解直角三角形复习完整1ppt课件
合集下载
解直角三角形PPT课件
2024/1/25
正切定理
在直角三角形中,锐角的正切值等于其对边比邻边,即 tanα = a/b。
6
02
勾股定理及其逆定 理
2024/1/25
7
勾股定理内容及证明
2024/1/25
勾股定理内容
在直角三角形中,直角边的平方 和等于斜边的平方。
勾股定理证明
可以通过相似三角形、面积法、 向量法等多种方法进行证明。
2024/1/25
正弦、余弦定理
已知任意两边和夹角,可以利用正弦定理$frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C}$或余弦定理$c^2 = a^2 + b^2 - 2abcos C$求出第三边和角度。
16
已知一边一角求其他元素
正弦、余弦函数
已知一条边和一个锐角,可以利用正弦或余弦函数求出另一条直角边和斜边。例如,已知直角边$a$和锐角$A$ ,则可以利用$sin A = frac{a}{c}$求出斜边$c$,再利用勾股定理求出另一条直角边$b$。
正切函数
正切(tangent)是一个 角的对边长度与邻边长度 的比值,即 tan(θ) = 对边 / 邻边。
12
特殊角度三角函数值
0°、30°、45°、60°、90°等特殊角 度的三角函数值,如 sin(30°) = 1/2 ,cos(45°) = √2/2,tan(60°) = √3 等。
特殊角度三角函数值的推导过程及其 在解题中的应用。
2024/1/25
13
三角函数图像与性质
正弦、余弦、正切函数的图像及其周期性、奇偶性、单调性等性质。 利用三角函数图像解决相关问题的思路和方法。
2024/1/25
正切定理
在直角三角形中,锐角的正切值等于其对边比邻边,即 tanα = a/b。
6
02
勾股定理及其逆定 理
2024/1/25
7
勾股定理内容及证明
2024/1/25
勾股定理内容
在直角三角形中,直角边的平方 和等于斜边的平方。
勾股定理证明
可以通过相似三角形、面积法、 向量法等多种方法进行证明。
2024/1/25
正弦、余弦定理
已知任意两边和夹角,可以利用正弦定理$frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C}$或余弦定理$c^2 = a^2 + b^2 - 2abcos C$求出第三边和角度。
16
已知一边一角求其他元素
正弦、余弦函数
已知一条边和一个锐角,可以利用正弦或余弦函数求出另一条直角边和斜边。例如,已知直角边$a$和锐角$A$ ,则可以利用$sin A = frac{a}{c}$求出斜边$c$,再利用勾股定理求出另一条直角边$b$。
正切函数
正切(tangent)是一个 角的对边长度与邻边长度 的比值,即 tan(θ) = 对边 / 邻边。
12
特殊角度三角函数值
0°、30°、45°、60°、90°等特殊角 度的三角函数值,如 sin(30°) = 1/2 ,cos(45°) = √2/2,tan(60°) = √3 等。
特殊角度三角函数值的推导过程及其 在解题中的应用。
2024/1/25
13
三角函数图像与性质
正弦、余弦、正切函数的图像及其周期性、奇偶性、单调性等性质。 利用三角函数图像解决相关问题的思路和方法。
2024/1/25
26.3 解直角三角形课件(共16张PPT)
第二十六章 解直角三角形
26.3 解直角三角形
学习目标
学习重难点
重点
难点
1.理解直角三角形的五个元素的关系.2.会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.3.掌握直角三角形的解法.
直角三角形的解法.
三角函数在解直角三角形中的灵活运用.
回顾复习
直角三角形ABC中,∠C=90°,a,b,c,∠A,∠B这五个元素间有哪些等量关系呢?解:(1)边角之间关系sinA= ,cosA= ,tanA= ;(2)三边之间关系a2+b2=c2(勾股定理);(3)锐角之间的关系∠A+∠B=90°.
解:作AD⊥BC于D,在Rt △ABD中, ,AD=AB·sinB =6×sin45°
随堂练习
1.在Rt △ABC中,∠C=90︒, ,c=2,则∠A=____.b=_____.2.如图,四边形ABCD中,AD∥BC,∠B=30︒,∠C=60︒,AD=4,AB=3 ,则下底BC的长为_____.
∠A的对边
斜边
∠B的对边
斜边
∠A的邻边
斜边
∠B的邻边
斜边
∠A的对边
∠A的邻边
∠B的对边Байду номын сангаас
∠B的邻边
同学们再见!
授课老师:
时间:2024年9月15日
c
a
c
b
b
a
在直角三角形中,除直角外,还有三条边和两个锐角共五个元素.由这五个元素中的已知元素求出其余未知元素过程,叫做解直角三角形.
事实上,在直角三角形的这五个元素中,如果再知道两个元素(至少有一个是边),这个三角形就可以确定下来,这样就可以由已知的两个元素求出其余的三个元素.
探索新知
26.3 解直角三角形
学习目标
学习重难点
重点
难点
1.理解直角三角形的五个元素的关系.2.会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.3.掌握直角三角形的解法.
直角三角形的解法.
三角函数在解直角三角形中的灵活运用.
回顾复习
直角三角形ABC中,∠C=90°,a,b,c,∠A,∠B这五个元素间有哪些等量关系呢?解:(1)边角之间关系sinA= ,cosA= ,tanA= ;(2)三边之间关系a2+b2=c2(勾股定理);(3)锐角之间的关系∠A+∠B=90°.
解:作AD⊥BC于D,在Rt △ABD中, ,AD=AB·sinB =6×sin45°
随堂练习
1.在Rt △ABC中,∠C=90︒, ,c=2,则∠A=____.b=_____.2.如图,四边形ABCD中,AD∥BC,∠B=30︒,∠C=60︒,AD=4,AB=3 ,则下底BC的长为_____.
∠A的对边
斜边
∠B的对边
斜边
∠A的邻边
斜边
∠B的邻边
斜边
∠A的对边
∠A的邻边
∠B的对边Байду номын сангаас
∠B的邻边
同学们再见!
授课老师:
时间:2024年9月15日
c
a
c
b
b
a
在直角三角形中,除直角外,还有三条边和两个锐角共五个元素.由这五个元素中的已知元素求出其余未知元素过程,叫做解直角三角形.
事实上,在直角三角形的这五个元素中,如果再知道两个元素(至少有一个是边),这个三角形就可以确定下来,这样就可以由已知的两个元素求出其余的三个元素.
探索新知
解直角三角形-ppt课件
,∴
∴CH = ,
∴AH=
∴AB=2AH=
−
.
=
,∵∠B=30°,
=
,
26.3 解直角三角形
重 ■题型 解双直角三角形
难
例 如图,在 Rt△ABC 中,∠C=90°,D 是 AC 上一
题
型
点,BD=10
,∠BDC=45°,sinA=
,求 AD 的长.
突
∴S
AB·AE= ×4×4 =8 ,
CD·DE= ×5 ×15=
四边形 ABDC=S△CDE-S△ABE=
,
.
(方法二)如图 2,过点 A 作 AF⊥CD 于点 F,过点
B 作 BG⊥AF 于点 G,则∠ABG=30°,
∴AG=
AB=2,BG= − =2 ,
况讨论,求出不同情况下的答案.
26.3 解直角三角形
■方法:运用割补法求不规则图形的面积
方
法
割补法是求不规则图形面积问题的最常用方法,割补法
技
巧 包含三个方面的内容:一是分割原有图形成规则图形;二
点
拨 是通过作辅助线将原有图形补为规则图形;三是分割和补
形兼而有之.
26.3 解直角三角形
例 如图,在四边形 ABDC 中,∠ABD=120°,AB⊥AC,
=
2
=25
26.3 解直角三角形
变式衍生 如图,在Rt△ABC中,∠ACB=90°,D 是 AB
解直角三角形完整版PPT课件
余弦或正切函数计算得出。
已知一边和一角求另一边
02
在直角三角形中,已知一边长和一个锐角大小可以求出另一边
长,通过正弦、余弦或正切函数计算得出。
解直角三角形的实际应用
03
例如测量建筑物高度、计算航海距离等。
三角函数在实际问题中应用
测量问题
在测量问题中,可以利用三角函数计算高度、距离等未知量。例如,利用正切函数可以计算 山的高度或者河的宽度。
直角三角形重要定理
勾股定理
如上所述,勾股定理描述了直角三角 形三边之间的数量关系。
射影定理
相似三角形判定定理
若两个直角三角形的对应角相等,则 这两个直角三角形相似。根据此定理, 可以推导出一些重要的直角三角形性 质和定理。
射影定理涉及直角三角形中斜边上的 高与斜边及两直角边之间的数量关系。
02
三角函数在解直角三角形中应用
• 性质:正弦、余弦函数值域为[-1,1],正切函数值域为R;正弦、余弦函 数在第一象限为正,第二象限正弦为正、余弦为负,第三象限正弦、余 弦都为负,第四象限余弦为正、正弦为负;正切函数在第一、三象限为 正,第二、四象限为负。
利用三角函数求边长和角度
已知两边求角度
01
在直角三角形中,已知两边长可以求出锐角的大小,通过正弦、
注意单位换算和精确度
在求解过程中,要注意单位换算和精确度的控制,避免因单位或精 度问题导致答案错误。
拓展延伸:非直角三角形解法简介
锐角三角形和钝角三角形的解法
对于非直角三角形,可以通过作高线或利用三角函数等方法将其转化为直角三角形进行 求解。
三角形的边角关系和面积公式
了解三角形的边角关系和面积公式,有助于更好地理解和解决非直角三角形问题。
第25章解直角三角形复习44页PPT文档
2
2
答:增加部分的横断面积52.36m 2
(3):
解: 5.236 1005 023(m 63)0
答:需52360方土加上去。 (4):
解:52360 300=15708000(元) =1570.8(万元)
答:计划准备1570.8万元资金付给民工.
题型3 解斜三角形
2.(2019,广安市)如图,海上有一灯 塔P,在它周围3海里处有暗礁, 一 艘客轮以9海里/时的速度由西向东航 行,行至A点处测得P在它的北偏东 60°的方向,继续行驶20分钟后, 到达B处又测得灯塔P在它的北偏东 45°方向,问客轮不改变方向继续 前进有无触礁的危险?
AD长至少为 2 米13。
解:过C作CD⊥AB于D,
设CD=x.在Rt△ACD中,cot60°,=
A
D
∴AD= 3 x.
CD
3
在Rt△BCD中,BD=CD=x.
∴ 3 x+x=8. 3 解得x=4(3- 3 ).
∴S△ABC=
1 2
1
AB·CD= 2
×8×4(3-
3
)
=16(3- 3 )=48-16 3 .
问题五: 如图:是一海堤的横断面为梯形ABCD,已知堤顶宽 B要C将为海6m堤,加堤高高2m为,3.并2m且,:保为持了堤提顶高:宽海度堤不的变拦,水迎能水力坡,C需D 的坡度也不变。但是背水坡的坡度由原来的i=1:2改成 i=1:2.5(有关数据在图上已注明)。
(1)求加高后的堤底HD的长。 (2)求增加部分的横断面积
1.(2019,盐城)如图6所示,已知:在△ABC 中,∠A=60°,∠B=45°,AB=8, 求△ABC 的面积(结果可保留根号).
问题三: 一次台风将一棵大树刮断,经测量,大树刮断一端
解直角三角形复习课课件
解直角三角形在测量中应用广泛 ,如测量高度、距离等。通过已 知的直角三角形角度和一边长度
,可以计算出其他边的长度。
建筑问题
在建筑领域中,解直角三角形可 用于计算建筑物的角度、高度和 斜边长度等。例如,在计算建筑 物倾斜角度时,可以利用直角三
角形的正、距离和位置 等。通过测量船只与陆地之间的 角度和距离,可以确定船只的位
三角形的两边长度和夹角时,可以利用余弦定理来计算第三边的长度,
从而得到三角形的周长。
三角函数问题
正弦函数
解直角三角形与正弦函数密切相关。在直角三角形中,对 边长度与正弦函数值成正比,可以用于计算对边的长度。
余弦函数
余弦函数在解直角三角形中也有应用。例如,在计算角度 时,可以利用余弦函数来求解。
正切函数
正切函数在解直角三角形中也有应用。例如,在计算斜边 长度时,可以利用正切函数来求解。同时,正切函数还可 以用于计算角度,如锐角或钝角。
04
解直角三角形的注意事项
单位统一
总结词
在进行解直角三角形时,必须确保所有的单 位都是统一的,否则会导致计算错误。
详细描述
在解直角三角形时,常常涉及到长度和角度 两个量。这两个量必须使用相同的单位,如 米、厘米、毫米等。如果单位不统一,计算 结果将失去实际意义。例如,如果一边长度 是10米,而对应的锐角是60度,如果单位 不统一,计算出的另一边长度可能是10米 或10厘米,这将导致问题无法解决。因此 ,在解题前,需要先统一单位。
置。
几何问题
01
角度计算
解直角三角形可用于计算角度,如直角三角形中的锐角或钝角。通过已
知的边长和角度,可以计算出其他角度的大小。
02
面积计算
直角三角形的面积可以通过已知的边长来计算。例如,直角三角形的面
,可以计算出其他边的长度。
建筑问题
在建筑领域中,解直角三角形可 用于计算建筑物的角度、高度和 斜边长度等。例如,在计算建筑 物倾斜角度时,可以利用直角三
角形的正、距离和位置 等。通过测量船只与陆地之间的 角度和距离,可以确定船只的位
三角形的两边长度和夹角时,可以利用余弦定理来计算第三边的长度,
从而得到三角形的周长。
三角函数问题
正弦函数
解直角三角形与正弦函数密切相关。在直角三角形中,对 边长度与正弦函数值成正比,可以用于计算对边的长度。
余弦函数
余弦函数在解直角三角形中也有应用。例如,在计算角度 时,可以利用余弦函数来求解。
正切函数
正切函数在解直角三角形中也有应用。例如,在计算斜边 长度时,可以利用正切函数来求解。同时,正切函数还可 以用于计算角度,如锐角或钝角。
04
解直角三角形的注意事项
单位统一
总结词
在进行解直角三角形时,必须确保所有的单 位都是统一的,否则会导致计算错误。
详细描述
在解直角三角形时,常常涉及到长度和角度 两个量。这两个量必须使用相同的单位,如 米、厘米、毫米等。如果单位不统一,计算 结果将失去实际意义。例如,如果一边长度 是10米,而对应的锐角是60度,如果单位 不统一,计算出的另一边长度可能是10米 或10厘米,这将导致问题无法解决。因此 ,在解题前,需要先统一单位。
置。
几何问题
01
角度计算
解直角三角形可用于计算角度,如直角三角形中的锐角或钝角。通过已
知的边长和角度,可以计算出其他角度的大小。
02
面积计算
直角三角形的面积可以通过已知的边长来计算。例如,直角三角形的面
解直角三角形(优质课)课件pptx
思考题:请思考一下,除了上述提到的领域外,解直角三角形还可以应用于哪些领域?并尝试给出具体的例子。
练习题:请完成以下解直角三角形的练习题,巩固本节课所学的知识。
已知直角三角形的一个锐角为30度,斜边长为10cm,求这个三角形的面积。
一艘船在海上航行,测得前方两个灯塔之间的夹角为60度,且这两个灯塔与船的距离分别为10海里和15海里。求这艘船相对于两个灯塔的位置。
有效数字运算规则回顾
四舍五入法、进一法、去尾法等。
近似计算方法
在保证精度的前提下,尽量简化计算过程,减少计算量。例如,利用近似公式、近似数表等。
技巧
近似计算方法和技巧
06
总结回顾与拓展延伸
03
实际应用中的解直角三角形问题
如测量问题、航海问题、物理问题等,需要将实际问题转化为数学问题,通过建立直角三角形模型进行求解。
一个物体从斜面上滑下,已知斜面的倾角为45度,物体与斜面间的动摩擦因数为0.5。求物体下滑的加速度大小。
01
02
03
04
05
思考题与练习题
THANKS
在直角三角形中,当角度为30°、45°、60°时,可以通过简单的几何关系计算出对应的正弦、余弦、正切值。
特殊角的三角函数关系
掌握特殊角度的三角函数值之间的关系,如 sin(90°-θ) = cosθ,cos(90°-θ) = sinθ 等。
特殊角度三角函数值计算
利用三角函数求未知边长或角度
三边成比例
两个角相等
相似三角形判定定理回顾
01
02
通过相似比求解未知边长或角度
构建相似三角形,利用相似比求解未知量
利用相似三角形的性质,通过已知边长和角度求解未知边长或角度
练习题:请完成以下解直角三角形的练习题,巩固本节课所学的知识。
已知直角三角形的一个锐角为30度,斜边长为10cm,求这个三角形的面积。
一艘船在海上航行,测得前方两个灯塔之间的夹角为60度,且这两个灯塔与船的距离分别为10海里和15海里。求这艘船相对于两个灯塔的位置。
有效数字运算规则回顾
四舍五入法、进一法、去尾法等。
近似计算方法
在保证精度的前提下,尽量简化计算过程,减少计算量。例如,利用近似公式、近似数表等。
技巧
近似计算方法和技巧
06
总结回顾与拓展延伸
03
实际应用中的解直角三角形问题
如测量问题、航海问题、物理问题等,需要将实际问题转化为数学问题,通过建立直角三角形模型进行求解。
一个物体从斜面上滑下,已知斜面的倾角为45度,物体与斜面间的动摩擦因数为0.5。求物体下滑的加速度大小。
01
02
03
04
05
思考题与练习题
THANKS
在直角三角形中,当角度为30°、45°、60°时,可以通过简单的几何关系计算出对应的正弦、余弦、正切值。
特殊角的三角函数关系
掌握特殊角度的三角函数值之间的关系,如 sin(90°-θ) = cosθ,cos(90°-θ) = sinθ 等。
特殊角度三角函数值计算
利用三角函数求未知边长或角度
三边成比例
两个角相等
相似三角形判定定理回顾
01
02
通过相似比求解未知边长或角度
构建相似三角形,利用相似比求解未知量
利用相似三角形的性质,通过已知边长和角度求解未知边长或角度
解直角三角形的复习课件
应用问题分析不准确
总结词
应用问题分析不准确是解直角三角形时 常见的错误之一。
VS
详细描述
学生在解决实际问题时,可能对题目的理 解不够准确,导致无法正确建立数学模型 。例如,在求解实际问题时,学生可能没 有正确分析出直角三角形中的角度和边长 关系,或者没有正确理解题目中的实际背 景和物理意义。这些错误会导致解题思路 偏离正确方向,影响最终的答案和解题效 果。
总结词
利用三角函数求解边长
边长计算问题
详细描述
已知直角三角形中的角度和一边的长度,利用三角函数计算出另一 边的长度。
总结词
利用三角函数求面积
详细描述
已知直角三角形的两个边长,利用三角函数计算其面积。
边长计算问题
总结词
利用勾股定理求面积
详细描述
已知直角三角形的三边长度,利用勾股定理计算其面积。
综合应用问题
综合习题及答案
总结词
考察知识整合和复杂应用
详细描述
题目涉及多个知识点,需要学生综合运用所学知识进行解题 。同时提供详细的答案解析,帮助学生理解解题思路和方法 。
THANKS
感谢观看
05 习题及答案
基础习题
总结词
考察基础概念和简单应用
详细描述
包括直角三角形的基本性质、锐 角三角函数的概念及其性质等基 础知识的简单题目。
提高习题
总结词
考察知识理解和中等应用
详细描述
涉及直角三角形在实际问题中的应用 ,如测量、建筑、航海等领域的题目 ,需要学生理解并运用相关知识解决 实际问题。
利用正弦函数求解角度
详细描述
03
通过已知的直角三角形中的边长,利用正弦函数计算出未知的
第23章解直角三角形期末复习PPT课件(沪科版)
(2)过点C作CF⊥AB交AB的延长线于点F, C
求sin∠BCF的值.
E A
B F
D
解:(1)在Rt△CDE中,
∵
cos∠D
=
DE CD
DE=30,
cos∠D
=
3 5
∴
30 CD
=
3 5
C
∴CD=50
E A
∵B点是CD的中点,
B F
∴BE=
1 2
CD
=25
D
∴AB=BE-AE=25-8.3 =18.7 (海里) .
例4 如图,已知斜坡 AB长为80米,坡角为30°,
现计划在斜坡中点D处挖去部分坡体(用阴影表示),修
建一个平行于水平线 CA的平台 DE 和一条新的斜坡
BE.若修建的斜坡 BE的坡角为45°,求平台 DE 的长.
解: ∵修建的斜坡 BE的坡角为45°,
∴ ∠BEF=45°.
∵ ∠DAC=∠BDF=30°, AD=BD=40米,
A
D 54°
30
EC B
解:过D点作DF⊥AB,交AB于点F. A 在Rt△ECD中,CD=6,∠ECD=30°,
∴DE=3=FB, EC= 3 3
∴DF=CB+EC =8+3 3 .
D 54°
在Rt△ADF中,tan∠ADF=
AF DF
,3E0°
C
F B
∴AF=DF×tan54°.
∴AF= (8+3 3 )×1.38 ≈18.20.
∠ACD=23.5°,则山峰AD的高度为 480 米.
(参考数据:sin23.5°≈0.40,cos23.5°=0.92,tan23.5°=0.43)
A B
(初中)解直角三角形复习课件ppt
BD=160海里<200海里
北
(2)为避免受到台风的影响, 该船应在多少小时内卸完货物? AC= 160 3 120
160
D
120 200
C
60°
160 3 120 4 3 3 3.8小时 40
B
320
A
∠A的邻边 斜边
A ∠A的邻边
C
∠A的对边 ∠A的邻边
1.锐角A的正弦、余弦、和正切统称∠A的三角函数
2.∠A的取值范围是什么?sinA ,cosA与tanA的取值范围又 如何?
特殊角的三角函数值表
三角函数 锐角α
300
1 2 3 2 3 3
450
2 2 2 2
1
600
3 2 1 2
正弦sinα
要能记 住有多 好
余弦cosα 正切tanα
3
1.互余两角三角函数关系: 0 1.SinA=cos(90 -A)
0 2.cosA=sin(90 -A)
2.同角三角函数关系:
2 2 1.sin A+cos A=1
sin A 2. tan A cos A
1.两锐角之间的关系:
∠A+∠B=900
解 直 角 三 角 形
在解直角三角形及应用时经常接触到的一些概念
(1)仰角和俯角
(2)坡度
i=
视线 铅 垂 线 仰角 水平线
h l
=tan
α
俯角
北
α为坡角
视线
h α
A
(3)方位角
西
30°
l
B
O 45°
南
东
例1:山坡上种树,要求株距(相临两树间的水平
距离)是5.5米,测的斜坡倾斜角是30º ,求斜坡上相 邻两树间的坡面距离是多少米(精确到0.1米)
北
(2)为避免受到台风的影响, 该船应在多少小时内卸完货物? AC= 160 3 120
160
D
120 200
C
60°
160 3 120 4 3 3 3.8小时 40
B
320
A
∠A的邻边 斜边
A ∠A的邻边
C
∠A的对边 ∠A的邻边
1.锐角A的正弦、余弦、和正切统称∠A的三角函数
2.∠A的取值范围是什么?sinA ,cosA与tanA的取值范围又 如何?
特殊角的三角函数值表
三角函数 锐角α
300
1 2 3 2 3 3
450
2 2 2 2
1
600
3 2 1 2
正弦sinα
要能记 住有多 好
余弦cosα 正切tanα
3
1.互余两角三角函数关系: 0 1.SinA=cos(90 -A)
0 2.cosA=sin(90 -A)
2.同角三角函数关系:
2 2 1.sin A+cos A=1
sin A 2. tan A cos A
1.两锐角之间的关系:
∠A+∠B=900
解 直 角 三 角 形
在解直角三角形及应用时经常接触到的一些概念
(1)仰角和俯角
(2)坡度
i=
视线 铅 垂 线 仰角 水平线
h l
=tan
α
俯角
北
α为坡角
视线
h α
A
(3)方位角
西
30°
l
B
O 45°
南
东
例1:山坡上种树,要求株距(相临两树间的水平
距离)是5.5米,测的斜坡倾斜角是30º ,求斜坡上相 邻两树间的坡面距离是多少米(精确到0.1米)
解直角三角形(复习课)课件
分析多个直角三角形之间的关系,解 决较为复杂的几何问题。
结合勾股定理和三角函数计算直角三 角形中的未知量。
利用给定的条件,设计合理的方案解 决实际问题,如设计桥梁、建筑等结 构的支撑体系。
06
复习与总结
重点回顾
直角三角形的定义与性质
回顾直角三角形的定义、性质和判定条件,理解其在几何图形中 的重要地位。
求解角度。
常见错误分析
混淆边和角
在解题过程中,有时会混淆边和角,导致计算错误。
忽视勾股定理的条件
在使用勾股定理时,需要确保三角形是直角三角形,否则会导致错 误。
角度范围错误
在计算角度时,需要注意角度的范围,避免出现负角度或超过180 度的角度。
解题方法总结
勾股定理法
适用于已知两边长度, 求第三边长度的情况。
船只安全航行。
物理实验
测量角度
在物理实验中,经常需要测量各 种角度。解直角三角形的方法可 以用来计算这些角度,确保实验
结果的准确性。
计算力的大小
在物理实验中,经常需要计算力的 大小。通过解直角三角形,可以精 确地计算出力的大小,确保实验结 果的可靠性。
确定物体的位置
在物理实验中,物体的位置是非常 重要的。通过解直角三角形,可以 计算出物体的位置,确保实验的准 确性和可靠性。
04
解题技巧与策略
解题思路
01
02
03
04
明确问题要求
首先需要理解题目的要求,确 定需要求解的是什么。
选择合适的三角形
根据问题描述,选择一个合适 的直角三角形来解决问题。
利用勾股定理
在直角三角形中,勾股定理是 一个重要的工具,可以帮助我
们求解边长。
结合勾股定理和三角函数计算直角三 角形中的未知量。
利用给定的条件,设计合理的方案解 决实际问题,如设计桥梁、建筑等结 构的支撑体系。
06
复习与总结
重点回顾
直角三角形的定义与性质
回顾直角三角形的定义、性质和判定条件,理解其在几何图形中 的重要地位。
求解角度。
常见错误分析
混淆边和角
在解题过程中,有时会混淆边和角,导致计算错误。
忽视勾股定理的条件
在使用勾股定理时,需要确保三角形是直角三角形,否则会导致错 误。
角度范围错误
在计算角度时,需要注意角度的范围,避免出现负角度或超过180 度的角度。
解题方法总结
勾股定理法
适用于已知两边长度, 求第三边长度的情况。
船只安全航行。
物理实验
测量角度
在物理实验中,经常需要测量各 种角度。解直角三角形的方法可 以用来计算这些角度,确保实验
结果的准确性。
计算力的大小
在物理实验中,经常需要计算力的 大小。通过解直角三角形,可以精 确地计算出力的大小,确保实验结 果的可靠性。
确定物体的位置
在物理实验中,物体的位置是非常 重要的。通过解直角三角形,可以 计算出物体的位置,确保实验的准 确性和可靠性。
04
解题技巧与策略
解题思路
01
02
03
04
明确问题要求
首先需要理解题目的要求,确 定需要求解的是什么。
选择合适的三角形
根据问题描述,选择一个合适 的直角三角形来解决问题。
利用勾股定理
在直角三角形中,勾股定理是 一个重要的工具,可以帮助我
们求解边长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精选ppt
16
巩固练习
5、山顶上有一旗杆,在地面上一点A处 测
得杆顶B的仰角α =600,杆底C的仰角β =300,
已知旗杆高BC=20米,求山高CD。
解:设AD=xm,
B
在Rt△ABDC中,
CD=AD•tan∠CAD= x•tan30˚,
在Rt△ADB中,
C
BD=ADC•tan60˚= x•tan60˚,
BD绕着点B旋转后,点D落在CB的延长线上的D′处,
那么tan∠BAD′等于 .
4、如图,梯形ABCD中,AD∥BC,∠B=45°,
∠C=120°,AB=8,则CD的长为 .
精选ppt
15
在涉及四边形问题时,经常把四边形 进行适当分割,划分为三角形和特殊四边 形,再借助特殊四边形的特征和直角三角 形知识解决问题。
tanα>0,
精选ppt
4
2、特殊角的三角函数值表
要能记 住有多 好
1
2
3
2
2
2
3
2
1
2
2
2
3
1
3
3
精选ppt
5
3、三角函数关系式
互余两角三角函数关系:
1.SinA=cos(900-A) 2.cosA=sin(900-A)
同角三角函数关系:
1.sin2A+cos2A=1
2.tanAcsionAAs
(1)仰角和俯角
(2)坡度 i =
h
l
α为坡角
h
α
l
视线
铅
α垂
=tan
线
仰角 俯角
水平线
视线
(3)方向角
北
A
30°
西
东
O
45°
精选ppt
8
B
南
典例探究
例1.已知: ⊿ABC中,∠ACB=135°, ∠B=30°,BC=12,求BC上的高。
思考1:本题要求的目标是什么?有哪些已知条件? 思考2:AD与CD有什么关系,为什么?
B
c
a
┏
A
b
C
精选ppt
1
课前热身
12
1.在Rt⊿ABC中,∠C=90°,AC=5,AB=13,则tanA= ____5__
2.计算: sin60°·tan30°+cos ² 45°= 1
3.在⊿ABC中, ∠A=60°,AB=2cm,AC=3cm,则S ⊿ABC=
______________ 3 3 cm 2
知识梳理
精选ppt
3
知识梳理
定 义
注意:三角函数的定义,必须在直角三角形中.
B
∠A的对边
sinA
斜边
斜边
∠A的对边 cosA
∠A的邻边 斜边
A ∠A的邻边
C
tanA
∠A的对边 ∠A的邻边
1、锐角A的正弦、余弦、和正切统称∠A的三角函数
2、锐角三角函数值的范围:0<sinα<1,0<cosα<1,
∵ BD-CD=BC,BC=20m
60°
∴ x•tan60˚- x•tan30˚=20 D ┓
30° A
∴∴xC=D=xtDa•tna┓6n03˚20-0˚t=a1n0630√0°3˚3×0°=精1选p√p0t 3√A3
答:山高CD为
10米.
=10(m)
17
课外延伸
思考与探究
1.有一块如图所示的四边形空地,你能帮他计算出这块 空地的面积吗?
D
B
D
C
2.(1)把实际问题转化成数学问题,这个转化为两
个方面:一是将实际问题的图形转化为几何图形,
画出正确的平面或截面示意图,二是将已知条件
转化为示意图中的边、角或它们之间的关系.
(2)把数学问题转化成解直角三角形问题,如果示意图不是 直角三角形,可添加适当的辅助线,画出直角三角形.
(3)要注意积累常见模型以及方程思想的运用。
思考3:在⊿ACD中能求AD吗?
思考4:在⊿ABD中能求AD吗?怎样求?运用了什么
数学思想?
精选ppt
分析后,请学生上黑板板演9
例2:海中有一小岛A,它周围8海里内有暗礁,渔船
跟踪鱼群由西向东航行,在B处测得小岛A在北偏东60°, 航行12海里到达C点,这时测得小岛A在东北方向上,如 果渔船不改变方向,继续向东捕捞,有没有触礁的危险?
驶向理想的……
指
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
精选ppt
6
4、直角三角形边角间的关系:
1.两锐角之间的关系:
∠A+∠B=900
解 2.三边之间的关系:源自直 a2+b2=c2
角 三 角 形
3.边角之间
A
sinA= a
c
cosA=
b c
的关系
tanA= a b
B
c a
bC
什么是解直角三角形?
精选ppt
7
5、在解直角三角形及应用时经常接触到的一些 概念
B
2
2
60°
4.某飞机A的飞行高度为1000米,从飞机上看A机场指3 挥 C
塔B的俯角为60°,此时飞机与机场指挥塔的距离为
米。
2000 3 米
3
5.一段斜坡的垂直高度为8米,水平宽度为16米,则这
段斜坡的坡比i=
1 :2
回思:(1)这几个题目都涉及到哪些知识点? (2)解题过程中要注意精哪选pp些t 问题? 小组交流,每组代表发2言
2.有一段长为1公里的防洪堤,其横断面为梯形ABCD,
AD∥BC,堤高为6米,迎水坡AB的坡度i1=1:2,为了增强抗 洪能力,需要将迎水坡的坡面铺石加固,使堤面AD加宽2
米(即AE=2米),坡EF的坡度i2=1:2.5,那么完成这一工 程需要铺石多少立方米?
E2 A
D
F
B
C
导敬
请
知识象一艘船 让它载着我们
精选ppt
独立思考,完成书11 写
交流:
1.这几题的解题思路是什么?有什么异 同? 2.怎样把实际问题转化成数学问题? 3.遇到一般三角形或者四边形怎么办? 4.在解决这些问题时,常常用到那些数学 思想?
精选ppt
12
总结提高
1、本节例题学习以后,我们可以得到解直角三角
形的两种基本图形:
A
A
B
C
精选ppt
13
A
10 X
30°
°
60
B 10 C
D
A
X
45° 60°
B
10 D X-10
C
A
x
30°
45° D
B 10 C x
A X
60° 45°
B
10
10 C
巩固练习
5
1、已知tana=12 是锐角,则sina=
=
.
,cosa
2、若tan(α+10°)= 3,则锐角α的度是
.
3、如图,已知正方形ABCD的边长为2,如果将线段
北
E
北
F
A
600 450
西
B
12
东 C
判断有无触礁危险精选的pp方t 法是什么?
10
变式:若把AD看作是某电视塔的高,B,C看作是两个观 测点, 30°, 45°分别是这两个观测点测得的两个仰角, 并测得BC=12米 ,求电视塔的高度。
A
30°
B
45°
D
C
交流:这几题的解题思路是什么?有什么异同?