201X届九年级数学上册第五章投影与视图5.1投影第1课时知能演练提升新版北师大版

合集下载

5.1 投影 第1课时 数学北师大版九年级上册教案

5.1 投影 第1课时 数学北师大版九年级上册教案

第五章 投影与视图1 投影第1课时【教学目标】知识与技能:了解中心投影的含义,体会灯光下物体的影子在生活中的运用,体会灯光投影在生活中的实际价值.过程与方法:经历实践、探索的过程,能区别平行投影与中心投影条件下物体的投影.情感态度与价值观:通过相互间的合作与交流,进一步发展学生合作交流的能力和数学表达能力.【重点难点】重点:了解中心投影的含义.难点:能根据灯光来辨别物体的影子,初步进行中心投影条件下物体与其投影之间的相互转化.【教学过程】一、创设情境投影现象调查(提前一周布置)以4人合作小组为单位,开展调查活动:(1)尽所能收集生活中各类投影现象(用电子图片形式呈现).(2)小组长整理所收集的图片,统一规格要求,交给数学教师.二、探索归纳教师课前整理、选择学生资,多媒体展示,选3—4个小组代表简单介绍,分析投影的光线特点(讲解太阳光线可以看成是平行光线).给展示图片编号,要求学生根据一定的标准进行分类(学优生可以先设定标准,再分类;学困生可以先分类,再根据自己的分类尝试写出分类的标准),通过对分类及标准的过程性加工,使学生明晰投影光线可以看成是从同一个点发出的投影叫中心投影,投影光线可以看成是平行光线的投影叫平行投影.结合中心投影的特点,完成对点光确定方法的学习.例题:确定图中路灯灯泡所在的位置.待绝大多数学生正确完成灯泡位置的确定,大部分学生在思考原理及步骤,部分学生开始书写原理及步骤时(确保学生有资可以交流),教师适时打断,引导学生讨论确定灯泡位置方法的原理和具体操作的步骤,并要求小组派代表进行班级交流(确保学生真正参与交流),使全班同学掌握作图原理及操作步骤,明晰对应点的正确找取是确定灯泡位置的关键.三、交流反思今天我最大的收获是……(从数学知识,数学方法和数学思想方面引导学生思考)四、检测反馈1.如图,一个广告牌挡住了路灯的灯泡.(1)确定图中路灯灯泡所在的位置;(2)在图中画出表示小赵身高的线段.2.两棵小树在一盏路灯下的影子如图所示.(1)确定该路灯灯泡所在的位置.(2)画出图中表示婷婷影长的线段.五、布置作业课本P128 习题5.1 第2、3题六、板书设计投影1.探究2.归纳分类:3.应用练习:例题七、教学反思1.多媒体的合理应用,可极大地激发学生的学习兴趣,提高教学效果.在本节课的“综合调查”和“情境引入”教学环节中,通过学生收集和用多媒体展示的人影、皮影、手影等的精彩图片,给学生以视觉冲击,产生了视觉和心理的震撼,这样在课堂“第一时间”抓住了学生的注意力、极大地激发了学生的学习热情,这十分有利于后面教学活动的开展,提高课堂教学效果.2.通过富有挑战性的“问题(或活动)”激发学生的探索欲望,培养创新精神,拓展思维能力.在本节课“合作学习,深入研究”“练习巩固,拓展提高”教学环节中活动设计,由简单的“模仿”到“创作设计”循序渐进、挑战性逐渐增大,不断激发学生的探索欲望,引人入胜,培养创新精神,提高拓展能力.关闭Word文档返回原板块。

九年级数学上册第五章投影与视图1投影第1课时投影的概念与中心投影课件1新版北师大版

九年级数学上册第五章投影与视图1投影第1课时投影的概念与中心投影课件1新版北师大版
我思我进步 1
皮影戏是用兽皮或纸板做成的人物剪影来表演故事 的戏曲.表演时,用灯光把剪影照射在银幕上,艺人在 幕后一边操纵剪影,一边演唱,并配以音乐.
皮影
手影
在灯光的照射下,做不同的手势可以形成各种各样的手影.
上面皮影和手影都是在灯光照射下形成的影子.
做一做 2
取若干长短不等的小木棒,三角形和矩形纸片,用手电筒 (或台灯)等去照射,观察它们在灯光下的影子.
+ 由影子在物体的两侧可知,光源不是平行光 (太阳光),而是灯光.光源的位置6
1.举例说明生活中的中心投影现象. 2.如图(1),中间是一盏路灯,周围有一圈栏杆,图(2)是其两幅俯 视图(图中只画出了部分情形),其中一幅是白天阳光下的俯视 图,另一幅是这盏路灯下的俯视图.你认为哪个是其白天的俯视 图?哪个是其晚上的俯视图?
(2) (1)
课堂小结
+ 探照灯,手电筒,路灯,和台灯的光线可以看成是从一点发出 的,像这样的光线所形成的投影称为中心投影(central projection).
+ 皮影戏是用兽皮或纸板做成的人物剪影来表演故 事的戏曲.表演时,用灯光把剪影照射在银幕上, 艺人在幕后一边操纵剪影,一边演唱,并配以音乐.
例题欣赏 3 例 确定下图路灯灯泡的位置.
与同伴进行交流一下,你准备如何确定灯泡的位置.
例题欣赏 3 例 确定下图路灯灯泡的位置.
解:过一根木杆的顶端及其影子顶端作一条直线; 再过另一根木杆的顶端及其影子顶端作一条直线; 两直线相交于点O.点O就是路灯灯泡所在的位置.
议一议 4
+ (1)下图是两棵小树在同一时刻的影子.请你在图中画出形成树 影的光线.它们是太阳的光线还是灯光的光线?与同伴交流.

北师大新版九年级数学上册-5.1 第1课时 投影的概念与中心投影1教案带教学反思

北师大新版九年级数学上册-5.1 第1课时 投影的概念与中心投影1教案带教学反思

5.1 投 影第1课时 投影的概念与中心投影1.了解投影和中心投影的含义,体会灯光下物体的影子在生活中的应用;(重点) 2.通过观察、想象,能根据灯光来辨别物体的影子,初步进行中心投影条件下物体与其投影之间的相互转化.(难点)一、情景导入皮影戏是用兽皮或纸板做成的人物剪影来表演故事的戏曲,表演时,用灯光把剪影照射在银幕上,艺人在幕后一边操纵剪影,一边演唱,并配以音乐.学生在灯光下做不同的手势,观察映射到屏幕上的表象.二、合作探究探究点一:中心投影的概念下列投影中,不属于中心投影的是( )A.晚上路灯下小孩的影子B.汽车灯光照射下行人的影子C.阳光下沙滩上人的影子D.舞台上一束灯光下演员的影子解析:A 中晚上路灯的光线是从一个点发出的,故晚上路灯下小孩的影子是中心投影;B 中汽车灯的光线也是从一点发出的,故在汽车照射下行人的影子是中心投影;C 中阳光的光线是互相平行的,不是从一个点发出的,故不是中心投影;D 中舞台上的一束灯光也是从一个点发出的,灯光下演员的影子是中心投影.故选C. 方法总结:形成中心投影的光线是从一点发出的,各光线相交于一点(即光源处).探究点二:中心投影的性质 【类型一】 中心投影的作图一天晚上,小丽在路灯下玩,如图所示.你能画出小丽在路灯下的影子吗?(用线段表示)解:光是沿直线传播的,以光源S 为端点过点C 作射线,交地面于点A ,则线段AB 即可看作是小丽的影子.如图所示.方法总结:作一物体在路灯下的影子时,连接点光源和物体的顶端的点并延长,与地面相交,则与地面的交点和物体的底端之间的线段即为该物体的影子.如图所示,由两根直立的木杆在一路灯下的影子判断路灯灯泡的位置. 解:如图所示,两条光线的交点O 即为灯泡所在的位置.方法总结:相交光线的交点即为点光源所在的位置.点光源下两个物体的影子可能在同一个方向,也可能不在同一个方向. 【类型二】 中心投影的变化规律如图,晚上小亮在路灯下散步,在小亮由A 处径直走到B 处这一过程中,他在地上的影子( )A.逐渐变短B.先变短后变长C.先变长后变短D.逐渐变长解析:在路灯下,路灯照人所形成的投影是中心投影.人的影子可以通过路灯和人的头顶作直线,该直线和地面的交点到人的距离即为他的影子的长度.因此人离路灯越远,他的影子就越长.由A 到B 这一过程中,人在地上的影子先逐渐变短,当他走到路灯正下方时,影子为一点,然后又逐渐变长.故选B.方法总结:在灯光下,垂直于地面的物体离点光源距离近时影子短,离点光源远时影子长.【类型三】 中心投影的有关计算如图所示,晚上,小明由路灯AD走向路灯BC ,当他行至点P 处时,发现他在路灯BC 下的影长为2m ,且影子的顶端恰好在A 点,接着他又走了6.5m 至点Q 处,此时他在路灯AD 下的影子的顶端恰好在B 点(已知小明的身高为1.8m ,路灯BC 的高度为9m ).(1)计算小明站在点Q 处时在路灯AD 下影子的长度;(2)计算路灯AD 的高度.解析:由路灯、小明都垂直于地面,知AD ∥PE ∥QH ∥BC ,用相似三角形中的比例线段可求解.解:(1)如图所示,∵EP ⊥AB , CB ⊥AB ,∴EP ∥BC ,∴∠AEP =∠ACB ,∠APE =∠ABC ,∴△AEP ∽△ACB .∴PE CB =AP AB ,即1.89=2AB, 解得AB =10(m ).∴QB =AB -AP -PQ =10-2-6.5=1.5(m ),即小明站在点Q 时在路灯AD 下影子的长度为1.5m ;(2)同理可证△HQB ∽△DAB ,∴HQ DA =QB AB ,即1.8AD =1.510,解得AD =12(m ).即路灯AD 的高度为12m.方法总结:解决本题的关键是构造相似三角形,然后利用相似三角形的性质求出对应线段的长度.三、板书设计 投影的概念与中心投影⎩⎪⎨⎪⎧投影的概念:物体在光线的照射下,会在地面或其他平面上留 下它的影子,这就是投影现象中心投影⎩⎪⎨⎪⎧概念:点光源的光线形成的 投影变化规律影子是生活中常见的现象,在探索物体与其投影关系的活动中,体会立体图形与平面图形的相互转化关系,发展学生的空间观念.通过在灯光下摆弄小棒、纸片,体会、观察影子大小和形状的变化情况,总结规律,培养学生观察问题、分析问题的能力.。

北师大版九年级数学第五章-投影第一课时精品PPT课件

北师大版九年级数学第五章-投影第一课时精品PPT课件
上面窗户的影子、遮阳伞的影子都 是在太阳光下形成的。
概念解析
手电筒、路灯和台灯的光线可以 看成是从一点出发的, 像这样的光线所形成的投影称为中 心投影(central projection). 思考:阳光下物体的影子是中心投影吗?
请画出图中双胞胎姐妹在路灯下的影子.
小结:发光点、物体上的点及其影子上的对应点 在一条直线上.
O
A
B
大显身手
1.在下列各图中,两根木棒的影子是在同一时刻、 一盏灯下形成的中心投影吗?
点光源下的影响物体 影子长短的因素有哪些?
思考1
请同学们画出小丽在走向路灯时三个时刻的影 子的情况,并思考在中心投影现象中,物体离光源 的远近的变化会对影子的长短带来怎样的变化.
结论:
物体离光源越 近,影子_越__短___.
When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End
谢谢大家
荣幸这一路,与你同行
It'S An Honor To Walk With You All The Way
演讲人:XXXXXX 时 间:XX年XX月XX日
物体离光源越 远,影子_越__长___.
思考2 一天晚上,姚明和潘长江并排走过
一盏路灯,他们的影子哪个更长? 姚明
结论:人到点光源距离相同时 身高越高,影子__越__长______; 身高越低,影子__越__短______.
姚明和潘长江在路灯下的影子可能一样长吗? 潘长江在路灯下的影子有可能比姚明长吗?
如图,一个广场中央有一盏路灯 思考:(1)高矮相同的两个人在这盏路灯下的影子 一定一样长吗?如果不一定,那什么情况下他们的 影子一样长? (2)高矮不同的两个人在这盏路灯下的影子可能一 样长吗?

九年级数学上册 第五章 投影与视图 5.1 投影(第一课时)课件上册数学课件

九年级数学上册 第五章 投影与视图 5.1 投影(第一课时)课件上册数学课件
第五章
5.1 投影
第1课时
12/11/2021
12/11/2021
12/地面或其他平面 上留下它的影子,这就是投影(projection)现象. 影子所在的平面称为投影面.
上面窗户的影子、海边的人影都是在太 阳光下形成的。
12/11/2021
做一做
12/11/2021
手电筒、路灯和台灯的光线可以 看成是从一点出发的,
像这样的光线所形成的投影称为 中心投影(central projection).
请画出图中双胞胎姐妹在路灯下的影 子.
小结:发光点、物体上的点及其影子上的对应点 在一条直线上.
12/11/2021
例 确定图中路灯灯泡所在的位置.
• 皮影戏是用兽皮或纸板做成的人物剪影来表演故 事的戏曲.表演时,用灯光把剪影照射在银幕上, 艺人在幕后一边操纵剪影,一边演唱,并配以音乐.
• 在灯光的照射下,做不同的手势可以形成各种各样 的手影.
• 皮影和手影都是在灯光照射下形成的影子.
12/11/2021
12/11/2021
12/11/2021
2.在下列各图中,两根木棒的影子是在同一时 刻、一盏灯下形成的中心投影吗?
12/11/2021
3.在下列各图中,两根木棒的影子是在同一时 刻、一盏灯下形成的中心投影吗?
12/11/2021
小结 拓展
回味无穷
• 探照灯,手电筒,路灯,和台灯的光线可以看成是从一点发出 的,像这样的光线所形成的投影称为中心投影(central projection).
取一些长短不等的小棒及三角形、矩形纸片, 用手电筒去照射这些小棒和纸片.
⑴ 固定手电筒,改变小棒或纸片的摆放位 置和方向,它们的影子分别发生了什么变化?

北师大版九年级数学上册第五章 投影与视图 投影的概念与中心投影

北师大版九年级数学上册第五章  投影与视图  投影的概念与中心投影

例2 一个广场中央有一盏路灯.
(1)高矮相同的两个人 在这盏路灯下的影子一定 一样长吗?如果不一定, 那么什么情况下他们的影 子一样长?
不一定一样长,只有当两人与路灯的距离相等时影子 才会一样长.
(2)高矮不同的两个人在这盏路灯下的影子有可 能一样长吗?请实际试试, 并与同伴交流.
有可能
结论 在灯光下,垂直于地面的物体离点光源距离近 时,影子短;离光源远时,影子长.
做一做
2 中心投影
取一些长短不等的小棒和三角形、矩形纸片,用
手电筒(或台灯)等去照射这些小棒和纸片,观察它
们的影子.
(1)固定手电筒(或台灯),改变小棒或纸片的摆放 的位置和方向,它们的影子分别发生了什么变化?
物体离光源越远,影子越大; 距离光源越近,影子越小.
(2)固定小棒或纸片,改变手电筒(或台灯)的摆 放位置和方向,它们的影子发生了什么变化?
改变手电筒的方向, 它们的影子的方向也 发生了变化.
知识要点 手电筒、路灯和台灯的光线可以看成是从一个点发 出的,这样的光线所形成的投影称为中心投影.
例如:物体在灯泡发出的光的照射下形成影子就是 中心投影.
典例精析 例1 确定图中路灯灯泡所在的位置.
O 点 O 就是路过再影灯一过子灯根另的泡木一顶所杆根端在的木作的顶杆一位端的条置及顶 直. 其端 线影及 ,子其 两 的直顶线端交作于一一条点直O线
练一练
2. 如图,晚上小亮在路灯下散步,在小亮由 A 处 径直走到 B 处这一过程中,他在地上的影子 ( B ) A.逐渐变短 B.先变短后变长 C.先变长后变短 D.逐渐变长
A
B
投影的 物体在光线的照射下,会在地面或其
概念
他平面上留下它的影子,这就是投影

5.1 投影 第1课时 数学北师大版九年级上册学案

5.1 投影 第1课时 数学北师大版九年级上册学案

第五章投影与视图1 投 影第1课时【旧知再现】1.三角形相似判定方法:有两个角__相等__的三角形相似.2.相似三角形的对应边__成比例__.【新知初探】阅读教材P125—P126完成下面问题:1.投影现象:物体在__光线__的照射下,会在地面或其他平面上留下它的__影子__,这就是投影现象.__影子__所在的平面称为__投影面__.2.中心投影:手电筒、路灯和台灯的光线可以看成是从__一个点____发出的,这样的光线所形成的__投影____称为中心投影.3.点光的确定:过物体的__顶端____与影子的__顶端____作一条直线即光线,这样两条光线的__交点____,就是点光.【图表导思】1.光可以看出是什么线的交点?【解析】光线.2.物体一样高影子一样长吗?物体的影长不同,它们的高度也不同吗?【解析】不一定,不一定.3.计算影子的长度,利用的数学知识是什么?【解析】相似三角形对应边成比例. 中心投影【教材P126例1拓展】——中心投影的应用 如图,学校平房的窗外有一路灯AB,路灯光能通过窗户CD照到平房内EF处,经过测量得:窗户距地面高OD=1.5 m,窗户高度DC =0.8 m,OE=1 m,OF=3 m,求路灯AB的高.【完善解答】连接DC,设路灯AB高为x m,BO的长度为y m,∵AB∥OC,∴∠B=∠DOE,∠DEO=∠AEB,∠AFB=∠CFO,∴△ABE∽__△DOE__,△ABF∽__△COF__,……………………………………相似三角形的判定∴ABDO=__BEOE__,ABCO=__BFOF__,……………………………………………………相似三角形对应边成比例∴{x 1.5= 1+y 1 ,x 2.3= 3+y 3 ,………………………………………………列方程组解得{x = 6922 ,y = 1211 ,………………………………………………解方程组答:路灯AB 的高度为__6922__ m .………………………………作答【归纳提升】利用三角形相似解决中心投影问题的思路变式一:巩固 (2021·深圳质检)如图,小欣站在灯光下,投在地面上的身影AB =2.4 m ,蹲下来,则身影AC =1.05 m ,已知小欣的身高AD =1.6 m ,蹲下时的高度等于站立高度的一半,求灯离地面的高度PH.【解析】∵AD ∥PH ,∴△ADB ∽△HPB ;△AMC ∽△HPC(M 是AD 的中点),∴AB ∶HB =AD ∶PH ,AC ∶AM =HC ∶PH,即2.4∶(2.4+AH)=1.6∶PH ,1.05∶0.8=(1.05+HA)∶PH ,解得:PH =7.2 m.即灯离地面的高度为7.2 m .变式二:提升 (2021·惠州质检)如图,王琳同学在晚上由路灯A 走向路灯B ,当他行到P 处时发现,他在路灯B 下的影长为2米,且恰好位于路灯A 的正下方,接着他又走了6.5米到Q 处,此时他在路灯A 下的影子恰好位于路灯B 的正下方(已知王琳身高1.8米,路灯B 高9米).(1)标出王琳站在P 处在路灯B 下的影子;(2)计算王琳站在Q 处在路灯A 下的影长;(3)计算路灯A 的高度.【解析】(1)线段CP 为王琳站在P 处在路灯B 下的影子(图略).(2)由题意得Rt △CEP ∽Rt △CBD ,∴EP BD =CP CD ,∴1.89=22+6.5+QD ,解得:QD =1.5米.(3)∵Rt △DFQ ∽Rt △DAC ,∴FQ AC =QD CD ,∴1.8AC = 1.51.5+6.5+2,解得:AC =12米.答:路灯A 的高度为12米. 中心投影中影子的变化规律【教材P126“议一议”补充】——中心投影的性质 如图,某小区内有一条笔直的小路.路的旁边有一盏路灯,晚上小红由A处走到B处.表示她在灯光照射下的影长l与行走的路程S 之间关系的大致图象是(B)【归纳提升】中心投影的“三个特点”1.等高物体垂直地面放置{(1)离点光源越近,影子越 短(2)离点光源越远,影子越 长2.等长物体平行地面放置{(1)离点光源越近,影子越 长(2)离点光源越远,影子越 短 ,但不会小于物体本身的长度3.点光、物体边缘的点及其在物体影子上的对应点在同一条__直线__上.变式一:巩固小阳和小明两人从远处沿直线走到路灯下,他们规定:小阳在前,小明在后,两人之间的距离始终与小阳的影长相等.在这种情况下,他们两人之间的距离(D)A.始终不变B.越来越远C.时近时远D.越来越近变式二:提升(2021·太原质检)如图,一人在两等高的路灯之间走动,GB为人AB在路灯EF照射下的影子,BH为人AB在路灯CD照射下的影子.当人从点C走向点E时两段影子之和GH的变化趋势是(C)A.先变长后变短B.先变短后变长C.不变D.先变短后变长再变短【一题多变】(貌似神异)1. (2021·鄂州质检)如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC所示,小亮的身高如图中线段FG 所示,路灯灯泡在线段DE上.(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子.(2)如果小明的身高AB=1.6 m,他的影子长AC=1.4 m,且他到路灯的距离AD=2.1 m,求灯泡的高.【解析】(1)如图,点O为灯泡所在的位置,线段FH为小亮在灯光下形成的影子.(2)由已知可得,AB OD =CA CD,∴1.6OD = 1.41.4+2.1,∴OD =4.∴灯泡的高为4 m .2.(2021·襄阳质检)如图所示,甲物体高4米,影长3米,乙物体高2米,影长4米,两物体相距5米.(1)在图中画出灯的位置,并画出丙物体的影子.(2)若灯杆,甲、乙都与地面垂直并且在同一直线上,试求出灯的高度.【解析】(1)点O 为灯的位置,QF 为丙物体的影子.(2)作OM ⊥QH ,设OM =x ,BM =y ,由△GAB ∽△GOM ,∴AB OM =GB GM ,即:4x =33+y,①由△CDH ∽△OMH ,∴CD OM =DH HM,即:2x =44+5+y,②由①②得,x =4.8,y =0.6.答:灯的高度为4.8米.3.高高的路灯挂在路边的上方,高傲而明亮,小明拿着一根2米长的竹竿,想量一量路灯的高度,直接量是不可能的.于是,他走到路灯旁的一个地方,竖起竹竿(即AE),这时,他量了一下竹竿的影长(AC)正好是1米,他沿着影子的方向走,向远处走出两根竹竿的长度(即AB =4米),他又竖起竹竿,这时竹竿的影长正好是一根竹竿的长度(即BD =2米).此时,小明抬头瞧瞧路灯,若有所思地说:“噢,我知道路灯有多高了!”同学们,请你和小明一起解答这个问题:(1)在图中作出路灯O 的位置,并作OP ⊥l 于P.(2)求出路灯O 的高度,并说明理由.【解析】(1)(2)由于BF =DB =2(米),即∠D =45°,所以,DP =OP =灯高,△COP 中,AE ⊥CP ,OP ⊥CP ,∴AE ∥OP ,∴△CEA ∽△COP ,CA EA =CP OP ,设AP =x ,OP =h ,则12=1+x h①DP =OP 表达为2+4+x =h ②,联立①②两式得:x =4,h =10,∴路灯有10米高.思想体现——分类讨论思想 【应用】在物体位置不确定的情况下,常常需要对物体的位置进行分类讨论,进而结合已知条件求出影长值.【典例】(2021·长治质检)如图,夜晚,小亮从点A出发,经过路灯C的正下方点D,沿直线走到点B停止,他的影长y随他与点A之间的距离x的变化而变化.已知小亮的身高为1.6 m,路灯C与地面的距离CD为4.8 m,AD=BD=60 m,求出y与x之间的函数表达式,并写出自变量的取值范围.【解析】见全解全析关闭Word文档返回原板块。

北师大版九年级上册数学第五章第一节投影

北师大版九年级上册数学第五章第一节投影

感悟新知
知1-讲
2. 性质 (1)光线是沿直线照射的,因此可以由物体与它的投影确 定光线的方向. (2)不同时刻,物体的影子的方向和大小会发生变化;在 投影线和投影面相同的情况下,不同形状的物体的投 影一般不同.
感悟新知
知1-练
例 1 下列现象不属于投影的是( )
A.皮影
B.树影
C.手影
D.素描画
解题秘方:紧扣“同一时刻,平行的边的平行投 影是平行或重合的”这一特征解答.
感悟新知
知3-练
解:矩形木框在地面上形成的影子应是矩形或平行 四边形或一条线段,不会是梯形. 答案:A
感悟新知
知3-练
4-1. 小华在上午8时、上午9时、上午10时、中午12时四次
到室外的阳光下观察向日葵影子的变化情况,他发现
感悟新知
知4-练
6-1. 如图所示, 水杯的杯口与投影面平行,平行光线的方 向如箭头所示,它的正投影是( D )
课堂小结
投影
物体 的投

投影线 的特征
平行投影
投影线垂直 于投影面
正投影
中心投影
学习目标
课后作业
作业1 必做: 请完成教材课后习题 作业 EF
.
∵ AB=5m,BC=3m,EF=6m,

DE=
AB·EF BC
=10
m.
感悟新知
知3-练
5-1. 小明和小丽要利用树影来测量树高,小明在某一时刻 测得长为1 m的标杆的影长为0.9m,同时小丽测量树 影,但因树靠近一幢建筑物,影子不全落在地面上, 有一部分影子在墙上(如图所示),她先测 得留在墙上的影高为1.2m,又测得地面上 的影长为2.7m,那么树高是多少米?

数学北师大版九年级上册《5.1投影》

数学北师大版九年级上册《5.1投影》

练一练
练一练
练一练
平行投影
平行光线形成的投影是平行投影。 特征:平行光线 同一时刻,不同时刻

平行投影

日晷

利用手表辨别方向
练一练
( A)
(B)
( C)
练一练
练一练
平行投影----正投影
投 射 方 向
特征:平行光线,垂直 实物大小、形状

S
投 射 方 向
中心投影
北师大版数学九年级上册 第五章 投影与视图
河源市第二中学 赖丽慧
5.1 投 影
皮影戏
说一说
Байду номын сангаас
投影
物体在日光或灯光的照射下,会在地面、墙 壁等处形成影子,这就是投影现象。影子所在的 平面成为投影面。
中心投影
由同一点发出的光线形成的投影叫做中心投影。 特征:点光源,三点一线 投影中心与物体的距离 实物大小、形状
斜投影
正投影 平行投影
投影
议一议

需要多少个怎么样的投影可以还原出物 体的形状?

九年级数学上册 第五章 投影与视图 课件北师大版

九年级数学上册 第五章 投影与视图 课件北师大版


左视图 (1)
俯(视2)图

(左3)视图
俯(视4图)

(5)左视图和俯视(图6)
• (4)如图是一个蒙古包的照片,你能画出这个几何体的三种视图吗?
主视图
左视图
俯视图
随堂练习
•1.找出图中每一物品所对应的主视图.
(A)
(B)
(C)
(D)
2.将两个圆盘一个茶叶桶,一个皮球和一个蒙古包模 型按如图所云浮的方式摆放在一起,其主视图是
皮影戏是利用灯光的照射,把影 子的影态反映在银幕(投影面)上的 表演艺术.
如图,把一根直的细铁丝(记为线段AB)放在三个不
同位置; (1)铁丝平行于投影面; (2)铁丝倾斜于投影面; (3)铁丝垂直于投影面(铁丝不一定要与投影面有公 共点).
三种情形下铁丝的正投影各是什么形状?
A
B
A
BA
A1
p
B1 A2
• 2.三种视图的位置关系:
• 一般地,首先确定主视图的位置,画出主视图,然后在主视图的下面 画出俯视图,在主视图的左边画出左视图.
• 3.三种视图的画法:
• 首先观察物体,画出视图的外轮廓线,然后将视图补充完整,看得见
部分的轮廓线通常画成
,实看线不见部分的轮廓线通常画成
虚. 线
典例精析
• 1.一个用于防震的L形包装塑料泡沫如图所示,则该物体的俯视图是( )
分别自两个物体的顶端及其影子的顶端作一条
直线线,若,两则直为线中心平投行,影则,为其平行投影是;光若源两的直位置.
相交
交点
• (二)、视图
• 1.三种视图的内在联系:
• 主视图反映的是物体的 长和;高俯视图反映的是物体的 长和;宽左

2024年北师大版九年级上册教学第五章 投影与视图投影

2024年北师大版九年级上册教学第五章 投影与视图投影

第1课时中心投影课时目标1.通过实例了解投影、中心投影的概念.2.在具体操作活动中,初步感受在点光源下物体影子的变化情况;在具体情境中了解在点光源下影响物体影子长度的一些因素;会进行中心投影的有关画图.3.通过相互间的合作与交流,进一步发展学生合作交流的能力和数学表达能力.学习重点中心投影的概念及相关画图.学习难点根据物体的影子找光源.课时活动设计情境引入成影现象调查(提前一周布置)以4人合作小组为单位,开展调查活动.(1)让学生尽可能多收集生活中各类成影现象(用电子图片形式呈现).(2)小组长整理所收集的图片(如图),统一规格要求,交给数学教师.要求学生通过观察真实成影现象(包括生活中观察的成影、视频看到的成影现象、上网调查的成影问题等),得到有关成影图片资源,收集的资源尽量多样化.在必要的情况下,教师可以对学生选择调查对象方面给予一定的指导,使调查更有实效性.小结:物体在光线的照射下,会在地面或其他平面上留下它的影子,这就是投影现象.影子所在的平面称为投影面.设计意图:通过调查活动,指导学生利用现有手段获取有效信息,培养学生善于观察生活、乐于探索研究的学习品质及与他人合作交流的意识;而在本节课和下节课的学习活动中,学生通过对他们自己收集且感兴趣的问题展开学习,将极大地激发学生学习的积极性与主动性,提高教学的实效性.做一做取一些长短不等的小棒和三角形、矩形纸片,用手电筒(或台灯)等去照射这些小棒和纸片,观察它们的影子.(1)固定手电筒(或台灯),改变小棒或纸片的摆放位置和方向,它们的影子分别发生了什么变化?(2)固定小棒或纸片,改变手电筒(或台灯)的摆放位置和方向,它们的影子分别发生了什么变化?小结:手电筒、路灯和台灯的光线可以看成是从一个点发出的,这样的光线所形成的投影称为中心投影.设计意图:通过具体操作,使学生体会在点光源下物体影子的变化情况.在此基础上,引出中心投影的概念.典例精讲结合中心投影的特点,完成确定点光源方法的学习.例确定图中路灯灯泡所在的位置.教师:结合你们刚才对中心投影的理解,请在图中尝试找一下灯泡的位置.学生:动手探究.教师:走入学生巡视,捕捉教学资源,进行教学指导.根据学生反应情况,教师选择下列方式进行过程性点拨.1.在同一灯光下,物体的影子与物体上对应点的连线过灯泡所在的位置吗?2.如何找物体与影子上的对应点?3.找一对对应点可以确定灯泡的位置吗?4.能够找到灯泡位置的同学,请思考你确定灯泡位置的原理和刚才的具体操作步骤并尝试在图旁边写下来.根据学生反应的情况,教师使用实物投影展示,对下列情境进行过程性打断纠错.1.找错对应点.2.所画光线不进行适当延长,没有相交.3.所画光线不考虑实际背景,画入了地平线以下.4.找到灯泡位置,未用字母表示.待绝大多数学生正确完成灯泡位置的确定,大部分学生在思考原理及步骤,部分学生开始书写原理及步骤(确保学生有资源可以交流),教师适时打断,引导学生讨论确定灯泡位置方法的原理和具体操作的步骤,并要求小组派代表进行汇总发言(确保学生真正参与交流),使全班同学掌握作图原理及操作步骤,明确对应点的正确找取是确定灯泡位置的关键.注意事项:教师要注意欲速则不达,放手让学生进行探究,当出现较严重的知识性问题或较多学生出现错误时,再适时进行过程性的纠错和点拨,留更多的知识点、能力点让学生在探究和合作交流中得以自我发现学习.教师板书正确答案.解:如图,过一根木杆的顶端及其影子的顶端画一条直线,再过另一根木杆的顶端及其影子的顶端画一条直线,两线相交于点O.点O就是路灯灯泡所在的位置.设计意图:通过独立探究、合作交流,使学生对中心投影有更加深入的认识,并能够应用原理解决实际问题.议一议如图,一个广场中央有一盏路灯.(1)高矮相同的两个人在这盏路灯下的影子一定一样长吗?(2)高矮不同的两个人在这盏路灯下的影子有可能一样长吗?那么什么情况下他们的影子一样长呢?请实际试一试,并与同伴交流.解:(1)高矮相同的两个人在这盏路灯下的影子不一定一样长.(2)高矮不同的两个人在这盏路灯下的影子有可能一样长.当他们到这盏路灯的距离一样时,他们的影子一样长.设计意图:让学生了解在点光源下影响物体影子长度的一些因素.巩固训练练习1两棵小树在一盏路灯下的影子如图所示.(1)确定该路灯灯泡所在的位置;(如图点O即为灯泡所在的位置)(2)画出图中表示婷婷影长的线段.(如图线段AB即为婷婷的影长)练习2请同学们在图中画出小红在走向路灯时三个时刻的影子的情况,并思考在中心投影现象中,物体离光源的远近的变化会对影子的长短带来怎样的变化.通过作图,引导学生发现中心投影,物体与光源距离的远近影响投影的长短.设计意图:通过练习1,进一步巩固学生对中心投影特点的认识,熟练找光源的方法;通过练习2,引导学生思考中心投影的各种情况.学生经历实践、探索的过程,既培养了学生的动手实践能力,积累了数学活动经验,又加深了对中心投影的了解.课堂小结谈谈今天的收获是什么?与同伴进行交流.(从数学知识、数学方法和数学思想方面引导学生思考)设计意图:通过开放式小结,使学生自主回顾、总结梳理所学知识,培养学生归纳、概括能力和表达能力.课堂8分钟.1.教材第128页习题5.1第1,2,3题.2.七彩作业.第1课时中心投影1.投影:物体在光的照射下,在地面或其他平面上留下它的影子,就是投影.2.中心投影:从一个点出发的光线所形成的投影称为中心投影.3.例题、练习题.教学反思第2课时平行投影课时目标1.通过背景丰富的实例了解平行投影和正投影的概念.2.通过具体操作活动,初步感受太阳光下物体影子的变化情况;认识太阳光下物体影子的长短与方向的变化规律;能运用平行投影的基本规律解决一些简单问题.3.在具体情境中认识中心投影与平行投影的区别.4.经历操作、观察、分析、抽象、概括、想象、推理、交流等过程,进一步积累数学活动经验,增强动手实践能力,发展空间观念.学习重点通过具体操作和实际观察活动,认识太阳光下物体影子的长短与方向的变化规律;能运用平行投影的基本规律解决一些简单问题;在具体情境中认识中心投影与平行投影的区别.学习难点让学生经历操作与观察、演示与想象、直观与推理等过程,自己归纳总结出有关结论.课时活动设计情境引入太阳光成影现象调查(提前一周布置,利用周末时间完成)以4人合作小组为单位,开展调查活动.活动:取若干长短不等的小棒及三角形、矩形纸片,观察它们在太阳光下的影子.(1)固定投影面,改变小棒或纸片的摆放位置和方向,它们的影子分别发生了什么变化?(2)固定小棒或纸片,改变投影面的摆放位置和方向,它们的影子分别发生了什么变化?小结:太阳光线可以看成平行光线,平行光线所形成的投影称为平行投影.图1,图2表示的都是平行投影,其中图2中的平行光线与投影面垂直,这种投影称为正投影.图1图2注意事项:在体会物体在太阳光下形成的影子随着物体与投影面的相对位置关系的改变而改变时,尤其要让学生观察两类特殊位置时的情形:①小棒或纸片与投影面平行;②光线与投影面垂直.对于①,要让学生观察物体影子的形状和大小的特点(物体与其影子“全等”).对于②,要让学生观察“物体影子的形状和大小”随“物体与投影面的相对位置”变化而变化的规律,如当物体平行于投影面时情况如何,当物体倾斜于投影面时情况如何,当物体垂直于投影面时情况又如何等等.设计意图:通过具体操作,体会物体在太阳光下形成的影子随着物体与投影面的位置关系的改变而改变,在此基础上引出平行投影与正投影的概念.提高学生观察生活的能力以及合作能力.在中心投影的学习后,自然对比中心投影与平行投影的异同,为本节课的学习创设学习氛围,提升本节课的学习效果.议一议1.如图所示的三幅图片是我国北方某地某天上午不同时刻的同一位置拍摄的.(1)在三个不同时刻,同一棵树的影子长度不同,请将它们按拍摄的先后顺序进行排列,并说明你的理由.解:先后顺序为(丙)(乙)(甲).理由:太阳东升西落.在早晨,太阳位于正东方向,此时树的影子较长,影子位于树的正西方向.在上午,随着太阳位置的变化,树的影子的长度逐渐变短,树的影子也由正西方向向正北方向移动.(2)在同一时刻,两棵树影子的长度与它们的高度之间有什么关系?与同伴交流.解:在同一时刻,大树高度与其影长之比等于小树高度与其影长之比.2.教师课前整理太阳光成影现象调查,选择适合学生的资源进行多媒体展示,选1个小组代表结合照片与统计的数据表格对同一时刻.不同高度的物体的影子的长短的情况进行介绍,其他小组同学进行补充,使学生明晰同一时刻,不同高度的物体的影子的长短不相同,物高与影长之间存在“A物高∶A影长=B物高∶B 影长”.教师结合图片,适时引导学生运用相似的知识对原理进行解释.设计意图:通过两个问题的设置,让学生在亲身参与的基础上,进行展示及讨论交流,让学生初步学会本节课的研究内容,在小组讨论的基础上得出两个问题的答案,进一步培养学生探究知识的能力,体会到自主学习的乐趣,为学生以后更好地学习新知奠定基础.学生在探究完教师的问题后,教师出示课前准备的图片,让学生验证变化规律的成因,给学生一个完整的知识结构.典例精讲例某校墙边有甲、乙两根木杆,已知乙木杆的高度为1.5 m.(1)某一时刻甲木杆在阳光下的影子如图所示.你能画出此时乙木杆的影子吗?(2)在图中,当乙木杆移动到什么位置时,其影子刚好不落在墙上?(3)在(2)的情形下,如果此时测得甲、乙木杆的影子长分别为1.24 m和1 m,那么你能求出甲木杆的高度吗?解:(1)如图1,连接DD',过点E作DD'的平行线,交AD'所在的直线于点E'.BE'就是乙木杆的影子.图1图2(2)如图2,平移由乙木杆、乙木杆的影子和太阳光线所构成的图形(即△BEE'),直到乙木杆影子的顶端E'抵达墙根为止.(3)因为△ADD'∽△BEE',所以,ADBE =AD'BE',即AD1.5=1.241.所以,甲木杆的高度为AD=1.5×1.241=1.86(m).设计意图:通过问题(1)深化学生所学知识,发现物体、影子、光线这三者之间,确定其中的两个因素即可确定第三个因素;通过问题(2),让学生学会动态看待投影问题;通过问题(3),使学生能够运用所探究到的知识解决实际问题,借助例题讲解的形式,让学生深入了解并运用上一环节所学的相关知识.巩固训练请完成以下两道题目,并与同伴交流你的方法.1.图中是两棵小树在同一时刻的影子,请在图中画出形成树影的光线.它们是太阳的光线还是灯光的光线?与同伴交流.解:如图即为所作,它们是灯光的光线.2.图中的影子是在太阳光下形成的还是在灯光下形成的?画出同一时刻旗杆的影子(用线段表示),并与同伴交流这样做的理由.解:太阳光下形成的,如图,旗杆的影子为线段AB.理由:过大树的顶端及其影子的顶端作一条直线,再过小树的顶端及其影子的顶端作一条直线,两条直线是平行的,因而是太阳光下形成的影子,过旗杆的顶端作一条与前面所作的两条直线中的任意一条平行的直线,其与地面相交,则以该交点和旗杆的底端为两个端点线段AB即为旗杆的影子.2.如图1,中间是一盏路灯,周围有一圈栏杆,图2,图3表示的是这些栏杆的阴影,但没有画完,请你把图2,图3补充完整.图1图2图3图4图5解:图2是中心投影,图3是平行投影.补充完整的图如图4,图5所示.设计意图:通过活动进一步巩固学生对平行投影和中心投影的认识,能熟练确定投影类型.经历实践探索、交流讨论的过程,培养学生的动手实践能力,积累数学活动经验,掌握投影现象的特点.课堂小结谈谈你的收获是什么?与同伴进行交流.(从数学知识、数学方法和数学思想方面引导学生思考)设计意图:通过开放式小结,使学生自主回顾、总结梳理所学知识,培养学生归纳、概括和表达能力.课堂8分钟.1.必做题:教材第132页习题5.2第1,3题;选做题:教材第133页习题5.2第4题.2.七彩作业.第2课时平行投影投影教学反思。

201X年秋九年级数学上册 第五章 投影与视图 5.1 投影 第1课时 中心投影课件(新版)北师大版

201X年秋九年级数学上册 第五章 投影与视图 5.1 投影 第1课时 中心投影课件(新版)北师大版
的长度. 3.点光源、物体边缘的点以及其在物体的影子上 的对应点在同一条直线上.
第1课时 中心投影
目标三 能进行中心投影的有关计算
例 4 [教材补充例题]小明现在有一根 2 米长的竹 竿,他想测出自己家门前的马路旁一盏路灯的高度, 但又不能直接测量,他采用了如下办法:①一天晚上, 他先走到路旁的一个地方,竖直放好竹竿,测量出此 时竹竿的影长为 1 米;②小明沿竹竿影子的方向向远 处走了两根竹竿的长度,即 4 米,然后又竖直放好竹 竿,测量出此时竹竿的影长正好为 2 米.小明说他可 以计算出路灯的高度,请问小明是如何进行计算的?
第1课时 中心投影
【解析】利用光源、物体上的点与其影子上的对应点共线, 构造相似三角形,再利用相似三角形的有关知识求路灯的高度.
第1课时 中心投影
解:如图所示,OP 为路灯,AE 为第一次竖起的竹竿,BF 为第二次
竖起的竹竿,AC,BD 分别为它们的影长.
由题可知,△AEC∽△POC,AE=2 米,AC=1 米,
第1课时 中心投影
反思
小强和小明一样高,在同一路灯下他们的影 子一样长吗?为什么?
解:小强和小明一样高,在同一路灯下他们的影长与他们 到路灯的距离有关,离路灯越近,影子越短,反之越长.所以 无法判断谁的影子长.
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
影子所在的平面称为__投__影__面__.
第1课时 中心投影
知识点二 中心投影
1.定义:手电筒、路灯和台灯的光线可以看成是 从一个点发出的,这样的光线所形成的投影称为 ___中__心___投影.
第1课时 中心投影
2.中心投影的性质: (1)图形中的两个三角形相似; (2) 物 体 上 的 点 与 影 子 上 的 对 应 点 及 光 源 在 一 条 直线上.

新北师大版九年级数学上册:第五章 投影与视图同步练习(超详细,经典,含答案)

新北师大版九年级数学上册:第五章 投影与视图同步练习(超详细,经典,含答案)

第五章投影与视图1投影第1课时投影、中心投影01基础题知识点1投影、中心投影的概念1.下列现象不属于投影的是(D)A.皮影B.树影C.手影D.素描画2.下列各种现象属于中心投影现象的是(B)A.上午人走在路上的影子B.晚上人走在路灯下的影子C.中午用来乘凉的树影D.早上升旗时地面上旗杆的影子知识点2影子或光源的确定3.下列四幅图中,灯光与影子的位置合理的是(B)4.(教材P144复习题T1变式)如图是小明与爸爸(线段AB)、爷爷(线段CD)在同一路灯下的情景,其中,粗线分别表示三人的影子.(1)画出图中灯泡所在的位置;(2)在图中画出小明的身高.解:(1)如图所示:O即为灯泡的位置.(2)如图所示:EF即为小明的身高.知识点3中心投影条件下物体与其投影之间的转化5.(教材P145复习题T3变式)如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把球向下移时,圆形阴影的大小变化情况是(A)A.越来越小B.越来越大C.大小不变D.不能确定02中档题6.小红和小花在路灯下的影子一样长,则她们的身高关系是(D)A.小红比小花高B.小红比小花矮C.小红和小花一样高D.不确定7.如图,位似图形由三角尺与其灯光照射下的中心投影组成,位似比为2∶5,且三角尺的一边长为8 cm,则投影三角形的对应边长为(B)A .8 cmB .20 cmC .3.2 cmD .10 cm8.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A 处径直走到B 处,将她在灯光照射下的影长l 与行走的路程s 之间的变化关系用图象刻画出来,大致图象是(C)9.如图,路灯(P 点)距地面8米,身高1.6米的小明从距路灯的底部(O 点)20米的A 点沿AO 所在的直线行走14米到B 点时,身影的长度是变长了还是变短了?变长或变短了多少米?解:∵∠MAC =∠MOP =90°,∠AMC =∠OMP , ∴△MAC ∽△MOP. ∴MA MO =AC OP , 即MA 20+MA =1.68. ∴MA =5米.同理△NBD ∽△NOP ,可求得NB =1.5 米. 则MA -NB =5-1.5=3.5(米). ∴小明的身影变短了,短了3.5米.第2课时 平行投影01 基础题 知识点1 平行投影1.下列各组投影是平行投影的是(A)2.李刚同学拿一个矩形木框在阳光下摆弄,矩形木框在地面上形成的投影不可能是(D)3.学校里旗杆的影子整个白天的变化情况是(B)A .不变B .先变短后变长C .一直在变短D .一直在变长 4.【动手操作】如图,小明与同学合作利用太阳光线测量旗杆的高度,身高1.6 m 的小明(AB)落在地面上的影长为BC =2.4 m.(1)请你在图中画出旗杆在同一时刻阳光照射下落在地面上的影子EG ;(2)若小明测得此刻旗杆落在地面的影长EG =16 m ,请求出旗杆DE 的高度.解:(1)影子EG 如图所示. (2)∵DG ∥AC , ∴∠ACB =∠DGE.又∵∠ABC =∠DEG =90°, ∴Rt △ABC ∽△Rt △DEG. ∴AB DE =BC EG ,即1.6DE =2.416. 解得DE =323.∴旗杆DE 的高度为323m.知识点2 正投影5.如图所示,水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影是(D)6.当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小相同(填“相同”“不一定相同”或“不相同”). 02 中档题7.下列说法错误的是(B)A .太阳的光线所形成的投影是平行投影B .在一天的不同时刻,同一棵树所形成的影子的长度不可能一样C .在一天中,不论太阳怎样变化,两棵相邻的树的影子都是平行的或在一条直线上D .影子的长短不仅和太阳的位置有关,还和事物本身的长度有关8.【易错】太阳光照射一扇矩形的窗户,投在平行于窗户的墙上的影子的形状是(A)A .与窗户全等的矩形B .平行四边形C .比窗户略小的矩形D .比窗户略大的矩形9.(教材P132习题T1变式)一天下午小红先参加了校运动会女子100 m 比赛,过一段时间又参加了女子400 m 比赛,如图是摄影师在同一位置拍摄的两张照片,那么下列说法正确的是(A)A .乙照片是参加100 m 的B .甲照片是参加100 m 的C .乙照片是参加400 m 的D .无法判断甲、乙两张照片10.(百色中考)如图,长方体的一个底面ABCD 在投影面P 上,M ,N 分别是侧棱BF ,CG 的中点,矩形EFGH 与矩形EMNH 的投影都是矩形ABCD ,设它们的面积分别是S 1,S 2,S ,则S 1,S 2,S 的关系是S 1=S <S 2.(用“=”“>”或“<”连起来)11.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1 m 的竹竿的影长为0.4 m ,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2 m ,一级台阶高为0.3 m ,如图所示.若此时落在地面上的影长为4.4 m ,求树的高度.解:设树高为h m ,由题意,得 4.4+0.2h -0.3=0.41, 则0.4(h -0.3)=4.6, 解得h =11.8.答:树的高度为11.8 m.2 视图第1课时 简单几何体的三视图01 基础题知识点1 圆柱、圆锥、球的三视图1.(桂林中考)如图所示的几何体的主视图是(C)2.下列几何体中,其左视图为三角形的是(D)3.下列立体图形中,俯视图不是圆的是(B)4.如图是一个圆台,它的主视图是(B)5.(泰州中考)下列几何体中,主视图与俯视图不相同的是(B)6.(安徽中考)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是(D)7.(营口中考)如图所示的物体是由两个紧靠在一起的圆柱体组成的,小明准备画出它的三视图,那么他所画的三视图中的主视图应该是(A)8.将图中的实物与它的主视图用线连接起来.9.一个圆锥和一个圆柱如图放置,说出下面①②两组视图分别是什么视图.解:①是俯视图;②是主视图.知识点2画简单几何体的三视图10.(教材P137习题T1变式)画出图中所示物体的主视图、左视图和俯视图.解:如图所示:易错点判断圆锥的俯视图时忽视中心点11.如图所示的几何体的俯视图是(D)02中档题12.(安徽中考)如图,一个放置在水平实验台上的锥形瓶,它的俯视图为(B)13.将如图所示的Rt△ABC绕直角边AC所在直线旋转一周,所得几何体的主视图是(A)14.沿圆柱体上底面直径截去一部分后的物体如图所示,它的俯视图是(D)15.如图,茶杯的左视图是(C)16.(菏泽中考)如图是两个等直径圆柱构成的“T”形管道,其左视图是(B)17.(益阳中考)如图,空心卷筒纸的高度为12 cm ,外径(直径)为10 cm ,内径为4 cm ,在比例尺为1∶4的三视图中,其主视图的面积是(D)A.21π4 cm 2 B.21π16cm 2 C .30 cm 2 D .7.5 cm 218.(泰州中考)如图所示的几何体,它的左视图与俯视图都正确的是(D)03 综合题19.一位美术老师在课堂上进行立体模型素描教学时,把由圆锥与圆柱组成的几何体(如图所示,圆锥在圆柱上底面正中间放置)摆在讲桌上,请你画出这个几何体的三视图.解:如图所示:第2课时直棱柱的三视图01基础题知识点1直棱柱的三视图1.(娄底中考)如图,正三棱柱的主视图为(B)2.(丽水中考)如图是底面为正方形的长方体,下面有关它的三个视图的说法正确的是(B)A.俯视图与主视图相同B.左视图与主视图相同C.左视图与俯视图相同D.三个视图都相同3.(泰安中考)下面四个几何体:其中,俯视图是四边形的几何体有(B)A.1个B.2个C.3个D.4个4.(德州中考)图甲是某零件的直观图,则它的主视图为(箭头方向为主视方向)(A)5.一个几何体如图所示,则该几何体的三视图正确的是(D)6.请将六棱柱的三视图名称填在相应的横线上.(1)俯视图;(2)主视图;(3)左视图.知识点2直棱柱的三视图的画法7.画出如图所示几何体的三视图.解:如图:易错点判断视图时忽视被遮挡部分的轮廓线8.(潍坊中考)如图所示的几何体的左视图是(C)02中档题9.(陕西中考)如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是(B)10.(沈阳和平区期末)从一个边长为3 cm的大立方体中挖去一个边长为1 cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是(C)11.(太原期末)一个圆柱体钢块,从正中间挖去一个长方体得到的零件毛坯的俯视图如图,其主视图是(A)12.(济宁中考)三棱柱的三视图如图所示,△EFG中,EF=8 cm,EG=12 cm,∠EGF=30°,则AB的长为6cm.13.下面几何体的三种视图有无错误?如果有,请改正.解:主视图有错误,左视图无错误,俯视图有错误,正确画法如图所示.14.两个四棱柱的底面均为等腰梯形,它们的俯视图分别如图所示,画出它们的主视图和左视图.(1) (2)解:如图所示:03 综合题 15.如图1是由两个长方体所组成的立体图形,图2中的长方体是图1中的两个长方体的另一种摆放形式,图①②③是从不同的方向看图1所得的平面图形.(1)填空:图①是主视图得到的平面图形,图②是俯视图得到的平面图形,图③是左视图得到的平面图形; (2)请根据各图中所给的信息(单位:cm),计算出图1中上面的小长方体的体积.解:由图可得⎩⎪⎨⎪⎧x =y +2,x +y =12.解得⎩⎪⎨⎪⎧x =7,y =5. 小长方体的体积为5×3×2=30(cm 3).所以图1中上面的小长方体的体积为30 cm 3.第3课时由视图描述几何体01基础题知识点1由三视图还原几何体1.(云南中考)如图图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是(D)A.三棱柱B.三棱锥C.圆柱D.圆锥2.(泰安中考)如图是下列哪个几何体的主视图与俯视图(C)3.若一个几何体的主视图、左视图、俯视图是半径相等的圆,则这个几何体是(C)A.圆柱B.圆锥C.球D.正方体4.(襄阳中考)一个几何体的三视图如图所示,则这个几何体是(C)知识点2由几何体的三视图求其面积或体积5.(临沂中考)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据求得这个几何体的侧面积是(C)A.12 cm2B.(12+π)cm2C.6π cm2D.8π cm26.(通辽中考)如图,一个几何体的主视图和左视图都是边长为6的等边三角形,俯视图是直径为6的圆,则此几何体的全面积是(C)A.18π B.24πC.27π D.42π7.如图是一个长方体的三视图(单位:cm),根据图中数据计算这个长方体的体积是24cm3.8.如图是一个几何体的主视图、左视图和俯视图.(1)写出这个几何体的名称;(2)若已知主视图的高为10 cm,俯视图的三边长都为4 cm,求这个几何体的侧面积.解:(1)三棱柱.(2)这个几何体的侧面积为10×4×3=120(cm2).02中档题9.(河北中考)图中三视图对应的几何体是(C)10.(广元中考)如图是由几个相同小正方体组成的立体的俯视图,图上的数字表示该位置上小正方体的个数,这个立体图形的左视图是(B)11.(巴彦淖尔中考)如图是一个几何体的三视图,则这个几何体的表面积是(A)A.60π+48 B.68π+48C.48π+48 D.36π+4812.如图是某几何体的三视图,根据图中数据,求得该几何体的体积为(B)A.60π B.70π C.90π D.160π13.由一些相同的小正方体搭成的几何体的左视图和俯视图如图所示,请在网格中画出一种该几何体的主视图,且使该主视图是轴对称图形.解:如图所示.(答案不唯一)14.一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积.解:该几何体的形状是直四棱柱.由三视图知,棱柱底面菱形的对角线长分别为4 cm ,3 cm.∴菱形的边长为(42)2+(32)2=52(cm).∴棱柱的侧面积为52×8×4=80(cm 2).由三视图判断小立方体的个数【方法指导】 在三视图中,通过主视图、俯视图可以确定组合图形的列数,通过俯视图、左视图可以确定组合图形的行数,通过主视图、左视图可以确定行与列中的最高层数,从而确定小正方体的个数. 类型1 个数确定1.由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块的个数是(B)A .7B .8C .9D .102.一个几何体由几个大小相同的小正方体搭成,其左视图和俯视图如图所示,则搭成这个几何体的小正方体的个数是4.类型2 个数不确定3.如图是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,则这个几何体最多由9个小正方体组成,最少由7个小正方体组成.回顾与思考(五)投影与视图01分点突破知识点1中心投影与平行投影1.下列结论正确的有(B)①同一时刻,同一公园内的物体在阳光照射下,影子的方向是相同的;②物体在任何光线照射下影子的方向都是相同的;③物体在路灯照射下,影子的方向与路灯的位置有关;④物体在点光源照射下,影子的长短仅与物体的长短有关.A.1个B.2个C.3个D.4个2.把一个正五棱柱如图摆放,当投射线由正前方射到后方时,它的正投影是(B)3.(贺州中考)小明拿一个等边三角形木框在阳光下玩耍,发现等边三角形木框在地面上形成的投影不可能是(B) 4.如图,两幅图片中竹竿的影子是在太阳光下形成的,还是在灯光下形成的?请你画出两图中小树的影子.解:如图所示.知识点2由几何体判断三视图5.如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是(C)6.(赤峰中考)如图是一个空心圆柱体,其俯视图是(D)7.(柳州中考)如图,这是一个机械模具,则它的主视图是(C)知识点3由三视图还原几何体8.(贵阳中考)如图是一个几何体的主视图和俯视图,则这个几何体是(A)A.三棱柱B.正方体C.三棱锥D.长方体9.一个长方体的主视图和左视图如图所示(单位:cm),则其俯视图的面积是6__cm2.02易错题集训10.一元硬币放在太阳光下,它在平整的地面上的投影不可能是(D)A.线段B.圆C.椭圆D.正方形11.如图所示几何体的左视图是(C)03中考题型演练12.(大连中考)一个几何体的三视图如图所示,则这个几何体是(C)A.圆柱B.圆锥C.三棱柱D.长方体13.(娄底中考)如图的几何体中,主视图是中心对称图形的是(C)14.如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是(B)15.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是(C)16.图中三视图对应的几何体是(C)17.一个几何体的三视图如图所示,则该几何体的表面积为(D)A.4π B.3πC.2π+4 D.3π+48.。

部编版2020届九年级数学上册第五章投影与视图5.1投影(第1课时)知能演练提升(新版)北师大版

部编版2020届九年级数学上册第五章投影与视图5.1投影(第1课时)知能演练提升(新版)北师大版

第五章投影与视图1.投影第一课时知能演练提升ZHINENG YANLIAN TISHENG能力提升1.四幅图中,灯光与影子的位置合理的是()2.一个人离开灯光的过程中人的影长()A.不变B.变短C.变长D.不确定3.如图,晚上小亮陪妈妈在路灯下散步,在他由A处走到B处这一过程中,他在地上的影子()A.逐渐变短B.逐渐变长C.先变短后变长D.先变长后变短4.如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2 m,CD=5 m,点P到CD的距离是3 m,则点P到AB的距离是()A. mB. mC. mD. m5.如图,小红居住的小区内有一条笔直的小路,小路的正中间上方有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程s之间的变化关系用图象刻画出来,大致图象是()6.如图,电影胶片上每一个图片的规格为3.5 cm×3.5 cm,放映屏幕的规格为2 m×2 m,若放映机的光源S距胶片20 cm,则光源S距屏幕 m时,放映的图象刚好布满整个屏幕.7.小强发现他手中的矩形方框的影子扩大了一倍,形状没有改变,你认为它是投影的结果.8.如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1 m,继续往前走3 m到达E处时,测得影子EF的长为2 m.已知王华的身高是1.5 m,那么路灯的高度AB是多少?创新应用9.某兴趣小组开展课外活动,A,B两地相距12 m,小明从点A出发沿AB方向匀速前进,2 s后到达点D,此时他(CD)在某一灯光下的影长为AD,继续按原速行走2 s到达点F,此时他(EF)在同一灯光下的影子仍落在其身后,并测得这个影长为1.2 m,然后他将速度提高到原来的1.5倍,再行走2 s到达点H,此时他(GH)在同一灯光下的影长为BH(点C,E,G在一条直线上).(1)请在图中画出光源点O的位置,并画出他位于点F时在这个灯光下的影长FM(不写画法);(2)求小明原来的速度.答案:能力提升1.B2.C3.C4.C5.C6.7.中心8.解由题意知,△DCG∽△DBA,△EFH∽△BFA,∴.∵GC=HE,∴,即,∴,∴BC=3 m.由得AB=6 m.创新应用9.解 (1)(2)设小明原来的速度为x m/s,则AD=DF=CE=2x m,FH=EG=3x m,AM=(4x-1.2)m,BM=(12-4x+1.2)m.∵CG∥AB,∴△OCE∽△OAM,△OEG∽△OMB.∴.∴,即.∴20x2-30x=0.解得x1=1.5,x2=0(不符合题意,舍去), 经检验,x=1.5是原方程的解,故x=1.5.答:小明原来的速度为1.5 m/s.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章投影与视图
1.投影
第一课时
知能演练提升
ZHINENG YANLIAN TISHENG
能力提升
1.四幅图中,灯光与影子的位置合理的是()
2.一个人离开灯光的过程中人的影长()
A.不变
B.变短
C.变长
D.不确定
3.如图,晚上小亮陪妈妈在路灯下散步,在他由A处走到B处这一过程中,他在地上的影子()
A.逐渐变短
B.逐渐变长
C.先变短后变长
D.先变长后变短
4.如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2 m,CD=5 m,点P到CD 的距离是3 m,则点P到AB的距离是()
A. m
B. m
C. m
D. m
5.如图,小红居住的小区内有一条笔直的小路,小路的正中间上方有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程s之间的变化关系用图象刻画出来,大致图象是()
6.如图,电影胶片上每一个图片的规格为3.5 cm×3.5 cm,放映屏幕的规格为2 m×2 m,若放映机的光源S距胶片20 cm,则光源S距屏幕 m时,放映的图象刚好布满整个屏幕.
7.小强发现他手中的矩形方框的影子扩大了一倍,形状没有改变,你认为它是投影的结果.
8.
如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1 m,继续往前走3 m到达E处时,测得影子EF的长为2 m.已知王华的身高是1.5 m,那么路灯的高度AB是多少?
创新应用
9.某兴趣小组开展课外活动,A,B两地相距12 m,小明从点A出发沿AB方向匀速前进,2 s后到达点D,此时他(CD)在某一灯光下的影长为AD,继续按原速行走2 s到达点F,此时他(EF)在同一灯光下的影子仍落在其身后,并测得这个影长为1.2 m,然后他将速度提高到原来的1.5倍,再行走2 s到达点H,此时他(GH)在同一灯光下的影长为BH(点C,E,G在一条直线上).
(1)请在图中画出光源点O的位置,并画出他位于点F时在这个灯光下的影长FM(不写画法);
(2)求小明原来的速度.
答案:
能力提升
1.B
2.C
3.C
4.C
5.C
6.
7.中心
8.解由题意知,△DCG∽△DBA,△EFH∽△BFA,
∴.
∵GC=HE,∴,
即,
∴,
∴BC=3 m.
由得AB=6 m.
创新应用
9.解 (1)
(2)设小明原来的速度为x m/s,则AD=DF=CE=2x m,FH=EG=3x m,AM=(4x-1.2)m,BM=(12-4x+1.2)m.
∵CG∥AB,∴△OCE∽△OAM,△OEG∽△OMB.
∴.
∴,即.
∴20x2-30x=0.
解得x1=1.5,x2=0(不符合题意,舍去),
经检验,x=1.5是原方程的解,故x=1.5.
答:小明原来的速度为1.5 m/s.
感谢您的支持,我们会努力把内容做得更好!。

相关文档
最新文档