高一数学秦九韶算法
§75秦九韶算法
§75秦九韶算法§75秦九韶算法──求多项式的值一、泰勒定理简介二、求多项式值的求法三、秦九韶算法1.直接法2.累乘法3.秦九韶算法1.步骤2.编程复杂函数多项式函数泰勒定理先改后算两大步降幂提因○补缺由内到外逐层算人工递推系数表4.其他法递推公式法人工系数表法三大语言三结构五种语句三案例高考主流是框图循环结构是重点辗转相除法与更相减损术进位制秦九韶算法注4:注1:自然语言框图程序设计语言注2:顺序结构条件结构循环结构输入语句注3:赋值语句输出语句条件语句循环语句───求最大公约数───求多项式的值框图的画法是次要的重点是要能看懂框图2.辗转相除法1.短除法求最大公约数的方法3.更相减损术数字较小短除法公质因数连续除除到所有商互质除数连乘是答案大除小余换大辗转除何时停0或11互质0除数即答案大减小差换大连续减何时停两相等即答案若可半可省功注:辗转相除法与更相减损术的异同点1.辗转相除法以除法运算为主3.两法本质上都是递推,都可用循环结构编程更相减损术以减法运算为主2.辗转相除法当除法运算余数为O或1时终止运算更相减损术当减法运算差为O时终止运算§75秦九韶算法──求多项式的值一、泰勒定理简介二、求多项式值的求法三、秦九韶算法1.直接法2.累乘法3.秦九韶算法1.步骤2.编程复杂函数多项式函数泰勒定理先改后算两大步降幂提因○补缺由内到外逐层算人工递推系数表4.其他法递推公式法人工系数表法常见的多项式(整式)函数我省的大压轴题,每年都是以三次函数来说事2013年的全国Ⅰ卷的小压轴题,是四次函数泰勒中值定理一、泰勒定理简介复杂函数多项式函数泰勒定理②n越大越精确①阶乘的概念:参课本P:32练习2麦克劳林公式一、泰勒定理简介复杂函数多项式函数泰勒定理1.直接法2.累乘法3.秦九韶算法最多n(n+1)/2次乘法,n次加法最多n次乘法,n次加法xn=(xn-1)xxn-1=(xn-2)xxn-2=(xn-3)x…二、求多项式值的求法4.其他法例如当n=10时……引例.求f(x)=x5+x4+x3+x2+x+1当x=5时的值直接法f(5)=55+54+53+52+5+1=3125+625+125+25+5+1=3906累乘法f(5)=55+54+53+52+5+1+5+1□=+□+□+□251253125625=3906引例.求f(x)=x5+x4+x3+x2+x+1当x=5时的值秦九韶算法f(5)=55+54+53+52+5+1=5×(54+53+52+5+1)+1=5×(5×(53+52+5+1)+1)+1=5×(5×(5×(52+5+1)+1)+1)+1=5×(5×(5×(5×(5+1)+1)+1)+1)+1=5×(5×(5×(5×6+1)+1)+1)+1=5×(5×(5×31+1)+1)+1=5×(5×156+1)+1=5×781+1=3906先改后算迭代法降幂提因○补缺由内到外逐层算人工递推系数表后算先改可以看出,该算法是:将求一个5次多项式f(x)的值转化成了求5个一次多项式的值的方法引例.求f(x)=x5+x4+x3+x2+x+1当x=5时的值1.直接法2.累乘法f(5)=55+54+53+52+5+13.秦九韶算法4.其他法55,54,53,52,5,1应用等比数列的求和公式最简洁吧秦九韶算法:设是一个n次的多项式先对该多项式按下面的方式进行改写:先改后算两大步降幂提因○补缺由内到外逐层算如何求该多项式的值呢?最后一项Vn是所求值秦九韶算法是将求一个n次多项式f(x)的值转化成了,求n个一次多项式的值的方法。
高中数学 1.3 算法与案例 秦九韶算法文字素材 新人教A版必修3
算法案例中国数学名家-秦九韶秦九韶(1202~1261年),字道古,南宋普州安岳(今四川省安岳县)人。
,有记载则说秦九韶自称鲁郡(现山东滋阳、曲阜一带)人,幼年时随父亲在四川巴州居住。
青少年时饱受战乱,成年后离开四川,在湖北、安徽、江苏、浙江、广东等地做官,任过县尉、通判、州守等职,死于梅州(今广东梅县)。
秦九韶的突出数学成就表现为四个方面:(1)“大衍求一术”。
即为一次同余式组解法。
西方解决同类问题的理论是高斯于1801年建立的,比秦九韶晚了554年。
他还把这种理论用于解决商功、利息、粟米、建筑等问题。
(2)线性方程组解法。
他在《数书九章》中解决了许多相当于线性方程组的问题,其中数字相当大,计算也很复杂。
他在“均货推本”题草中,井然有序地写出厂解题过程,这种解法与高斯消元法本质相当,但比高斯早约600年。
(3)高次方程数值解法。
他集秦汉以来“开方术”之大成,运用贾宪的“增乘开方法”,解决于数字高次方程有理数根和无理数根的近似值计算问题。
他所设计的演算程序被称为“秦九韶方法”。
西方同类问题的探究始于19世纪,他比意大利的鲁菲尼、英国的霍纳要早五、六百年。
(4)“三斜求积”。
他在《数书九章》中,依据分别为12、14、15的三边求出了相应的三角形面积,其方法具有一般性。
这与西方的海伦公式是等价的。
中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
一、教材分析:本节课讲的是中国书法艺术主要是为了提高学生对书法基础知识的掌握,让学生开始对书法的入门学习有一定了解。
书法作为中国特有的一门线条艺术,在书写中与笔、墨、纸、砚相得益彰,是中国人民勤劳智慧的结晶,是举世公认的艺术奇葩。
早在5000年以前的甲骨文就初露端倪,书法从文字产生到形成文字的书写体系,几经变革创造了多种体式的书写艺术。
1、教学目标:使学生了解书法的发展史概况和特点及书法的总体情况,通过分析代表作品,获得如何欣赏书法作品的知识,并能作简单的书法练习。
12-06-25高一数学《秦九韶算法与进位制》(课件)-优质课件
2012年上学期
按由里到外的顺序,依此计算一次 多项式当x = 5时的值:
v0 5 v1 5 5 2 27 v2 27 5 3.5 138.5 v3 138.5 5 2.6 689.9 v4 689.9 5 1.7 3451.2 v5 3451.2 5 0.8 17255.2
按由里到外的顺序,依此计算一次 多项式当x = 5时的值:
v0 5 v1 5 5 2 27 v2 27 5 3.5 138.5 v3 138.5 5 2.6 689.9
湖南长郡卫星远程学校
制作 15
2012年上学期
按由里到外的顺序,依此计算一次 多项式当x = 5时的值:
110011(2) 1 25 1 24 0 23 0 22 1 21 1 20
湖南长郡卫星远程学校
制作 15
2012年上学期
二、二进制与十进制的转换
1. 二进制数转化为十进制数
例1. 将二进制数110011(2)化成十进制数 解:根据进位制的定义可知
110011(2) 1 25 1 24 0 23 0 22 1 21 1 20
制作 15
2012年上学期
2. 十进制转换为二进制 [例2] 把89化为二进制数 2 89 余数
湖南长郡卫星远程学校
制作 15
2012年上学期
2. 十进制转换为二进制 [例2] 把89化为二进制数
2 89 余数 2 48 1
湖南长郡卫星远程学校
制作 15
2012年上学期
2. 十进制转换为二进制
湖南长郡卫星远程学校
制作 15
2012年上学期
二、二进制与十进制的转换
1.3 案例2 秦九韶算法
((an x an1 ) x an 2 ) x a1 ) x a0
当知道了x的值后该如何求多项式的值?
f ( x ) ((an x an1 ) x an 2 ) x a1 ) x a0
要求多项式的值,应该先算最内层的一次多 项式的值,即
所以,当x = 2时,多项式的值等于-41.
高中数学备课组
练习: 已知多项式f(x)=x5+5x4+10x3+10x2+5x+1 用秦九韶算法求这个多项式当 x= -2 时的值.
f(-2)= -1.
高中数学备课组
秦九韶算法的程序框图:
开始 输入n, an, x的值 v=an
v 0 a n v k v k 1 x an k ( k 1,2, , n)
f (5)=55+54+53+52+5+1 =5×(54+53+52+5+1)+1
=5×(5×(53+52+5 +1)+1 )+1
=5×(5×( 5× (52+5 +1)+1 )+1 )+1
=5×(5×(5× (5 × (5 +1 ) +1 )+1 )+1 )+1
两种算法中各用了几次乘法运算? 几次加法运算?
f ( x ) an x n an1 x n1 a1 x a0 (an x n1 an1 x n 2 a1 ) x a0
(( an x n 2 an1 x n 3 a2 ) x a1 ) x a0
高中数学备课组
v1 an x an1
然后,由内到外逐层计算一次多项式的值,即
高中数学备课组
v 3 v 2 x an 3
v n v n 1 x a 0
秦九韶算法高中数学
秦九韶算法高中数学
秦九韶算法是一种快速求解多项式值的算法,常用于计算机科学和工程学。
该算法可以将一个n次多项式表示为n-1次多项式的递归形式,从而快速计算多项式的值。
具体来说,假设要求P(x)=a0+a1*x+a2*x^2+⋯+an*x^n,秦九韶算法的递推公式为:
P(x) = a0 + x * (a1 + x * (a2 + x * (a3 + ⋯ + x * (an-1 + x * an))))
也就是说,从最高次项开始逐次将x乘进去,直到乘到最低次项为止。
这样一来,算法的复杂度为O(n)(即线性),比暴力计算的O(n^2)(即平方)要快得多。
在高中数学中,秦九韶算法主要作为多项式函数的计算工具。
例如,假设给定多项式f(x)=2x^3+4x^2+3x+1和x=2,要求计算f(x),可以使用秦九韶算法:
f(2) = 2 * 2^3 + 4 * 2^2 + 3 * 2 + 1
= 16 + 16 + 6 + 1
= 39
因此,f(2)=39。
秦九韶算法的应用范围很广,可以用于求解各种多项式函数的值,包括指数函数、对数函数等。
1.3秦九韶算法
知识探究(一):秦九韶算法的基本思想
问题1:多项式f(x)=x5+x4+x3+x2+x+1,怎 样求f(5)的值.
程序
x=5 f=x^5+x^4+x^3+x^2+x+1
PRINT f
END
点评:上述算法一共做了10次乘法运算,5 次加法运算.优点是简单,易懂;缺点 是不通用,不能解决任意多项多求值 问题,而且计算效率不高.
然后由内向外逐层计算一次多项式的值,即
v2=v1x+an-2, v3=v2x+an-3, ……, vn=vn-1x+a0.
这样,求n次多项式f(x)的值就转化为求n个 一次多项式的值.这种算法称为秦九韶算法.
小结
秦九韶算法是求一元多项式的值的一 种方法. 它的特点是:把求一个n次多项式的值 转化为求n个一次多项式的值,通过这种转 化,把运算的次数由至多n(n+1)/2次乘法运 算和n次加法运算,减少为n次乘法运算和n 次加法运算,大大提高了运算效率.
n n i
i
例 阅读下 列程序,说明 它解决的实际 问题是什么?
INPUT “a=”;a n=0 y=0 WHLE n<5 y=y+(n+1)*a∧n n=n+1 WEND PRINT y END
小结作业
评价一个算法好坏的一个重要标志 是运算的次数,如果一个算法从理论上 需要超出计算机允许范围内的运算次数 ,那么这样的算法就只能是一个理论算 法.在多项式求值的各种算法中,秦九韶 算法是一个优秀算法.
作业: P45练习:2. P48习题1.3A组:2.
所以,当x=5时,多项式的值是2677.
秦九韶数学思想方法
秦九韶数学思想方法
秦九韶算法的特点和作用
特点:通过一次式的反复计算,逐步得出高次多项式的值,对于一个n次多项式,只需做n次乘法和n次加法即可。
作用:解决了运算次数的问题,大大减少了乘法运算的次数,提高了运算效率。
数学思想:把高次转化为一次的化归思想方法。
算法具有通用的特点,可以解决一类问题。
秦九韶算法公式如下图所示:
其中,a表示系数组成的数列,a[n]=aₙ,a[0]=a₀。
秦九韶算法能够将一元n次多项式的求值问题转化为n个一次式,对于一元n次多项式的求值,通常需要经过(n+1)*n/2次乘法,秦九韶算法的先进点就在于它只需要进行n次乘法,从而大大缩短人工简化的运算过程。
《秦九韶算法》课件
秦九韶பைடு நூலகம்法的代码示例
} ``` Java实现
秦九韶算法的代码示例
01
```java
02
import java.util.Scanner;
public class Main {
03
秦九韶算法的代码示例
01
02
03
public static void main(String[] args) {
Scanner scanner = new
秦九韶算法的步骤解析
01
确定多项式的最高次项 系数和次数。
02
根据秦九韶算法的公式 ,计算一次多项式的系 数。
03
利用一次多项式求值公 式,计算多项式的值。
04
重复以上步骤,直到求 出所有需要计算的多项 式的值。
秦九韶算法的公式推导
根据多项式求值原理,推导出秦九韶 算法的公式。
利用递归的思想,将高次多项式转化 为一次多项式,推导出秦九韶算法的 公式。
编写代码
按照秦九韶算法的步骤,编写相应的代码。需要注意代码 的健壮性和可读性,以便于后续的维护和调试。
测试代码
通过输入不同的多位数,测试代码的正确性和性能。
秦九韶算法的代码示例
C语言实现 ```c
int main() {
秦九韶算法的代码示例
int n, x = 0, i, d; printf("请输入一个多位数:");
05
秦九韶算法的优缺点
秦九韶算法的优点
01
02
03
高效性
秦九韶算法将多项式求值 问题转化为一系列一元运 算,减少了乘法的次数, 提高了运算效率。
易于编程实现
秦九韶算法的步骤明确, 易于转化为程序代码,便 于计算机实现。
2.22. 秦九韶算法
0
k进制的数 an an 1an 2 a2 a1( k ) 表示为:
7342(8) 7 8 3 8 4 8 2 8
3 2 1
八进制逢8进1,使用0~7两个数字
0
an k
n 1
an 1 k
n 2
a1 k0 Nhomakorabea(0 an k , 0 an1 , , a1 k )
vn vn1 x a0
一、进位制的由来 人类在长期的生产劳动中创造了数字,为了方便读写和计 算,逐渐地产生了进位制.古罗马人采取60进制,玛雅人使用20 进制,中国、埃及、印度等国主要采取10进制.而近代由于计 算机的诞生,二进制应运而生. 计算机为何采用二进制?
1.二进制只有0和1两个数字,要得到表示两种不同 稳定状态的电子器件很容易,而且制造简单,可靠性高.
v2 v1 x an 2 v 3 v 2 x an 3
v0 an v k v k 1 x an k ( k 1, 2, , n)
vn vn1 x a0
这种将求一个n次多项式f(x)的值转化成求n 个一次多项式的值的方法,称为秦九韶算法
2.在各种计数中,二进制的算法逻辑简单,有布尔逻辑代数 做理论依据,简单的运算规则则使得机器内部的操作也变得简 单,如加法法则只有4条:0+0=0,0+1=1,1+0=1,1+1=0,而十进 制加法法则从0+0=0到9+9=18需要100条;乘法法则也是这样: 0×0=0,0×1=0,1×0=0,1×1=1,十进制的乘法法则要由一张 “九九表”来规定,比较复杂.
用秦九韶算法求这个多项式当x = 5的值.
秦九韶算法
i ≥0 否 输出v
结束
是
输入ai
练习
练习3、下图的框图是一古代数学家的一个算法的 程序框图,它输出的结果s表示( C )
开始
A.a0+a1+a2+a3
B.a3+a2x0+a1x02+a0x03的值 C.a0+a1x0+a2x02+a3x03的值 D.以上答案都不是
输入a0a1a2a3x0 k=3 s=a3 k>0 k=k-1
S1 输入多项式的最高次数n, 最高次数项an和x的值; S2 令v=an,i=n-1; S3 输入i次项的系数ai; S4 v =vx+ai,i=i-1; S5 判断i≥0是否成立. 若是,则返回第三步, 不是,输出多项式的值.
算法演示 开始 输入n,x,an v=an i=n-1 i=i-1 v=vx+ai
f(x)=1+2· x· +5· x2+3· x3+2· x4 x+6· x x· x· x· 逐项求和法
1+2+2+2=9次乘法运算,5次加法运算。
1+2+3+4+5=15次乘法运算,5次加法运算。
思考
计算多项式f(x)=2x5+3x4+5x3+6x2+2x+1 当x = 2的值。
是否有更简单的算法,来解决此多项式的求值问题
由内向外逐层计算多项式的值:
v0=an v1=v0x+an-1; v2=v1x+an-2; v3=v2x+an-3;
……..
则递推公式为:
v0 an vk vk 1x ank k=1,2,…,n
高一数学 1.3.1 辗转相除法与更相减损术、秦九韶算法课件 新人教A版必修2
第一课时 辗转相除法与更相减损术、秦九韶算法
自学导引 1.理解辗转相除法与更相减损术的含义,了解执行过程. 2.掌握秦九韶算法的计算过程,了解它在数学计算中的应用. 3.进一步体会算法的基本思想.
课前热身
欧几里得算法
两个正整数的最大公约数
1.辗转相除法是用于求
_____________________的一种方 较大的数
解:解法1(辗转相除法):先求175与100的最大公约数: 175=100×1+75, 100=75×1+25, 75=25×3. ∴175与100的最大公约数是25. 以下再求25与75的最大公约数: 75=25×3 ∴25和75的最大公约数是25.
故25是75和25的最大公约数,也就是175、100、75的最大公约数.
Hale Waihona Puke (3)任何两个数,用辗转相除法求其最大公约数的程序框图. 由于辗转相除法总是用较大的数去除以较小的数,所以首先要对一 开始给定的两数的大小进行判断,并将大数赋给m,小数赋给n,然 后再执行下面的过程.程序框图如下图所示:
(4)辗转相除法求两个数的最大公约数的程序设计.
INPUT “a,b”;a,b IF a<b THEN t=a a=b b=t END IF r=a MOD b WHILE r<>0 a=b b=r r=a MOD b WEND PRINT b END
解:(1)98和63 辗转相除法 S1 98=63 ×1+35, S2 63=35 ×1+28, S3 35=28×1+7, S4 28=4 ×7, 最大公约数为7.
更相减损术 S1 98-63=35, S2 63-35=28, S3 35-28=7, S4 28-7=21, S5 21-7=14, S6 14-7=7, 故98和63的最大公约数为7.
高中数学知识点总结:秦九韶算法与排序
高中数学知识点总结:秦九韶算法与排序
秦九韶算法与排序
1、秦九韶算法概念:
f(x)=a n x n+a n-1x n-1+….+a1x+a0求值问题
f(x)=a n x n+a n-1x n-1+….+a1x+a0=( a n x n-1+a n-1x n-2+….+a1)x+a0 =(( a n x n-2+a n-1x n-3+….+a2)x+a1)x+a0 =......=(...( a n x+a n-1)x+a n-2)x+...+a1)x+a0
求多项式的值时,首先计算最内层括号内依次多项式的值,即v1=a n x+a n-1
然后由内向外逐层计算一次多项式的值,即
v2=v1x+a n-2 v3=v2x+a n-3 ......v n=v n-1x+a0
这样,把n次多项式的求值问题转化成求n个一次多项式的值的问题。
2、两种排序方法:直接插入排序和冒泡排序
1、直接插入排序
基本思想:插入排序的思想就是读一个,排一个。
将第1个数放入数组的第1个元素中,以后读入的数与已存入数组的数进行比较,确定它在从大到小的排列中应处的位置.将该位置以及以后的元素向后推移一个位置,将读入的新数填入空出的位置中.(由于算法简单,可以举例说明)
2、冒泡排序
基本思想:依次比较相邻的两个数,把大的放前面,小的放后面.即首先比较第1个数和第2个数,大数放前,小数放后.然后比较第2个数和第3个数......直到比较最后两个数.第一趟结束,最小的一定沉到最后.重复上过程,仍从第1个数开始,到最后第2个数...... 由于在排序过程中总是大数往前,小数往后,相当气泡上升,所以叫冒泡排序.
高中数学知识点总结第 1 页共1 页。
高中数学《秦九韶算法与排序》教案1 北师大版必修3
高中数学《秦九韶算法与排序》教案1 北师大版必修3高中数学《秦九韶算法与排序》教案1北师大版必修3第三、四课时秦九韶算法与排序(1)教学目标(a)科学知识与技能1.了解秦九韶算法的计算过程,并理解利用秦九韶算法可以减少计算次数提高计算效率的实质。
2.掌控数据排序的原理能够采用轻易排序法与冒泡排序法给一组数据排序,进而能够设计冒泡排序法的程序框图及程序,认知数学算法与计算机算法的区别,认知计算机对数学的辅助促进作用。
(b)过程与方法恶搞秦九韶计算方法,体会古人排序构想的精妙。
能够根据排序法中的轻易插入排序法与冒泡排序法的步骤,介绍数学计算切换为计算机排序的途径,从而探究计算机算法与数学算法的区别,体会计算机对数学自学的辅助促进作用。
(c)情态与价值通过对秦九韶算法的学习,了解中国古代数学家对数学的贡献,充分认识到我国文化历史的悠久。
通过对排序法的学习,领会数学计算与计算机计算的区别,充分认识信息技术对数学的促进。
(2)教学重难点重点:1.秦九韶算法的特点2.两种排序法的排序步骤及计算机程序设计难点:1.秦九韶算法的先进性认知2.排序法的计算机程序设计(3)学法与教学用具学法:1.探究秦九韶算法对照通常计算方法中排序次数的发生改变,体会科学的排序。
2.恶搞排序法中数字排序的步骤,认知计算机排序的通常步骤,领会数学计算在计算机上实行的建议。
教学用具:电脑,计算器,图形计算器(4)教学设想(一)创设情景,揭示课题我们已经研习过了多项式的排序,下面我们排序一下多项式5432f(x)?x?x?x?x?x?1当x?5时的值,并统计所做的计算的种类及计算次数。
根据我们的计算统计可以得出我们共需要10次乘法运算,5次加法运算。
2我们把多项式变形为:f(x)?x(1?x(1?x(1?x)))?x?1再统计数据一下排序当x?5时的值时须要的排序次数,可以得出结论仅须要4次乘法和5次乘法运算即可得出结论结果。
似乎太少了6次乘法运算。
最新-2021学年高一数学必修三课件:第一章 算法初步 第9课时 秦九韶算法与进位制 精品
故 11012(3)=1110001(2). 【答案】1110001(2)
【变式设问】将三进制数 11012(3)转化为五进制数,其结果为 多少?
提示:由例 3 可知 11012(3)=113; 利用除 5 取余法将其转化为五进制数为 423(5).
【针对训练 3】把二进制数 1011001(2)化为五进制数是 ( ).
古时候,当边境有敌人来犯时,守边的官兵通过在烽火台上 点火向境内报告,如图所示.烽火台上点火表示数字 1,未点火表 示数字 0,约定二进制数对应的十进制数的单位是 1000,请你计算 一下这组烽火台表示有多少敌人来犯?
【解析】由图易知这组烽火台表示的二进制数为 11011(2), 转化为十进制数为 1×24+1×23+0×22+1×21+1×20=27, 由于十进制数的单位是 1000,故入侵敌人的数目为 27× 1000=27000.
【解析】∵111111(2)=1+1×2+1×22+1×23+1×24+1×25=63, 210(6)=0+1×6+2×62=78, 1000(4)=1×43=64, 81(8)=1+8×8=65, ∴最小的数是 111111(2),故选 A. 【答案】A
3.已知多项式 f(x)=2x5-5x4-4x3+3x2-6x+7,当 x=5 时,由秦九韶算
预学 1:秦九韶计算多项式的方法
f(x)=anxn+an-1xn-1+…+a1x+a0 =(anxn-1+an-1xn-2+…+a1)x+a0 =((anxn-2+an-1xn-3+…+a2)x+a1)x+a0 …… =(…((anx+an-1)x+an-2)x+…+a1)x+a0. 求多项式的值时,首先计算最内层括号内一次多项式的值, 即 v1=anx+an-1,然后由内向外逐层计算一次多项式的值,即 v2=v1x+an-2,v3=v2x+an-3,…,vn=vn-1x+a0.这样,把 n 次多项式的求值 问题转化为求 n 个一次多项式的值的问题,上述方法称为秦九韶 算法.
秦九韶多项式求解技巧
秦九韶多项式求解技巧秦九韶算法,也称为秦九韶多项式求解技巧,是一种用于求解多项式的高效算法。
它的基本原理是将多项式表达式转化为一系列的加法和乘法运算,从而减少了计算的复杂性。
在本文中,我们将介绍秦九韶算法的基本原理和具体实现步骤。
1. 秦九韶算法的基本原理秦九韶算法的基本原理是利用多项式的特殊性质,将多项式表达式转化为一系列的加法和乘法运算,从而减少计算的复杂性。
具体来说,秦九韶算法利用了多项式的线性叠加性质和公因子提取的原则。
多项式的线性叠加性质指的是,对于一个多项式f(x) = a0 + a1*x + a2*x^2 + ... + an*x^n,可以将其表示为一个累积的求和过程,即 f(x) = a0 + x*(a1 + x*(a2 + ... + x*(an-1 + an*x)...))。
公因子提取的原则指的是,对于一个多项式f(x) = a0 + a1*x + a2*x^2 + ... + an*x^n,可以将其表示为一个公共因子和一个剩余多项式的乘积形式,即f(x) = (a0 + x*(a1 + x*(a2 + ... + x*(an-1 + an*x)...)) = a0 + x*(a1 + x*(a2 + ... + x*(a(n-1) + an*x)...)) = ... = a0 + x*(a1 + x*(a2 + ... + x*(a(n-2) + (an-1 + an*x))...))。
综合以上两个原则,可以将多项式的求解过程转化为一系列的加法和乘法运算,从而减少计算的复杂性。
这就是秦九韶算法的基本原理。
2. 秦九韶算法的具体实现步骤秦九韶算法的具体实现步骤如下:步骤一:初始化结果变量result为0。
步骤二:从最高次方项开始,依次对多项式的系数进行公因子提取运算。
步骤三:每次公因子提取运算,将当前系数与result 相乘并累加到result中。
步骤四:重复步骤二和步骤三,直到处理完所有的系数。
高中数学1.3.2《算法案例---秦九韶算法》教案1(新人教B版必修3)
1.3.2 算法案例---秦九韶算法教学要求:了解秦九韶算法的计算过程,并理解利用秦九韶算法可以减少计算次数、提高计算效率的实质;理解数学算法与计算机算法的区别,理解计算机对数学的辅助作用. 教学重点:秦九韶算法的特点及其程序设计.教学难点:秦九韶算法的先进性理解及其程序设计.教学过程:一、复习准备:1. 分别用辗转相除法和更相减损术求出两个正数623和1513的最大公约数.2. 设计一个求多项式5432()254367f x x x x x x =--+-+当5x =时的值的算法. (学生自己提出一般的解决方案:将5x =代入多项式进行计算即可)提问:上述算法在计算时共用了多少次乘法运算?多少次加法运算?此方案有何优缺点?(上述算法一共做了5+4+3+2+1=15次乘法运算,5次加法运算. 优点是简单、易懂;缺点是不通用,不能解决任意多项式的求值问题,而且计算效率不高.)二、讲授新课:1. 教学秦九韶算法:① 提问:在计算x 的幂值时,可以利用前面的计算结果,以减少计算量,即先计算2x ,然后依次计算2x x ⋅,2()x x x ⋅⋅,2(())x x x x ⋅⋅⋅的值,这样计算上述多项式的值,一共需要多少次乘法,多少次加法?(上述算法一共做了4次乘法运算,5次加法运算)② 结论:第二种做法与第一种做法相比,乘法的运算次数减少了,因而能提高运算效率,而且对于计算机来说,做一次乘法所需的运算时间比做一次加法要长得多,因此第二种做法能更快地得到结果.③ 更有效的一种算法是:将多项式变形为: 5432()254367((((25)4)3)6)7f x x x x x x x x x x x =--+-+=--+-+,依次计算2555⨯-=,55421⨯-=,2153108⨯+=,10856534⨯-=,534572677⨯+=故(5)2677f =. ――这种算法就是“秦九韶算法”. (注意变形,强调格式)④ 练习:用秦九韶算法求多项式432()2351f x x x x x =+-++当4x =时的值.(学生板书→师生共评→教师提问:上述算法共需多少次乘法运算?多少次加法运算?) ⑤ 如何用秦九韶算法完成一般多项式1110()n n n n f x a x a x a x a --=++++L 的求值问题? 改写:11101210()(()))n n n n n n n f x a x a x a x a a x a x a x a x a ----=++++=+++++L L L . 首先计算最内层括号内一次多项式的值,即11n n v a x a -=+,然后由内向外逐层计算一次多项式的值,即212n v v x a -=+,323n v v x a -=+,L ,10n n v v x a -=+.⑥ 结论:秦九韶算法将求n 次多项式的值转化为求n 个一次多项式的值,整个过程只需n 次乘法运算和n 次加法运算;观察上述n 个一次式,可发出k v 的计算要用到1k v -的值,若令0n v a =,可得到下列递推公式:01,(1,2,,)n kk n k v a v v x a k n --=⎧⎨=+=⎩L . 这是一个反复执行的步骤,因此可用循环结构来实现.⑦ 练习:用秦九韶算法求多项式5432()52 3.5 2.6 1.70.8f x x x x x x =++-+-当5x =时的值并画出程序框图.2. 小结:秦九韶算法的特点及其程序设计三、巩固练习:1、练习:教材P35第2题四、作业:教材P36第2题。
人教版高中数学必修3第一章算法初步-《1.3算法案例:秦九韶算法》教案
1.3算法案例:秦九韶算法1、利用秦九韶算法求多项式1153723+-+x x x 在23=x 的值时,在运算中下列哪个值用不到( )A 、164B 、3767C 、86652D 、851692、利用秦九韶算法计算多项式1876543x f(x)23456++++++x x x x x = 当x=4的值的时候,需要做乘法和加法的次数分别为( )A 、6,6B 、5,6C 、5,5D 、6,53、利用秦九韶算法求多项式1352.75.38123)(23456-++-++=x x x x x x x f 在6=x 的值,写出详细步骤。
4、下图的框图是一古代数学家的一个算法的程序框图,它输出的 结果s 表示( )A 、3210a a a a +++的值B 、300201032x a x a x a a +++的值 C 、303202010x a x a x a a +++的值 D 、以上都不对5、已知n 次多项式1011()n n n n n P x a x a x a x a --=++++,如果在一种算法中,计算0k x (k =2,3,4,…,n )的值需要k -1次乘法,(1)计算30()P x 的值需要9次运算(6次乘法,3次加法),那么计算0()n P x 的值需要多少次运算?(2)若采取秦九韶算法:0011(),()()k k k P x a P x xP x a ++==+(k =0, 1,2,…,n -1),计算30()P x 的值只需6次运算,那么计算0()n P x 的值共需要多少次运算?(3)若采取秦九韶算法,设a i =i+1,i=0,1,…,n ,求P 5(2)(写出采取秦九韶算法的计算过程)答案:1、D2、A3、解:13)5)2.7)5.3)8)123((((()(-++-++=x x x x x x x f2.243168)6(2.2431681362.40530562.67542.765.11245.36188863012635645342312010==-⨯==+⨯==+⨯==-⨯==+⨯==+⨯==f v v v v v v v v v v v v v4、C5、n +3)(2)2n ;(3)∵0011(),()()k k k P x a P x xP x a ++==+,∴P0(2)=1,P1(2)=2P0(2)+2=4;P2(2)=2P1(2)+3=11;P3(2)=2P2(2)+4=26;P4(2)=2P3(2)+5=57;P5(2)=2P4(2)+6=120。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。