M ∑=0. 具体应用(例题2-5、2-6)4. 平面任意力系的简化 力的平移定理 P39 简化结果讨论 P41-425. 平面 充要条件:R F =0, Mo=0任意 平衡方程:一矩式:Fx ∑=0 Fy ∑=0()O M F ∑=0 (0点任意取) 力系 二矩式:()A M F ∑=0()B M F ∑=0 Fx ∑=0 (x 不垂直AB 连线) 平衡 : ()A M F ∑=0 ()B M F ∑=0()C M F ∑=0(ABC 不共线) P45 例2-8、2-96. 均布载荷 —— 集中力 大小: 围成图形的面积方向:与q 一致作用点:围成图形的几何中心ql l 31 ql 21q =F 7. 物系的平衡 静定/超静定判别未知量多物系平衡求解思路:以整体为对象———— 选个体为对象求个别未知量具体应用:P51. 例2-11、2-12、2-168. 桁架的内力计算 节点法 例2-18截面法 例 2-199.各种平面力系独立平衡方程数目: 平面任意力系(3个);平面汇交力系(2个);平面力偶系(1个);平面平行力系(2个)各种约束 分析力系类型10.静力学步骤:研究对象 画受力分析 列方程 求解 类型反力确定 确定独立方程数目思考题:P61 2-2、2-3、2-5作业题:2-1、2-3、2-7、2-8c 、2-12、2-14b 、2-20、2-21、2-51、2-57第三章 空间力系1. 空间汇交力系 力在坐标轴上的投影 平衡条件:∑Fx=0、∑Fy=0、∑Fz=0P81 例3-2、3-32. 空间力对点之矩和力对轴之矩力对点之矩:()M O ⨯= 为矢量力多轴之矩:x y yF x —F M Z =⎪⎪⎭⎫ ⎝⎛ P84 公式3-12 例3-4 ()[]()M F M Z Z =0 Z 必须经过O 点3. 空间力偶 AB ⨯=r 三要素:力偶矩大小;力偶矢量方向(与作用面垂直);作用面上转向。
理论力学(静力学)总结
理论力学(静力学)总结静力学——主要研究受力物体平衡时作用力所应满足的条件;同时也研究物体受力的分析方法,以及力系简化的方法等。
运动学——只从几何的角度来研究物体的运动(如轨迹、速度和加速度等),而不研究引起物体运动的物理原因。
动力学——研究受力物体的运动与作用力之间的关系。
所谓刚体是指这样的物体,在力的作用下,其内部任意两点之间的距离始终保持不变。
公理1 力的平行四边形规则公理2 二力平衡条件公理3 加减平衡力系原理推理1 力的可传性推理2 三力平衡汇交定理公理4 作用和反作用定律公理5 刚化原理约束反力的方向必与该约束所能够阻碍的位移方向相反1.具有光滑接触表面的约束F N作用在接触点处,方向沿接触表面的公法线,并指向受力物体2.由柔软的绳索、链条或胶带等构成的约束拉力F T 方向沿着绳索背离物体3.光滑铰链约束(1)向心轴承(2) 圆柱铰链和固定铰链支座4.其它约束(1)滚动支座(2)球铰链一个空间力(3)止推轴承物体的受力分析受了几个力,每个力的作用位置和力的作用方向平面汇交力系几何法解析法平面汇交力系平衡的必要和充分条件是:各力在两个坐标轴上投影的代数和分别等于零力对刚体的转动效应可用力对点的矩(简称力矩)来度量力F 对于点O的矩以记号Mo(F )表示Mo(F )=±F h 力使物体绕矩心逆时针转向转动时为正,反之为负。
力对点之矩是一个代数量r表示由点O到A的矢径矢积的模r F 就等于力F对点0的矩的大小,其指向与力矩的转向符合右手法则。
合力矩定理这种由两个大小相等、方向相反且不共线的平行力组成的力系,称为力偶力偶只对物体的转动效应,可用力偶矩来度量力偶矩 M(F,F') 力偶的作用效应决定于力的大小和力偶臂的长短,与矩心的位置无关M=±F d 代数量一般以逆时针转向为正,反之则为负。
同平面内力偶的等效定理推论(1)任一力偶可以在它的作用面内任意移转,而不改变它对刚体的作用。
工程力学中的静力学与动力学的应用比较
工程力学中的静力学与动力学的应用比较工程力学是一个研究力学原理在工程领域应用的学科,其中静力学和动力学是两个重要的分支。
静力学研究物体在平衡状态下的力学性质,而动力学则关注物体在运动状态下的力学行为。
本文将比较工程力学中的静力学与动力学的应用,探讨它们在不同情况下的适用性。
1. 静力学的应用静力学主要研究物体在平衡状态下的力学平衡和力的分析,广泛应用于建筑、桥梁、机械等领域。
具体应用包括以下几个方面:1.1 结构分析静力学可以用于分析和设计建筑物、桥梁等结构的稳定性和强度。
通过平衡力的分析,可以计算得出结构体各点受力的大小和方向,进而判断结构的稳定性和强度是否满足设计要求。
1.2 杆件受力分析静力学可以应用于杆件的受力分析。
例如,在机械设计中,可以通过受力平衡的原理,计算得出杆件各部分受力的大小和方向,从而确定杆件是否能够承受相应的载荷。
1.3 土木工程中的土压力分析在土木工程中,静力学可以应用于分析土体的水平和垂直力的大小。
通过力的平衡,可以计算得出土壤对结构物或地下管道的土压力,从而确定结构物的稳定性和土体的受力状态。
2. 动力学的应用动力学研究物体在运动状态下的力学行为,包括运动的速度、加速度和位置等。
它涉及到物体的运动学和动力学问题,广泛应用于机械工程、航空航天等领域。
具体应用包括以下几个方面:2.1 机械系统的动力学分析在机械工程中,动力学用于分析和设计机械系统的运动行为。
例如,通过运动学和动力学的分析,可以计算出机械系统的速度、加速度和运动路径,从而帮助工程师更好地优化设计和控制机械系统。
2.2 车辆动力学分析在汽车工程领域,动力学用于研究车辆的运动特性和驾驶性能。
例如,通过分析车辆的加速度、行驶阻力和转向力等,可以计算出车辆的加速性能、制动距离和操纵稳定性等参数。
2.3 结构振动分析动力学也可以应用于结构振动的分析。
例如,在航空航天工程中,动力学可以帮助分析飞行器的结构振动响应,预测振动对结构的影响,从而改进结构设计和提高飞行器的安全性和稳定性。
机器人学导论复习试题和参考答案解析
西安高学考试复习题及参考答案机器人学导论一、名词解释题:1.自由度:2.机器人工作载荷:3.柔性手:4.制动器失效抱闸:5.机器人运动学:6.机器人动力学:7.虚功原理:8.PWM驱动:9.电机无自转:10.直流伺服电机的调节特性:11.直流伺服电机的调速精度:12.PID控制:13.压电元件:14.图像锐化:15.隶属函数:16.BP网络:17.脱机编程:18.AUV:二、简答题:1.机器人学主要包含哪些研究内容?2.机器人常用的机身和臂部的配置型式有哪些?3.拉格朗日运动方程式的一般表示形式与各变量含义?4.机器人控制系统的基本单元有哪些?5.直流电机的额定值有哪些?6.常见的机器人外部传感器有哪些?7.简述脉冲回波式超声波传感器的工作原理。
8.机器人视觉的硬件系统由哪些部分组成?9.为什么要做图像的预处理?机器视觉常用的预处理步骤有哪些?10.请简述模糊控制器的组成及各组成部分的用途。
11.从描述操作命令的角度看,机器人编程语言可分为哪几类?12.仿人机器人的关键技术有哪些?三、论述题:1.试论述机器人技术的发展趋势。
2.试论述精度、重复精度与分辨率之间的关系。
3.试论述轮式行走机构和足式行走机构的特点和各自适用的场合。
4.试论述机器人静力学、动力学、运动学的关系。
5.机器人单关节伺服控制中,位置反馈增益和速度反馈增益是如何确定的?6.试论述工业机器人的应用准则。
四、计算题:(需写出计算步骤,无计算步骤不能得分):1.已知点u的坐标为[7,3,2]T,对点u依次进行如下的变换:(1)绕z轴旋转90°得到点v;(2)绕y轴旋转90°得到点w;(3)沿x轴平移4个单位,再沿y轴平移-3个单位,最后沿z轴平移7个单位得到点t。
求u, v, w, t各点的齐次坐标。
2.如图所示为具有三个旋转关节的3R 机械手,求末端机械手在基坐标系{x 0,y 0}下的运动学方程。
3.如图所示为平面内的两旋转关节机械手,已知机器人末端的坐标值{x ,y },试求其关节旋转变量θ1和θ2.P4.如图所示两自由度机械手在如图位置时(θ1= 0 , θ2=π/2),生成手爪力 F A = [ f x 0 ]T 或F B = [ 0 f y ]T 。
物体的运动与力学关系
物体的运动与力学关系物体的运动是力学研究的核心内容之一,力学是研究物体在外力作用下的运动规律和力的效果的科学。
运动与力学的关系可以通过牛顿三大运动定律来解释。
第一定律:一个物体如果没有受到外力的作用,将保持运动状态,或者保持静止状态。
这被称为惯性定律。
换句话说,没有外力的影响,物体将保持原来的状态,无论是静止还是匀速直线运动。
第二定律:物体的运动状态发生改变时,其改变的速率与作用在物体上的外力成正比。
这可以通过牛顿提出的公式F = ma来表示,其中F代表物体所受的力,m代表物体的质量,a代表物体的加速度。
这个定律说明了力对物体的加速度产生影响,质量越大,相同的力作用下加速度越小,反之亦然。
第三定律:任何作用在物体上的力都会有一个大小相等、方向相反的反作用力。
这个定律通常被概括为“作用力与反作用力相等,方向相反”。
例如,当我们站在地面上时,我们会感觉到地面对我们的重力,但是同时地面也受到我们体重的反作用力。
基于这些定律,我们可以在物理世界中解释各种运动和力的现象。
运动的类型包括直线运动、曲线运动和往复运动等。
通过研究物体在不同运动状态下的速度、加速度、质量和受力情况,我们可以进一步理解其运动轨迹和所需力的大小。
在力学中,我们还经常讨论力的合成和分解问题。
力的合成即将多个力沿着同一直线方向相加,得到合力。
力的分解则是将一个力按照不同的方向分解成多个力,可以是水平方向分解和垂直方向分解。
这在实际应用中非常重要,例如在静力学和动力学问题中能提供更准确的分析和计算方法。
除了描述运动的定律和力的效果,力学还涉及到其他重要的概念,如动能、势能、功和机械能。
动能是物体由于运动而具有的能量,势能是物体由于其位置而具有的能量。
功则是力在物体上产生的作用,计算方法是力乘以物体在力的方向上的移动距离。
机械能是动能和势能的总和,守恒的。
通过研究物体的运动与力学关系,我们可以更好地理解物理世界中的现象,并应用于各个领域,包括工程、天文学、运动学和机械设计等。
静力学动力学和运动学的关系
静力学动力学和运动学的关系三者都是力学的分支,静力学是讨论力平衡时,各种力的关系。
动力学是讨论力的相互作用,和物体运动的关系。
运动学仅仅讨论物体运动时速度,位移和加速度三者关系,而不关心运动如何发生。
静力学是力学的一个分支,它主要研究物体在力的作用下处于平衡的规律,以及如何建立各种力系的平衡条件。
平衡是物体机械运动的特殊形式,严格地说,物体相对于惯性参照系处于静止或作匀速直线运动的状态,即加速度为零的状态都称为平衡。
对于一般工程问题,平衡状态是以地球为参照系确定的。
静力学还研究力系的简化和物体受力分析的基本方法。
动力学是理论力学的一个分支学科,它主要研究作用于物体的力与物体运动的关系。
动力学的研究对象是运动速度远小于光速的宏观物体。
动力学是物理学和天文学的基础,也是许多工程学科的基础。
许多数学上的进展也常与解决动力学问题有关,所以数学家对动力学有着浓厚的兴趣。
动力学的研究以牛顿运动定律为基础;牛顿运动定律的建立则以实验为依据。
动力学是牛顿力学或经典力学的一部分,但自20世纪以来,动力学又常被人们理解为侧重于工程技术应用方面的一个力学分支。
运动学是理论力学的一个分支学科,它是运用几何学的方法来研究物体的运动,通常不考虑力和质量等因素的影响。
至于物体的运动和力的关系,则是动力学的研究课题。
用几何方法描述物体的运动必须确定一个参照系,因此,单纯从运动学的观点看,对任何运动的描述都是相对的。
这里,运动的相对性是指经典力学范畴内的,即在不同的参照系中时间和空间的量度相同,和参照系的运动无关。
不过当物体的速度接近光速时,时间和空间的量度就同参照系有关了。
这里的“运动”指机械运动,即物体位置的改变;所谓“从几何的角度”是指不涉及物体本身的物理性质(如质量等)和加在物体上的力。
运动学主要研究点和刚体的运动规律。
点是指没有大小和质量、在空间占据一定位置的几何点。
刚体是没有质量、不变形、但有一定形状、占据空间一定位置的形体。
工程力学(动力学、静力学、运动学)
r LO
=
r MO
(mivri
)
=
rri × mivri
LOz = J zω
二、动力学普遍定理
1、物理量
(4)转动惯量 ① 定义
∑ J zz = rii22mii
ii
Jz
=
mρ
2 z
回转半径
z
ri
vi
mi
ω
mO
y
x
二、动力学普遍定理
1、物理量
② 简单形体的转动惯量
● 均质细圆环 JCC = mr 22
[例 题]
两重物的质量均为m,分别系在两软绳上。此两绳又分别绕在半 径各为r与2r并固结一起的两圆轮上。两圆轮构成之鼓轮的的质量亦
为m,对轴O的回转半径为ρ0。两重物中一铅垂悬挂,一置于光滑平 面上。当系统在左重物重力作用下运动时,鼓轮的角加速度α为:
(A)
α
=
5r
2
2
g+rρ02(B)
α = 2gr 3r 2 + ρ02
置作用于物块的约束力FN大小的关系为:
y
(A)FN1 = FN0 = FN2 = W (B) FN1 > FN0 = W > FN2 (C) FN1 < FN0 = W < FN2
A
a1
0 a
2
(D) FN1 = FN2 < FN0 = W
答案:C
一、质点动力学
[例 题]
r F
已知:以上抛的小球质量为m,受空气阻力
牛顿第二定律(力与加速度之间的关系定律)
∑ m ar =
r Fii
ii
牛顿第三定律(作用与反作用定律)
第4章 机器人的动力学初步
图4-4 质点平移运动 作为回转运动的解析
机器人的静力学
如果I =mr2,则式(4-14) 就改写为
式(4-15)是 质 点 绕 固 定 轴 进 行 回 转 运 动 时 的 运 动 方 程 式 。 与 式 (4⁃ 11)比较,I相当于平移运动时的质量,在旋转运动中称为惯性矩。
机器人的静力学
对于质量连续分布的物体, 求解其惯性矩, 可以将其分割成假想的微小 物体, 然后再把每个微小物体的惯性矩加在一起。这时, 微小物体的质量d m 及其微小体积dV 的关系, 可用密度ρ 表示为 所以, 微小物体的惯性矩dI, 依据I =mr2, 可以写成
行器在笛卡尔空间的轨迹已确定(轨迹已被规划),求解机器人各执行器的驱
动力或力矩,这称为机器人动力学方程的反面求解,简称为逆动力学问题。
概述
不管是哪一种动力学问题都要研究机器人动力学的数学模型,区别在于问
题的解法。人们研究动力学的重要目的之一是对机器人的运动进行有效控制,
以实现预期的运动轨迹。 常用的方法有牛顿.欧拉法、拉格朗日法、凯恩动力学法等。牛顿·欧拉动
原理。
机器人的静力学
如图4⁃1所示,已知作用在杠杆一端的力FA,试用虚功原理求作用于另 一端的力FB。假设杠杆长度LA和LB已知。 按照虚功原理,杠杆两端受力所做的虚功应该是
式中,δ xA 、δ xB是杠杆两端的虚位移。而就虚位移来讲,下式成立
式中, δθ 是绕杠杆支点的虚位移。 把式(4⁃2)代入式(4⁃1)消 δ xA 、δ xB,可得到下式 图4-1 杠杆及作用在两端上的力
机器人动力学方程式
式中, n 为机器人的关节总数。其次我们来考虑把K 作为机器人各关节 速度的函数。这里vCi与ω i 分别表示为
运动学、静力学、动力学概念
运动学、静力学、动力学概念运动学运动学是理论力学的一个分支学科,它是运用几何学的方法来研究物体的运动,通常不考虑力和质量等因素的影响。
至于物体的运动和力的关系,则是动力学的研究课题。
用几何方法描述物体的运动必须确定一个参照系,因此,单纯从运动学的观点看,对任何运动的描述都是相对的。
这里,运动的相对性是指经典力学范畴内的,即在不同的参照系中时间和空间的量度相同,和参照系的运动无关。
不过当物体的速度接近光速时,时间和空间的量度就同参照系有关了。
这里的“运动”指机械运动,即物体位置的改变;所谓“从几何的角度”是指不涉及物体本身的物理性质(如质量等)和加在物体上的力。
运动学主要研究点和刚体的运动规律。
点是指没有大小和质量、在空间占据一定位置的几何点。
刚体是没有质量、不变形、但有一定形状、占据空间一定位置的形体。
运动学包括点的运动学和刚体运动学两部分。
掌握了这两类运动,才可能进一步研究变形体(弹性体、流体等)的运动。
在变形体研究中,须把物体中微团的刚性位移和应变分开。
点的运动学研究点的运动方程、轨迹、位移、速度、加速度等运动特征,这些都随所选的参考系不同而异;而刚体运动学还要研究刚体本身的转动过程、角速度、角加速度等更复杂些的运动特征。
刚体运动按运动的特性又可分为:刚体的平动、刚体定轴转动、刚体平面运动、刚体定点转动和刚体一般运动。
运动学为动力学、机械原理(机械学)提供理论基础,也包含有自然科学和工程技术很多学科所必需的基本知识。
运动学的发展历史运动学在发展的初期,从属于动力学,随着动力学而发展。
古代,人们通过对地面物体和天体运动的观察,逐渐形成了物体在空间中位置的变化和时间的概念。
中国战国时期在《墨经》中已有关于运动和时间先后的描述。
亚里士多德在《物理学》中讨论了落体运动和圆运动,已有了速度的概念。
伽利略发现了等加速直线运动中,距离与时间二次方成正比的规律,建立了加速度的概念。
在对弹射体运动的研究中,他得出抛物线轨迹,并建立了运动(或速度)合成的平行四边形法则,伽利略为点的运动学奠定了基础。
整理机器人技术
1.工业机器人:是种用于移动各种材料、零件、工具或专用装置,通过可编程动作来执行种种任务并具有编程能力的多功能机械手。
2.机器人主要技术参数:一般有自由度、精度、分辨率、工作范围、承载能力及最大速度等。
3.自由度:机器人所具有的独立坐标运动的数目,不包括手爪(末端执行器)的开合自由度。
4.定位精度:机器人手部实际到达位置与目标位置之间的差异。
5.重复定位精度:机器人重复定位其手部于同一目标位置的能力。
6.分辨率:机器人每根轴能够实现的最小移动距离或最小转动角度。
7.承载能力:机器人在工作范围内的任何位姿上所能承受的最大质量。
8.简述工业机器人的定义,并说明其主要特征有哪些?答:工业机器人:是种用于移动各种材料、零件、工具或专用装置,通过可编程动作来执行种种任务并具有编程能力的多功能机械手。
其主要特征如下: 1)机器人的动作结构具有类似于人或其他生物体某些器官(肢体、感官等)的功能。
2)机器人具有通用性,工作种类多样,动作程序灵活易变。
3)机器人具有不同程度的智能性,如记忆、感知、推理、决策、学习等4)机器人具有独立性,完整的机器人系统在工作中可以不依赖于人的干预。
9.机器人技术参数有哪些?各参数的意义是什么?答:机器人技术参数有:自由度、精度、工作范围、速度、承载能力。
1)自由度:是指机器人所具有的独立坐标运动的数目,不包括手爪(末端执行器)的开合自由度。
在三维空间里描述一个物体的位置和姿态需要六个自由度。
但是,工业机器人的自由度是根据其用途而设计的,也可能小于六个自由度,也可能大于六个自由度。
2)精度:工业机器人的精度是指定位精度和重复定位精度。
定位精度是指机器人手部实际到达位置与目标位置之间的差异。
重复定位精度是指机器人重复定位其手部于同一目标位置的能力,可以用标准偏差这个统计量来表示,它是衡量一列误差值的密集度(即重复度)3)工作范围:是指机器人手臂末端或手腕中心所能到达的所有点的集合,也叫工作区域。
第四章机器人的动力学
n
1
v Ci
v Ci
1 2
i Ii i )
T
1
[m 2
i 1 n
i
(J L q ) J L q (J A q ) IiJ A q ]
(i) (i) T (i) T T
1
(m 2
i 1
i
q
JL
(i)T
JL q q
(i)
二、机器人静力学关系式推导
以2自由度机械手为例,要产生图a所示的虚位移 , , r , 则图b所示各力 , 和 F 之间的关系:
1 2
1
2
由 虚 功 原 理 知 : 1 1 2 2 F r 0 即: 1
2
1 F 2
当刚体绕过质心的轴线旋转时,角速度ω,角加速度
,惯
性张量
与作用力矩N之间满足欧拉方程:
IC (IC ) N
——欧拉运动方程
Ic R
3 3
是绕重心 c 的惯性矩(转动惯量) N 回转力矩
, I c的各元素表示对应的力
矩元素和加速度元素间
的惯性矩;
回转角速度;
对于对于zz轴轴于是于是12联立可得联立可得对于一般形状连杆对于一般形状连杆除第33分量以外其它分量皆不为分量以外其它分量皆不为00的第1122分量成为改变轴方向的力矩但在固定分量成为改变轴方向的力矩但在固定轴场合与这个力矩平衡的约束力生成轴场合与这个力矩平衡的约束力生成22式中的式中的1122分分量不产生运动
由虚功原理得:
F A x A FB x B 0 即 : F A L A F B L B 0 ( F A L A F B L B ) 0 F A L A FB L B 0 FB LA LB FA
机器人静力学,动力学,运动学的关系
机器人静力学,动力学,运动学的关系机器人静力学、动力学和运动学是机器人研究领域的三个重要分支。
它们相互交叉,彼此受益,共同构成了机器人技术的完整体系。
静力学,又称静态学,是研究物体在力学作用下的运动状态和形状变化的学科。
静力学的概念先由古希腊哲学家亚里士多德提出,是研究物体在力学作用下其位置改变和力学状态的学科,它是机器人学的基础理论,它可以帮助我们了解机器人的结构装配、控制方式、总体运动规律及机器人的力学响应等。
动力学是研究物体动力运动的活动特性及受力特性的学科,其主要研究内容是计算物体运动的轨迹、受力特性和作用力等。
它是机器人技术重要的理论基础,可以用来设计机器人运动控制系统,例如驱动机构控制、坐标系变换和轨迹规划等,帮助提高机器人的运动性能和精度。
机器人运动学是研究机器人运动空间及运动规律的学科,其主要研究内容包括机器人的轨迹定义、关节运动学、反向运动学等,它可以帮助分析机器人系统的性能、识别机器人的失效原因,为机器人运动控制设计提供理论支撑。
机器人静力学、动力学和运动学紧密相互联系,它们是机器人技术的三个重要分支。
静力学可以提供机器人的运动规律,动力学则提供机器人从静态到动态运动的转归,运动学可以分析机器人的运动规律。
由于三者相互交叉,彼此受益,它们共同构成了机器人技术的完整体系。
机器人静力学、动力学和运动学的研究不断发展,它们在各种领域的应用也在不断拓展,如机器人制造、积木机器人、服务机器人、智能机器人等,其作用日益凸现。
未来,编程、控制、传感等设计将继续优化,将有助于构建更加完善可靠的系统、更加灵活多样的机器人。
总之,机器人静力学、动力学和运动学之间有着密不可分的联系,它们共同构成了一个完整的机器人技术体系。
随着未来机器人技术的发展,它们将发挥更大的作用,为人类更多的工作和生活带来更多的便利。
动力学中的运动学与力学的关系
动力学中的运动学与力学的关系动力学和力学是物理学中两个重要的分支,它们在研究物体运动和相互作用方面发挥着重要作用。
运动学是研究物体运动的规律和特性,而力学则研究物体的力和运动之间的关系。
本文将探讨动力学中的运动学与力学之间的关系,揭示它们之间的密切联系。
一、运动学的定义与研究内容运动学是关于物体运动的科学,主要研究物体在空间中位置、速度、加速度等参数随时间变化的规律。
它不考虑造成物体运动的原因,只关注运动的规律和特性。
在运动学中,最基本的概念是位移、速度和加速度。
位移是描述物体位置改变的概念,通常用位移矢量表示,它表示物体在空间中的位置变化。
速度是位移随时间的变化率,它描述了物体运动的快慢和方向。
加速度则是速度随时间的变化率,它描述了速度的变化情况。
二、力学的定义与研究内容力学是研究物体的力和运动之间关系的科学,它考虑了物体运动的原因以及受力后的运动规律。
力学可分为静力学和动力学两个方面,其中静力学研究物体平衡状态下的力学性质,动力学研究物体在受力作用下的运动规律。
在力学中,力是描述物体相互作用的概念,它可以导致物体的运动状态发生变化。
力学的基本定律包括牛顿三定律,它们分别描述了物体的惯性、加速度和相互作用等方面的规律。
力学通过对物体的受力和运动规律的研究,揭示了物体运动的机制和规律。
三、运动学与力学的关系虽然运动学和力学是物理学中的两个独立分支,但它们之间存在着密切的联系和相互依赖关系。
运动学是力学的基础,而力学则是运动学的应用和发展。
首先,运动学为力学提供了基本的物理量和运动规律。
位移、速度和加速度等运动学概念是力学中的重要参量,它们为力学定律的建立和应用提供了基础。
其次,力学通过运动学的研究成果来解释物体运动的原因和机制。
力学的基本定律揭示了物体受力后的运动规律,它们对于解释和预测物体运动提供了理论支持。
同时,力学的研究结果也反过来会对运动学有所影响。
力学研究中的新发现和理论推动了运动学的发展,例如牛顿力学的建立和广泛应用推动了运动学的进步。
机器人技术考试复习题
0.1 简述工业机器人的定义,说明机器人的主要特征。
答:机器人是一种用于移动各种材料、零件、工具、或专用装置,通过可编程动作来执行种种任务并具有编程能力的多功能机械手。
1.机器人的动作结构具有类似于人或其他生物体某些器官(肢体、感官等)的功能。
2.机器人具有通用性,工作种类多样,动作程序灵活易变。
3.机器人具有不同程度的智能性,如记忆、感知、推理、决策、学习等。
4.机器人具有独立性,完整的机器人系统在工作中可以不依赖于人的干预。
0.2工业机器人与数控机床有什么区别?答:1.机器人的运动为开式运动链而数控机床为闭式运动链;2.工业机器人一般具有多关节,数控机床一般无关节且均为直角坐标系统;3.工业机器人是用于工业中各种作业的自动化机器而数控机床应用于冷加工。
4.机器人灵活性好,数控机床灵活性差。
0.5简述下面几个术语的含义:自有度、重复定位精度、工作范围、工作速度、承载能力。
答:自由度是机器人所具有的独立坐标运动的数目,不包括手爪(末端执行器)的开合自由度。
重复定位精度是关于精度的统计数据,指机器人重复到达某一确定位置准确的概率,是重复同一位置的范围,可以用各次不同位置平均值的偏差来表示。
工作范围是指机器人手臂末端或手腕中心所能到达的所有点的集合,也叫工作区域。
工作速度一般指最大工作速度,可以是指自由度上最大的稳定速度,也可以定义为手臂末端最大的合成速度(通常在技术参数中加以说明)。
承载能力是指机器人在工作范围内的任何位姿上所能承受的最大质量。
0.6什么叫冗余自由度机器人?答:从运动学的观点看,完成某一特定作业时具有多余自由度的机器人称为冗余自由度机器人。
1.1 点矢量v为A=P写出变换后点矢量v 的表达式,并说明是什么性质的变换,写出旋转算子Rot 及平移算子Trans 。
解:v ,0f ⎤⎥⎦⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡100.3000.2000.10=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡13932.1966.9 属于复合变换:旋转算子Rot (Z ,30̊)=平移算子Trans (11.0,-3.0,9.0)=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-10000.91000.30100.110011.2 有一旋转变换,先绕固定坐标系Z 0 轴转45̊,再绕其X 0轴转30̊,最后绕其Y 0轴转60̊,试求该齐次坐标变换矩阵。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动力学中的运动学与静力学的关系动力学和静力学是力学的两个重要分支,它们研究的是物体的运动和力的作用。
在物理学中,动力学主要研究物体在受力作用下的运动状态和轨迹,而静力学则关注物体在力的平衡状态下的性质和特征。
本文将讨论动力学中的运动学与静力学的关系,揭示它们之间的联系和相互作用。
一、运动学与静力学的基本概念及差异
运动学是研究物体运动的学科,主要关注物体的位置、速度、加速度等与运动有关的基本量。
它研究的是物体不受外力作用时的运动状态,即质点或刚体的运动规律。
运动学中的重要概念包括位移、速度和加速度等。
静力学是研究物体力学平衡的学科,主要研究物体在力的作用下的平衡条件,即物体在保持不动或匀速直线运动状态下受力的特性。
静力学主要考虑力的平衡条件、杠杆原理和平衡力计算等。
运动学和静力学的主要区别在于研究对象的不同。
运动学关注的是物体运动的规律和性质,而静力学关注的是物体在力的平衡状态下的特性和条件。
运动学研究的是物体在运动中的行为,而静力学研究的是物体在静止或匀速直线运动状态下的力学性质。
二、尽管动力学和静力学是两个独立的学科,但它们之间存在着密切的联系和相互作用。
动力学的研究往往离不开运动学的基础,而静力学的理论也来源于动力学的基本原理。
在运动学中,物体的速度和加速度等运动量是通过受力来定义和计
算的。
而在静力学中,力的平衡条件是通过运动学中的力的合成和力
的分解等概念来解释和验证的。
在实际问题中,我们常常需要根据物
体的运动学特性来分析物体所受的力的大小和方向,即通过运动学推
导出静力学的相关性质。
另外,在动力学中也常常需要考虑物体的力学平衡条件。
例如,在
物体受到多个力的作用时,我们需要根据运动学的知识来判断物体是
否处于力的平衡状态,即通过运动学来推导出静力学的结果。
因此,
运动学和静力学在解决力学问题时相辅相成。
三、运动学与静力学的实际应用
运动学和静力学作为力学的两个重要分支,广泛应用于工程和科学
领域。
在实际的物体运动和力的分析中,我们常常需要运用运动学和
静力学的知识来解决问题。
例如,在机械工程中,运动学可以用来分析和设计机械元件的位置、速度和加速度等参数,进而提高机械系统的性能和精度。
静力学则可
以用来进行结构强度和稳定性的计算,确保机械系统的安全可靠。
此外,运动学和静力学还广泛应用于物理学、航天学和生物学等学
科中。
在物理学实验中,运动学可以帮助我们更好地理解和描述物体
的运动过程,而静力学则可以帮助我们分析物体受力平衡的条件和特性。
在航天学和生物学中,我们也常常需要运用运动学和静力学的原
理来研究和解释物体的运动和力学性质。
总之,动力学中的运动学和静力学是两个相互关联、相互作用的学科。
它们通过研究物体的运动和力的平衡状态,揭示了物体受力作用和运动行为之间的密切关系。
在实际应用中,运动学和静力学都发挥着重要的作用,为解决各类力学问题提供了理论和方法。