平面静定桁架的内力计算
结构力学静定平面桁架
精品课件
5.6 组合结构 是指只承受轴力的二力杆和承受弯矩、剪力、轴 力的梁式杆组合而成的结构。如屋架等
钢筋混凝土
钢筋混凝土
型钢
E D C
A
B
E E
精品课件
型钢
例 计算图示组合结构的内力。
8kN
解:1)求支反力
AD
C
FAy F
E
B
MB 0 得
FBy G
2m
FAy=5kN
FBy=3kN
2.5 1.125 0.75
1.125
剪力与轴力
FS FYcosFHsin
M图( kN.m)
FN FYsinFHcos
精品s 课件 in 0 .083c5 o s0 .99
FS FY
FN
15 A
FH
2.5 1.74
剪力与轴力
FS FYcosFHsin FN FYsinFHcos
sin 0 .083c5 o s0 .99
FN
l
ly
FN
=
FX lx
= FY ly
3)、结点上两杆均为斜杆的杆件内力计算:
F1x B b
F1
F 如图,若仍用水平和竖向投影来求F1 F2, A 则需解联立方程,要避免解联立方程可用
h
F2
力矩平衡方程求解。
a
如以C为矩心,F1沿1杆在B点处分解为F1x,
C
F2x
d
则由
MC 0得: F1x=Fhd
由图(c)所示截面左侧隔离体求出截面截断的三根杆的轴 力后,即可依次按结点法求出所有杆的轴力。
精品课件
取截面II—II下为隔离体,见图(d)
§3-5 静定平面桁架
FNDE = −5.4 KN ⇒ FNDF = 37.5 KN
E
-33KN -5.4KN
∑F ∑F
x y
=0 =0
【例3.8】 试求桁架的内力图
4 4
O
7
O O O
2
3m
1 9
7 6 8 3 2
O O O6 N1 N1 N1 1 9 8 3 O N2 P
5
2m
P
5
Step2:求各杆内力
4m 4m 0
根据以上假设,理想桁架中各杆 均为二力杆(轴力杆、链杆) 实际桁架 理想桁架
按理想平面桁架计 算得到的应力 实际桁架与理想桁 架间的差异引 起的 附加内力
主内力
次内力
弦杆
上弦杆 下弦杆 竖杆 斜杆
2 桁架的组成
腹杆
节间长度、跨度、桁高 3 桁架的分类
平行弦桁架 按外形分 折弦桁架 三角形桁架 梁式桁架 (无推力桁架) 按支座反力 的性质分 拱式桁架 (有推力桁架)
综上所求,得: FNa = −16 .67 KN
FNb = −26 .67 KN FNc = 16 .67 KN
【例3.10】 试求1、2、3、4杆
的内力
P
I
Step2: 截面法求指 定杆内力
Ⅰ—Ⅰ截面
P
J 4 Ⅰ a
Ⅰ
H G 3 1 A a B a
Ⅱ P Ⅲ P
a F 2 E I
P
J
∑ MG = 0 ⇒
1 桁架定义及其特点
实际桁架 结点 轴线 荷载 材料 介于铰于刚结之间 不能绝对平、直;各杆也不一定完 全相交于一点。有个结合区 非结点荷载:自重、荷载、支反力 弹塑性材料 理想桁架(计算简图) 所有结点为理想铰,光滑、无摩擦 绝对平直、一平面内、通过铰的中心 (理想轴) 结点荷载 线弹性材料,小变形
工程力学32 静定平面桁架结构的内力计算
定
12kN
12kN
结 构
3m 3
6kN D
F
J
6kN
L
的 内 力
FxA
AC E G
IK
B
4m 6
FyA
FyB
计 算 1.求支座反力
FxA 0 FyA 36kN FyB 36kN
2020/10/4
重庆工程职业技术学院
11
静定桁架
结 构
12kN 12kN
12kN H 12kN
12kN
力 学
3m 3
静 定
3、注意:
结
(1)一般结点上的未知力不能多余两个。
构 的
(2)可利用比例关系求解各轴力的铅直、水平分量。
内
力
计
算
2020/10/4
重庆工程职业技术学院
10
静定桁架
结 三、静定平面桁架的内力计算
构 (一)结点法
力
以一个结点为隔离体,用汇交力系的平衡方程求解
学
各杆的内力的方法。
静
12kN
12kN H 12kN
结 构 力 学
静 定 结 构 的 内 力 计 算
结 一、概述 构 力 学
静定桁架
静
定
结
构
的
主桁架
内
力
计
算
2020/10/4
重庆工程职业技术学院
2
结 一、概述 构
力 学
静定桁架
静 理想桁架的三点假设:
定
结
(1)所有的结点都是无摩擦的理想铰结点;
构
(2)各杆的轴线都是直线,并通过铰的中心;
的
(3)荷载和支座反力都作用在结点上。
工程力学终于知识点
按右手螺旋法则, 扭矩矢量沿截面外法线方
向为正;反之为负。
3、扭矩图
扭矩图——表示扭矩沿杆件轴线变化规律的图线。
要求:
①扭矩图和受力图对齐; ②扭矩图上标明扭矩的大小、正负和单位。
快速作扭矩图
上上下下
四、薄壁圆筒的扭转
r0/d≥10 时,称为薄壁圆筒。
作用于杆上的合外力的作用线与杆的轴线重合。
2、变形特点
杆件产生轴向的伸长或缩短。
二、 内力·截面法·轴力和轴力图 1、内力
指截面上分布内力系的合力。
2、截面法
截面法四部曲 —截开 —取出 —代替 —平衡
3、轴力FN
沿杆轴线方向作用的内力,称为轴力。
轴力正负规定:
以使脱离体受拉为正,使脱离体受压为负。
F N3
一定为零力杆。
F N2
3
3、两杆相结,不共线,且节点 处的载荷沿其中某一杆件, 则另一杆为零力杆。
2 A 1 FN1 F N2
2
F A 1 F N1
三、重心坐标的一般公式
xc
Pi xi P
yc
Pi yi P
zc
Pi zi P
四、组合形体的重心
1、分割法
如果一个物体由几个简单形状的物体组合而成,而
此法适合于求桁架部分杆件的内力。
注:
(1)所有杆件均假设受拉。 (2)每次对象只能列出三个方程。 (3)合理确定坐标方位、矩心位置及方程次序。
两种方法并不 相互独立,可 配合使用。
二、桁架零力杆的判断方法
F N2
1、两杆相结,不共线,且节点
2
处没载荷,则此两杆均为零力杆。
05静定平面桁架内力计算
2
基本概念
结点法 截面法 联合法 拱式桁架 扩展内容
2018/11/7
下弦杆
基本概念 ۞桁架的特性 直杆铰接、结点受荷 杆件只有轴力,没有弯矩和剪力
基本概念
结点法 截面法 联合法 拱式桁架 扩展内容
2018/11/7 3
结点法
基本概念
结点法 截面法 联合法
۞结点法
B D
A
4m
60 E 20 40 15 30 3m 15 25 -50 C -20 F -20 G 15 kN 15 kN 15 kN 4m 4m
解:(3)取E结点为隔离体分析 E 20 YNGE 30 kN FNED 15 4 拱式桁架 X NGF YNGE XNEC F NEC 3 15 25 扩展内容 YNEC 40 kN FNEC=-50
2L
L
L
2L
对称结构在反对称荷载作用下,内力和反 力都反对称
结点法
基本概念
结点法 截面法 联合法 拱式桁架 扩展内容
2018/11/7 26
۞简化问题 对称性的利用
反对称荷载:荷载的大小、作用点关 于一个轴对称,对应位置的荷载方向相反
FP
FP
2L
L
L
2L
结点法
基本概念
结点法 截面法 联合法 拱式桁架 扩展内容
2018/11/7 20
解:(4)取D结点为隔离体分析 (5)取C结点为隔离体分析 (6)取B、A结点为隔离体分析 (7)取整体作为隔离体,求支反力,核实 结果。
结点法
基本概念
结点法 截面法 联合法 拱式桁架 扩展内容
6-3-2平面静定桁架的内力计算(精)
1. 内力计算的方法
平面静定桁架的内计算
平面静定桁架的内力计算的方法通常有结点法和截面法。 结点法是截取桁架的一个结点为隔离体,利用该结点的静力 平衡方程来计算截断杆的轴力。 截面法是用一截面(平面或曲面)截取桁架的某一部分(两个结 点以上)为隔离体,利用该部分的静力平衡方程来计算截断杆 的轴力。
FNADy=10kN-40kN=-30kN FNADy FNAD 3.35m 67KN 1.5m FNADy FNADx 3m 60kN 1.5m
国家共享型教学资源库
四川建筑职业技术学院
取结点C为隔离体 (图 c),由∑Fx=0得
FNCF= FNAC=60kN 取结点D为隔离体(图d),列出平衡方程
M
D
0
得
FNdx=-15kN
利用比例关系,得
FNd= -18.05KN
国家共享型教学资源库
四川建筑职业技术学院
国家共享型教学资源库
四川建筑职业技术学院
3. 比例关系的应用
F N F Nx FNy l lx ly
例6-5 求图a所示桁架各杆的轴力。
国家共享型教学资源库
四川建筑职业技术学院
解 (1)求支座反力。
FAx 0
FAy 40KN
FB 40KN
(2)求各杆的内力。
取结点A为隔离体(图b)
利用比例关系,得
FNb
FNbx 3.61m 18.05KN 3m
四川建筑职业技术学院
国家共享型教学资源库
(3)求杆d的内力。联合应用结点法和截面法计算杆d的内力较
为方便。先取结点E为隔离体(图c),由平衡方程∑Fx=0 ,得
FNCE= FNc=52.5kN 再用截面Ⅱ-Ⅱ截取桁架左半部分为隔离体(图d),列平衡方程 由
静定平面桁架的内力计算——结点法课件最新实用版
⑷各杆的自重不计,或平均分配到杆两端的结点上。
静定平面桁架的内力计算——结点法
F =F =-30kN 5kN F7=0kN
静定平面桁架的8内力计算6——结点法
F9=F5=12.5kN
F =F =22.5kN 静定平面桁架的内力计算——结点法
静5kN定平F7面=0桁kN架的1内0力计算(4 结点法)
F =F =20kN F =F =22.5kN 桁架是指多个直杆在两端用适当的方式联结而成的结构。
C
D
6
8
F
1 3 5 7 9 11 12 4m
A
2 B4
10
13 H
E
G
F
3m
F
3m
F
3m
3m
5 静定平面桁架的内力计算——结点法
知识引入 案案例例分分析析 自己动手
解:(1)以整体为研究对象,求桁架的支座反力。
(2)以A结点为研究对象,求1、2杆的内力。
6 静定平面桁架的内力计算——结点法
知识引入 案案例例分分析析 自己动手
(3)以B结点为研究对象,求3、4杆的内力。
(4)以C、D结点为研究对象,求5、6、7杆的内力。
列出节点C的平衡方程,解得F5=12.5kN,F6=-30kN 列出节点D的平衡方程,解得 F7=0
7 静定平面桁架的内力计算——结点法
知识引入 案案例例分分析析 自己动手
⑵各杆轴线都求是直出线,左并都半位于部桁架分平面各内。杆件的内力后,可根据对称性得到右半部分各杆件的内力,即:
5静kN定平F7面=0桁kN架的内力计算⑷(结各点杆法)的自重不计,或平均分配到杆两端的结点上。
为了求得桁架各杆的内力,截取桁架的一个结点作为研究对象,用汇交力系的平衡方程 求解杆件内力,这种方法叫做结点法。
习题课3.静定平面桁架的内力计算
习题课3静定平面桁架的内力计算一、找出桁架的零杆(1)F P000000(2)8根零杆5根零杆F P000(3)12根零杆F PF P 00000000000F P 12根零杆(4)A 000000000006根零杆(5)a aaaS 1S 2F P 2F P F P F N 2F N 1AB C DⅡⅡⅠⅠ00000由于荷载反对称,该桁架除下部水平链杆AB 外,其余杆件受力反对称,故。
0=NCD F 1S F=∑I-I 右:20S F =∑II-II 右:12220222N P P F F F +⋅−⋅=10N F =22220222N P P F F F −+⋅+⋅=22N P F F =F PF P(7)(6)F P0附属部分6根零杆7根零杆F P0000000二、用简捷方法求桁架指定杆轴力150+II-II 左:(1)ABC DE FGHa /2a /2ⅡⅡⅠⅠ12解:CM=∑11 1.51.5()N P N P F a F a F F ⋅⋅==−压220/200.5Dy P y PMF a F a F F =+==−∑I-I 下:250.5 1.118()1N P P F F F =−⋅=−压简单桁架1.5F PF P F P F Pa a /2aa /2 1.5F P125(2)F NF yB =2F P dd dd F PAC DB dⅡⅡⅠⅠ1F yC =F PF yA =F PF xA =2F P 323F P2F P331)020()2)0()3)0()C N P P N P x N P y yC P M F d F d F d F F F F F F F F =+−======↑∑∑∑拉拉I-I 右:联合桁架解:F NF yB =2F P dd ddF PAC DB dⅡⅡⅠⅠ1F yC =F PF yA =F PF xA =2F P 323F P2F P1210()()032()D N P P yN P P P M F F d F dF F F F F ==−⋅=−==−=−∑∑压压II-II 左:整体平衡:10(322)()2ByA P P P P P MF F d F d F d F d F d==+⋅−−=↑∑(3)F P0A -F P-F P-F PF DEC 12F PF PPF 2F N F Pa /2aⅠⅠ00B 0EN MF ==∑1)I-I 右:02=N F 2)结点C :1102()yy PN P FF F F F ===∑拉3)结点F :aa /2aa /2联合桁架解:(4)F P 4m4mF P F P F P 4F P6.67F P6.67F P AB FC F N 2134ⅡⅠEⅡD GH 4m4m3m3mⅠ解:1220()0()33DN P xN P MF F FF F ====−∑∑拉压1) I-I 右:2) 结点E :2222550()346xx PN x P FF F F F F ====∑拉简单桁架F PF N 2E 23PF F P 4m4mF P F P F P 4F P6.67F P6.67F P AB FC F N 2134ⅡⅠEⅡD G H4m4m3m3mⅠ553434343x Py P PN F F F F F F ==⋅==4) 结点D :F PFN 3F N 5D2F P2F P /3410(48)2()6F N P P P M F F F F −==+=−∑压3) II-II 右:xF=∑(5)F PCA B dⅠ1 1.5F P 1.5F P02F P F Pd 0复杂桁架1)结点C:结构与荷载均对称,两斜杆轴力为零。
静定结构的内力—静定平面桁架(建筑力学)
截断的五根杆件中,除杆ED外,其余 四杆均汇交于结点C,由力矩方程 ΣMC=0即可求得FNED。
静定平面桁架的内力计算
(2)欲求图复杂桁架中杆CB的轴力 可用Ⅰ-Ⅰ截面将桁架截开,在
被截断的四根杆件中,除杆CB外,
其余三杆互相平行,选取y轴与此三
静定平面桁架的工程实例和计算简图
1 静定平面桁架的工程实例
桁架是由直杆组成,全部由铰结点连接而成的结构。
屋架
桥梁
静定平面桁架的工程实例和计算简图
纵梁
横梁 主桁架
工业厂房
静定平面桁架的工程实例和计算简图
2 静定平面桁架的计算简图
(1)桁架各部分名称
斜杆 Diagonal chard
弦杆
上弦杆 Top chard
静定平面桁架的内力计算
MD 0 Fx 0
FNc 4 FAy 3 20 3 0 FNc 52.5kN FNbx FNa FNc 0
FNbx FNa FNc 15kN
由比例关系可得
FNb
lb lbxy
FNbx
3.61m 3m
15kN
18.05kN
静定平面桁架的内力计算
主内力:按理想桁架算出的内力,各杆只有轴力。 次内力:实际桁架与理想桁架之间的差异引起的杆件弯曲,由此引起的内力。
实际桁架不完全符合上述假定, 但次内力的影响是次要的。
静定平面桁架的工程实例和计算简图
3 静定平面桁架的分类
(1)按几何组成规律分类 简单桁架 由基础或一个铰接三角形开始,依
次增加二元体而组成的桁架 联合桁架 由几个简单桁架按照几何不变体系
静定桁架的内力计算
a
B RB =2kN
NCD
D
N2
N3
F
B
2kN RB
将桁架从Ⅰ- Ⅰ部位截开,取右侧。
ΣY=0;
2 N 2 2 RB 2 0;
N2=0
ΣmD=0; N3·a-RB·a=0 ;
N3 =2kN
【例5-3】求图示桁架指定杆件的轴力,α=60°。
C
Ⅰ
NCF
E2
F 2kN
N2
F
2kN
N2 N3
【例5-2】求图示桁架指定杆件的轴力。
2kN C
D
2 A1
XA YA
E3 F 2kN
aaa
解:1杆为零杆; N1=0
a
B RB =2kN
取整体,ΣmA=0; RB·3a-2×a-2×2a=0 RB=2kN
【例5-2】求图示桁架指定杆件的轴力。
2kN C Ⅰ D
2 A1
XA YA
E 3Ⅰ F 2kN
(2) 不共线二杆结点有外力(包括支座反力) ,且外力与其中
一杆共线,则另一杆为零杆;
y P
N1= 0 N2 x
ΣY=0; N1= 0
(3) 三杆结点无外力(包括支座反力) ,且其中两杆共线,则 第三杆为零杆。
y
N3 = 0
N1
N2
x
解题时,零杆可以去掉。
ΣY=0; N3= 0
【例5-1】试判断图示桁架中的零杆。
第五章 静定平面桁架的内力计算
1.零杆的判断 桁架的外力都是作用在结点上,因此,桁架中的杆皆为二力 杆,内力只有轴力。轴力为零的杆称为零杆,零杆可由结点平衡 条件直接判断。
(1) 不共线二杆结点无外力(包括支座反力) ,此二杆为零杆;
静定平面桁架的内力计算
静定平面桁架的内力计算
图13-11
静定平面桁架的内力计算
按照桁架的杆件所在位 置不同,可分为弦杆和腹杆 两类。弦杆是指在桁架上、 下外围的杆件,上边的杆件 称为上弦杆,下边的杆件称 为下弦杆。桁架上弦杆和下 弦杆之间的杆件称为腹杆, 腹杆又称为竖杆和斜杆。弦 杆上相邻两结点之间的区间 称为节间,其距离d称为节间 长度(见图13-12)。
静定平面桁架的内力计算
常用的桁架一般是按下列两种方式组成的。 (1)由基础或由一个基本铰结三角形开始,依 次增加二元体,组成一个桁架,如图13-11(a)、 (b)、(c)所示。这样的桁架称为简单桁架。 (2)几个简单桁架按照几何不变体系的简单组 成规则联成一个桁架,如图13-11(d)、(e)所 示。这样的桁架称为联合桁架。
静定平面桁架的内力计算
【例13-5】
图13-16
静定平面桁架的内力计算
静定平面桁架的内力计算
一般截面法截断的杆件个数不超过三根可以直 接求得杆的内力,但有一些特殊情况虽然截开的杆件 个数超过三个,但对于某一个杆件仍可以直接求解, 如图13-17所示。图13-17(a)中除a杆外截断的其他 杆件交于一点K,则取隔离体对K点取矩,可以直接 求得a杆轴力;图13-17(b)中除b杆外,截断的其 他杆件都相互平行,则取隔离体,利用∑Fx=0,可能完全符合上述理想情况。例如,桁架的 结点具有一定的刚性,有些杆件在结点处可能是连续直杆,或杆 件之间的夹角几乎不变动。另外,各杆轴无法绝对平直,结点上 各杆的轴线也不一定全交于一点,荷载不一定都作用在结点上等。 因此,桁架在荷载作用下,其中某些杆件必将发生弯曲而产生弯 曲应力,并不能如理想情况下只产生轴向均匀分布的应力。通常 把桁架理想情况下计算出来的应力称为初应力或基本应力,由非 理想情况产生的附加应力称为次应力。关于次应力的计算有专门 的参考文献论述,本节只限于讨论桁架的理想情况。
结构力学 静定桁架的内力计算
F Ay= 2 F P
(b)
参照图(b)计算如下:
见图(b),未知杆力在隔离体上的一 般表示。
MD 0
F NG 1 h C(F P bF 2 P2 b2 F P2 b )
由几何关系得:h 2 b 代入上式,
5
FNGC 5FP
MG 0
FNE Db 2(2FPF 2P)b3FP
图(d):
在反对称荷载下,桁架应具有反对称 的内力分布,即在桁架的对称轴两侧 的对称位置上的杆件,应有大小相等、 性质相反的轴力。
考查结点E:见图(f) EJ为零杆,继而JA、 JB为零杆。
(f )
§6.3 桁架内力计算的截面法
➢截面法:用一个假想的截面,将桁架 截成两部分,取其任一部分为隔离体 ,建立该隔离体的平衡方程,求解杆 轴力的方法。
利用该结点的对称性,且由水平方 向的投影方程得:
FNa
2 2 FP
(a)
§6.4 组合结构的内力分析
❖既有梁式杆又有桁架杆的结构称作 组合结构。见图6-4-1所示。
图6-4-1
组合结构内力计算的一般途径是: 先计算桁架杆,再计算梁式杆。
例6-4-1
计算图(a)所示组合结构,求出二力 杆中的轴力,并作梁式杆的弯矩图。
D
F NDC
F NGE
G
A
K
F NKH
FP FP
(c)
由图(c)所示截面左侧隔离体求出截面
截断的三根杆的轴力后,即可依次按
结点法求出所有杆的轴力。
❖ 方法1:
见图(d) ,由结点H的结点单杆 EH上的轴力,再由结点E(当 杆EH轴力已知时,杆a既是结 点E上的结点单杆)可求出杆a 的轴力。
工程力学第5节 平面静定桁架的内力计算
F1 sin 30 G 0
n
Fiy 0
i1
F1 cos 30 F2 0
得 F1 40 kN(拉) F2 34.6 kN(压)
节点 B:
n
Fix 0
i1 n
Fiy 0
i1
F2 F6 0
得
F3 G 0
F6 34.6 kN(压) F3 20 kN(拉)
i1 n
Fiy 0
i1
FS1 sin 60 FS4 sin 60 0 FS1 cos 60 FS4 cos 60 FS3 0
解得
FS4 FS1 2F(压) 校核计算结果
将各杆内力计算结果列表如下
杆号
1
2
3
内 力 2F 1.73F 2F
半部分为研究对象进行受力分析,列平衡方程:
n
M E (Fi ) 0
FS1 1sin 60 FAy 1 0
i1
n
M D (Fi ) 0
i1 n
Fiy 0
i1
F1
1 2
FS3
1
sin
60
FAy
2 3
0
FAy FS2 sin 60 F1 0
• 因为只有三个独立平衡方程,因此作假想截面时, 一般每次最多只能截断三根杆件。
注意
• 由于平面汇交力系只能列出两个独立平衡方程,所 以应用节点法必须从只含两个未知力大小的节点开 始计算。
例2-15 平面桁架的受力及尺寸如图所示, 试求桁 架各杆的内力。
解 1)先求支座反力:以整体桁架为研究对象进行
桁架内力的计算3.4静定平面桁架
桁架内力的计算3.4 静定平面桁架教学要求掌握静定平面桁架结构的受力特点和结构特点,熟练掌握桁架结构的内力计算方法——结点法、截面法、联合法3.4.1 桁架的特点和组成3.4.1.1 静定平面桁架桁架结构是指若干直杆在两端铰接组成的静定结构。
这种结构形式在桥梁和房屋建筑中应用较为广泛,如南京长江大桥、钢木屋架等。
实际的桁架结构形式和各杆件之间的联结以及所用的材料是多种多样的,实际受力情况复杂,要对它们进行精确的分析是困难的。
但根据对桁架的实际工作情况和对桁架进行结构实验的结果表明,由于大多数的常用桁架是由比较细长的杆件所组成,而且承受的荷载大多数都是通过其它杆件传到结点上,这就使得桁架结点的刚性对杆件内力的影响可以大大的减小,接近于铰的作用,结构中所有的杆件在荷载作用下,主要承受轴向力,而弯矩和剪力很小,可以忽略不计。
因此,为了简化计算,在取桁架的计算简图时,作如下三个方面的假定:(1)桁架的结点都是光滑的铰结点。
(2)各杆的轴线都是直线并通过铰的中心。
(3)荷载和支座反力都作用在铰结点上。
通常把符合上述假定条件的桁架称为理想桁架。
3.4.1.2 桁架的受力特点桁架的杆件只在两端受力。
因此,桁架中的所有杆件均为二力杆。
在杆的截面上只有轴力。
3.4.1.3 桁架的分类(1)简单桁架:由基础或一个基本铰接三角形开始,逐次增加二元体所组成的几何不变体。
(图3-14a)(2)联合桁架:由几个简单桁架联合组成的几何不变的铰接体系。
(图3-14b)(3)复杂桁架:不属于前两类的桁架。
(图3-14c)3.4.2 桁架内力计算的方法桁架结构的内力计算方法主要为:结点法、截面法、联合法结点法――适用于计算简单桁架。
截面法――适用于计算联合桁架、简单桁架中少数杆件的计算。
联合法――在解决一些复杂的桁架时,单独应用结点法或截面法往往不能够求解结构的内力,这时需要将这两种方法进行联合应用,从而进行解题。
解题的关键是从几何构造分析着手,利用结点单杆、截面单杆的特点,使问题可解。
第二节 平面静定桁架的内力计算
第二节平面静定桁架的内力计算桁架是工程中常见的一种杆系结构,它是由若干直杆在其两端用铰链连接而成的几何形状不变的结构。
桁架中各杆件的连接处称为节点。
由于桁架结构受力合理,使用材料比较经济,因而在工程实际中被广泛采用。
房屋的屋架(见图3-10)、桥梁的拱架、高压输电塔、电视塔、修建高层建筑用的塔吊等便是例子。
图3-10房屋屋架杆件轴线都在同一平面内的桁架称为平面桁架(如一些屋架、桥梁桁架等),否则称为空间桁架(如输电铁塔、电视发射塔等)。
本节只讨论平面桁架的基本概念和初步计算,有关桁架的详细理论可参考“结构力学”课本。
在平面桁架计算中,通常引用如下假定:1)组成桁架的各杆均为直杆;2)所有外力(载荷和支座反力)都作用在桁架所处的平面内,且都作用于节点处;3)组成桁架的各杆件彼此都用光滑铰链连接,杆件自重不计,桁架的每根杆件都是二力杆。
满足上述假定的桁架称为理想桁架,实际的桁架与上述假定是有差别的,如钢桁架结构的节点为铆接(见图3-11)或焊接,钢筋混凝土桁架结构的节点是有一定刚性的整体节点,图3-11 钢桁架结构的节点它们都有一定的弹性变形,杆件的中心线也不可能是绝对直的,但上述三点假定已反映了实际桁架的主要受力特征,其计算结果可满足工程实际的需要。
分析静定平面桁架内力的基本方法有节点法和截面法,下面分别予以介绍。
一、节点法因为桁架中各杆都是二力杆,所以每个节点都受到平面汇交力系的作用,为计算各杆内力,可以逐个地取节点为研究对象,分别列出平衡方程,即可由已知力求出全部杆件的内力,这就是节点法。
由于平面汇交力系只能列出两个独立平衡方程,所以应用节点法往往从只含两个未知力的节点开始计算。
例3-8 平面桁架的受力及尺寸如图3-12a所示,试求桁架各杆的内力。
图3-12 例3-8图解:(1)求桁架的支座反力以整体桁架为研究对象,桁架受主动力2F 以及约束反力YA F 、xB F 、YB F 作用,列平衡方程并求解:1=∑=ni ixF,xB F =0)(1=∑=ni i BmF , 2F ×2l-Y A F l =0, Y A F=F1=∑=ni iyF,YA F +YB F -2F =0,YB F =2F -YA F =F(2)求各杆件的内力设各杆均承受拉力,若计算结果为负,表示杆实际受压力。
计算静定平面桁架内力的两种基本方法
主题:计算静定平面桁架内力的两种基本方法随着现代建筑工程的发展,计算静定平面桁架内力成为了结构分析中的重要问题。
在计算静定平面桁架内力时,有两种基本的方法,即力法和位移法。
本文将分别介绍这两种方法的基本原理和应用,以及它们的优缺点。
一、力法1. 基本原理力法是通过平衡节点上的受力来计算静定平面桁架内力的一种方法。
在力法中,首先要对整个桁架进行受力分析,确定各个节点上的受力情况,然后根据节点受力的平衡条件,计算出每根构件的内力。
2. 应用力法广泛应用于静定平面桁架内力的计算中。
通过力法可以清晰地了解每根构件受力的情况,对于设计师来说具有很大的实用价值。
3. 优缺点优点:力法计算简单、直观,适用于多种不同类型的静定平面桁架。
缺点:力法在计算过程中需要考虑节点受力平衡的条件,当桁架节点较多时,计算过程较为繁琐,且容易出错。
二、位移法1. 基本原理位移法是通过分析节点的位移来计算静定平面桁架内力的一种方法。
在位移法中,首先需要假设桁架中的某个节点发生位移,然后根据位移引起的构件变形情况,计算出每根构件的内力。
2. 应用位移法在计算静定平面桁架内力时具有一定的优势,特别是在复杂结构的分析中,位移法可以更加直观地反映构件的变形情况,对于设计师来说具有较大的帮助。
3. 优缺点优点:位移法对于复杂结构的分析更加直观,能够清晰地揭示构件的内力分布情况。
缺点:位移法在计算过程中需要假设节点发生位移,这种假设可能与实际情况不符,导致计算结果存在一定误差。
三、综合比较1. 适用范围力法和位移法各有其适用范围,力法适用于简单桁架的受力分析,而位移法适用于复杂结构的受力分析。
2. 精度和准确性在计算静定平面桁架内力时,力法的结果相对准确,而位移法的结果受到假设位移的影响,精度较低。
3. 计算复杂度力法在计算过程中相对简单直观,适用于简单结构的分析;而位移法在复杂结构的分析中可以更加直观地反映构件的变形情况。
四、结论力法和位移法是计算静定平面桁架内力的两种基本方法,各自具有自身的优势和不足。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节平面静定桁架的内力计算桁架是工程中常见的一种杆系结构,它是由若干直杆在其两端用铰链连接而成的几何形状不变的结构。
桁架中各杆件的连接处称为节点。
由于桁架结构受力合理,使用材料比较经济,因而在工程实际中被广泛采用。
房屋的屋架(见图3-10)、桥梁的拱架、高压输电塔、电视塔、修建高层建筑用的塔吊等便是例子。
图3-10房屋屋架杆件轴线都在同一平面内的桁架称为平面桁架(如一些屋架、桥梁桁架等),否则称为空间桁架(如输电铁塔、电视发射塔等)。
本节只讨论平面桁架的基本概念和初步计算,有关桁架的详细理论可参考“结构力学”课本。
在平面桁架计算中,通常引用如下假定:1)组成桁架的各杆均为直杆;2)所有外力(载荷和支座反力)都作用在桁架所处的平面内,且都作用于节点处;3)组成桁架的各杆件彼此都用光滑铰链连接,杆件自重不计,桁架的每根杆件都是二力杆。
满足上述假定的桁架称为理想桁架,实际的桁架与上述假定是有差别的,如钢桁架结构的节点为铆接(见图3-11)或焊接,钢筋混凝土桁架结构的节点是有一定刚性的整体节点,图3-11 钢桁架结构的节点它们都有一定的弹性变形,杆件的中心线也不可能是绝对直的,但上述三点假定已反映了实际桁架的主要受力特征,其计算结果可满足工程实际的需要。
分析静定平面桁架内力的基本方法有节点法和截面法,下面分别予以介绍。
一、节点法因为桁架中各杆都是二力杆,所以每个节点都受到平面汇交力系的作用,为计算各杆内力,可以逐个地取节点为研究对象,分别列出平衡方程,即可由已知力求出全部杆件的内力,这就是节点法。
由于平面汇交力系只能列出两个独立平衡方程,所以应用节点法往往从只含两个未知力的节点开始计算。
例3-8 平面桁架的受力及尺寸如图3-12a所示,试求桁架各杆的内力。
图3-12 例3-8图解:(1)求桁架的支座反力以整体桁架为研究对象,桁架受主动力2F 以及约束反力YA F 、xB F 、YB F 作用,列平衡方程并求解:1=∑=ni ixF,xB F =0)(1=∑=ni i BmF , 2F ×2l-Y A F l =0, Y A F =F1=∑=ni iyF,YA F +YB F -2F =0,YB F =2F -Y A F =F(2)求各杆件的内力设各杆均承受拉力,若计算结果为负,表示杆实际受压力。
设想将杆件截断,取出各节点为研究对象,作A 、D 、C 节点受力图(图3-12b),其中'1S F =1S F ,'2S F =2S F ,'3S F =3S F 。
平面汇交力系的平衡方程只能求解两个未知力,故首先从只含两个未知力的节点A开始,逐次列出各节点的平衡方程,求出各杆内力。
节点A:1=∑=ni iyF,YA F +1S F sin300=0,1S F =-2YA F =-2F (压)1=∑=ni ixF,2S F +1S F cos300=0,2S F =-0.8661S F =1.73F (拉)节点D:1=∑=ni ixF, -'2S F +5S F =0,5S F ='2S F =2S F =1.73F (拉)1=∑=ni iyF,3S F -2F =0,3S F =2F (拉)节点C:1=∑=ni ixF, -'1S F sin600+4S F sin600=0,4S F ='1S F =-2F (压)至此已经求出各杆内力,节点C的另一个平衡方程可用来校核计算结果:1=∑=ni iyF, -'1S F cos600-4S F cos600-'3S F =0将各杆内力计算结果列于表3-2:表3-2 例3-8计算结果例3-9 试求图3-13a 所示的平面桁架中各杆件的内力,已知030=α,G=20kN 。
(a)(b)图3-13 例3-9图解 (1)画出各节点受力图,如图3-13b 所示,其中i F '=F i (i=1,2,…,6)。
各点未知力个数、平衡方程数如表3-3。
由于A 点的平衡方程数与未知力个数相等,所以首先讨论A 点。
表3-3 未知力个数、平衡方程数(2)逐个取节点,列平衡方程并求解 节点A:1=∑=ni iyF, F 1sin300-G=0,kN 4030sin 01==GF (拉)1=∑=ni ixF, -F 1cos300-F 2=0, F 2=-F 1cos300=-34.6kN (压)节点B :1=∑=ni ixF, 062=-'F F , =6F 2F '=-34.6kN (压)1=∑=ni iyF, F 3-G =0, F 3=G =20kN (拉)节点C :1=∑=ni iyF, -F 5cos300-F 3cos300=0, F 5=-F 3=-20kN (压)1=∑=ni ixF, 341F F F '+-'cos600-F 5cos600=0,F 4=31F F '+'cos600-F 5cos600=40+20cos600-(-20)cos600 kN =60kN (拉)将各杆内力计算结果列于表3-4:表3-4 各杆内力计算结果二、截面法节点法适用于求桁架全部杆件内力的场合。
如果只要求计算桁架内某几个杆件所受的内力,则可用截面法。
这种方法是适当地选择一截面,在需要求解其内力的杆件处假想地把桁架截开为两部分,然后考虑其中任一部分的平衡,应用平面任意力系平衡方程求出这些被截断杆件的内力。
例3-10 如图3-14a所示的平面桁架,各杆件的长度都等于1.0m,在节点E上作用荷载F 1=21k N,在节点G上作用荷载F 2=15k N,试计算杆1、2和3的内力。
图3-14 例3-10图解:(1)求支座反力以整体桁架为研究对象,受力图如图3-14a所示,列平衡方程:1=∑=ni ixF,xA F =0)(1=∑=ni i AmF ,YB F ×3.0-F 1×1.0-F 2×2.0=01=∑=ni iyF,yA F +YB F -F 1-F 2=0解得:Y B F =0.30.221F F +=17k N, Y A F =1921=-+y B F F F k N(2)求杆1、2和3的内力作截面mn假想将此三杆截断,并取桁架的左半部分为研究对象,设所截三杆都受拉力,这部分桁架的受力图如图3-14b所示。
列平衡方程:)(1=∑=ni i EmF , -1S F ×1.0×sin600-yA F ×1.0=0)(1=∑=ni i DmF , F 1×0.5+3S F ×1.0×sin600-yA F ×1.5=01=∑=ni iyF,yA F +2S F ×sin600-F 1=0解得:1S F 060sin yA F -==-21.9k N(压)3S F =866.0215.0195.160sin 5.05.101⨯-⨯=-F F y A k N=20.8k N(拉)2S F =866.0192160sin 01-=-yA F F k N=2.3k N(拉)如果选取桁架的右半部分为研究对象,可得到相同的计算结果。
例3-11 平面桁架结构尺寸如图3-15a所示,试计算杆1、2和3的内力。
图3-15 例3-11图解:(1)求支座反力以整体桁架为研究对象,受力图如图3-15b 所示,列平衡方程:1=∑=ni ixF,=x A F)(1=∑=ni i AmF , F B ×8a -F 1×a -F 1×2a -F 1×3a -F 1×4a -F 2×5a -F 2×6a -F 2×7a =01=∑=ni iyF,yA F +FB -4 F 1-3 F 2=0解得:495818102121F F F F F B +=+=, y A F =-F B +4 F 1+3 F 2=431121F F +(2)求杆1、2和3的内力作截面I -I 假想将杆1、2、3截断,并取桁架的左半部分为研究对象,设所截三杆都受拉力,这部分桁架的受力图如图3-15c 所示。
列平衡方程:0)(1=∑=ni i FmF ,3241111=⨯+⨯++⨯--a F a F a F a F b F y A S0)(1=∑=ni i CmF ,023113=⨯++⨯-a F a F a F b F y A S1=∑=ni iy F ,32212=+--ba b F F F S A y解得:)35(211F F b a F S +-=(压),)921(4213F F b aF S +=(拉),)3(412222F F b b a F S -+=(拉)由上面的二个例子可见,采用截面法求内力时,如果矩心取得恰当,力矩平衡方程中往往仅含一个未知力,求解方便。
另外,由于平面任意力系只有三个独立平衡方程,因此作假想截面时,一般每次最多只能截断三根杆件,如果截断的杆件多于3根时,它们的内力一般不能全部求出。
习 题3—1 图3-16所示的6种情形中哪些是静定问题?哪些是静不定问题?图3-16 题3—1 图3—2 试求图3-17所示静定梁在支座A和C处的全部约束反力。
其中尺寸d、载荷集度q、力偶M已知。
图3-17 题3—2图3-3 静定多跨梁的荷载及尺寸如图3-18所示,长度单位为m,求支座反力和中间铰处的压力。
图3-18 题3—3图3-4 静定刚架所受荷载及尺寸如图3-19所示,长度单位为m,求支座反力和中间铰处压力。
图3-19 题3—4图3-5 如图3-20所示,杆AB重G、长度为l2,A端置于水平面上,B端置于斜面上并系一绳子,绳子绕过滑轮C吊起重物F Q。
各处摩擦均不计,求AB杆平衡时的G值及A、B 两处的约束力。
(α、β均为已知)图3-20 题3—5图3-6 如图3-21所示,在曲柄压力机中,已知曲柄OA=R=0.23m,设计要求:当α=200,β=3.20时达到最大冲力F=315kN。
求在最大冲压力F作用时,导轨对滑块的侧压力和曲柄上所加的转矩M,并求此时轴承O的约束反力。
图3-21题3—6图3-7 在图3-22所示架构中,A、C、D、E处为铰链连接,BD杆上的销钉B置于AC杆的光滑槽内,力F=200N,力偶矩M=100N·m,不计各杆件重量,求A、B、C处的约束反力。
图3-22 题3—7图3-8 如图3-23所示,折梯由两个相同的部分AC和BC构成,这两部分各重0.1kN,在C点用铰链连接,并用绳子在D、E点互相联结,梯子放在光滑的水平地板上,今在销钉C上悬挂G=0.5kN的重物,已知AC=BC=4m,DC=EC=3m,∠CAB=60°,求绳子的拉力和AC作用于销钉C的力。