《1 平行四边形的性质》教案1
《平行四边形的性质》教学设计范文
《平行四边形的性质》教学设计范文《平行四边形的性质》教学设计范文篇一:《平行四边形的性质》教学设计一、教学目标1知识目标经历探索平行四边形有关概念和性质的过程,使学生理解平行四边形的概念和性质;探索并掌握平行四边形的对边相等,对角相等的性质。
2能力目标在进行探索的活动过程中发展学生的探究能力,提高学生运用数学知识解决河题的能力;3情感目标在探索讨论中养成与他人合作交流的习惯,增强克复困难的勇气和信心。
二、教学内容及重点、难点:教学内容:1平行四边形的概念2平行四边形的性质3平行四边形的概念、性质的应用。
教学重点:探索平行四边形的性质教学难点:通过操作、思考、升化、归纳出结论教学方法:探索归纳证明三、教学对象分析这节内容通过小制作拼图引出平行四边形的定义,让学生经历探索、猜想、证明的过程,对平行四边形的概念及性质有本质性的理解,同时通过自己动手操作发现平行四边形的更多性质,教师在教学过程中,结合具体的背景适时的让学生提出问题并寻求搭档解决问题,满足学生多样化的要求,这节内容对以后的菱形、矩形、正方形内容的引入埋下伏笔。
四、教学策略及教学设计设置问题情境,从上海世博会引入课题。
1.用图片(东方之冠,日常生活中平行四边形图片)展示平行四边形,引出平行四边形的相关概念(定义,对边,对角,对角线)2.让学生进行如下操作后,思考以下问题:(动动手幻灯片展示)小组合作,探究新知(学生思考、操作后,教师用PPT展示)答:(1)AB=CD,AD=CB(2)∠1=∠3 ,∠2=∠4,∠B=∠D(3)AD//BC ,AB//CD3.针对学生指出 AD//BC,AD//CD分析究其原因。
让学生分析,分小组讨论。
得出结论:∠1和∠3 是内错角,∠2和∠4是内错角,依据“内错角相等,两直线平行”4.平行四边形的定义,即“两组对边分别平行的四边形是平行四边形”通过学生们自己动手操作,自己推导,自己发现从而得到平行四边形的有关知识,充分发挥学生们的探究意识和合作交流习惯。
《平行四边形的性质》第一课时教案 (公开课)2022年1
平行四边形的性质(一)一、教学目标:1. 理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2. 会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.3. 培养学生发现问题、解决问题的能力及逻辑推理能力.二、重点、难点1. 重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.2. 难点:运用平行四边形的性质进行有关的论证和计算.3. 难点的突破方法:本节的主要内容是平行四边形的定义和平行四边形对边相等、对角相等的性质.这一节是全章的重点之一,学好本节可为学好全章打下根底.学习这一节的根底知识是平行线性质、全等三角形和四边形,课堂上可引导学生回忆有关知识.平行四边形的定义在小学里学过,学生是不生疏的,但对于概念的本质属性的理解并不深刻,所以这里并不是复习稳固的问题,而是要加深理解,要防止学生把平行四边形概念当作,而不重视对它的本质属性的掌握.为了有助于学生对平行四边形本质属性的理解,在讲平行四边形定义前,要把平行四边形的对边、对角让学生认清楚.讲定义时要强调“四边形〞和“两组对边分别平行〞这两个条件,一个“四边形〞必须具备有“两组对边分别平行〞才是平行四边形;反之,平行四边形,就一定是有“两组对边分别平行〞的一个“四边形〞.要指出,定义既是平行四边形的一个判定方法,又是平行四边形的一个性质.新教材是先让学生用观察、度量和猜想的方法得到平行四边形的对边相等、对角相等这两条性质的,然后用两个三角形全等,证明了这两条性质.这有利于培养学生观察、分析、猜想、归纳知识的自学能力.教学中可以通过大量的生活中的实例:如推拉门、汽车防护链、书本等引入新课,使学生在已有的知识和认知的根底上去探索数学开展的规律,到达用问题创设数学情境,提高学生学习兴趣.然后让学生通过具体问题的观察、猜想出一些不同于一般四边形的性质,进一步由学生归纳总结得到平行四边形的性质.同时教师整理出一种推导平行四边形性质的范式,让学生在教师的范式的诱导下,初步到达演绎数学论证过程的能力.最后通过不同层次的典型例、习题,让学生自己理解并掌握本节课的知识.三、课堂引入1.我们一起来观察以以下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?你能总结出平行四边形的定义吗?(1)定义:两组对边分别平行的四边形是平行四边形.(2)表示:平行四边形用符号“〞来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“ ABCD〞,读作“平行四边形ABCD〞.注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.〔教学时要结合图形,让学生认识清楚〕2.【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.让学生根据平行四边形的定义画一个一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?〔1〕由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角.〔相邻的角指四边形中有一条公共边的两个角.注意和第一章的邻角相区别.教学时结合图形使学生分辨清楚.〕〔2〕猜想平行四边形的对边相等、对角相等.下面证明这个结论的正确性.:如图ABCD,求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.分析:作ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.〔作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为的关于三角形的问题.〕证明:连接AC,∵AB∥CD,AD∥BC,∴∠1=∠3,∠2=∠4.又AC=CA,∴△ABC≌△CDA 〔ASA〕.∴AB=CD,CB=AD,∠B=∠D.又∠1+∠4=∠2+∠3,∴∠BAD=∠BCD.由此得到:平行四边形性质1平行四边形的对边相等.平行四边形性质2 平行四边形的对角相等.四、例习题分析例1〔教材P84例1〕这道例题是平行四边形性质的实际应用,题目比较简单,其目的就是让学生能运用平行四边形的性质进行有关的计算,讲课时,可以让学生来解答.例2〔补充〕如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.分析:要证AF=CE,需证△ADF≌△CBE,由于四边形ABCD是平行四边形,因此有∠D=∠B ,AD=BC,AB=CD,又AE=CF,根据等式性质,可得BE=DF.由“边角边〞可得出所需要的结论.证明略.这道题是补充的一道几何证明题,即让学生学会运用平行四边形的性质进行有关的论证,又让学生从较简单的几何论证开始,提高学生的推理论证能力和逻辑思维能力,学会演绎几何论证的方法.此题应让学生自己进行推理论证.平行四边形的性质总体说明〔1〕本节的主要内容包含平行四边形的性质。
平行四边形的性质教案(6篇)
平行四边形的性质教案(6篇)小学四年级数学平行四边形教案篇一教学内容《义务教育课程标准实验教科书数学(四年级上册)》教科书70页例1及相关练习题。
教学目标1、认识平行四边形和梯形,掌握平行四边形和梯形的特征;2、学会四边形分类;概括出长方形、正方形是特殊的平行四边形,正方形是特殊的长方形的关系;3、培养学生动手操作能力,发展空间思维能力。
教学重点掌握平行四边形和梯形的特征。
教学难点理解平行四边形、长方形、正方形的关系。
教学准备教具:多媒体课件、七巧板、吹塑纸贴图学具:拼活动四边形的塑料棒四根、点子图、七巧板、平行四边形、梯形剪纸模型各一个。
教学过程一、创设情境,激发兴趣1、问:同学们,老师要考考你们,愿意接受挑战吗出示一些四边形问:上面图形有什么共同特点(学生回答)概括:由四条线段围成的图形是四边形。
2、师:谁能说说你发现了哪些四边形(学生说出:长方形、正方形、平行四边形、梯形)【设计说明】从学生已有的知识出发,引出本节课要学习的图形,体现了数学学习的系统性。
3、师:都记住了这些四边形,并能画下来吗下面我们就来一个画四边形的比赛,看哪些同学画得又快又好。
比赛开始!(学生活动:画四边形)4、学生展示画图的结果。
师:你觉得他们画得怎样师:认识这些图形吗请说说这些图形的名称5、揭示课题。
本节课我们一起来研究平行四边形和梯形。
【设计说明】在脱手画图的过程中,不要求学生画得很准确,只是通过学生的回答对本课要学的内容有一个初步的认识与了解。
二、自主探究,获取新知(一)平行四边形1、自主探究师:请同学们用四根学具,拼一个平行四边形。
[师示范操作]师:请打开书71页,找到平行四边形的图,结合自制平行四边形学具、平行四边形纸片进行研究,看看平行四边形两组对边有什么特点。
学生操作学具探究,同时教师巡视指导。
【设计说明】给学生一些探究的素材,给他们探究的空间,让他们自主探究平行四边形所具有的特点,并适时加以引导,以便学生加以总结。
《平行四边形的性质》数学教案
《平行四边形的性质》数学教案
标题:《平行四边形的性质》
一、教学目标
1. 让学生理解并掌握平行四边形的基本概念和性质。
2. 培养学生的观察力、思维能力和空间想象能力。
3. 通过实践操作,提高学生的动手能力和合作学习的能力。
二、教学重点与难点
1. 教学重点:平行四边形的定义及其基本性质。
2. 教学难点:理解和应用平行四边形的性质。
三、教学过程
1. 导入新课:
可以通过生活中的实例或者问题导入,引发学生对平行四边形的兴趣和好奇心。
2. 新课讲解:
(1) 平行四边形的定义:两组对边分别平行的四边形叫做平行四边形。
(2) 平行四边形的性质:对边相等、对角相等、对角线互相平分、每一条对角线平分一组对角。
3. 实践操作:
设计一些实践活动,让学生亲手画出平行四边形,并验证其性质。
4. 知识巩固:
设计一些习题,让学生运用所学知识解决问题,加深对平行四边形性质的理解。
5. 小结与作业:
对本节课的内容进行总结,布置相关的课后作业。
四、教学反思
在教案的最后,应包含教学反思的部分,这部分主要是教师对自己教学过程的回顾和评价,包括成功之处和需要改进的地方。
平行四边形的性质的教案(精选10篇)
平行四边形的性质的教案平行四边形的性质的教案(精选10篇)作为一位不辞辛劳的人民教师,通常需要准备好一份教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。
教案应该怎么写呢?下面是小编精心整理的平行四边形的性质的教案,欢迎阅读与收藏。
平行四边形的性质的教案篇1教学目标:1.经历探索平行四边形有关概念和性质的过程,在活动中发展学生的探究意识和合作交流的习惯;2.索并掌握平行四边形的性质,并能简单应用;3.在探索活动过程中发展学生的探究意识。
教学重点:平行四边形性质的探索。
教学难点:平行四边形性质的理解。
教学准备:多媒体课件教学过程第一环节:实践探索,直观感知(5分钟,动手实践、探索、感知,学生进一步探索了平行四边形的概念,明确了平行四边形的本质特征。
)1.小组活动一内容:问题1:同学们拿出准备好的剪刀、彩纸或白纸一张。
将一张纸对折,剪下两张叠放的三角形纸片,将它们相等的一边重合,得到一个四边形。
(1)你拼出了怎样的四边形?与同桌交流一下;(2)给出小明拼出的四边形,它们的对边有怎样的位置关系?说说你的理由,请用简捷的语言刻画这个图形的特征。
2.小组活动二内容:生活中常见到平行四边形的实例有什么呢?你能举例说明吗?第二环节探索归纳、合作交流(5分钟,学生动手、动嘴,全班交流)小组活动3:用一张半透明的纸复制你刚才画的平行四边形,并将复制后的四边形绕一个顶点旋转180°,你能平移该纸片,使它与你画的平行四边形重合吗?由此你能得到哪些结论?四边形的对边、对角分别有什么关系?能用别的方法验证你的结论吗?(1)让学生动手操作、复制、旋转、观察、分析;(2)学生交流、议论;(3)教师利用多媒体展示实践的过程。
第三环节推理论证、感悟升华(10分钟,学生通过说理,由直观感受上升到理性分析,在操作层面感知的基础上提升,并了解图形具有的数学本质。
)实践探索内容(1)通过剪纸,拼纸片,及旋转,可以观察到平行四边行的对角线把它分成的两个三角形全等。
《平行四边形的性质(第一课时)》教案
《平行四边形的性质(第一课时)》教案一、教学目标1、知识与技能:(1)理解平行四边形的定义。
(2)能够根据定义推导出平行四边形的边角性质。
(3)能运用平行四边形的性质,推理证明有关几何图形中线段相等和角相等的问题。
2、过程与方法:让学生经历从实际问题中抽象出平行四边形,体会对几何图形研究的步骤,定义---性质---判定3、情感、态度与价值观:(1)经历平行四边形的认知过程,使学生体验到对几何图形研究学习的兴趣。
(2)通过学习,培养学生合作交流意识和探索能力二、教学重点和难点1、教学重点:根据定义探究出平行四边形的边角关系的猜想,并能利用全等证明出猜想。
2、教学难点:利用定义和性质,理解平行线间的距离概念并能得出平行线间的距离相等。
三、学法引导1、教学方法:将观察、思考、讨论贯穿于整个教学环节中,采用启发式教学法。
2、学生学法:教给学生多观察、动脑想、大胆猜、勤钻研的研讨式学习法四、教学过程(一)情境引入1、(出示幻灯片)我们一起来观察生活中的四边形,想一想它们是什么几何图形的形象?2、拿出学生自己做的平行四边形,观察其特点,你能总结出平行四边形的定义吗?(二)新知探究1.平行四边形:两组对边分别平行的四边形。
记作:ABCD2、平行四边形的性质:(1)平行四边形的对边平行且相等。
几何语言:∵四边形ABCD是平行四边形∴AB//DC,AD//BCAB=CD,CB=AD(2)平行四边形的对角相等。
几何语言:∵四边形ABCD是平行四边形∴∠B=∠D,∠A=∠C(3)平行四边形的邻角互补。
几何语言:∵四边形ABCD是平行四边形∴∠A+∠B=180°,∠B+∠C=180°∠C+∠D=180°,∠D+∠A=180°3、(1)两条平行线之间的距离:两条平行线中,一条直线上的任一点到另一条直线的距离。
(2)性质:两平行线间的距离相等。
(三)典型示例:已知:如图ABCD,求证:(1)AB=CD,CB=AD,(2)∠B=∠D,∠A=∠C(3)∠A+∠B=180°,∠B+∠C=180°(四)小试牛刀如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.(五)课堂小结1、你能归纳出这节课的学习内容吗?2、你能谈谈这节课的收获和体会吗?五、作业布置《基础训练》六、板书设计平行四边形的性质(第一课时)知识点例题练习七、课后反思本节课课堂气氛较为活跃,基本达到了预期教学效果,但引导学生思维的语言不够精炼,时间把握的不够好,课堂不够紧凑。
《平行四边形的性质(第一课时)》教学设计
《平行四边形的性质(第一课时)》教学设计一、教学分析(一)教学内容分析《平行四边形的性质》是九年制义务教育课本八年级数学第二学期第十九章第一节内容,它是在学生学过平移和旋转等几何知识的基础上学习的,学习它不仅是对已学平行线、三角形等知识的综合应用和深化,同时对后面学习的矩形、菱形、正方形及梯形等特殊的平行四边形起到引领作用;其次,平行四边形性质在实际生产和生活中有广泛的应用,如:小区的伸缩门、庭院的竹篱笆等制造时都需要用到平行四边形的性质;第三:从培养学生的逻辑思维能力来说,学生已经初步掌握了推理论证方法,需要进一步巩固和提高,本节课及至本章都是为达到这个目标而设置的.(二)教学对象分析由于学生在“第七章三角形”中已经学过多边形的概念以及多边形内角和、外角和的相关知识,且平行四边形的定义也在小学学过,对它们并不陌生,但对于概念的本质属性的理解并不深刻,需加深理解.在认知过程中,对平行四边形通过辅助线与三角形相联系,加以引导,在学生自主探究的学习过程中,不仅要完成对平行四边形性质的认知,还需有效引导学生的探究欲与成就感.(三)教学环境分析本节教学内容是平行四边形的性质,针对数学学科培养学生逻辑思维与理性探究的学科特点,概念与性质的揭示需要一个渐进的探究过程,不适宜通过网络查阅查询,所以本课选择多媒体教室环境,而多媒体课件的作用,应体现在认知过程中,对学生认知前期的引导,和学生认知后期的验证,应避免以动画的过程替代学生大脑中推演的过程.二、教学目标(一)知识与技能理解平行四边形的定义,掌握平行四边形的有关性质,并能初步应用平行四边形的性质进行简单的计算和证明,解决生活中的实际问题.(二)过程与方法在性质的探索、发现与证明的过程中,培养学生的观察能力及逻辑推理论证能力,渗透“转化”的数学思想.(三)情感态度与价值观引导学生观察、发现,激发学生的好奇心和求知欲,并且引导学生在应用数学知识解决实际问题的活动中体验成功,树立学习的自信心.三、教学重点难点(一)教学重点:让学生亲历平行四边形性质定理的“观察——猜想——验证”过程,理解定理内容,并学会用它们进行有关的论证和计算.(二)教学难点:通过性质定理的推导,培养学生独立思考、自主探索的精神,提高分析问题和解决问题的能力.四、教学方法定理推导上采用引导探索法;设置疑问,引导学生通过观察、猜想、论证、应用等环节积极思考,勇于探索,较好地理解和掌握本节课的学习内容,体验解决问题的方法和乐趣,增强数学学习兴趣.在教学手段方面,利用PPT制作的课件,增大教学容量和直观性,提高教学质量和效率.五、教学过程。
平行四边形的性质教案
平行四边形的性质教案一、教学目标1.了解平行四边形的定义。
2.掌握平行四边形的性质。
3.能够应用平行四边形的性质解决相关问题。
二、教学内容1.平行四边形的定义2.平行四边形的性质3.平行四边形的相关问题三、教学步骤步骤一:引入1.引出本节课的主题:平行四边形的性质。
2.提问学生:你们对平行四边形有什么了解?步骤二:定义平行四边形1.讲解平行四边形的定义:平行四边形是具有两对平行边的四边形。
2.对比展示平行四边形与其他四边形的特点。
3.引导学生说出一些例子并判断是否为平行四边形。
步骤三:平行四边形的性质1.讲解平行四边形的性质:–两对对边分别相等。
–相邻的内角互补,即相邻的内角之和为180度。
–对角线相交于一点,二对角线互相平分。
步骤四:例题讲解1.根据平行四边形的性质,解决一些与平行四边形相关的几何问题。
2.提供例题并与学生一起讨论解题方法和过程。
步骤五:练习与巩固1.布置练习题,让学生独立完成。
2.针对难点和常见错误进行指导和讲解。
步骤六:拓展与应用1.提供一些拓展问题,引导学生思考并解决。
2.鼓励学生应用平行四边形的性质解决实际问题或其他相关数学题目。
四、教学工具1.教材:包含平行四边形的相关知识点和例题。
2.黑板和粉笔:辅助讲解和演示。
3.讲义和练习题:供学生使用和完成练习。
五、教学评估方式1.课堂参与:观察学生对问题的回答与讨论。
2.练习题成绩:评估学生对平行四边形性质的理解和应用能力。
3.拓展问题解答:评估学生拓展思维和解决问题的能力。
六、教学反馈与调整1.及时反馈学生对平行四边形性质的掌握情况。
2.根据学生的学习情况调整教学内容和节奏。
七、教学延伸1.鼓励学生独立探索和学习其他四边形的性质。
2.引导学生拓展应用几何学知识的能力,解决实际生活中的问题。
以上是关于平行四边形的性质教案,希望能够帮助学生理解和掌握平行四边形的定义和性质,并能够应用到实际问题中。
通过教学的引入、讲解、讨论和练习,学生将能够更好地理解和运用平行四边形的性质,提高数学思维和解决问题的能力。
《平行四边形的性质》教案
《平行四边形的性质》教案《平行四边形的性质》教案《平行四边形的性质》教案一、教学目的知识技能:掌握平行四边形对角线互相平分这一性质,并会用此性质进展有关的论证和计算. 数学考虑:经历观察、猜测、实验、验证等数学活动,认识平行四边形的性质,开展学生演绎推理才能和发散思维才能. 解决问题:通过多种方法探究平行四边形的性质,体验解决问题策略的多样性,初步形成评价与反思的意识. 情感态度:培养学生勤于理论、勇于探究、合作交流的精神,增强学生学好数学的勇气和信心. 二、教学重难点教学重点:平行四边形的对角线互相平分这一性质的应用. 教学难点:对平行四边形的对角线互相平分这一性质的探究. 三、教学方法与手段采用“创设情境—大胆猜测—实验探究—反思评价”的课堂活动形式,努力营造自主、合作、探究的学习气氛,利用多媒体辅助教学,生动、直观地反映问题情境,使学生在学习中获得愉快的数学体验. 四、教学过程一天,财主巴依遇到阿凡提,想考一考聪明的阿凡提,说给你两块地,一块是平行四边形形状的〔如下列图,AB=10,OA=3,BC=8〕,还有一块是边长是7的正方形EFGH土地,让你来选一下,哪一块面积更大?〔一〕激趣设疑7 GC F E HD O C B A D [老师活动] 老师利用课件展示问题情境. [学生活动] 此时,学生的积极性被调动起来,努力试图寻找各种途径来求平行四边形的面积,但找不到适宜的解决方法. [教学内容] 老师乘机引出课题,明确学习任务. [达成目的与调控措施] 此处创设生动有趣的故事情境,力求更好地激发学生的学习兴趣. 〔二〕深化探究 [教学内容] 请学生观察平行四边形的对角线,并猜测有什么性质. [学生活动] 大多数学生想到了对角线平分,但无视了“互相”两字,也有猜到对角线平分每组对角等错误结论. [老师活动] 此时老师不做解答,但一一记录下学生的各种猜测. [达成目的与调控措施] 学生形形色色的答复,能给他们不同的感受,在锻炼学生的观察及表达才能的同时,并为下一步实验探究指明了方向. [老师活动] 老师将前后四名同学分成一组,学生拿出事先准备好的平行四边形及实验工具〔刻度尺、剪刀、图钉〕,尝试在交流合作中动手探究平行四边形的对角线有何性质. [学生活动] 在探究中,学生使用了以下几种方式.一是大局部学生用刻度尺直接测量,得出结论;二是有一局部学生沿平行四边形的一条对角线将其对折,对折后重叠,也较易得出结论;三是有小局部学生用剪刀将平行四边形沿对角线剪成四个小三角形,尝试能否重叠.用此方法出现了有学生不知道选哪两个三角形重叠,或在重叠时,分不清三角形哪两边是原平行四边形对角线的一半,此时老师提示让学生在各线段上标注字母;四是有个别组将两个形状、大小完全一样的平行四边形,用图钉钉在对角线的交点处将其固定,把其中一个旋转180°.但是个别学生不知道绕交点旋转180°后在什么位置,或不知道重叠后的目的. [老师活动] 这时,老师要引导学生展开议论、交流合作,并以一个参与者、合作者的身份活动在各小组间,鼓励创新,同时关注学生个体差异,施行有效指导. [达成目的与调控措施] 此处为的是更好的突出重点,打破难点,让学生带着问题去探究,感受数学活动充满探究性和创造性,使课堂变成学生探究互助的乐园、师生彰显个性的舞台. [老师活动] 探究完毕后,分组展示结果,老师利用课件展示“旋转法”的实验过程,增强了教学的直观性. [学生活动] 大局部学生会得出对角线互相平分这条性质,也有些学生会得出对角线相等或对角线互相垂直这样的错误结论.老师对学生的错误猜测和结论进展剖析,并让学生反思实验失败的原因:图形画的不准确,或动手操作的误差,或是图形画得过于特殊等等. [达成目的与调控措施] 探究的经历意味着学生要面临很多困惑,甚至失败,也可能花费很多时间和精力后结果还是不够理想,但这些是学生生存、成长、创造所必经的过程,是值得的,因为他们所获得的可能是一生受益无穷的财富. [老师活动] “趁热打铁”,老师又提出: [教学内容] “实验都是有误差的,我们能否对此进展理论证明?” [学生活动] 此问题难度不大. [老师活动] 老师让学生口述证明过程.最后师生共同归纳出“平行四边形的`对角线互相平分”这条性质. [达成目的与调控措施] 猜测与论证的统一,表达知识的系统完好性,开展学生的演绎推理才能. [教学内容]老师再现引课难题. [学生活动] 此问题,这时学生能很容易利用本节课的重点平行四边形对角线互相平分加以解决.请一名学生口答解题过程. [老师活动] 同时老师结合学生的答复板书解题过程. [达成目的与调控措施] 改变例题的呈现方式,体会数学来于生活又效劳于生活,加深对性质的理解与应用. 〔三〕迎接挑战财主不服气,又想考阿凡提,说过点O做一直线EF,交边AD于点E,交BC于点F.直线EF绕点O旋转的过程中〔点E与A、D不重合〕,你能知道这里有多少对全等三角形吗? {挑战一} A E DOADBCO F E BC F [老师活动] 此处组织学生抢答,互相补充完善后,学生答出了全部的全等三角形. [达成目的与调控措施] 此题复习稳固全等三角形的有关知识,进一步应用性质,增强了学生竞争与合作意识. {挑战二} ADBCOEF这时,阿凡提又提出,当EF⊥BD于O,分别交AB、CD于E、F,假设三角形ADE的周长为m,那么平行四边形ABCD的周长是多少?[学生活动] 此题难度稍大,引导学生分组讨论,老师再一次参与到学生的讨论中了来.局部学生想到了利用线段垂直平分线的性质,将DE转化为BE,突破此题难点;对根底稍差的学生有一定困难,但在互相交流后,可达成共识. [达成目的与调控措施] 生生互动、师生互动,表达学生为主体、老师做指导的和谐教学. 正在这时,财主的两个儿子也跑来找阿凡提评理,说父亲偏向,都说对方的地大!聪明的你能帮助解决吗? {挑战三} [学生活动] 此题有多种解法.学生独立考虑.局部学生想到了通过比拟这两个三角形的高;还有一些学生会连接对角线BD,利用平行四边形的对角线的性质,通过面积的分割与拼补得到解决. [老师活动]老师对学生想到的其他正确解法一一肯定并加以鼓励.同时对于没有想到解决问题的学生,老师给予适当提示. [达成目的与调控措施] 一题多解,力求培养学生的发散思维才能.〔四〕开放探究国王听说阿凡提非常聪明,召他进宫,说,我有一块平行四边形的花园〔如上图〕,想在里面种四种不同的花,并且所占的面积一样,你给我设计几个方案. [老师活动] 这是一道开放题.组织学生自己动手设计. [学生活动] 全体学生都能乐于参与,感受问题中蕴涵的宏大乐趣,设计出了非常多的方案.并积极地利用实物投影仪展示自己的设计成果. [达成目的与调控措施] 开放性设计,使不同层次的学生都能答复,进步全体学生的学习数学的自信心. 〔五〕鼓励评价 [学生活动] 我的收获是…… 我感到最困惑的是…… 我最想说的一句话是…… 今后我的学习打算是…… [达成目的与调控措施] 老师鼓励学生自我评价反思,作为本节探究课,老师不必拘泥于学生总结的全面与否、深度如何,只要他们通过学习积累了属于自己的数学活动经历就足够了.老师在学生总结的根底上,进一步总结,强调重点,评价学生的学习表现. 〔六〕反应验收 [教学内容] 必做题:教材练习题:P95 1、2;选做题: 1、设计一道有关平行四边形性质的题目,要求能用上平行四边形的三条性质.2、设计一枚平行四边形的个性邮票. [达成目的与调控措施] 根据因材施教,面向全体的原那么,分必做题和选做题,满足多层次学习的需要,使不同层次的学生都能得到不同的开展. 〔七〕板书设计§19.1.1平行四边形的性质一、平行四边形的性质探究二、例题三、变式四、小结板书设计力求做到条理明晰、重点突出.。
平行四边形的性质(1)教案
平行四边形的性质教学目标:1.掌握平行四边形的定义、性质,能根据性质解决简单问题,培养合情推理能力;2.经历观察、猜想、实践、验证的数学活动,逐步建立类比、转化的数学思想,获得证明线段相等和角相等的新的数学方法;3.在探索平行四边形性质的过程中培养学生的合作探究意识和独立思考的习惯,使学生在数学学习活动中获得成功的体验,感受数学美. 教学重点:平行四边形性质的探究,平行四边形性质的应用.教学难点:平行四边形性质的探究教学过程:一、创设情境发现性质----做生活的有心人前面我们已经系统的探究和学习了三角形的知识,今天开始我们再对另一种几何图形进行探究和学习,请大家看看这几幅图片。
善于观察PPT中出示图片,提出问题:你能在这些图片中找出我们熟悉的几何图形吗?2. 大家观察图形看它的两组对边有什么样的位置关系?我们定义:有两组对边分别平行的四边形叫做平行四边形.我们把平行四边形ABCD 记作:ABCD注意:1、①两组对边分别平行②四边形 2、顶点字母要按照顺时针或逆时针的方向标注。
3、由定义得到的性质:AD//BCAB//CDABCD 是平行四边形四边形那么你还能说说平行四边形还有什么性质呢? 二、合作探究 证明性质----做思维严谨的人 猜想1 平行四边形的对角相等 猜想2 平行四边形的对边相等 1.写出已知、求证.2.先独立思考,然后在小组内交流你的方法。
值得一提的是,学生在证明时想到了多种证法: 用同旁内角来证。
利用同位角和内错角来证。
分割成两个平行四边形来证。
(4)分割成两个全等三角形来证。
练习:1. 若四边形ABCD 为平行四边形 (1)则∠A:∠B:∠C:∠D=2:1:__:___(2)∠B=600,则∠A=____ ,∠C=____,∠D=____ (3)∠B+∠D=1100,则∠A=____,∠C=____,∠D=___ (4)∠C-∠B=400,则∠A=___,C=____,∠D=___ 2.若四边形ABCD 为平行四边形,(1)若AB=10,BC=15,则AD= ,CD= ,周长为 . (2)若周长为40,AB=12,则BC= ,AD= ,CD= . (3)若周长为40,BC 比AB 长4,则AB= ,BC= . 三、典型例题 应用性质——做善于应用的人 例题:如图小明用一根36m 长的绳子围成了一个平行四边形的场地,其中一条边AB 长为8m ,其他三边长分别为多少?例题:如图,剪两张对边平行的纸条,随意交叉叠放在一起,转动其中一张,重合的部分构成了一个四边形。
《平行四边形的性质》第一课时教案
《平行四边形的性质》第一课时教案教学目标:1、知识目标:理解平行四边形的概念,掌握平行四边形的边、角、对角线的性质,并能初步解决实际问题.2、能力目标:通过探索、发现、论证培养学生类比、转化的数学思想,锻炼学生缜密的逻辑思维能力.3、情感目标:让学生在观察、讨论、交流中感受数学的实际应用价值,培养学生善于发现、积极思考的学习态度.教学重点:平行四边形的性质. 教学难点:理解并应用平行四边形的性质. 教学过程:一、回忆旧知,引入新课 问题1:什么叫平行四边形?问题2:下列图形中,哪些是平行四边形?为什么是平行四边形?(2)(3)(4)(5)(6)(1)ABCD AB CDA BC DABCDAD D BA问题3:如何区别平行四边形和一般四边形?什么叫平行四边形?讲解1:一个四边形具备了两组对边分别平行这个条件,这个四边形就是平行四边形;反之如果一个四边形是平行四边形,那么有两组对边分别平行这个结论。
讲解2:说明平行四边形的画法和依据,同时画出平行四边形,给出平行四边形定义的用法及平行四边形的表示方法。
AB ∥CD ,AD ∥BCABCD二、观察图形,探索新知 提出课题:平行四边形性质.问题1:你知道平行四边形有哪些性质?问题2:哪些可以作为平行四边形特有的性质?问题3:哪些可以由以前学过的相关知识直接得到?问题4:如果改变平行四边形的形状和大小,这些结论是否还成立?观察猜想的结果可以直接作为结论吗?三、推理论证,得出结论讨论1:平行四边形的对边相等.(师生共同完成,教师总结思想方法) 讨论2:平行四边形的对角相等.(学生口述完成,鼓励多种方法论证) 讲解1:通过证明说明性质的特殊性的来源。
讲解2:用符号语言表达定理定理1:平行四边形的对边相等.∵四边形ABCD是平行四边形,∴AB=CD,AD=BC.定理2:平行四边形的对角相等.∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D.问题1:平行四边形除以上性质外还有其他性质吗?讨论3:平行四边形的对角线互相平分.(学生独立书写完成)问题2:要求学生用符号语言表述定理.定理3:平行四边形的对角线互相平分.∵四边形ABCD是平行四边形,∴AO=CO,BO=DO.讲解3:总结分类平行四边形的性质。
《平行四边形的性质》教学设计
《平行四边形的性质》教学设计一、教学目标1.知识目标:学习平行四边形的定义及性质,包括平行四边形的对边相等、对角线互相平分、同、异位角等。
2.能力目标:能够辨别和应用平行四边形的性质解决问题。
3.情感目标:培养学生对几何学的兴趣,培养学生观察能力、抽象思维能力和逻辑推理能力。
二、教学重点、难点1.教学重点:平行四边形的定义及性质的教学,培养学生的几何直观形象观察能力。
2.教学难点:平行四边形的应用题,培养学生的综合运用能力。
三、教学过程1.导入新知识(10分钟)通过展示一幅平行四边形图片,引发学生对平行四边形的认识,并激发学生的兴趣。
2.学习平行四边形的定义(20分钟)a.分析展示的平行四边形图片,引导学生观察四边形边与边的关系。
b.引导学生总结平行四边形的定义:“四边形的对边分别相等,并且相对的两边平行。
”c.通过展示不同的平行四边形图片,让学生找出其中的特征并进行描述。
3.探究平行四边形的性质(30分钟)a.结合学生已掌握的知识,引导学生观察平行四边形的对角线特点,并引导学生总结:“平行四边形的对角线相交于一点,并且互相平分。
”b.引导学生观察平行四边形的同位角和异位角特点,并引导学生总结:“平行四边形的内角之和为360°,同位角相等,异位角相等。
”c.指导学生通过几何工具绘制平行四边形,并验证以上性质。
4.总结归纳(10分钟)a.引导学生回顾平行四边形的定义和性质,并进行总结。
b.提问学生关于平行四边形的问题,鼓励学生主动回答。
5.拓展应用(30分钟)a.提供一些平行四边形的应用题,引导学生运用所学知识解决问题。
b.布置一些课后练习题,巩固所学知识。
四、板书设计平行四边形的定义:四边形的对边分别相等,并且相对的两边平行。
平行四边形的性质:1.对边相等。
2.对角线互相平分。
3.同位角相等,异位角也相等。
4.内角之和为360°。
五、教学方法和教具准备教学方法:情景教学法、讨论教学法、示范教学法教具准备:电子白板、PPT、平行四边形图片、几何工具六、课堂检查与评价通过课堂提问、练习题、小组讨论等形式对学生进行评价,检查学生对平行四边形的理解和应用能力。
平行四边形性质(一)优秀教案
6.1 平行四边形的性质(一)教案教学目标:1、经历探索平行四边形有关性质的过程,发展合情推理能力。
2、证明平行四边形对边相等、对角相等,发展演绎推理能力。
3、掌握平行四边形的概念。
4、了解平行四边形的相关概念。
教学重点:探索并掌握平行四边的性质。
教学难点:利用平行四边形的性质进行相关的证明和计算。
教学过程:一、创设情境,导入新课我们生活中随处可见美丽的几何图形,请看幻灯展示(几张含有平行四边形的图片)引出课题并板书:平行四边形的性质(一)二、展示本节课的学习目标:1、掌握平行四边形的概念。
2、了解平行四边形的对边、对角、对角线概念。
3、重点:探索平行四边形的性质,并能用几何语言表述。
4、难点:利用平行四边形的性质进行相关的证明和计算。
三、新课学习1、观察图形,说出下列图形边的位置有什么特征?得出平行四边形的定义:有两组对边分别平行的四边形叫做平行四边形。
几何语言:∵AB∥CD,AD∥BC∴四边形ABCD是平行四边形针对练习:你能从以下图形中找出平行四边形吗?2、平行四边形的记法:平行四边形用“”符号表示。
四边形ABCD是平行四边形,记作:ABCD 读作:平行四边形ABCD 3、平行四边形的相关概念:(1)、平行四边形相对的边称为对边。
(2)、相对的角称为对角。
(3)、不相邻的两个顶点连成的线段叫平行四边形的对角线。
4、平行四边形ABCD有什么性质呢?(从对边的位置关系和数量关系讨论)已知:如图,平行四边形ABCD求证:AB=CD,BC=AD5、平行四边形的性质:(1)、边:对边平行且相等几何语言:∵四边形ABCD是平行四边形∴AB ∥CD,AD ∥BC,AB=CD,AD=BC(2)、角:对角相等,邻角互补几何语言:∵四边形ABCD是平行四边形∴∠A=∠C, ∠B=∠D,∠A+∠B=180°,∠C+∠B=180°6、幻灯片放映旋转平行四边形,探究平行四边形的对称性。
(平行四边形是中心对称图形)7、再次总结回顾平行四边形的性质并补充两条性质:(1)、周长:平行四边形的周长等于两邻边之和的2倍.(2)、面积:平行四边形的面积等于边长乘以边长上的高。
平行四边形的性质教案
平行四边形的性质教案一、教学目标1.知识与能力:(1)了解平行四边形的定义和性质;(2)掌握判断平行四边形的方法;(3)掌握计算平行四边形的面积和周长的方法;(4)能够解决与平行四边形相关的数学问题。
2.情感态度与价值观:培养学生对数学的兴趣,并提高他们的数学思维能力和解决实际问题的能力。
二、教学重难点1.教学重点:(1)平行四边形的定义和性质;(2)判断平行四边形的方法;(3)计算平行四边形的面积和周长的方法。
2.教学难点:(1)平行四边形的性质的证明;(2)解决实际问题的能力。
三、教学过程Step 1 导入新知教师出示一幅平行四边形的图片,引导学生观察并回答以下问题:这个图形有什么特点?通过学生的回答来引出平行四边形的定义。
Step 2 学习新知1.讲解平行四边形的定义和性质。
(1)平行四边形:具有两组对边互相平行的四边形叫做平行四边形。
(2)平行四边形的性质:①对边相等:平行四边形的对边相等。
②对角线互相等长:平行四边形的对角线互相等长。
③对角线平分:平行四边形的对角线互相平分。
④邻角和为180度:相邻两个角之和等于180度。
让学生观察其他几种特殊的平行四边形,如矩形、菱形、正方形等,并总结它们的性质。
2.判断平行四边形的方法。
(1)观察法:通过观察四边形的形状,如果具有两组对边平行的特点,可以判断为平行四边形。
(2)测量法:通过测量四边形的边和角度,如果对边相等、相对角度相等,可以判断为平行四边形。
(3)工具法:使用平行四边形画板或直尺,通过平行四边形工具的辅助,可以判断为平行四边形。
3.计算平行四边形的面积和周长的方法。
(1)面积:S=底边长×高度。
(2)周长:P=2×(底边长+左边长)。
让学生通过具体例子进行计算练习,加深对计算公式的理解与运用。
Step 3 拓展延伸1.平行四边形的性质证明。
让学生以小组形式讨论,选取一条平行四边形的性质进行证明,并将证明过程展示给全班。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《1 平行四边形的性质》教案
第1课时
教学目标
1、经历探索平行四边形有关概念和性质的过程,使学生理解平行四边形的概念和性质.
2、探索并掌握平行四边形的对边相等,对角相等的性质.
3、在进行探索的活动过程中发展学生的探究意识和合作交流的习惯.
教学重难点
教学重点:探索平行四边形的性质.
教学难点:通过操作升化出结论.
教学过程
一、设置问题情境,引入课题.
1、让学生进行如下操作后,思考以下问题:
将一张纸对折,剪下两张叠放的三角形纸片,设法找到某一边的中点,记作点E,将上层的三角形纸片绕点旋转180度,下层的三角形纸片保持不动,此时:两张纸片是平行四边形吗?是一个怎样的四边形?
观察它还有什么特征?
答:(1)AB=CD,AD=CB.
(2)∠1=∠3,∠2=∠4,∠B=∠D.
(3)AD∥BC,AB∥CD.
2、针对学生指出AD∥BC,AD∥CD分析究其原因.
让学生分析,分小组讨论.
得出结论:∠1和∠3 是内错角,∠2和∠4是内错角,依据“内错角相等,两直线平行”平行四边形的定义,即“两组对边分别平行的四边形是平行四边形”.
二、传授新课
1、请学生举出自己身边存在的平行四边形的例子.
例如:汽车的防护链,折叠衣架,篱笆格子.
2、将实物转化为几何图形.
3、介绍平行四边形的书写方式及对角线.
4、学生动手画一个平行四边形,同时用几何语言表示平行四边形的定义.
5、做一做.
用一张半透明的纸复制你刚才画的平行四边形,并将复制后的四边形绕一个顶点旋转180度,你能平移该纸片,使它与你画的平行四边形ABCD重合吗?由此,你能得到哪些结论?四边形ABCD相对的边、相对的角分别有什么关系?能用别的方法验证你的结论吗?
(让学生实际动手操作,可分组讨论结论)
6、学生分析总结出:平行四边形的对边相等;平行四边形的对角相等.
三、达标小测(幻灯片展示)
如图四边形ABCD是平行四边形求:
(1)∠ADC和∠BCD的度数.
(2)边AB和BC 的长度.
第2课时
教学目标
1、经历探索平行四边形有关概念和性质的过程,在进行探索的活动过程中发展学生的探究意识.
2、探索并掌握平行四边形的对角线互相平分的性质,掌握平行线之间的距离处处相等的结论并了解其简单的应用.
3、在探索中培养学生的合作交流习惯.
4、掌握解决平行四边形问题的基本思路是化为三角形问题来处理,渗透转化思想.
教学重难点
教学重点:
1、平行四边形的对角线互相平分.
2、掌握平行线之间的距离处处相等.
教学难点:正确理解两条平行线之间的距离的概念.
教学过程
一、设置问题情境,引入课题:
上节课我们学习了平行四边形的性质,现在来回忆一下:
如图,四边形ABCD 是平行四边形,请同学们说出它的性质.
在平行四边形中,除边和角外,还有对角线,那么对角线有什么性质呢?
如图,在□ABCD 中,对角线AC 、BD 相交于点O ,图中哪些三角形是全等的?有哪些线段是相等的?能设法验证你的想法吗?
二、讲授新课:
从上面讨论中,我们可以发现平行四边形的对角线具有什么性质?试用文字语言叙述一下. 平行四边形的对角线互相平分.
用几何语言表示如下:在□ABCD 中,对角线AC 、BD 相交于点O ,
所以OA=OC ,OB=OD .
下面我们通过例题来熟悉平行四边形的性质:
例1:如图,四边形ABCD 是平行四边形,AB=8,AD=10,AC ⊥AB ,求CD 、BC 及OC 的长.
想一想:
在笔直的铁轨上,夹在两根铁轨之间的枕木是否一样长?
夹在两条平行线之间的平行线段相等.
如图,直线a ∥b ,AB ∥CD ,则AB=CD .
下面我们应用平行四边形的性质来解决一题:
a
b
A B C
D
例2:已知,直线a ∥b ,过直线a 上任意两点A 、B 分别向直线b 作垂线,交直线b 于点C 、
D .(1)线段AC 、BD 所在的直线有怎样的位置关系?(2)比较线段AC 、BD 的长短.
三、课堂练习:
在□ABCD 中,对角线AC 、BD 相交于点O ,OA 、OB 、AB 的长度分别是3cm ,4cm ,5cm , 求其他各边以及两条对角线的长.
四、课堂小结:
这节课学习了平行四边形的另一性质:平行四边形的对角线互相平分;和平行线之间的距离处处相等.
a
b A B C D。