圆锥曲线经典小题教学文案
高三数学《圆锥曲线》复习教案

【小编寄语】查字典数学网小编给大家整理了高三数学《圆锥曲线》复习教案,希望能给大家带来帮助!90题突破高中数学圆锥曲线1.如图,已知直线L:的右焦点F,且交椭圆C于A、B两点,点A、B在直线上的射影依次为点D、E。
(1)若抛物线的焦点为椭圆C的上顶点,求椭圆C的方程;(2)(理)连接AE、BD,试探索当m变化时,直线AE、BD是否相交于一定点N?若交于定点N,请求出N点的坐标,并给予证明;否则说明理由。
(文)若为x轴上一点,求证:2.如图所示,已知圆定点A(1,0),M为圆上一动点,点P在AM上,点N在CM上,且满足,点N的轨迹为曲线E。
(1)求曲线E的方程;(2)若过定点F(0,2)的直线交曲线E于不同的两点G、H(点G在点F、H之间),且满足的取值范围。
3.设椭圆C:的左焦点为F,上顶点为A,过点A作垂直于AF的直线交椭圆C于另外一点P,交x轴正半轴于点Q,且⑴求椭圆C的离心率;⑵若过A、Q、F三点的圆恰好与直线l:相切,求椭圆C的方程.4.设椭圆的离心率为e=(1)椭圆的左、右焦点分别为F1、F2、A是椭圆上的一点,且点A到此两焦点的距离之和为4,求椭圆的方程.(2)求b为何值时,过圆x2+y2=t2上一点M(2, )处的切线交椭圆于Q1、Q2两点,而且OQ1OQ2.5.已知曲线上任意一点P到两个定点F1(- ,0)和F2( ,0)的距离之和为4.(1)求曲线的方程;(2)设过(0,-2)的直线与曲线交于C、D两点,且为坐标原点),求直线的方程.6.已知椭圆的左焦点为F,左、右顶点分别为A、C,上顶点为B.过F、B、C作⊙P,其中圆心P的坐标为(m,n).(Ⅰ)当m+n0时,求椭圆离心率的范围;(Ⅱ)直线AB与⊙P能否相切?证明你的结论.7.有如下结论:圆上一点处的切线方程为,类比也有结论:椭圆处的切线方程为,过椭圆C:的右准线l上任意一点M引椭圆C的两条切线,切点为 A、B.(1)求证:直线AB恒过一定点;(2)当点M在的纵坐标为1时,求△ABM的面积8.已知点P(4,4),圆C:与椭圆E:有一个公共点A(3,1),F1、F2分别是椭圆的左、右焦点,直线PF1与圆C相切.(Ⅰ)求m的值与椭圆E的方程;(Ⅱ)设Q为椭圆E上的一个动点,求的取值范围.9.椭圆的对称中心在坐标原点,一个顶点为,右焦点与点的距离为。
高考数学圆锥曲线经典例题及总结教案

高考数学圆锥曲线经典例题及总结教案圆锥曲线1.圆锥曲线的两定义:第肯定义中要重视“括号”内的限制条件:椭圆中,与两个定点F ,F 的距离的和等于常数,且此常数肯定要大于,当常数等于时,轨迹是线段F F ,当常数小于时,无轨迹;双曲线中,与两定点F ,F 的距离的差的肯定值等于常数,且此常数肯定要小于|F F |,定义中的“肯定值”与<|F F |不行忽视。
若=|F F |,则轨迹是以F ,F 为端点的两条射线,若﹥|F F |,则轨迹不存在。
若去掉定义中的肯定值则轨迹仅表示双曲线的一支。
2.圆锥曲线的标准方程〔标准方程是指中心〔顶点〕在原点,坐标轴为对称轴时的标准位置的方程〕:〔1〕椭圆:焦点在轴上时〔〕,焦点在轴上时=1〔〕。
方程表示椭圆的充要条件是什么?〔ABC≠0,且A,B,C同号,A≠B〕。
〔2〕双曲线:焦点在轴上: =1,焦点在轴上:=1〔〕。
方程表示双曲线的充要条件是什么?〔ABC≠0,且A,B异号〕。
〔3〕抛物线:开口向右时,开口向左时,开口向上时,开口向下时。
3.圆锥曲线焦点位置的推断〔首先化成标准方程,然后再推断〕:〔1〕椭圆:由 , 分母的大小确定,焦点在分母大的坐标轴上。
〔2〕双曲线:由 , 项系数的正负确定,焦点在系数为正的坐标轴上;〔3〕抛物线:焦点在一次项的坐标轴上,一次项的符号确定开口方向。
提示:在椭圆中,最大,,在双曲线中,最大,。
4.圆锥曲线的几何性质:〔1〕椭圆〔以〔〕为例〕:①范围:;②焦点:两个焦点;③对称性:两条对称轴,一个对称中心〔0,0〕,四个顶点,其中长轴长为2 ,短轴长为2 ;④准线:两条准线;⑤离心率:,椭圆,越小,椭圆越圆;越大,椭圆越扁。
〔2〕双曲线〔以〔〕为例〕:①范围:或;②焦点:两个焦点;③对称性:两条对称轴,一个对称中心〔0,0〕,两个顶点,其中实轴长为2 ,虚轴长为2 ,特殊地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为;④准线:两条准线;⑤离心率:,双曲线,等轴双曲线,越小,开口越小,越大,开口越大;⑥两条渐近线:。
圆锥曲线教案

圆锥曲线教案圆锥曲线教案一、教学目标:1. 理解什么是圆锥曲线,学会在笛卡尔坐标系中表示圆锥曲线。
2. 学会求解圆锥曲线的焦点、直径、离心率等相关性质。
3. 掌握对圆锥曲线进行方程变换、平移、旋转等操作的方法。
二、教学准备:1. 教师准备黑板、彩色粉笔等教学用具。
2. 学生准备笔记本、书籍等学习用具。
三、教学过程:1. 导入新知识:通过展示一张圆锥曲线的图片,询问学生对这个图形有什么了解,引导学生思考圆锥曲线的定义和性质。
2. 理论讲解:(1) 定义圆锥曲线:对圆锥在一个经过顶点的剖面研究所得到的曲线称为圆锥曲线。
(2) 表示方法:在笛卡尔坐标系中,圆锥曲线可由方程表示,例如椭圆的方程为:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$。
(3) 常见圆锥曲线:椭圆、双曲线、抛物线。
3. 实例演示:以椭圆为例,给出一个椭圆的标准方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,引导学生求解椭圆的焦点、直径、离心率等相关性质。
4. 计算练习:给出多个圆锥曲线的方程,让学生进行计算练习,提高其运算能力。
5. 方程变换:介绍如何对圆锥曲线进行方程变换,包括水平方向和垂直方向的方程变换。
6. 平移与旋转:讲解如何对圆锥曲线进行平移和旋转,以及平移和旋转对方程的影响。
7. 总结归纳:对学过的内容进行总结归纳,梳理知识框架。
8. 解答疑问:解答学生对圆锥曲线相关问题的疑惑。
9. 课堂练习:布置一些课堂练习题,让学生巩固所学知识。
四、教学延伸:1. 引导学生进行实际应用:让学生寻找生活中的圆锥曲线,并分析其性质和特点。
2. 继续深入学习:对于学有余力的学生,可以探究更高级的圆锥曲线知识,如圆锥曲线的参数方程、极坐标方程等。
五、教学评价:1. 课堂练习的成绩。
2. 学生对于圆锥曲线相关问题的提问及解答情况。
3. 学生对于课堂知识的掌握和应用情况。
六、课后作业:1. 完成课堂练习题。
高考数学一轮教案(圆锥曲线经典例题及总结)

例1、已知三角形ABC 的三个顶点均在椭圆805422=+y x 上,且点A 是椭圆短轴的一个端点(点A在y 轴正半轴上).(1)若三角形ABC 的重心是椭圆的右焦点,试求直线BC 的方程; (2)若角A 为090,AD 垂直BC 于D ,试求点D 的轨迹方程.分析:第一问抓住“重心”,利用点差法及重心坐标公式可求出中点弦BC 的斜率,从而写出直线BC 的方程。
第二问抓住角A 为090可得出AB ⊥AC ,从而得016)(14212121=++-+y y y y x x ,然后利用联立消元法及交轨法求出点D 的轨迹方程;解:(1)设B (1x ,1y ),C(2x ,2y ),BC 中点为(00,y x ),F(2,0)则有11620,1162022222121=+=+y x y x两式作差有16))((20))((21212121=+-+-+y y y y x x x x 04500=+ky x (1) F(2,0)为三角形重心,所以由2321=+x x ,得30=x ,由03421=++y y 得20-=y ,代入(1)得56=k 直线BC 的方程为02856=--y x2)由AB ⊥AC 得016)(14212121=++-+y y y y x x (2)设直线BC 方程为8054,22=++=y x b kx y 代入,得080510)54(222=-+++b bkx x k2215410kkbx x +-=+,222154805k b x x +-= 2222122154804,548k k b y y k k y y +-=+=+ 代入(2)式得 0541632922=+--k b b ,解得)(4舍=b 或94-=b 直线过定点(0,)94-,设D (x,y ),则1494-=-⨯+xy x y ,即016329922=--+y x y所以所求点D 的轨迹方程是)4()920()916(222≠=-+y y x 。
2017年高考文数二轮复习精品资料 专题13 圆锥曲线(教学案) 含解析

1。
以客观题形式考查圆锥曲线的标准方程、圆锥曲线的定义、离心率、焦点弦长问题、双曲线的渐近线等,可能会与数列、三角函数、平面向量、不等式结合命题,若与立体几何结合,会在定值、最值、定义角度命题.2。
每年必考一个大题,相对较难,且往往为压轴题,具有较高的区分度.平面向量的介入,增加了本部分高考命题的广度与深度,成为近几年高考命题的一大亮点,备受命题者的青睐,本部分还经常结合函数、方程、不等式、数列、三角等知识结合进行综合考查.一、椭圆、双曲线、抛物线的定义及几何性质椭圆双曲线抛物线定义|PF1|+|PF2|=2a(2a>|F1F2|)||PF1|-|PF2||=2a(2a<|F1F2|)定点F和定直线l,点F不在直线l上,P到l距离为d,|PF|=d标准方程焦点在x轴上x2a2+错误!=1(a〉b〉0)焦点在x轴上错误!-错误!=1(a>0,b〉0)焦点在x轴正半轴上y2=2px(p>0)图象几范围|x|≤a,||x|≥a,y∈R x≥0,y∈R【误区警示】1.求椭圆、双曲线方程时,注意椭圆中c2=a2+b2,双曲线中c2=a2-b2的区别.2.注意焦点在x轴上与y轴上的双曲线的渐近线方程的区别.3.平行于双曲线渐近线的直线与双曲线有且仅有一个交点;平行于抛物线的轴的直线与抛物线有且仅有一个交点.考点一 椭圆的定义及其方程例1.【2016高考浙江文数】已知椭圆C 1:22x m +y 2=1(m >1)与双曲线C 2:22x n –y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则( )A .m >n 且e 1e 2>1B .m 〉n 且e 1e 2〈1C .m <n 且e 1e 2〉1D .m <n 且e 1e 2<1【答案】A 【解析】【变式探究】已知椭圆E :错误!+错误!=1(a 〉b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A.错误!+错误!=1 B 。
圆锥曲线教案

及圆锥曲线有关的几种典型题一、教学目标(一)知识教学点使学生掌握及圆锥曲线有关的几种典型题,如圆锥曲线的弦长求法、及圆锥曲线有关的最值(极值)问题、及圆锥曲线有关的证明问题以及圆锥曲线及圆锥曲线相交问题等.(二)能力训练点通过对圆锥曲线有关的几种典型题的教学,培养学生综合运用圆锥曲线知识的能力.(三)学科渗透点通过及圆锥曲线有关的几种典型题的教学,使学生掌握一些相关学科中的类似问题的处理方法.二、教材分析1.重点:圆锥曲线的弦长求法、及圆锥曲线有关的最值(极值)问题、及圆锥曲线有关的证明问题.(解决办法:先介绍基础知识,再讲解应用.)2.难点:双圆锥曲线的相交问题.(解决办法:要提醒学生注意,除了要用一元二次方程的判别式,还要结合图形分析.)3.疑点:及圆锥曲线有关的证明问题.(解决办法:因为这类问题涉及到线段相等、角相等、直线平行、垂直的证明方法,以及定点、定值问题的判断方法,所以比较灵活,只能通过一些例题予以示范.)三、活动设计演板、讲解、练习、分析、提问.四、教学过程(一)引入及圆锥曲线有关的几种典型题,如圆锥曲线的弦长求法、及圆锥曲线有关的最值(极值)问题、及圆锥曲线有关的证明问题以及圆锥曲线及圆锥曲线有关的证明问题等,在圆锥曲线的综合应用中经常见到,为了让大家对这方面的知识有一个比较系统的了解,今天来讲一下“及圆锥曲线有关的几种典型题”.(二)及圆锥曲线有关的几种典型题1.圆锥曲线的弦长求法设圆锥曲线C∶f(x,y)=0及直线l∶y=kx+b相交于A(x1,y1)、B(x2,y2)两点,则弦长|AB|为:(2)若弦AB过圆锥曲线的焦点F,则可用焦半径求弦长,|AB|=|AF|+|BF|.A、B两点,旦|AB|=8,求倾斜角α.分析一:由弦长公式易解.由学生演板完成.解答为:∵抛物线方程为x2=-4y,∴焦点为(0,-1).设直线l的方程为y-(-1)=k(x-0),即y=kx-1.将此式代入x2=-4y中得:x2+4kx-4=0.∴x1+x2=-4,x1+x2=-4k.∴ k=±1.∴|AB|=-(y1+y2)+p=-[(kx1-1)+(kx2-1)]+p=-k(x1+x2)+2+p.由上述解法易求得结果,由学生课外完成.2.及圆锥曲线有关的最值(极值)的问题在解析几何中求最值,关键是建立所求量关于自变量的函数关系,再利用代数方法求出相应的最值.注意点是要考虑曲线上点坐标(x,y)的取值范围.例2 已知x2+4(y-1)2=4,求:(1)x2+y2的最大值及最小值;(2)x+y的最大值及最小值.解(1):将x2+4(y-1)2=4代入得:x2+y2=4-4(y-1)2+y2=-3y2+8y由点(x,y)满足x2+4(y-1)2=4知:4(y-1)2≤4 即|y-1|≤1.∴0≤y≤2.当y=0时,(x2+y2)min=0.解(2):分析:显然采用(1)中方法行不通.如果令u=x+y,则将此代入x2+4(y-1)2=4中得关于y的一元二次方程,借助于判别式可求得最值.令x+y=u,则有x=u-y.代入x2+4(y-1)2=4得:5y2-(2u+8)y+u2=0.又∵0≤y≤2,(由(1)可知)∴[-(2u+8)]2-4×5×u2≥0.3.及圆锥曲线有关的证明问题它涉及到线段相等、角相等、直线平行、垂直的证明方法,以及定点、定值问题的判断方法.例3 在抛物线x2=4y上有两点A(x1,y1)和B(x2,y2)且满足|AB|=y1+y2+2,求证:(1)A、B和这抛物线的焦点三点共线;证明:(1)∵抛物线的焦点为F(0,1),准线方程为y=-1.∴ A、B到准线的距离分别d1=y1+1,d2=y2+1(如图2-46所示).由抛物线的定义:|AF|=d1=y1+1,|BF|=d2=y2+1.∴|AF|+|BF|=y1+y2+2=|AB|.即A、B、F三点共线.(2)如图2-46,设∠AFK=θ.∵|AF|=|AA1|=|AK|+2=|AF|sinθ+2,又|BF|=|BB1|=2-|BF|sinθ.小结:及圆锥曲线有关的证明问题解决的关键是要灵活运用圆锥曲线的定义和几何性质.4.圆锥曲线及圆锥曲线的相交问题直线及圆锥曲线相交问题,一般可用两个方程联立后,用△≥0来处理.但用△≥0来判断双圆锥曲线相交问题是不可靠的.解决这类问题:方法1,由“△≥0”及直观图形相结合;方法2,由“△≥0”及根及系数关系相结合;方法3,转换参数法(以后再讲).实数a的取值范围.可得:y2=2(1-a)y+a2-4=0.∵△=4(1-a)2-4(a2-4)≥0,如图2-47,可知:(三)巩固练习(用一小黑板事先写出.)2.已知圆(x-1)2+y2=1及抛物线y2=2px有三个公共点,求P的取值范围.顶点.请三个学生演板,其他同学作课堂练习,教师巡视.解答为:1.设P的坐标为(x,y),则2.由两曲线方程消去y得:x2-(2-2P)x=0.解得:x1=0,x2=2-2P.∵0<x<2,∴0<2-2P<2,即0<P<1.故P的取值范围为(0,1).四个交点为A(4,1),B(4,-1),C(-4,-1),D(-4,1).所以A、B、C、D是矩形的四个顶点.五、布置作业1.一条定抛物线C1∶y2=1-x及动圆C2∶(x-a)2+y2=1没有公共点,求a的范围.2.求抛线y=x2上到直线y=2x-4的距离为最小的点P的坐标.3.证明:从双曲线的一个焦点到一条渐近线的距离等于虚半轴长.作业答案:1.当x≤1时,由C1、C2的方程中消去y,得x2-(2a+1)x+a2=0,离为d,则似证明.六、板书设计。
《圆锥曲线中的最值问题》数学教案

《圆锥曲线中的最值问题》数学教案一、教学目标:1. 让学生掌握圆锥曲线(椭圆、双曲线、抛物线)中最值问题的解法。
2. 培养学生运用数学知识解决实际问题的能力。
3. 提高学生分析问题、解决问题的能力。
二、教学内容:1. 椭圆中最值问题2. 双曲线中最值问题3. 抛物线中最值问题5. 圆锥曲线中最值问题的应用三、教学重点与难点:1. 教学重点:圆锥曲线中最值问题的解法及应用。
2. 教学难点:圆锥曲线中最值问题的灵活运用。
四、教学方法:1. 采用问题驱动法,引导学生主动探究圆锥曲线中最值问题的解法。
2. 通过案例分析,让学生了解圆锥曲线中最值问题在实际中的应用。
3. 利用数形结合思想,帮助学生直观地理解圆锥曲线中最值问题。
五、教学过程:1. 导入:回顾圆锥曲线的定义及性质,引导学生关注圆锥曲线中最值问题。
2. 讲解:(1)椭圆中最值问题:分析椭圆的性质,引导学生运用几何方法、代数方法解决最值问题。
(2)双曲线中最值问题:分析双曲线的性质,引导学生运用几何方法、代数方法解决最值问题。
(3)抛物线中最值问题:分析抛物线的性质,引导学生运用几何方法、代数方法解决最值问题。
4. 练习:布置课后作业,让学生巩固圆锥曲线中最值问题的解法。
5. 拓展:介绍圆锥曲线中最值问题在实际应用中的例子,激发学生兴趣。
六、课后作业:1. 复习圆锥曲线中最值问题的解法。
2. 完成课后练习题。
3. 探索圆锥曲线中最值问题在实际应用中的例子。
七、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答情况。
2. 课后作业:检查学生的作业完成情况,评估学生对圆锥曲线中最值问题的掌握程度。
3. 实践应用:评估学生在实际问题中运用圆锥曲线中最值问题的能力。
八、教学资源:1. 教材、教辅资料。
2. 圆锥曲线的图形软件。
3. 实际问题案例。
九、教学进度安排:1. 第一课时:导入及椭圆中最值问题讲解。
2. 第二课时:双曲线中最值问题讲解。
高三数学二轮复习 33.圆锥曲线(无答案)教学案 旧人教版

第34课时 圆锥曲线一、基础练习1、若以椭圆上一点和两个焦点为顶点的三角形面积的最大值为1,则椭圆长轴的最小值为______________2、若椭圆22189x y k +=+的离心率e=12,则k 的值等于________ 3|3412|x y =+-所表示的曲线为______________4、设F 1、F 2为椭圆2214x y +=的左右焦点,过椭圆中心任作一直线与椭圆交于P ,Q 两点,当12PF PF =_________时,四边形PF 1QF 2的面积最大。
5、过抛物线y 2=2px(p>0)焦点作一直线交抛物线于A(x 1,y 1),B(x 2,y 2),则1212y y x x 的值为___________ 6、已知点P 是椭圆221(0,0)168x y x y +=≠≠上的动点,F 1,F 2为椭圆的两个焦点,O 是坐标原点,若M 是∠F 1PF 2的角平分线上一点,且10F M MP ⋅=,则||OM 的取值范围是_________二、例题分析例1:已知曲线C 1:||||1(0)x y a b a b+=>>所围成的封闭图形与x 轴的交点分别为A ,B ,与y 轴的交点分别为C ,D ,1CA CB ⋅=-,C 1C 2是以A ,B ,C ,D 为顶点的椭圆。
(1)求椭圆C 2的标准方程; (2)P 为C 2上一点,直线AP ,BP 分别交y 轴于M ,N ,试问OM ON ⋅是否为定值?并说明理由。
例2:已知椭圆22132x y+=的左、右焦点分别为F1、F2,过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C两点,且AC⊥BD,垂足为P。
(1)设P点的坐标为(x0,y0),证明:22001 32x y+<。
(2)求四边形ABCD的面积的最小值。
例3:已知A(x1,y1),B(x2,y2)(x1x2≠0)是抛物线y2=2px(p>0)上的两动点,O是坐标原点,向量OA,OB满足|OA+OB|=|OA-OB|,设圆C的方程为x2+y2-(x1+x2)x-(y1+y2)y=0。
高中数学《圆锥曲线中的最值问题》教学设计 精品

《圆锥曲线中的最值问题》教学设计一、内容与内容解析圆锥曲线的单元复习的基础内容包括椭圆、双曲线和抛物线的定义、标准方程、简单几何性质,直线与圆锥曲线的位置关系,在掌握以上一些陈述性知识和程序性知识的基础上,再学习圆锥曲线的一些综合应用.在解析几何中,运动是曲线的灵魂,在形的运动中必然伴随着量的变化,而在变化中,往往重点关注变化中不变的量或关系,以及变量的变化趋势,由此产生圆锥曲线中的定点、定值问题,圆锥曲线的中的参数取值范围问题,圆锥曲线中的最值问题等.圆锥曲线的最值问题是本单元复习综合性较强的内容.重点研究变化的距离、弦长、角度、面积、斜率、定比等几何量的最值及相关问题.本课重点是借助对常见的距离问题等的研究提炼出解决此类问题的思想方法和基本策略,并能进行简单的应用.解决圆锥曲线的最值问题,不仅要用到圆锥曲线定义、方程、几何性质,还常用到函数、方程、不等式及三角函数等重要知识,综合性强,联系性广,策略性要求高.其基本的思想是函数思想和数形结合思想,基本策略主要是代数和几何两个角度分析. 由于圆锥曲线是几何图形,研究的量也往往是几何量,因此借助几何性质,利用几何直观来分析是优先选择;但几何直观往往严谨性不强,难以细致入微,在解析几何中需要借助代数的工具来实现突破.几何方法主要结合图形的几何特征,借助圆锥曲线的定义以及平面几何知识作直接论证及判断;代数方法主要是将几何量及几何关系用代数形式表示,通过设动点坐标或动直线的方程,将目标表示为变量的函数,从而转化为函数的最值问题,再借助函数、方程、不等式等知识解决问题.二、教学问题诊断圆锥曲线的最值问题的解决,涉及的知识面广,需要综合运用圆锥曲线、平面几何、代数等相关知识,还需要较强的运算技能和分析问题解决问题的能力.在本课的学习中,学生可能存在的问题有:知识的联系性和系统性较弱,难以调动众多的知识合理地解决问题;运算能力不强,算得慢,易算错,影响问题解决的执行力;问题解决的策略性不强,就题论题,对问题的数学本质认识模糊等现象.再加上学生对复习课的认识比较片面,对复习课缺乏新鲜感。
高三数学教案:数学圆锥曲线最经典题型教案

高三数学教案:数学圆锥曲线最经典题型教案
【摘要】欢迎来到高三数学教案栏目,教案逻辑思路清晰,符合认识规律,培养学生自主学习习惯和能力。
因此小编在此为您编辑了此文:“高三数学教案:数学圆锥曲线最经典题型教案”希望能为您的提供到帮助。
本文题目:高三数学教案:数学圆锥曲线最经典题型教案
第一定义、第二定义、双曲线渐近线等考查
1、(2010 辽宁理数)设双曲线的个焦点为F;虚轴的个端点为B,如果直线FB 与该双曲线的一条渐
近线垂直,那幺此双曲线的离心率为
(A) (B) (C) (D)
【答案】D
2、(2010 辽宁理数)设抛物线y2=8x 的焦点为F,准线为l,P 为抛物线上一点,PA⊥l,A 为垂足.如果直线AF 的斜率为,那幺|PF|=
(A) (B)8 (C) (D) 16。
圆锥曲线集体备课(教案)

圆锥曲线集体备课教案一、知识导学1. 点M(x 0,y 0)与圆锥曲线C :f(x ,y)=0的位置关系已知12222=+b y a x (a >b >0)的焦点为F 1、F 2, 12222=-by a x (a >0,b >0)的焦点为F 1、F 2,px y 22=(p >0)的焦点为F ,一定点为P(x 0,y 0),M 点到抛物线的准线的距离为d ,则有:上述结论可以利用定比分点公式,建立两点间的关系进行证明. 2.直线l ∶Ax +B y +C=0与圆锥曲线C ∶f(x ,y)=0的位置关系:直线与圆锥曲线的位置关系可分为:相交、相切、相离.对于抛物线来说,平行于对称轴的直线与抛物线相交于一点,但并不是相切;对于双曲线来说,平行于渐近线的直线与双曲线只有一个交点,但并不相切.这三种位置关系的判定条件可引导学生归纳为: 设直线l :Ax+By+C=0,圆锥曲线C:f(x,y)=0,由⎩⎨⎧==++0y)f(x,0C By Ax消去y(或消去x)得:ax 2+bx+c=0,△=b 2-4ac,(若a ≠0时), △>0⇔相交 △<0⇔相离 △= 0⇔相切注意:直线与抛物线、双曲线有一个公共点是直线与抛物线、双曲线相切的必要条件,但不是充分条件.二、疑难知识导析1.椭圆的焦半径公式:(左焦半径)01ex a r +=,(右焦半径)02ex a r -=,其中e 是离心率。
焦点在y 轴上的椭圆的焦半径公式: ⎩⎨⎧-=+=0201ey a MF ey a MF( 其中21,F F 分别是椭圆的下上焦点). 焦半径公式的两种形式的区别只和焦点的左右有关,而与点在左在右无关. 可以记为:左加右减,上减下加. 2.双曲线的焦半径定义:双曲线上任意一点M 与双曲线焦点21,F F 的连线段,叫做双曲线的焦半径. 焦点在x 轴上的双曲线的焦半径公式:⎩⎨⎧-=+=∴0201ex a MF ex a MF焦点在y 轴上的双曲线的焦半径公式:⎩⎨⎧-=+=∴0201ey a MF ey a MF( 其中21,F F 分别是双曲线的下上焦点)3.双曲线的焦点弦: 定义:过焦点的直线割双曲线所成的相交弦。
高考数学 专题10 圆锥曲线教学案 文

专题10 圆锥曲线【2018年高考考纲解读】(1)中心在坐标原点的椭圆的标准方程与几何性质,B 级要求; (2)中心在坐标原点的双曲线的标准方程与几何性质,A 级要求;(3)顶点在坐标原点的抛物线的标准方程与几何性质,A 级要求;曲线与方程,A 级要求. (4)有关直线与椭圆相交下的定点、定值、最值、范围等问题. 【重点、难点剖析】 1.圆锥曲线的定义(1)椭圆:|MF 1|+|MF 2|=2a (2a >|F 1F 2|); (2)双曲线:||MF 1|-|MF 2||=2a (2a <|F 1F 2|). 2.圆锥曲线的标准方程(1)椭圆:x 2a 2+y 2b 2=1(a >b >0)(焦点在x 轴上)或y 2a 2+x 2b 2=1(a >b >0)(焦点在y 轴上);(2)双曲线:x 2a 2-y 2b 2=1(a >0,b >0)(焦点在x 轴上)或y 2a 2-x 2b2=1(a >0,b >0)(焦点在y 轴上).3.圆锥曲线的几何性质(1)椭圆:e =ca =1-b 2a2;(2)双曲线:①e =ca=1+b 2a2.②渐近线方程:y =±b ax 或y =±a bx . 4.求圆锥曲线标准方程常用的方法 (1)定义法 (2)待定系数法①顶点在原点,对称轴为坐标轴的抛物线,可设为y 2=2ax 或x 2=2ay (a ≠0),避开对焦点在哪个半轴上的分类讨论,此时a 不具有p 的几何意义;②中心在坐标原点,焦点在坐标轴上,椭圆方程可设为x 2m +y 2n =1(m >0,n >0);双曲线方程可设为x 2m -y 2n=1(mn >0).这样可以避免讨论和繁琐的计算. 5.求轨迹方程的常用方法(1)直接法:将几何关系直接转化成代数方程;(2)定义法:满足的条件恰适合某已知曲线的定义,用待定系数法求方程; (3)代入法:把所求动点的坐标与已知动点的坐标建立联系;注意:①建系要符合最优化原则;②求轨迹与“求轨迹方程”不同,轨迹通常指的是图形,而轨迹方程则是代数表达式;③化简是否同解变形,是否满足题意,验证特殊点是否成立等. 6.有关弦长问题有关弦长问题,应注意运用弦长公式;有关焦点弦长问题,要重视圆锥曲线定义的运用,以简化运算. (1)斜率为k 的直线与圆锥曲线交于两点P 1(x 1,y 1),P 2(x 2,y 2),则所得弦长|P 1P 2|= 1+k 2|x 2-x 1|或|P 1P 2|=1+1k2|y 2-y 1|.(2)弦的中点问题有关弦的中点问题,应灵活运用“点差法”来简化运算. 7.圆锥曲线中的最值 (1)椭圆中的最值F 1,F 2为椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点,P 为椭圆上的任意一点,B 为短轴的一个端点,O 为坐标原点,则有 ①|OP |∈[b ,a ]; ②|PF 1|∈[a -c ,a +c ]; ③|PF 1|·|PF 2|∈[b 2,a 2]; ④∠F 1PF 2≤∠F 1BF 2. (2)双曲线中的最值F 1,F 2为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,P 为双曲线上的任一点,O 为坐标原点,则有①|OP |≥a ; ②|PF 1|≥c -a . 8.定点、定值问题定点、定值问题必然是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的一个点、一个值,就是要求的定点、定值.化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量.9.解决最值、范围问题的方法解决圆锥曲线中最值、范围问题的基本思想是建立目标函数或建立不等关系,根据目标函数或不等式求最值、范围,因此这类问题的难点,就是如何建立目标函数和不等关系.建立目标函数或不等关系的关键是选用一个合适的变量,其原则是这个变量能够表达要解决的问题,这个变量可以是直线的斜率、直线的截距、点的坐标等,要根据问题的实际情况灵活处理. 【题型示例】题型1、圆锥曲线的定义与标准方程【例1】【2017课标3,文11】已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )A B C .3D .13【答案】A【变式探究】【2016高考浙江文数】已知椭圆C 1:22x m +y 2=1(m >1)与双曲线C 2:22x n–y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则( )A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<1 【答案】A【解析】由题意知2211m n -=+,即222m n =+,由于m >1,n >0,可得m >n ,又22212222222111111()(1)(1)(1)(1)2m n e e m n m n n n -+=⋅=-+=-++=42422112n n n n++>+ ,故121e e >.故选A .【举一反三】 (2015·重庆,21)如图,椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆于P 、Q 两点,且PQ ⊥PF 1.(1)若|PF 1|=2+2,|PF 2|=2-2,求椭圆的标准方程; (2)若|PF 1|=|PQ |,求椭圆的离心率e .(2)法一 如图,设点P (x 0,y 0)在椭圆上,且PF 1⊥PF 2,则x 20a 2+y 20b2=1,x 20+y 20=c 2, 求得x 0=±a ca 2-2b 2, y 0=±b 2c.由|PF 1|=|PQ |>|PF 2|得x 0>0,从而|PF 1|2=⎝ ⎛⎭⎪⎫a a 2-2b 2c +c 2+b4c2.=2(a 2-b 2)+2a a 2-2b 2=(a +a 2-2b 2)2.由椭圆的定义,|PF 1|+|PF 2|=2a ,|QF 1|+|QF 2|=2a ,从而由|PF 1|=|PQ |=|PF 2|+|QF 2|,有|QF 1|=4a -2|PF 1|.又由PF 1⊥PF 2,|PF 1|=|PQ |,知|QF 1|=2|PF 1|, 因此,(2+2)|PF 1|=4a , 即(2+2)(a +a 2-2b 2)=4a ,于是(2+2)(1+2e 2-1)=4,解得e =12⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫42+2-12=6- 3. 法二 如图,由椭圆的定义,|PF 1|+|PF 2|=2a ,|QF 1|+|QF 2|=2a .从而由|PF 1|=|PQ |=|PF 2|+|QF 2|,有|QF 1|=4a -2|PF 1|.又由PF 1⊥PQ ,|PF 1|=|PQ |,知|QF 1|=2|PF 1|,因此,4a -2|PF 1|=2|PF 1|,得|PF 1|=2(2-2)a ,从而|PF 2|=2a -|PF 1|=2a -2(2-2)a =2(2-1)a .由PF 1⊥PF 2,知|PF 1|2+|PF 2|2=|F 1F 2|2=(2c )2,因此e =c a =|PF 1|2+|PF 2|22a=(2-2)2+(2-1)2=9-62=6- 3.【变式探究】(1)(2014·天津)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线平行于直线l :y =2x +10,双曲线的一个焦点在直线l 上,则双曲线的方程为( ) A.x 25-y 220=1 B.x 220-y 25=1 C.3x 225-3y 2100=1 D.3x 2100-3y225=1 (2)(2014·安徽)设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为________.【命题意图】(1)本题主要考查双曲线的概念及其几何性质、直线的斜率等知识,意在考查考生的转化与化归思想、数形结合思想的应用与运算求解能力.(2)本题主要考查椭圆的几何性质、向量的坐标运算等知识.根据线段长度|AF 1|=3|F 1B |转化为向量的坐标运算求出点B 的坐标,代入方程求b 2的值,意在考查考生的转化与化归思想,运算求解能力,分析、解决问题的能力,逻辑推理能力. 【答案】(1)A (2)x 2+32y 2=1【变式探究】(2015·福建,18)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)过点(0,2),且离心率e =22.(1)求椭圆E 的方程;(2)设直线l :x =my -1(m ∈R )交椭圆E 于A ,B 两点,判断点G ⎝ ⎛⎭⎪⎫-94,0与以线段AB 为直径的圆的位置关系,并说明理由.解 法一 (1)由已知得,⎩⎪⎨⎪⎧b =2,c a =22,a 2=b 2+c 2.解得⎩⎨⎧a =2,b =2,c = 2.所以椭圆E 的方程为x 24+y22=1.(2)设A (x 1,y 1),B (x 2,y 2),AB 的中点为H (x 0,y 0).⎩⎪⎨⎪⎧x =my -1,x 24+y22=1 得(m 2+2)y 2-2my -3=0. 所以y 1+y 2=2m m 2+2,y 1y 2=-3m 2+2, 从而y 0=mm 2+2.所以|GH |2=⎝ ⎛⎭⎪⎫x 0+942+y 2=⎝⎛⎭⎪⎫my 0+542+y 2=(m 2+1)y 20+52my 0+2516.|AB |24=(x 1-x 2)2+(y 1-y 2)24 =(1+m 2)(y 1-y 2)24=(1+m 2)[(y 1+y 2)2-4y 1y 2]4=(1+m 2)(y 20-y 1y 2),题型2、圆锥曲线的几何性质【例2】【2017浙江,2】椭圆22194x y +=的离心率是A .3B .3C .23D .59【答案】B【解析】e ==B .【变式探究】【2016高考新课标3文数】已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )(A )13(B )12(C )23(D )34【答案】A【举一反三】(2015·陕西,20)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的半焦距为c ,原点O 到经过两点(c ,0),(0,b )的直线的距离为12c .(1)求椭圆E 的离心率;(2)如图,AB 是圆M :(x +2)2+(y -1)2=52的一条直径,若椭圆E 经过A ,B 两点,求椭圆E 的方程.解 (1)过点(c ,0),(0,b )的直线方程为bx +cy -bc =0, 则原点O 到该直线的距离d =bc b 2+c 2=bca, 由d =12c ,得a =2b =2a 2-c 2,解得离心率c a =32.(2)法一 由(1)知,椭圆E 的方程为x 2+4y 2=4b 2.① 依题意,圆心M (-2,1)是线段AB 的中点,且|AB |=10,易知,AB 与x 轴不垂直,设其方程为y =k (x +2)+1,代入①得(1+4k 2)x 2+8k (2k +1)x +4(2k +1)2-4b 2=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8k (2k +1)1+4k 2,x 1x 2=4(2k +1)2-4b 21+4k2,由x 1+x 2=-4,得-8k (2k +1)1+4k 2=-4,解得k =12, 从而x 1x 2=8-2b 2,于是|AB |=1+⎝ ⎛⎭⎪⎫122|x 1-x 2| =52(x 1+x 2)2-4x 1x 2=10(b 2-2), 由|AB |=10,得10(b 2-2)=10, 解得b 2=3,故椭圆E 的方程为x 212+y 23=1.【变式探究】(1)(2014·重庆)设F 1,F 2分别为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,双曲线上存在一点P 使得|PF 1|+|PF 2|=3b ,|PF 1|·|PF 2|=94ab ,则该双曲线的离心率为( )A.43B.53C.94D .3 (2)(2014·湖南)如图,正方形ABCD 和正方形DEFG 的边长分别为a ,b (a <b ),原点O 为AD 的中点,抛物线y 2=2px (p >0)经过C ,F 两点,则ba=________.【命题意图】(1)本题主要考查双曲线的定义与性质,意在考查考生的基本运算能力.(2)本题主要考查抛物线的图象、性质和正方形的性质,结合数形结合思想、转化思想和方程思想求解参数的比值问题,关键是由BC =CD 得出点D 为抛物线的焦点. 【答案】(1)B (2)1+ 2【感悟提升】 1.圆锥曲线的离心率椭圆和双曲线的离心率是反映椭圆的扁平程度和双曲线开口大小的一个量,其取值范围分别是0<e <1和e >1.在求解有关离心率的问题时,一般并不是直接求出c 和a 的值,而是根据题目给出的椭圆或双曲线的几何特征,建立关于参数c ,a ,b 的方程或不等式,通过解方程或不等式求得离心率的值或范围. 2.双曲线的渐近线(1)求法:把双曲线标准方程等号的右边1改为零,分解因式可得. (2)用法: ①可得b a 或a b的值;②利用渐近线方程来求双曲线的方程.(3)抛物线的几何性质的特点:有一个顶点,一个焦点,一条准线,一条对称轴,无对称中心,没有渐近线.这里强调p 的几何意义是焦点到准线的距离.(4)要能灵活运用平时解题过程中推导出来的一些结论,如椭圆中焦点三角形的面积公式S △F 1PF 2=b 2tan θ2,双曲线中的S △F 1PF 2=b 2tanθ2(其中θ=∠F 1PF 2)等,可简化运算过程,节省时间.(上述结论可结合正、余弦定理推导)【变式探究】 (2013·浙江卷改编)如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是________.【答案】62【规律方法】求解圆锥曲线的离心率,基本思路有两种:一是根据圆锥曲线的定义、方程、性质等分别求出a ,c ,然后根据离心率的定义式求解;二是根据已知条件构造关于a ,c 的方程,多为二次齐次式,然后通过方程的变形转化为离心率e 的方程求解,要灵活利用椭圆、双曲线的定义求解相关参数.【变式探究】 (1)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线与抛物线y 2=2px (p >0)的准线分别交于A ,B 两点,O 为坐标原点.若双曲线的离心率为2,△AOB 的面积为3,则p =________.(2)椭圆x 2a 2+y 2b2=1(a >b >0)的焦距为2c ,若直线y =2x 与椭圆的一个交点的横坐标为c ,则椭圆的离心率为________.【答案】 (1)2 (2)2-1题型3、求动点的轨迹方程【例3】 【2017课标II ,文20】设O 为坐标原点,动点M 在椭圆C 上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明过点P 且垂直于OQ 的直线l 过C 的左焦点F. 【答案】(1)(2)见解析【解析】解:(1)设P (x ,y ),M (),则N (),由得.因为M ()在C 上,所以.因此点P 的轨迹为.由题意知F (-1,0),设Q (-3,t ),P (m ,n ),则,.【变式探究】【2016高考山东文数】(本小题满分14分) 平面直角坐标系xOy 中,椭圆C :()222210x y a b a b +=>>,抛物线E :22x y =的焦点F是C 的一个顶点. (I )求椭圆C 的方程;(II )设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交与不同的两点A ,B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M . (i )求证:点M 在定直线上;(ii )直线l 与y 轴交于点G ,记PFG △的面积为1S ,PDM △的面积为2S ,求12S S的最大值及取得最大值时点P 的坐标.【答案】(Ⅰ)1422=+y x ;(Ⅱ)(i )见解析;(ii )12S S 的最大值为49,此时点P 的坐标为)41,22(【解析】(Ⅰ)由题意知2322=-a b a ,可得:b a 2=. 因为抛物线E 的焦点为)21,0(F ,所以21,1==b a , 所以椭圆C 的方程为1422=+y x.因此142223210+=+=m m x x x , 将其代入22m mx y -=得)14(2220+-=m m y , 因为m x y 4100-=,所以直线OD 方程为x my 41-=. 联立方程⎪⎩⎪⎨⎧=-=m x x m y 41,得点M 的纵坐标为M 14y =-,即点M 在定直线41-=y 上. (Ⅱ)由(Ⅰ)知直线l 方程为22m mx y -=,令0=x 得22m y -=,所以)2,0(2m G -, 又21(,),(0,),22m P m F D ))14(2,142(2223+-+m m m m , 所以)1(41||2121+==m m m GF S , )14(8)12(||||2122202++=-⋅=m m m x m PM S , 所以222221)12()1)(14(2+++=m m m S S , 令122+=m t ,则211)1)(12(2221++-=+-=t tt t t S S , 当211=t ,即2=t 时,21S S 取得最大值49,此时22=m ,满足0∆>,所以点P 的坐标为)41,22(,因此12SS 的最大值为49,此时点P 的坐标为)41,22(. 【举一反三】(2015·北京,19)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点P (0,1)和点A (m ,n )(m ≠0)都在椭圆C 上,直线PA 交x 轴于点M .(1)求椭圆C 的方程,并求点M 的坐标(用m ,n 表示);(2)设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N .问:y 轴上是否存在点Q ,使得∠OQM =∠ONQ ?若存在,求点Q 的坐标;若不存在,说明理由.所以B (m ,-n ). 设N (x N ,0),则x N =m1+n. “存在点Q (0,y Q )使得∠OQM =∠ONQ ”,等价于“存在点Q (0,y Q )使得|OM ||OQ |=|OQ ||ON |”,即y Q 满足y 2Q =|x M ||x N |.因为x M =m 1-n ,x N =m 1+n ,m 22+n 2=1.所以y 2Q =|x M ||x N |=m 21-n 2=2.所以y Q =2或y Q =- 2.故在y 轴上存在点Q ,使得∠OQM =∠ONQ ,点Q 的坐标为(0,2)或 (0,-2).【变式探究】 在平面直角坐标系xOy 中,点P (a ,b )(a >b >0)为动点,F 1,F 2分别为椭圆x 2a 2+y 2b2=1的左、右焦点.已知△F 1PF 2为等腰三角形. (1)求椭圆的离心率e ;(2)设直线PF 2与椭圆相交于A ,B 两点,M 是直线PF 2上的点,满足A M →·B M →=-2,求点M 的轨迹方程.x =-2,化简得18x 2-163xy -15=0.将y =18x 2-15163x代入c =x -33y ,得c =10x 2+516x >0,所以x >0.因此,点M 的轨迹方程是18x 2-163xy -15=0(x >0).【规律方法】(1)求轨迹方程时,先看轨迹的形状能否预知,若能预先知道轨迹为何种圆锥曲线,则可考虑用定义法求解或用待定系数法求解.(2)讨论轨迹方程的解与轨迹上的点是否对应,要注意字母的取值范围.【变式探究】 (2013·新课标全国Ⅰ卷)已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C . (1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |.⎩⎪⎨⎪⎧x 24+y 23=1,y =24x +2,化简得7x 2+8x -8=0,解之得x 1=-4+627,x 2=-4-627.∴|AB |=1+k 2|x 1-x 2|=187.当k =-24时,由图形的对称性可知|AB |=187. 综上,|AB |=23或187.题型四 双曲线的定义及标准方程例4.【2016年高考北京文数】双曲线22221x y a b-=(0a >,0b >)的渐近线为正方形OABC 的边OA ,OC所在的直线,点B 为该双曲线的焦点,若正方形OABC 的边长为2,则a =_______________.【答案】2【举一反三】(2015·福建,3)若双曲线E :x 29-y 216=1的左、右焦点分别为F 1,F 2,点P 在双曲线E 上,且|PF 1|=3,则|PF 2|等于( ) A .11 B .9 C .5 D .3解析 由双曲线定义||PF 2|-|PF 1||=2a ,∵|PF 1|=3,∴P 在左支上,∵a =3,∴|PF 2|-|PF 1|=6,∴|PF 2|=9,故选B. 答案 B【变式探究】(2015·安徽,4)下列双曲线中,焦点在y 轴上且渐近线方程为y =±2x 的是( ) A .x 2-y 24=1B.x 24-y 2=1 C.y 24-x 2=1D .y 2-x 24=1解析 由双曲线性质知A 、B 项双曲线焦点在x 轴上,不合题意;C 、D 项双曲线焦点均在y 轴上,但D 项渐近线为y =±12x ,只有C 符合,故选C.答案 C【举一反三】(2015·广东,7)已知双曲线C :x 2a 2-y 2b 2=1的离心率e =54,且其右焦点为F 2(5,0),则双曲线C 的方程为( )A.x 24-y 23=1B.x 216-y 29=1 C.x 29-y 216=1D.x 23-y 24=1题型五 双曲线的几何性质例5.【2017课标II ,文5】若1a >,则双曲线2221x y a-=的离心率的取值范围是A. )+∞B. 2)C.D. (1,2) 【答案】C【解析】由题意222222111c a e a a a+===+,因为1a >,所以21112a <+<,则1e << C. 【变式探究】【2016高考山东文数】已知双曲线E :22221x y a b-= (a >0,b >0),若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是_______. 【答案】2【解析】假设点A 在第一象限,点B 在第二象限,则2b A (c ,)a ,2b B(c,)a -,所以22b |AB |a=,|BC |2c =,由2AB 3BC =,222c a b =+得离心率e 2=或1e 2=-(舍去),所以E 的离心率为2. 【举一反三】(2015·四川,5)过双曲线x 2-y 23=1的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则|AB |=( ) A.433B .2 3C .6D .4 3解析 焦点F (2,0),过F 与x 轴垂直的直线为x =2,渐近线方程为x 2-y 23=0,将x =2代入渐近线方程得y 2=12,y =±23,∴|AB |=23-(-23)=4 3.选D.答案 D【变式探究】(2015·新课标全国Ⅱ,11)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为( ) A. 5 B .2 C. 3 D. 2答案 D【特别提醒】(2015·新课标全国Ⅰ,5)已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点,若MF 1→·MF 2→<0,则y 0的取值范围是( ) A.⎝ ⎛⎭⎪⎫-33,33 B.⎝ ⎛⎭⎪⎫-36,36 C.⎝ ⎛⎭⎪⎫-223,223 D.⎝ ⎛⎭⎪⎫-233,233解析 由题意知M 在双曲线C :x 22-y 2=1上,又在x 2+y 2=3内部,由⎩⎪⎨⎪⎧x 22-y 2=1,x 2+y 2=3,得y =±33,所以-33<y 0<33. 答案 A题型六 抛物线的几何性质例6.【2016高考天津文数】设抛物线222x pt y pt⎧=⎨=⎩,(t 为参数,p >0)的焦点为F ,准线为l .过抛物线上一点A 作l 的垂线,垂足为B .设C (72p ,0),AF 与BC 相交于点E .若|CF |=2|AF |,且△ACE 的面积为则p 的值为_________.【举一反三】(2015·天津,6)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线过点(2,3) ,且双曲线的一个焦点在抛物线y 2=47x 的准线上,则双曲线的方程为( ) A.x 221-y 228=1 B.x 228-y 221=1C.x 23-y 24=1D.x 24-y 23=1解析 双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±b a x ,又渐近线过点(2,3),所以2ba=3,即2b =3a ,①抛物线y 2=47x 的准线方程为x =-7,由已知,得a 2+b 2=7,即a 2+b 2=7②, 联立①②解得a 2=4,b 2=3,所求双曲线的方程为x 24-y 23=1,选D.答案 D【变式探究】(2015·浙江,5)如图,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是( )A.|BF |-1|AF |-1B.|BF |2-1|AF |2-1 C.|BF |+1|AF |+1 D.|BF |2+1|AF |2+1 解析 由图象知S △BCF S △ACF =|BC ||AC |=x Bx A,由抛物线的性质知|BF |=x B +1,|AF |=x A +1,∴x B =|BF |-1,x A =|AF |-1,∴S △BCF S △ACF =|BF |-1|AF |-1.故选A. 答案 A【举一反三】(2015·新课标全国Ⅰ,20)在直角坐标系xOy 中,曲线C :y =x 24与直线l :y =kx +a (a >0)交于M ,N 两点,(1)当k =0时,分别求C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.题型七直线与圆锥曲线的位置关系例7.【2017山东,文21】(本小题满分14分)在平面直角坐标系xOy中,已知椭圆C:22221x ya b+=(a>b>0)的离心率为2,椭圆C截直线y=1所得线段的长度为.(Ⅰ)求椭圆C的方程;(Ⅱ)动直线l:y=kx+m(m≠0)交椭圆C于A,B两点,交y轴于点M.点N是M关于O的对称点,圆N的半径为|NO|. 设D为AB的中点,DE,DF与圆N分别相切于点E,F,求∠EDF的最小值.【答案】(Ⅰ)22142x y+=.(II)3π.故21214t k ++=, 所以()222161611112ND tNFt t t=+=++++ . 令1y t t =+,所以211y t'=-. 当3t ≥时, 0y '>,从而1y t t=+在[)3,+∞上单调递增,因此1103t t +≥,等号当且仅当3t =时成立,此时0k =, 所以22134ND NF≤+=,由(*)得 m <且0m ≠.故12NF ND≥, 设2EDF θ∠=, 则1sin 2NF NDθ=≥, 所以θ的最小值为π6, 从而EDF ∠的最小值为π3,此时直线L 的斜率是0.综上所述:当0k =, ()(m ∈⋃时, EDF ∠取到最小值π3. 【变式探究】【2016高考江苏卷】(本小题满分10分)如图,在平面直角坐标系xOy 中,已知直线:20l x y --=,抛物线2:y 2(0)C px p => (1)若直线l 过抛物线C 的焦点,求抛物线C 的方程; (2)已知抛物线C 上存在关于直线l 对称的相异两点P 和Q . ①求证:线段PQ 的中点坐标为(2,).p p --; ②求p 的取值范围.【答案】(1)x y 82=(2)①详见解析,②)34,0(①由22y px y x b⎧=⎨=-+⎩消去x 得2220(*)y py pb +-=因为P 和Q 是抛物线C 上的相异两点,所以12,y y ≠ 从而2(2)4(2)0p pb ∆=-->,化简得20p b +>.方程(*)的两根为1,2y p =-120.2y y y p +==- 因为00(,)M x y 在直线l 上,所以02.x p =- 因此,线段PQ 的中点坐标为(2,).p p -- ②因为(2,).M p p --在直线y x b =-+上 所以(2)p p b -=--+,即22.b p =-由①知20p b +>,于是2(22)0p p +->,所以4.3p < 因此p 的取值范围为4(0,).3【举一反三】(2015·重庆,10)设双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,右顶点为A ,过F 作AF 的垂线与双曲线交于B ,C 两点,过B ,C 分别作AC ,AB 的垂线,两垂线交于点D ,若D 到直线BC 的距离小于a +a 2+b 2,则该双曲线的渐近线斜率的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-2,0)∪(0,2)D .(-∞,-2)∪(2,+∞)【变式探究】(2014·辽宁,10)已知点A (-2,3)在抛物线C :y 2=2px 的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( ) A.12 B.23 C.34 D.43解析 ∵A (-2,3)在抛物线y 2=2px 的准线上,∴-p2=-2,∴p =4,∴y 2=8x ,设直线AB 的方程为x =k (y -3)-2①,将①与y 2=8x 联立,即⎩⎪⎨⎪⎧x =k (y -3)-2,y 2=8x ,得y 2-8ky +24k +16=0②,则Δ=(-8k )2-4(24k +16)=0,即2k 2-3k -2=0,解得k =2或k =-12(舍去),将k =2代入①②解得⎩⎪⎨⎪⎧x =8,y =8,即B (8,8),又F (2,0),∴k BF =8-08-2=43,故选D.答案 D【举一反三】(2015·山东,15)平面直角坐标系xOy 中,双曲线C 1:x 2a 2-y 2b2=1(a >0,b >0)的渐近线与抛物线C 2:x 2=2py (p >0)交于点O ,A ,B .若△OAB 的垂心为C 2的焦点,则C 1的离心率为________.31。
高中数学圆锥曲线教学案(2021年整理)

高中数学圆锥曲线教学案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学圆锥曲线教学案(word 版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学圆锥曲线教学案(word版可编辑修改)的全部内容。
高中数学总复习教学案第9单元圆锥曲线与方程本章知识结构本章的重点难点聚焦本章的重点:椭圆、双曲线、抛物线的定义,标准方程及标准方程表示的圆锥曲线的几何性质,直线与圆锥曲线的位置关系。
本章的难点:求圆锥曲线的方程及利用几何性质和直线与圆锥曲线的位置关系综合问题.本章学习中应当着重注意的问题理解椭圆、双曲线、抛物线的概念,准确掌握标准方程所表示曲线的几何性质,特别注重函数与方程不等式的思想、转化思想、数形结合思想在本单元解题中的应用.本章高考分析及预测本章内容是高中数学的重要内容之一,也是高考常见新颖题的板块,各种解题方法在本章得到了很好的体现和充分的展示,尤其是在最近几年的高考试题中,平面向量与解析几何的融合,提高了题目的综合性,形成了题目多变,解法灵活的特点,充分体现了高考中以能力立意的命题方向。
通过对近几年的高考试卷的分析,可以发现选择题、填空题与解答题均可涉及本章的知识,分值20分左右。
主要呈现以下几个特点:1.考查圆锥曲线的基本概念、标准方程及几何性质等知识及基本技能、基本方法,常以选择题与填空题的形式出现;2.直线与二次曲线的位置关系、圆锥曲线的综合问题常以压轴题的形式出现,这类问题视角新颖,常见的性质、基本概念、基础知识等被附以新的背景,以考查学生的应变能力和解决问题的灵活程度;3.在考查基础知识的基础上,注意对数学思想与方法的考查,注重对数学能力的考查,强调探究性、综合性、应用性,注重试题的层次性,坚持多角度、多层次的考查,合理调控综合程度;4.对称问题、轨迹问题、多变量的范围问题、位置问题及最值问题也是本章的几个热点问题,但从最近几年的高考试题本看,难度有所降低,有逐步趋向稳定的趋势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线经典小题
一、选择题
1.已知双曲线)0,0(1:2222>>=-b a b
y a x C 的离心率为,25则C 的渐近线方程为( ) A .x y 41±= B .x y 31±= C .x y 2
1±= D .x y ±= 2.已知,40π
θ<<则双曲线1cos sin :22221=-θθy x C 与1sin cos :22
222=-θθx y C ( ) A .实轴长相等 B .虚轴长相等 C .离心率相等 D .焦距相等
3.椭圆14
22
=+y x 的两个焦点为,,21F F 过1F 作垂直于x 轴的直线与椭圆相交,一个交点为P ,则=||2PF ( )
A .23
B .3
C .2
7 D .4 4.已知双曲线1422
2=-b
y x 的右焦点与抛物线x y 122=的焦点重合,则该双曲线的焦点到其渐近线的距离等于( )
A .5
B .24
C .3
D .5
5.设1F 和2F 为双曲线)0,0(122
22>>=-b a b
y a x 的两个焦点,若)2,0(,,21b P F F 是正三角形的三个顶点,则双曲线的离心率为( )
A .23
B .2
C .2
5 D .3 6.已知双曲线12
2
2=-y x 的焦点为,,21F F 点M 在双曲线上,且,021=⋅MF MF 则点M 到x 轴的距离为( )
A .3
4 B .3
5 C .332 D .3 7.设双曲线的左焦点为F ,虚轴的一个端点为B ,右顶点为A ,如果直线FB 与BA 垂直,那么此双曲线的离心率为( )
A .2
B .3
C .
213+ D .215+ 8.已知双曲线,122=-y x 点21,F F 为其两个焦点,点P 为双曲线上一点,若,21PF PF ⊥
则||1PF ||2PF +的值为( )
A .3
B .24
C .3
D .32
二、填空题
9.已知抛物线x y 82
=的准线过双曲线)0,0(122
22>>=-b a b y a x 的一个焦点,双曲线的离心率为2,则该双曲线的方程为_________.
10.已知21,F F 是椭圆)0(1:22
22>>=+b a b
y a x C 的两个焦点,P 为椭圆C 上一点,且.21PF ⊥ 若21F PF
∆的面积为9,则=b _________.
11.抛物线)0(22
>=p py x 的焦点为F ,其准线与双曲线1332
2=-y x 相交于A ,B 两点, 若ABF ∆为等边三角形,则=p _________.
12.椭圆122
22=+b
y a x 的四个顶点为,,,,D C B A 若菱形ABCD 的内切圆恰好经过它的焦点,则此椭圆的离心率是____.
13.已知双曲线)0,0(12222>>=-b a b y a x 的两条渐近线方程为,3
3x y ±= 若顶点到渐近线的距离为1,求双曲线方程.。