高考数学专项突破:圆锥曲线专题
高考数学专项突破:圆锥曲线专题
目录 一、知识考点讲解 ......................................................................2
第一部分 了解基本题型 .......................................................2 第二部分 掌握基本知识 .......................................................4 第三部分 掌握基本方法 .......................................................6 二、知识考点深入透析 ............................................................11 三、圆锥曲线之高考链接 ........................................................13 四、基础知识专项训练 ............................................................16 五、解答题专项训练 ................................................................24 附录:圆锥曲线之高考链接参考答案 ....................................29 附录:基础知识专项训练参考答案 ........................................33 附录:解答题专项训练参考答案 ............................................35
专题05 五大类圆锥曲线题型-2024年高考数学最后冲刺大题秒杀技巧及题型专项训练(解析版)
专题05 五类圆锥曲线题型-2024年高考数学大题秒杀技巧及专项训练(解析版)【题型1 圆锥曲线中的轨迹方程问题】【题型2 圆锥曲线中齐次化处理斜率乘积问题】【题型3 圆锥曲线中的三角形(四边形)面积问题】【题型4 圆锥曲线中的定点、定值、定直线问题】【题型5 圆锥曲线中的极点与极线】题型1 圆锥曲线中的轨迹方程问题曲线方程的定义一般地,如果曲线C 与方程(,)0F x y =之间有以下两个关系:①曲线C 上的点的坐标都是方程(,)0F x y =的解;②以方程(,)0F x y =的解为坐标的点都是曲线C 上的点.此时,把方程(,)0F x y =叫做曲线C 的方程,曲线C 叫做方程(,)0F x y =的曲线.求曲线方程的一般步骤:(1)建立适当的直角坐标系(如果已给出,本步骤省略);(2)设曲线上任意一点的坐标为),(y x ;(3)根据曲线上点所适合的条件写出等式;(4)用坐标表示这个等式,并化简;(5)确定化简后的式子中点的范围.上述五个步骤可简记为:求轨迹方程的步骤:建系、设点、列式、化简、确定点的范围.y x 、求轨迹方程的方法:定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。
直接法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(,)x y 表示该等量关系式,即可得到轨迹方程。
代入法(相关点法):如果动点P 的运动是由另外某一点P '的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出(,)P x y ,用(,)x y 表示出相关点P '的坐标,然后把P '的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。
高考数学复习考点突破专题讲解12 圆锥曲线的方程与性质
高考数学复习考点突破专题讲解第12讲圆锥曲线的方程与性质一、单项选择题1.(2022·广东惠州一模)若抛物线y2=2px(p>0)上一点P(2,y0)到其焦点的距离为4,则抛物线的标准方程为()A.y2=2xB.y2=4xC.y2=6xD.y2=8x2.(2022·山东临沂二模)已知双曲线C:=1(a>0,b>0)的焦距为4,实轴长为4,则C的渐近线方程为()A.y=±2xB.y=±xC.y=±xD.y=±x3.(2022·广东肇庆二模)已知F1,F2分别是椭圆C:=1(a>b>0)的左、右焦点,A是椭圆上一点,O 为坐标原点,若|OA|=|OF1|,直线F2A的斜率为-3,则椭圆C的离心率为()A. B. C. D.4.(2022·河北保定高三期末)为了更好地研究双曲线,某校高二年级的一位数学老师制作了一个如图所示的双曲线模型.已知该模型左、右两侧的两段曲线(曲线AB与曲线CD)为某双曲线(离心率为2)的一部分,曲线AB与曲线CD中间最窄处间的距离为30 cm,点A与点C,点B与点D均关于该双曲线的对称中心对称,且|AB|=36 cm,则|AD|=()A.12 cmB.6 cmC.38 cmD.6 cm5.(2022·全国甲·文11)已知椭圆C:=1(a>b>0)的离心率为,A1,A2分别为C的左、右顶点,B为C的上顶点.若=-1,则C的方程为()A.=1B.=1C.=1D.+y2=16.(2022·广东执信中学模拟)已知双曲线C的离心率为,F1,F2是C的两个焦点,P为C上一点,|PF1|=3|PF2|,若△PF1F2的面积为,则双曲线C的实轴长为()A.1B.2C.3D.47.(2022·江西宜春期末)已知抛物线E:y2=8x的焦点为F,P是抛物线E上的动点,点Q与点F关于坐标原点对称,当取得最小值时,△PQF的外接圆半径为()A.1B.2C.2D.48.(2022·山东滨州二模)已知椭圆C1和双曲线C2有相同的左、右焦点F1,F2,若C1,C2在第一象限内的交点为P,且满足∠POF2=2∠PF1F2,设e1,e2分别是C1,C2的离心率,则e1,e2的关系是()A.e1e2=2B.=2C.+e1e2+=2D.=2二、多项选择题9.(2022·湖北武昌高三期末)已知双曲线C:=1,下列对双曲线C判断正确的是()A.实轴长是虚轴长的2倍B.焦距为8C.离心率为D.渐近线方程为x±y=010.(2022·新高考Ⅱ·10)已知O为坐标原点,过抛物线C:y2=2px(p>0)的焦点F的直线与C交于A,B两点,点A在第一象限,点M(p,0),若|AF|=|AM|,则()A.直线AB的斜率为2B.|OB|=|OF|C.|AB|>4|OF|D.∠OAM+∠OBM<180°11.(2022·山东临沂三模)2022年4月16日9时56分,神舟十三号返回舱成功着陆,返回舱是宇航员返回地球的座舱,返回舱的轴截面可近似看作是由半圆和半椭圆组成的“曲圆”,如图,在平面直角坐标系中,半圆的圆心在坐标原点,半圆所在的圆过椭圆的焦点F(0,2),椭圆的短轴与半圆的直径重合,下半圆与y轴交于点G.若过原点O的直线与上半椭圆交于点A,与下半圆交于点B,则()A.椭圆的长轴长为4B.线段AB长度的取值范围是[4,2+2]C.△ABF的面积最小值是4D.△AFG的周长为4+412.(2022·江苏南通高三检测)已知椭圆C1:=1(m>n>0)的上焦点为F1,双曲线C2:=1的左、右焦点分别为F2,F3,直线F1F2与C2的右支相交于点A,若AF3⊥F2F3,则()A.C1的离心率为B.C2的离心率为C.C2的渐近线方程为y=±xD.△AF1F3为等边三角形三、填空题13.(2021·全国乙·理13)已知双曲线C:-y2=1(m>0)的一条渐近线为x+my=0,则C的焦距为.14.(2022·河北保定模拟)已知椭圆C的中心为坐标原点,焦点在y轴上,F1,F2为C的两个焦点,C的短轴长为4,且C上存在一点P,使得|PF1|=6|PF2|,写出椭圆C的一个标准方程:.15.(2022·山东威海高三期末)已知抛物线C1:y2=8x,圆C2:x2+y2-4x+3=0,点M(1,1),若A,B分别是C1,C2上的动点,则|AM|+|AB|的最小值为.16.(2022·河北石家庄二模)已知椭圆C1和双曲线C2有公共的焦点F1,F2,曲线C1和C2在第一象限内相交于点P,且∠F1PF2=60°.若椭圆C1的离心率的取值范围是,则双曲线C2的离心率的取值范围是.高考数学复习考点突破专题讲解12圆锥曲线的方程与性质1.D解析∵抛物线y2=2px上一点P(2,y0)到其焦点的距离等于到其准线的距离,∴+2=4,解得p=4,∴抛物线的标准方程为y2=8x.2.C解析由已知得,双曲线的焦点在y轴上,双曲线的焦距2c=4,解得c=2,双曲线的实轴长为2a=4,解得a=2,则b=--=4,故双曲线C的渐近线方程为y=±x=±x.3. D解析如图,由|OA|=|OF1|,得|OA|=|OF1|=|OF2|=c,故∠F1AF2=90°.因为直线F2A的斜率为-3,所以tan∠F1F2A=3,所以|AF1|=3|AF2|.又|AF1|+|AF2|=2a,所以|AF1|=,|AF2|=.又|AF1|2+|AF2|2=|F1F2|2,即a2+a2=4c2,得,所以.4. D解析以双曲线的对称中心为坐标原点,建立平面直角坐标系xOy,因为双曲线的离心率为2,所以可设双曲线的标准方程为=1(a>0),依题意可得2a=30,则a=15,即双曲线的标准方程为=1.因为|AB|=36cm,所以点A的纵坐标为18.由=1,得|x|=3,故|AD|=6cm.5.B解析由题意知,A1(-a,0),A2(a,0),B(0,b),则=(-a,-b)·(a,-b)=-a2+b2=-1,①由e=,得e2=-=1-,即b2=a2.②联立①②,解得a2=9,b2=8.故选B.6.B解析根据双曲线的定义,可得|PF1|-|PF2|=2a,又|PF1|=3|PF2|,解得|PF1|=3a,|PF2|=a.因为双曲线C的离心率为,所以c= a.在△PF1F2中,由余弦定理,可得cos∠F1PF2=-=-,则sin∠F1PF2=.由△PF1F2的面积为,可得|PF1||PF2|sin∠F1PF2=a2=,解得a=1.故双曲线C的实轴长为2.7. C解析过点P作准线的垂线,垂足为M,由抛物线的定义知|PF|=|PM|,所以=cos∠QPM=cos∠PQF,要使取得最小值,则cos∠PQF取得最小值,即tan∠PQF取得最大值0<∠PQF<,此时直线PQ与抛物线相切.设直线PQ的方程为y=k(x+2),由得k2x2+(4k2-8)x+4k2=0,所以Δ=(4k2-8)2-4k2·4k2=64(1-k2)=0,即k2=1,解得k=±1,不妨取k=1,此时直线PQ的倾斜角∠PQF=,且有x2-4x+4=0,所以x=2,所以P(2,4),所以|PF|=4.设△PQF的外接圆半径为R,在△PQF中,由正弦定理知,2R==4.所以此时△PQF的外接圆半径R=2.8. D解析因为∠POF2=∠PF1F2+∠F1PO,∠POF2=2∠PF1F2,所以∠PF1F2=∠F1PO,所以|OF1|=|OP|=|OF2|=c,所以PF1⊥PF2.记椭圆长半轴长为a1,双曲线实半轴长为a2,椭圆和双曲线的半焦距为c,|PF1|=m,|PF2|=n,则由椭圆和双曲线定义可得,m+n=2a1,①m-n=2a2,②①2+②2可得2(m2+n2)=4().由勾股定理知,m2+n2=4c2,代入上式可得2c2=,整理得=2,即=2,所以=2.9.BD解析由双曲线C:=1,可得a2=12,b2=4,则c2=a2+b2=16,所以a=2,b=2,c=4,故A不正确,B正确;e=,故C不正确;易知渐近线方程为y=±x,即x±y=0,故D正确.10.ACD解析选项A,由题意知,点A为FM的中点,设A(x A,y A),则x A=p,所以=2px A=2p·p=p2(y A>0).=2,故选项A正确;所以y A=p,故k AB=-选项B,由斜率为2可得直线AB的方程为x=y+,联立抛物线方程得y2-py-p2=0,设B(x B,y B),则p+y B=p,则y B=-,代入抛物线方程得-=2p·x B,解得x B=.∴|OB|=,故选项B错误;选项C,|AB|=p++p=p>2p=4|OF|,故选项C正确;选项D,由选项A,B知,A p,p,B,-p,所以=p,p·,-p=-p2=-p2<0,所以∠AOB为钝角.又=-p·-,-p=-p2=-p2<0,所以∠AMB为钝角.所以∠OAM+∠OBM<180°.故选项D正确.故选ACD.11. ABD解析由题知,椭圆中b=c=2,则a=2,则2a=4,故A正确;|AB|=|OB|+|OA|=2+|OA|,由椭圆性质可知2≤|OA|≤2,所以4≤|AB|≤2+2,故B正确;若A,B,F能构成三角形,则AB不与y轴重合,此时2≤|OA|<2,记∠AOF=θ,则S△ABF=S△AOF+S△OBF=|OA||OF|sinθ+OB·OF sin(π-θ)=|OA|·sinθ+2sinθ=(|OA|+2)sinθ,取θ=,则S△ABF=1+|OA|<1+×2<4,故C错误;由椭圆定义知,|AF|+|AG|=2a=4,所以△AFG的周长L=|FG|+4=4+4,故D正确.12. ACD解析易知F1(0,-),F2(-,0),F3(,0),将x=代入双曲线C2的方程得=1,可得y2=,则点A.因为O为F2F3的中点,且OF1∥AF3,所以OF1为△F2AF3的中位线,所以-,整理可得m4=4m2n2-4n4,即m2=2n2.椭圆C1的离心率为e1=-,故A正确;双曲线C2的离心率为e2=,故B错误;双曲线C2的渐近线方程为y=±x=±x,故C正确;易知点A(n,2n),F2(-n,0),则,则∠AF2F3=30°,故∠F2AF3=60°.因为|AF3|=2n,|AF1|=|AF2|=(|AF3|+2n)=2n,所以△AF1F3为等边三角形,故D正确.13.4解析由双曲线方程可知其渐近线方程为±y=0,即y=±x,得-=-,解得m=3.可得C 的焦距为2=4.14.=1(答案不唯一)解析因为|PF1|=6|PF2|,所以|PF1|+|PF2|=7|PF2|=2a,则|PF2|=.又因为a-c≤|PF2|≤a+c,所以≥a-c,即.根据题意可设C的标准方程为=1(a>b>0),因为椭圆C的短轴长为4,所以2b=4,b=2.又由,可得--,解得a2≥,所以椭圆C的一个标准方程为=1.15. 2解析由抛物线C1:y2=8x得焦点F(2,0),准线方程为x=-2.由圆C2:x2+y2-4x+3=0,得(x-2)2+y2=1,所以圆C2是以F(2,0)为圆心,以r=1为半径的圆.所以|AM|+|AB|≥|AM|+|AF|-1,所以当|AM|+|AF|取得最小值时,|AM|+|AB|取得最小值.又根据抛物线的定义得|AF|等于点A到准线的距离,所以过点M作准线的垂线,垂足为N,且与抛物线C1:y2=8x相交,当点A为此交点时,|AM|+|AF|取得最小值,最小值为|1-(-2)|=3.所以此时|AM|+|AB|≥|AM|+|AF|-1≥3-1=2,所以|AM|+|AB|的最小值为2.16.解析设椭圆C1:=1(a>b>0),双曲线C2:=1,椭圆与双曲线的半焦距为c,椭圆的离心率e=,双曲线的离心率e1=,|PF1|=s,|PF2|=t,如图,由椭圆的定义可得s+t=2a,由双曲线定义可得s-t=2a1,联立可得s=a1+a,t=a-a1.由余弦定理可得4c2=s2+t2-2st cos∠F1PF2=(a+a1)2+(a-a1)2-2(a+a1)(a-a1)cos60°=a2+3,即4=,解得.-因为e∈,所以≤e2≤,2≤≤3,可得≤3,故≤e1≤.。
高考数学复习历年压轴题归类专题讲解: 圆锥曲线解答题突破(解析版)
高考数学复习历年压轴题归类专题讲解 圆锥曲线解答题突破(解析版)1.已知椭圆()222210x y a b a b+=>>的左、右焦点分别为12,F F ,其离心率12e =,点P为椭圆上的一个动点,12PF F △面积的最大值为(1)求椭圆的标准方程;(2)若A ,B ,C ,D 是椭圆上不重合的四个点,AC 与BD 相交于点1F ,0AC BD ⋅=,求+AC BD 的取值范围.【答案】(1)2211612x y +=;(2)96,147⎡⎤⎢⎥⎣⎦. 解:(1)由题意得,当点P 是椭圆的上、下顶点时,12PF F △的面积取最大值此时121212PF F S F F OP bc ∆=⋅⋅=所以bc = 因为12e =,所以b =4a = 所以椭圆方程为2211612x y +=(2)由(1)得椭圆方程为2211612x y +=,则1F 的坐标为(2,0)-因为0AC BD ⋅=,所以AC BD ⊥①当直线AC 与BD 中有一条直线斜率不存在时,易得6814AC BD +=+= ②当直线AC 斜率k 存在且0k ≠,则其方程为(2)y k x =+,设11(,)A x y ,22(,)C x y则点A 、C 的坐标是方程组22(2)11612y k x x y =+⎧⎪⎨+=⎪⎩的两组解所以2222(34)1616480k x k x k +++-=所以212221221634164834k x x k k x x k ⎧+=-⎪⎪+⎨-⎪⋅=⎪+⎩所以212224(1)134k AC x k+=+-=+ 此时直线BD 的方程为()12y x k=-+ 同理由221(2)11612y x k x y ⎧=-+⎪⎪⎨⎪+=⎪⎩可得2224(1)43k BD k +=+ 2222222224(1)24(1)168(1)3443(34)(43)k k k AC BD k k k k ++++=+=++++令21(0)t k k =+≠,则1t >,2168112AC BD t t+=-+ 因为1t >,所以21104t t -<≤ 所以96[,14)7AC BD +∈ 综上96[,14]7AC BD +∈2.已知椭圆C :2212x y +=.(1)曲线D :3y x =与C 相交于A ,B 两点,H 为C 上异于A ,B 的点,若直线HA 的斜率为1,求直线HB 的斜率;(2)若C 的左焦点为F ,右顶点为E ,直线l :4x =.过F 的直线l '与C 相交于P ,Q (P 在第一象限)两点,与l 相交于M ,是否存在l '使PFE △的面积等于△MPE 的面积与QFE △的面积之和.若存在,求直线l '的方程;若不存在,请说明理由.【答案】(1)12-;(2)直线l '不存在,理由见解析(1)由已知设(),H x y ,()11,A x y ,()11,B x y --, 因为点,H A 均在椭圆C 上,所以2222x y +=,221122x y +=,两式相减得()2222112x x y y -=-,又221112211112HA HBy y y y y y k k x x x x x x -+-⋅=⋅==--+-,且1HA k =, ∴12HB k =-;(2)设()04,M y ,()33,P x y ,()44,Q x y ,则()0303111222MPE S FE y FE y FE y y =⋅⋅-⋅⋅=⋅⋅-△,312PFESFE y =⋅⋅, ()412QFESFE y =⋅⋅-, 假设存在l '使得PFE △的面积等于△MPE 的面积与QFE △的面积之和,则PFE MPE QFE S S S =+△△△,即0342y y y =+①, 设l :1x my =-,令4x =,得05y m =,∴3452y y m+=②, 把1x my =-,将之代入2212x y +=,整理得()222210m y my +--=,∴34222my y m +=+③, 34212y y m =-+④,②③联立得32522m y m m =-+,42452m y m m=-+⑤, 把⑤代入④得22252451222m m m m m m m ⎛⎫⎛⎫--=- ⎪⎪+++⎝⎭⎝⎭, 化简得4219500m m ++=,由于此方程无解,故所求直线l '不存在.3.如图,已知椭圆2214y x +=,点()1,0F 是抛物线()220y px p =>的焦点,过点F 作直线l 交抛物线于,M N 两点,延长,MO NO 分别交椭圆于,A B 两点,记OMN ,OAB 的面积分别是12,S S .(Ⅰ)求p 的值及抛物线的准线方程;(Ⅱ)求12S S 的最小值及此时直线l 的方程. 【答案】(Ⅰ)2p =,准线方程1x =-;(2)12S S 的最小值为2,此时:1l x =. (Ⅰ)因为点()1,0F 是抛物线()220y px p =>的焦点,所以12p=,即2p =,因此该抛物线的准线方程为:1x =-; (Ⅱ)由(Ⅰ)得抛物线方程为:24y x =,根据题意,不妨令点M 在第一象限,点N 在第四象限,则点A 在第三象限,点B 在第二象限;若直线l 的斜率不存在,则:1l x =,代入24y x =可得2y =±,即()1,2M ,()1,2N -,则1122OMNS SOF MN ==⋅=;2OM k =,2ON k =-, 则直线:2OM y x =,直线:2ON y x =-,由22214y x y x =⎧⎪⎨+=⎪⎩得22122AA x y ⎧=⎪⎨⎪=⎩,所以2A A x y ⎧=-⎪⎨⎪=⎩,即A ⎛ ⎝;同理:B ⎛ ⎝,则AB x ⊥轴,因此21122OABS S==⨯⨯=; 此时122S S =,:1l x =;若直线l 的斜率存在,设直线l 的方程为()1y k x =-,(1,M x,(2,N x -,由()214y k x y x⎧=-⎨=⎩得()2214k x x -=,整理得()2222240k x k x k -++=, 则212224k x x k++=,121=x x ;()224224416160k k k ∆=+-=+>,所以11sin 2OMNS SOM ON MON MON ==⋅∠=∠MON MON =∠=∠;又1OM k==,2ON k ==, 所以直线:OM y x=,:ON y x =, 由2214y x y x ⎧=⎪⎪⎨⎪+=⎪⎩得1221x x x +=,即2111A x x x =+,则2211441A y x x x ==+,所以OA ==;同理OB =,所以21sin 2OABS SOA OB AOB AOB ==∠=∠A OB ∠=又AOB MON ∠=∠,所以12S S MON ===∠2==>=; 综上,12S S 的最小值为2,此时:1l x =.4.在平面直角坐标系xOy 中,已知椭圆2222:1(0,0)x y C a ba b +=>>短轴的两个顶点与右焦点的连线构成等边三角形,两准线之间的距离为.(1)求椭圆C 的标准方程;(2)直线:(0,0)l y kx m k m =+>≠与椭圆C 交于P ,Q 两点,设直线OP ,OQ 的斜率分别为1k ,2k .已知212·k k k =. ①求k 的值;②当OPQ △的面积最大时,求直线PQ 的方程.【答案】(1)2214x y +=;(2)①12k =;②112y x =±.解:(1)设椭圆的焦距为2c ,则222c a b =-.因为短轴的两个顶点与右焦点的连线构成等边三角形,所以=c .,则22a c = 所以2a =,1b =,所以椭圆C 的标准方程为2214x y +=.(2)①设1(P x ,1)y ,2(Q x ,2)y ,联立22,1,4y kx m x y =+⎧⎪⎨+=⎪⎩消去y 得222(41)8440k x kmx m +++-=, 2222644(41)(44)0k m k m ∆=-+->,化简得2241m k <+,所以122841km x x k -+=+,212244·41m x x k -=+, 又OP 的斜率111y k x =,OQ 的斜率222y k x =,所以2221212121212121212()()()·y y kx m kx m k x x km x x m k k k x x x x x x +++++====,化简得212()0km x x m ++=,所以228·041kmkm m k -+=+.又因为0m ≠,即241k =, 又0k >,所以12k =. ②由①得12k =,直线PQ 的方程为12y x m =+, 且122x x m +=-,212·22x x m =-,22m <. 又0m ≠,所以0m <<所以12PQ x ==-== 点O 到直线PQ的距离d ==,所以221(2)·122OPQm m SPQ d +-===≤=, 当且仅当222m m =-,即1m =±时,OPQ △的面积最大, 所以,直线PQ 的方程为112y x =±. 5.已知椭圆2222:1(0)x y C a b a b+=>>的两焦点为1(F,2F ,且椭圆上一点P ,满足12|||4|PF PF +=,直线:l y kx m =+与椭圆C 交于A 、B 两点,与x 轴、y 轴分别交于点G 、H ,且OA OB OM λ+=.(1)求椭圆C 的方程;(2)若k =||2AB λ==,求||||HG HM ⋅的值;(3)当△OAB 面积取得最大值,且点M 在椭圆C 上时,求λ的值.【答案】(1)2214x y +=(2)3(3)λ=(1)由题意可得2,1a c b ==⇒=,∴椭圆方程为2214x y +=(2)由题意得,此时直线方程为y m =+,将其代入椭圆方程整理可得229440x m ++-=,其中()222212836441441609m m m m ∆=--=->⇒<设()()1122,,,A x y B x y ,则2121244,99m x x x x -+=-=∴12322AB x m =-==⇒=±,由椭圆具有对称性,∴不妨取32m =,则310,,,26H G M ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,∴3HG HM ⋅ (3)将直线方程y kx m =+代入椭圆方程整理可得()222418440k x kmx m +++-=,其中()()222222644414464160k m k m k m ∆=-+-=-+16>,设()()1122,,,A x y B x y ,则2121222844,4141km m x x x x k k -+=-=++,∴12AB x=-=原点到直线的距离d=,∴()222241141ABCm k mSk∆++-=≤=+,当且仅当22412k m+=时等号成立,又()()121211,M x x y yλλ⎛⎫++⎪⎝⎭代入椭圆方程可得()()2212122214x x y yλλ+++=,其中221114xy+=,222214xy+=,∴整理得212128284x x y yλ++=再将1122,kx m y kx my=+=+代入,()()122128284kx mx m kxxλ+=+++整理得()()2221212828884k x x km x x mλ+++++=,()2222224488288844141m kmk km mk kλ-⎛⎫++-++=⎪++⎝⎭,整理得22λ=,λ=6.已知椭圆2222:1(0)x yC a ba b+=>>的焦距为2,过点(-.(1)求椭圆C的标准方程;(2)设椭圆的右焦点为F,定点()2,0P,过点F且斜率不为零的直线l与椭圆交于A,B两点,以线段AP为直径的圆与直线2x=的另一个交点为Q,证明:直线BQ恒过一定点,并求出该定点的坐标.【答案】(1)2212x y +=;(2)证明见解析,3(,0)2.(1)由题知2211112c a b =⎧⎪⎨+=⎪⎩ , 解得22a =,21b =, 所以椭圆C 的方程为2212x y +=;(2)设11(,)A x y ,22(,)B x y 因为直线l 的斜率不为零,令l 的方程为:1x my =+,由22112x my x y =+⎧⎪⎨+=⎪⎩ 得22(2)210m y my ++-=, 则12222m y y m +=-+,12212y y m ⋅=-+, 因为以AP 为直径的圆与直线2x =的另一个交点为Q ,所以AQ PQ ⊥,则1(2,)Q y ,则2122BQ y y k x -=-,故BQ 的方程为:2112(2)2y y y y x x --=-- , 由椭圆的对称性,则定点必在x 轴上,所以令0y =,则1212121212121(2)(1)222y x y my my y y x y y y y y y -----+=+=+=+---,而12222m y y m +=-+,12212y y m ⋅=-+,12122y y my y +-=-, 所以121211322222y y y x y y +-+=+=-+=-,故直线BQ 恒过定点,且定点为3(,0)2.7.已知()()1122,,,A x y B x y 是抛物线()2:20C x py p =>上不同两点.(1)设直线:4p l y =与y轴交于点M ,若,A B 两点所在的直线方程为1y x =-,且直线:4pl y =恰好平分AMB ∠,求抛物线C 的标准方程. (2)若直线AB 与x 轴交于点P ,与y 轴的正半轴交于点Q ,且2124p y y =,是否存在直线AB ,使得113PA PB PQ+=?若存在,求出直线AB 的方程;若不存在,请说明理由. 【答案】(1)28x y =(2)AB 方程为122py x =±+.(1)设()()1122p A x ,y ,B x ,y ,M 0,4⎛⎫⎪⎝⎭,由2x 2{1py y x ==-,消去y 整理得2x 2px 2p 0-+=,则212124p 80{x x 2x x 2p pp∆=->+==, ∵直线py 4=平分AMB ∠, ∴k k 0AM BM +=, ∴1212p p y y 440x x --+=,即:12121212p px 1x 1x x p 44210x x 4x x ----+⎛⎫+=-+= ⎪⎝⎭,∴p 4=,满足Δ0>,∴抛物线C 标准方程为2x 8y =. (2)由题意知,直线AB 的斜率存在,且不为零, 设直线AB 的方程为:y kx b(k 0b 0)=+≠>,,由2{x 2y kx bpy=+=,得2x 2pkx 2pb 0--=, ∴2212124p k 80{x x 2x x 2pb pkpb∆=+>+==-,∴()2222121222pb x x y y ?b 2p 2p 4p -===, ∵212p y y 4=, ∴22p b 4=, ∵b 0>, ∴p b 2=.∴直线AB 的方程为:p y kx 2=+. 假设存在直线AB ,使得113PA PB PQ +=,即PQ PQ 3PA PB+=, 作AA x '⊥轴,BB x '⊥轴,垂足为A B ''、,∴121212p pPQ PQ OQ OQ y y p 22·PA PB AA BB y y 2y y ++=+'=+=', ∵()21212y y k x x p 2pk p +=++=+,212p y y 4=,∴222PQ PQp 2pk p·4k 2pPA PB 24++==+,由24k 23+=,得1k 2=±, 故存在直线AB ,使得113PA PB PQ +=,直线AB 方程为1p y x 22=±+. 8.已知椭圆E :22221(0)x y a b a b +=>>的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l :3y x =-+与椭圆E 有且只有一个公共点T .(Ⅰ)求椭圆E 的方程及点T 的坐标;(Ⅱ)设O 是坐标原点,直线l '平行于OT ,与椭圆E 交于不同的两点A 、B ,且与直线l 交于点P ,证明:存在常数λ,使得2||||||PT PA PB λ=⋅,并求λ的值.【答案】(Ⅰ)22163x y +=,点T 坐标为(2,1);(Ⅱ)45λ=. 【解析】(Ⅰ)由已知,a =,则椭圆E 的方程为222212x y b b+=.由方程组得22312(182)0x x b -+-=.①方程①的判别式为2=24(3)b ∆-,由=0∆,得2=3b , 此时方程①的解为=2x ,所以椭圆E 的方程为22163x y +=.点T 坐标为(2,1).(Ⅱ)由已知可设直线l '的方程为1(0)2y x m m =+≠, 由方程组1{23y x m y x =+=-+,, 可得223{21.3mx my =-=+, 所以P 点坐标为(222,133m m -+),2289PT m =. 设点A ,B 的坐标分别为1122(,)(,)A x y B x y ,.由方程组22163{12x y y x m +==+,,可得2234(412)0x mx m ++-=.②方程②的判别式为2=16(92)m ∆-,由>0∆,解得m <<. 由②得212124412=,33m m x x x x -+-=.所以123m PA x ==--,同理223m PB x =--, 所以12522(2)(2)433m mPA PB x x ⋅=---- 21212522(2)(2)()433m mx x x x =---++ 225224412(2)(2)()43333m m m m -=----+ 2109m =. 故存在常数45λ=,使得2PT PA PB λ=⋅. 9.已知椭圆()2222:10x y C a b a b+=>>的左,右焦点分别为1F ,2F ,若椭圆经过点)1P-,且12PF F △的面积为2.(1)求椭圆C 的标准方程;(2)设斜率为1的直线l 与圆22:O x y b +=交于A ,B 两点,与椭圆C 交于C ,D 两点,且()R CD AB λλ=∈,当λ取得最小值时,求直线l 的方程并求此时λ的值.【答案】(1)22184x y +=;(2)3,y x =. 解:(1)由12PF F △的面积可得12122c ⨯⨯=.即2c =,∴224a b -=.①又椭圆C 过点)1P,∴22611a b +=.②由①②解得a =2b =.故椭圆C 的标准方程为22184x y +=.(2)由题知圆221:2O x y +=,设直线l 的方程为y x m =+,则原点到直线l的距离d =,由弦长公式可得AB ==.将y x m =+代入椭圆方程22184x y+=,得2234280x mx m ++-=,由判别式()221612280m m ∆=-->,解得m -<由直线和圆相交的条件可得d r <<,也即22m -<<,综上可得m 的取值范围是()2,2-. 设()11,C x y ,()22,D x y ,则1243m x x +=-,212283m x x -=,由弦长公式,得CD === 由CD AB λ=,得CD AB λ===∵22m -<<,∴2044m <-≤,则当0m =时,λ取得最小值3,此时直线l 的方程为y x =.10.在平面直角坐标系中,已知椭圆()2222:10x y C a b a b +=>>,直线():,R,0l y kx t k t k =+∈≠.(1)若椭圆C 的一条准线方程为4x =,且焦距为2,求椭圆C 的方程;(2)设椭圆C 的左焦点为F ,上顶点为A ,直线l 过点F ,且与FA 垂直,交椭圆C 于M ,N (M 在x 轴上方),若2NF FM =,求椭圆C 的离心率;(3)在(1)的条件下,若椭圆C 上存在相异两点P ,Q 关于直线l 对称,求2t 的取值范围(用k 表示).【答案】(1)22143x y +=;(2)e =(3)220,34k k ⎡⎫⎪⎢+⎣⎭.(1)设椭圆C 的半焦距为c ,因为椭圆C 的一条准线方程为4x =,且焦距为2,所以22224,22a c c a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得2,1a b c =⎧⎪=⎨⎪=⎩C 的方程为22143x y +=.(2)如图,因为()0,A b ,(),0F c -,所以AF b k c=, 因为直线l 过点F ,且与FA 垂直,所以直线l 的方程为bx y c c=--,与椭圆C 的方程联立得()4222324220b a c y b c y b c ++-=,因为l 过左焦点F , 所以>0∆恒成立,设()11,M x y ,()22,N x y ,则321242242124222,b c y y b a cb c y y b a c ⎧+=-⎪⎪+⎨⎪=-⎪+⎩(*), 因为2NF FM =, 所以212y y =-,代入(*)得32142242214222,2b c y b a cb cy b a c ⎧-=-⎪⎪+⎨⎪-=-⎪+⎩, 消去1y 并化简得4222280b a c b c +-=, 因为222b a c =-, 所以()()2222222280a ca c a a c c -+--=,即4224990c a c a -+=, 因为c e a=,所以429910e e -+=,解得2e =,所以6e ==.(3)如图,设()11,P x y ,()22,Q x y ,PQ 的中点()00,x y ,则221122221,43143x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减并化简得 2121212134y y y y x x x x -+⋅=--+,即0034PQ y k x ⋅=-,因为1PQ k k=-,所以0034ky x =, 又00y kx t =+,所以004,3t x k y t⎧=-⎪⎨⎪=-⎩, 因为点()00,x y 在椭圆C 的内部,所以()2243143t t k ⎛⎫- ⎪-⎝⎭+<,化简得22234k t k <+.故2t 的取值范围为220,34kk ⎡⎫⎪⎢+⎣⎭.11.已知椭圆22221(0)x y a b a b +=>>的左、右焦点分别为12,F F,离心率为2,P 是椭圆上一点,且△12PF F 面积的最大值为1.(1)求椭圆C 的方程;(2)过2F 且不垂直坐标轴的直线l 交椭圆C 于A ,B 两点,在x 轴上是否存在一点(,0)N n ,使得22||:||:AN BN AF BF =,若存在,求出点(,0)N n ,若不存在,说明理由.【答案】(1)2212x y +=;(2)(1,0)N ,过程见解析(1)121212PF F P SF F y =,由椭圆性质知当=P y b 时,△12PF F 面积最大. 由题得:22212122c b c a a b c ⎧⨯⨯=⎪⎪⎪=⎨⎪⎪=+⎪⎩解得1a b ⎧=⎪⎨=⎪⎩所以椭圆方程为:2212x y +=(2)设直线方程为(1)y k x =-,1122(,),(,)A x y B x y22(1)21y x x y k =-+=⎧⎪⎨⎪⎩ 化简得2222(21)4220k x k x k +-+-= 22121222422,2121k k x x x x k k -+==++ 22||:||:AN BN AF BF =,如图,作//AM BN 交2NF 延长线与M 点, 易证得22||||AF AM BN BF =,22||:||:AN BN AF BF = AM AN ∴= 22ANF BNF ∴∠=∠所以2F N 是ANB ∠的角平分线,则有0NB NA k k +=12120y yx n x n+=-- ,1221(1)(1)0y x y x ∴-+-= 1122,y kx k y kx k =-=-1221()(1)()(1)0kx k x kx k x ∴--+--= 12212()(+)20kx x kn k x x kn ∴+++=22222242()202121k k k kn k kn k k -∴⨯+++=++ 化简得1n =所以存在点(1,0)N 满足题意.12.已知椭圆()2222:10x y E a b a b +=>>的上顶点为P ,4,33b Q ⎛⎫ ⎪⎝⎭是椭圆E 上的一点,以PQ 为直径的圆经过椭圆E 的右焦点F .(1)求椭圆E 的方程;(2)过椭圆E 右焦点F 且与坐标轴不垂直的直线l 与椭圆E 交于A ,B 两点,在直线2x =上是否存在一点D ,使得ABD △为等边三角形?若存在,求出等边三角形ABD △的面积;若不存在,请说明理由.【答案】(1)2212x y +=;(2.解:依据题意得22224331b a b⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭+=,得22a =,()0,P b ,(),0F c 又2220a b c PF QF ⎧=+⎨⋅=⎩, 22224033b cb c c ⎧=+⎪⎨⎛⎫---= ⎪⎪⎝⎭⎩, 1b c ∴==, ∴椭圆的方程为2212x y +=.(2)假设在直线2x =上存在一点D 使得ABD ∆为等边三角形,设直线():1l y k x =-由()22112y k x x y ⎧=-⎪⎨+=⎪⎩得,()2222214220k x k x k +-+-= ()()()42221642122810k k k k ∆=-+-=+>,设()11,A x y ,()22,B x y ,AB 的中点为()00,M x y则2122421k x x k ,21222221k x x k -=+ 202221k x k =+,()002121k y k x k -=-=+ )22121k AB k +∴=+.DBA △为等边三角形,所以MD 的斜率为1k-,又D 点的横坐标为2,2022221D k x k MD +∴=-=+DBA △为等边三角形,DM B ∴=)222212221221k k k k ++=++,得22k =.AB ∴=,DBA ∴△的面积为2513.已知椭圆()2222:10x y C a b a b+=>>的短轴长为13.(1)求椭圆C 的标准方程;(2)设椭圆C 的左,右焦点分别为1F ,2F 左,右顶点分别为A ,B ,点M ,N ,为椭圆C 上位于x 轴上方的两点,且12//F M F N ,记直线AM ,BN 的斜率分别为1k ,2k ,若12320k k +=,求直线1F M 的方程.【答案】(1)22198x y (2)0y -+=(1)由题意,得2b =c 1a 3=.又222a c b -=,∴a 3=,b =c 1=.∴椭圆C 的标准方程为22x y 198+=(2)由(1),可知()A 3,0-,()B 3,0,()1F 1,0-. 据题意,直线1F M 的方程为x my 1=-记直线1F M 与椭圆的另一交点为M ',设()()111M x ,y y 0>,()22M x ,y '.∵12FM //F N ,根据对称性,得()22N x ,y --. 联立228x 9y 721x my ⎧+=⎨=-⎩,消去x ,得()228m 9y 16my 640+--=,其判别式Δ0>,∴12216m y y 8m 9+=+,12264y y 8m 9=-+.① 由123k 2k 0+=,得12123y 2y 0my 2my 2+=++,即12125my y 6y 4y 0++=.② 由①②,解得12128m y 8m 9=+,22112my 8m 9-=+ ∵1y 0>,∴m 0>.∴()()12222128m?112m 64y y 8m 98m 9--==++.∴m = ∴直线1F M的方程为x y 1=-,即y 0-+=. 14.已知椭圆22221(0)x y a b a b +=>>的右焦点为F ,T 为椭圆上一点,O 为坐标原点,椭圆的离心率为,且TFO △面积的最大值为12.(1)求椭圆的方程;(2)设点()0,1A ,直线l :(1)y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ;直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若2OM ON ⋅=,求证:直线l 经过定点.【答案】(1)2212x y +=;(2)证明见解析.(1)设()00,T x y ,(c,0)F,由2c a =,可得222a c =, 依题意max 1122S cb =⋅=,所以a =1b =,所以椭圆C 的方程为2212x y +=.(2)设()11,P x y ,()22,Q x y .联立2212(1)x y y kx t t ⎧+=⎪⎨⎪=+≠⎩得()222124220k x ktx t +++-=,>0∆,122412kt x x k +=-+,21222212t x x k -=+,直线AP :1111y y x x --=,令0y =得111x x y -=-,即111x OM y -=-;同理可得221x ON y -=-. 因为2OM ON =,所以()12121212122111x x x x y y y y y y --==---++化简得221121t t t -=-+,解得只有0t =满足题意, 所以直线方程为y kx =,所以直线l 恒过定点(0,0).15.已知抛物线C :24y x =的焦点为F ,过F 的直线l 与抛物线C 交于A ,B 两点,其中点A 在第一象限,AD DB =.(1)若49OD k =(O 为坐标原点),求直线l 的方程; (2)点P 在x 轴上运动,若0,2FAP π⎛⎫∠∈ ⎪⎝⎭,求点P 横坐标的取值范围.【答案】(1) 210x y --=或440x y --=;(2) [)()0,11,9;解:(1)由题意得(1,0)F ,设直线l 的方程为:1x ty =+,设()()1122,,,A x y B x y ,线段MN 的中点()00,D x y ,联立直线与抛物线的方程:214x ty y x=+⎧⎨=⎩,整理可得:2440y ty --=,可得124y y t +=,124y y =-,所以02y t =,200121x ty t =+=+,即()221,2D t t +,所以2221OD t k t =+,由题意可得224219t t =+,解得2t =或14t =, 所以直线l 的方程为:210x y --=或440x y --=;(2)0,2FAP π⎛⎫∠∈ ⎪⎝⎭,即FAP ∠恒为锐角,等价于0AF AP ⋅>,设()2110,,(1,0),,0,4y A y F P x ⎛⎫⎪⎝⎭2211011,,1,44y y AP x y AF y ⎛⎫⎛⎫=--=-- ⎪ ⎪⎝⎭⎝⎭,则224222111101103110441644y y y y AP AF x y y x ⎛⎫⎛⎫⎛⎫⋅=--+=++-> ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭恒成立, 令214y t =,则0t >,原式等价于203(1)0t t t x ++->,对任意的0t >恒成立,令200()(3)h t t x t x =+-+,①△220000(3)41090x x x x =--=-+<,解得:019x <<,②00302(0)0x h ⎧⎪-⎪⎨⎪⎪⎩,解得:001x , 又01x ≠,故001x <, 综上所述:0x 的取值范围[)()0,11,9.16.已知()1,0F -,Q 是圆K :222150x x y -+-=上的任意一点,线段FQ 的垂直平分线交QK 于点P .(1)求动点P 的轨迹E 的方程;(2)过F 作E 的不垂直于y 轴的弦AB ,M 为AB 的中点,O 为坐标原点,直线OM 与E 交于点C 、D ,求四边形ABCD 面积的取值范围.【答案】(1)22143x y +=;(2)6S ≤< (1)由题意可知42PF PK PQ PK FK +=+=>=, 所以动点P 的轨迹是以F 、K 为焦点且长轴长为4的椭圆.因此E 的方程为22143x y +=.(2)由题意可设AB 的方程为1x ky =-,代入2234120x y +-=,得()2234690k y ky +--=,设()11,A x y ,()22,B x y , 则122634k y y k +=+,122934y y k =-+.设1200023(,),234y y kM x y y k +==+, 2002234113434k x ky k k =-=-=-++, 所以2243,3434k M k k ⎛⎫- ⎪++⎝⎭,OM 的斜率为34k -. 直线OM 的方程为34ky x =-, 代入2234120x y +-=,解得221634x k =+,所以CD ==, 设点A ,B 到OM 的距离分别为1d ,2d ,则1d =,2d =()1212ACBDS CD d d =+===12y =-==== 所以,6S ≤<(当且仅当0k =等号成立).17.已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,且12F F =过椭圆的右焦点2F 作长轴的垂线与椭圆,在第一象限交于点P ,且满足127PF PF =.(1)求椭圆的标准方程;(2)若矩形ABCD 的四条边均与椭圆相切,求该矩形面积的取值范围.【答案】(1)2214x y +=(2)[]8,10(1)由12F F =c =设2PF x =,因为127PF PF =,所以17PF x =,在Rt △12PF F 中,2221212PF PF F F =+,即224912x x =+,所以12x =, 所以284a x ==,解得2222,1a b a c ==-=,所以椭圆的标准方程为2214x y +=.(2)记矩形面积为S ,当矩形一边与坐标轴平行时,易知8S =.当矩形的边与坐标轴不平行时,根据对称性,设其中一边所在直线方程为y kx m =+,则对边所在直线方程为y kx m =-,另一边所在的直线方程为1y x n k =-+,则对边所在直线方程为1y x n k=--, 联立2244x y y kx m⎧+=⎨=+⎩,得()()222148410k x kmx m +++-=,由题意知()()222264161140k m m k ∆=--+=,整理得2241k m +=,矩形的一边长为1d =,同理2241n k +=,矩形的另一边长为2d =,122|4|1mnkS d dk=⋅==+44==44==因为0k≠,所以20k>,所以2212kk+≥(当且仅当21k=时等号成立),所以22990,142kk⎛⎤∈ ⎥⎝⎦++52,2⎛⎤⎥⎝⎦,所以(8,10]S∈.综上所述,该矩形面积的取值范围为[]8,10.18.已知椭圆2214yx+=,直线1l y kx=+:分别与x轴y轴交于,M N两点,与椭圆交于,A B两点.(1)若AM NB=,求直线l的方程;(2)若点P的坐标为()0,2,-求PAB△面积的最大值.【答案】(1)21y x=±+;(2(1)设()()1122,,,A x yB x y联立直线方程与椭圆方程有22141yxy kx⎧+=⎪⎨⎪=+⎩有()224230,k x kx++-=有12224x x kk+=-+,()1212224224k x xy yk+++==+,所以AB 中点坐标为224,44k k k ⎛⎫- ⎪++⎝⎭,(0)k ≠ 由1,0M k ⎛⎫- ⎪⎝⎭,()0,1N ,MN 中点坐标为11,22k ⎛⎫- ⎪⎝⎭.因为AM NB =,所以线段MN 的中点与AB 的中点重合,有221241424k k k k ⎧-=-⎪⎪+⎨⎪=⎪+⎩ 解得:2k =± (2)12|3|21PABSx x =⨯⨯-=由(1)中可知12224kx x k +=-+,12243x x k =-+⋅故PABS=661==因为3,43所以6331PAB S ∆=,当0k =时PAB △面积最大.19.如图所示,椭圆()222210x y a b a b +=>>的左、右顶点分别为1A 、2A ,上、下顶点分别为1B 、2B ,右焦点为F ,13A F =,离心率为12.(1)求椭圆的方程;(2)过点()0,1E 作不与y 轴重合的直线l 与椭圆交于点M 、N ,直线1MB 与直线2NB 交于点T ,试讨论点T 是否在某条定直线上,若存在,求出该直线方程,若不存在,请说明理由.【答案】(1)22143x y +=;(2)存在,且定直线方程为3y =. (1)由题意可得1123c e a A F a c ⎧==⎪⎨⎪=+=⎩,解得2a =,1c =,b ∴==因此,椭圆的标准方程为22143x y +=;(2)由题意可知直线l 的斜率存在,设直线l 的方程为1y kx =+,设点()11,M x y 、()22,N x y ,联立2213412y kx x y =+⎧⎨+=⎩,消去x 并整理得()2243880k x kx ++-=, ()()22264324396210k k k ∆=++=+>, 由韦达定理得122843k x x k +=-+,122843x x k =-+.易知点(1B、(20,B ,直线1MB的斜率为(11111kx k x +==,直线1MB的方程为1y k x = 直线2NB的斜率为(222221kx y k x x ++==,直线2NB的方程为2y k x =由1y k x =,2y k x =(112212211kx kx x x k k x ++-===,其中12122843kkx x x x k =-=++,((121221222122x x x x x x x ⎡⎤-+++++====解得3y =.因此,点T 在定直线3y =上.20.如图,焦点在x 轴上的椭圆1C 与焦点在y 轴上的椭圆2C 都过点(0,1)M ,中心都在坐标原点,且椭圆1C 与2C.(1)求椭圆1C 与椭圆2C 的标准方程;(2)过点M 且互相垂直的两直线分别与椭圆1C ,2C 交于点A ,B (点A 、B 不同于点M ),当MAB △的面积取最大值时,求直线MA ,MB 斜率的比值.【答案】(1)2213x y +=,22+31y x =;(2.(1)设椭圆2212211:1x y C a b +=,2222222:1y x C a b +=,依题意得对1C :11b =,222112123a b e e a -=⇒==,得213a ,1C ∴:2213x y +=,同理对2C :21a =,2222222233a b e e a -=⇒==,得2213b , 2C ∴:22+311x y =,即22+31y x=;(2)设直线MA MB ,的斜率分别为12k k ,, 则MA :11y k x =+,与椭圆方程联立得:2222111313031x y x k x y k x ⎧+=⎪⇒++-=⎨⎪=+⎩(), 得22113160k x k x ()++=,得1216=31A k x k -+,212131=31A k y k -++,所以2112211631(,)3131k k A k k -+-++,同理可得222222223,33k k B k k ⎛⎫-- ⎪++⎝⎭, 所以221122222211226622=(,),,313133k k k k MA MB k k k k ⎛⎫----= ⎪++++⎝⎭,MA MB ⊥,从而可以求得611=22S MA MB ⎛⋅=- 112222222242436412334163k k k k k k 121=2313k k ++, 因为121k k =-,所以()()3112216+=31k k S k+,不妨设()()31111221+031k k k f k k >=+,,()()2341112136131k k f kk'--+=+,令()0f k '=,即4211361=0k k --+,解得2113=,3k k -=当1111()0,),(0)k f k k f k ∈'>∈+∞'<,当1k =时,1()f k 取得极大值也是最大值,即S 取得最大值, 此时两直线MA ,MB斜率的比值21123==3k k k --. 21.已知椭圆D :22221x y a b +=(0a b >>)的短轴长为2(1)求椭圆D 的方程;(2)点()0,2E ,轨迹D 上的点A ,B 满足EA EB λ=,求实数λ的取值范围.【答案】(1)2214x y +=(2)1,33⎡⎤⎢⎥⎣⎦(1)由已知2221a b c b c a⎧⎪=+⎪⎪=⇒⎨⎪⎪=⎪⎩ 2a =,1b =,c =所以D 的方程为2214x y +=(2)过()0,2E 的直线若斜率不存在,则13λ=或3.设直线斜率k 存在()11,A x y ,()22,B x y222440y kx x y =+⎧⇒⎨+-=⎩ ()221416120k x kx +++=则()()()()122122120,116,21412,314,4k x x k x x kx x λ⎧∆≥⎪-⎪+=⎪+⎨⎪=⎪+⎪=⎩由(2)(4)解得1x ,2x 代入(3)式得()2222161214141k k k λλ-⎛⎫⋅= ⎪++⎝⎭+ 化简得()22314641k λλ⎛⎫=+ ⎪⎝⎭+ 由(1)0∆≥解得234k ≥代入上式右端得 ()2311641λλ<≤+ 解得133λ<<综上实数λ的取值范围是1,33⎡⎤⎢⎥⎣⎦.点睛:解析中出现EA EB λ=属于 λ问题,由EA EB λ=得出12x x λ=,结合韦达定理找到λ与k的关系,再利用0∆≥建立不等关系即得解.22.已知点F 是抛物线2:2(0)C x py p =>的焦点,点00(3,)(1)P y y >是抛物线C 上一点,且134PF =,Q 的方程为22(3)6x y +-=,过点F 作直线l ,与抛物线C 和Q 依次交于.(如图所示)(1)求抛物线C 的方程; (2)求()MB NA AB +的最小值.【答案】(1);(2).由在抛物线上得,又由得,解得,,又,故.所以抛物线的方程为.由题知直线的斜率一定存在,设直线的方程为.则圆心到直线的距离为,.设,,由得,则,由抛物线定义知,.设,则,,函数在上都是单调递增函数,当时即时,有最小值.23.已知椭圆方程为22163x y +=.(1)设椭圆的左右焦点分别为1F 、2F ,点P 在椭圆上运动,求1122PF PF PF PF +⋅的值;(2)设直线l 和圆222x y +=相切,和椭圆交于A 、B 两点,O 为原点,线段OA 、OB 分别和圆222x y +=交于C 、D 两点,设AOB ∆、COD ∆的面积分别为1S 、2S ,求12S S 的取值范围.【答案】(1)6;(2)2,2⎡⎢⎣⎦.(1)由已知,())12,F F ,设(),P x y ,由1PF x ⎫===⎪⎪⎭,同理22PF x ⎫=⎪⎪⎭,可得21216222PF PF x x x ⎫⋅==-⎪⎪⎭,())2212,,3x y x y x PF y PF ⋅=--⋅-=+-.结合22163x y +=,得22132y x =-,故221212116622PF PF PF PF x x ⋅+⋅=-+=;(2)当直线l 的斜率不存在时,其方程为x=由对称性,不妨设x =,此时()(),,1,1,1,1ABC D -,故12221S S ==. 若直线l 的斜率存在,设其方程为y kx m =+,由已知可得=()2221m k =+,设()11,A x y 、()22,B x y ,将直线l 与椭圆方程联立,得()222214260k x kmx m +++-=,由韦达定理得122421km x x k +=-+,21222621m x x k -=+.结合OC OD ==22221122113,322x y y x =-=-,可知121sin 1212sin 2OA OB AOBS OA OB S OC OD COD ⋅⋅∠==⋅=⋅⋅∠==将根与系数的关系代入整理得:12S S = 结合()2221m k =+,得12S S = 设2211t k =+≥,(]10,1u t=∈,则122,2S S ⎡===⎢⎣⎦. 12S S ∴的取值范围是⎡⎢⎣⎦..24.如图在平面直角坐标系xOy 中,已知椭圆22122:1x y C a b+=,()22222:1044x y C a b a b+=>>,椭圆2C 的右顶点和上顶点分别为A 和B ,过A ,B 分别引椭圆1C 的切线1l,2l ,切点为C ,D .(1)若2a =,1b =,求直线1l 的方程; (2)若直线1l 与2l 的斜率之积为916-,求椭圆1C 的离心率. 【答案】(1))4y x =±-;(2(1)当2a =,1b =,221:14x C y +=,222:1164x y C +=.()4,0A , 设过()4,0A 处的切线方程为()4y k x =-,代入1C ,得()222214326440k x k x k +-+-=.令()()()2222324146440k k k ∆=-+-=,得2112k =,k =, 所以1l的方程为:)4y x =-. (2)设1l ,2l 的斜率分别为1k ,2k ,则12916k k =-, 1l ,2l 的方程分别:()12y k x a =-,22y b k x -=.联立()1222221y k x a x y ab ⎧=-⎪⎨+=⎪⎩,消去y ,得()2222324222111440b a k x a k x a k a b +-+-=. 由()()64222422211116440a k b a k a k a b ∆=-+-=,得22213a k b =.联立2222221y b k x x y ab -=⎧⎪⎨+=⎪⎩,消去y ,得()222222222430b a k x a bk x a b +++=.由()422222222216120a b k b a k a b '∆=-+=,得22223a k b =.故422412a k k b =,344a b e ⇒=⇒=.25.已知椭圆()2222:10x y C a b a b +=>>1)2M -是椭圆C 上的一点.(1)求椭圆C 的方程;(2)过点(4,0)P -作直线l 与椭圆C 交于不同两点A 、B ,A 点关于x 轴的对称点为D ,问直线BD 是否过定点?若是,求出该定点的坐标;若不是,请说明理由.【答案】(1)2214x y +=;(2)是,(1,0)-.(1)∵c a =,222a b c =+,∴224a b =,∴222214x y b b+=,将1)2M -代入椭圆C ,∴21b =,∴22:14xC y +=.(2)显然AB 斜率存在,设AB 方程 为:(4)y k x =+,2222221(14)3264404(4)x y k x k x k y k x ⎧+=⎪⇒+++-=⎨⎪=+⎩, 2161920k ∆=->,∴2112k <. 设11(,)A x y ,22(,)B x y ,11(,)D x y -,∴21223214k x x k +=-+,212264414k x x k -=+,∵()211121:y y BD y y x x x x ++=--,∴0y =时211112*********()()8x y x y kx x k x x x x y y k x x k -++=+=+++2233222332644322()4()1288128141413232832()814k k k k k k k k k k k k k k kk -+---++===--++-++,∴直线BD 过定点(1,0)-.26.已知椭圆2222:1(0)x y C a b a b +=>>的左、右焦点分别为1F ,2F,离心率为2,过2F 且与x 轴不重合的直线l 交椭圆C 于A ,B 两点,1ABF ∆的周长为8.(1)求椭圆C 的方程;(2)已知直线1l 的方程为y kx m =+,直线2l 的方程为2()y kx m =+,其中01m <<.设1l 与椭圆C 交于M ,N 两点,2l 与圆22:4O x y +=交于P ,Q 两点,求MONPOQS S ∆∆的值.【答案】(1)2214x y +=;(2)12.(1)由题意,椭圆2222:1(0)x y C a b a b+=>>,且1ABF 的周长为8,根据椭圆的定义,可得1ABF 的周长为12124AF AF BF BF a ,即48a =,即2a =,又因为c e a ==c =1b ==, 所以椭圆C 的标准方程为2214x y +=.(2)设()11,M x y ,()22,N x y ,联立方程组2214x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 得()()222418410k x kmx m +++-=.由()()222264164110k m k m ∆=-+->,可得2241k m +>,且2121222844,1414km m x x x x k k-+=-+=++由弦长公式,可得12214MN x k=-=⋅+ 又因为点O 到直线1l的距离1d ==所以112MONS MN d =⋅=△.因为圆O 的方程为224x y +=,所以圆O 的圆心到直线2l的距离2d =所以PQ ==,所以212POQS PQ d =⋅=△,所以12MON POQ S S =△△. 27.已知椭圆C :22221x y a b +=(0a b >>)的离心率为2,(,0)A a ,(0,)B b ,(0,0)O ,OAB ∆的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:||||AN BM ⋅为定值.【答案】(1)2214x y +=;(2)证明见解析.(Ⅰ)由题意得解得.所以椭圆的方程为.(Ⅱ)由(Ⅰ)知,,设,则.当时,直线的方程为.令,得,从而.直线的方程为.令,得,从而.所以. 当时,,所以. 综上,为定值.28.已知椭圆C :()222210x y a b a b +=>>的左焦点()1F ,点1,2Q ⎛⎫ ⎪ ⎪⎝⎭在椭圆C 上. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)经过圆O :225x y +=上一动点P 作椭圆C 的两条切线,切点分别记为A ,B ,直线PA ,PB 分别与圆O 相交于异于点P 的M ,N 两点.(i )当直线PA ,PB 的斜率都存在时,记直线PA ,PB 的斜率分别为1k ,2k .求证:121k k =-;(ii )求ABMN的取值范围.。
高考数学二轮复习专题突破—圆锥曲线中的定点、定值、探索性问题(含解析)
高考数学二轮复习专题突破—圆锥曲线中的定点、定值、探索性问题1.(2021·重庆八中月考)已知椭圆C :x 24+y 23=1的右焦点为F ,过点M (4,0)的直线l 交椭圆C 于A ,B 两点,连接AF ,BF 并延长分别与椭圆交于异于A ,B 的两点P ,Q. (1)求直线l 的斜率的取值范围; (2)若PF ⃗⃗⃗⃗⃗ =λFA ⃗⃗⃗⃗⃗ ,QF ⃗⃗⃗⃗⃗ =μFB ⃗⃗⃗⃗⃗ ,证明:λμ为定值.2.(2021·河北张家口三模)已知抛物线C :y 2=4px (p>0)的焦点为F ,且点M (1,2)到点F 的距离比到y 轴的距离大p. (1)求抛物线C 的方程;(2)若直线l :x-m (y+2)-5=0与抛物线C 交于A ,B 两点,问是否存在实数m ,使|MA|·|MB|=64√2?若存在,求出m 的值;若不存在,请说明理由.3.(2021·江苏南通适应性联考)已知双曲线C :x 2a 2−y 2b 2=1(a>0,b>0)的两个焦点为F 1,F 2,一条渐近线方程为y=bx (b ∈N *),且双曲线C 经过点D (√2,1). (1)求双曲线C 的方程;(2)设点P 在直线x=m (y ≠±m ,0<m<1,且m 是常数)上,过点P 作双曲线C 的两条切线PA ,PB ,切点为A ,B ,求证:直线AB 过某一个定点.4.(2021·山东济南二模)已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)的离心率为√22,且经过点H (-2,1).(1)求椭圆C 的方程;(2)过点P (-3,0)的直线(不与x 轴重合)与椭圆C 相交于A ,B 两点,直线HA ,HB 分别交x 轴于M ,N 两点,点G (-2,0),若PM⃗⃗⃗⃗⃗⃗ =λPG ⃗⃗⃗⃗⃗ ,PN ⃗⃗⃗⃗⃗⃗ =μPG ⃗⃗⃗⃗⃗ ,求证:1λ+1μ为定值.5.(2021·广东汕头三模)已知圆C :x 2+(y-2)2=1与定直线l :y=-1,且动圆M 与圆C 外切并与直线l 相切.(1)求动圆圆心M 的轨迹E 的方程;(2)已知点P 是直线l 1:y=-2上一个动点,过点P 作轨迹E 的两条切线,切点分别为A ,B.①求证:直线AB 过定点; ②求证:∠PCA=∠PCB.6.(2021·北京东城一模)已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)过点D (-2,0),且焦距为2√3. (1)求椭圆C 的方程;(2)过点A (-4,0)的直线l (不与x 轴重合)与椭圆C 交于P ,Q 两点,点T 与点Q 关于x 轴对称,直线TP 与x 轴交于点H ,是否存在常数λ,使得|AD|·|DH|=λ(|AD|-|DH|)成立?若存在,求出λ的值;若不存在,说明理由.答案及解析1.(1)解 由题意知直线l 的斜率不为零,故设其方程为x=ty+4,与椭圆方程联立,消去x 得(3t 2+4)y 2+24ty+36=0,Δ=144(t 2-4)>0,解得t<-2或t>2.故直线l 的斜率k=1t 的取值范围为(-12,0)∪(0,12).(2)证明 F (1,0),设A (x 1,y 1),B (x 2,y 2),P (x 3,y 3),Q (x 4,y 4),由(1)得y 1+y 2=-24t3t 2+4,y 1y 2=363t 2+4,所以ty 1y 2=-32(y 1+y 2).由PF⃗⃗⃗⃗⃗ =λFA ⃗⃗⃗⃗⃗ ,得{1−x 3=λ(x 1-1),-y 3=λy 1,即{-x 3=λx 1-λ-1,-y 3=λy 1. 又点P 在椭圆上,即有3x 32+4y 32=12,代入上式得3(λx 1-λ-1)2+4λ2y 12=12,即λ2(3x 12+4y 12)-6λ(λ+1)x 1+3(λ+1)2=12, 又3x 12+4y 12=12,所以12(λ+1)(λ-1)-6λ(λ+1)x 1+3(λ+1)2=0.易知λ+1≠0,故λ=35−2x 1,同理可得μ=35−2x 2.又(5-2x 1)(5-2x 2)=25-10(x 1+x 2)+4x 1x 2 =25-10[t (y 1+y 2)+8]+4(ty 1+4)(ty 2+4)=9+6t (y 1+y 2)+4t 2y 1y 2=9+6t (y 1+y 2)+4t ·(-32)(y 1+y 2)=9, 所以λμ=9(5-2x1)(5-2x 2)=1.2.解 (1)由点M 到点F 的距离比到y 轴的距离大p ,得点M 到点F 的距离与到直线x=-p 的距离相等.由抛物线的定义,可知点M 在抛物线C 上,所以4=4p ,解得p=1. 所以抛物线C 的方程为y 2=4x.(2)存在满足题意的m ,其值为1或-3. 理由如下:由{y 2=4x,x-m(y +2)−5=0,得y 2-4my-8m-20=0. 因为Δ=16m 2+4(8m+20)>0恒成立,所以直线l 与抛物线C 恒有两个交点. 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4(2m+5).因为MA ⃗⃗⃗⃗⃗⃗ ·MB ⃗⃗⃗⃗⃗⃗ =(x 1-1)(x 2-1)+(y 1-2)(y 2-2)=(y 124-1)(y 224-1)+(y 1-2)(y 2-2)=y 12y 2216−(y 1+y 2)2-2y 1y 24+y 1y 2-2(y 1+y 2)+5=16(2m+5)216−(4m)2+8(2m+5)4-4(2m+5)-8m+5=0,所以MA ⊥MB ,即△MAB 为直角三角形.设d 为点M 到直线l 的距离,所以|MA|·|MB|=|AB|·d=√1+m 2·√(y 1+y 2)2-4y 1y 2·√1+m 2=4·|1+m|·√16m 2+16(2m +5)=16·|1+m|·√(m +1)2+4=64√2,所以(m+1)4+4(m+1)2-32=0, 解得(m+1)2=4或(m+1)2=-8(舍). 所以m=1或m=-3.所以当实数m=1或m=-3时,|MA|·|MB|=64√2.3.(1)解 由{ba =b,2a 2-1b 2=1,解得{a =1,b =1,故双曲线方程为x 2-y 2=1.(2)证明 设A (x 1,y 1),B (x 2,y 2),直线PA 的斜率为k ,P (m ,y 0).则PA:y-y1=k(x-x1),联立方程组{y-y1=k(x-x1), x2-y2=1,消去y,可得x2-[kx+(-kx1+y1)]2=1,整理可得(1-k2)x2-2k(y1-kx1)x-(y1-kx1)2-1=0.因为PA与双曲线相切,所以Δ=4k2(y1-kx1)2+4(1-k2)·(y1-kx1)2+4(1-k2)=0,整理得4(y1-kx1)2+4(1-k2)=0.即k2x12-2kx1y1+y12+1-k2=0,即(x12-1)k2-2kx1y1+(y12+1)=0,因为x12−y12=1,所以x12-1=y12,y12+1=x12代入可得y12k2-2x1y1k+x12=0,即(y1k-x1)2=0,所以k=x1y1.故PA:y-y1=x1y1(x-x1),即y1y=x1x-1.同理,切线PB的方程为y2y=x2x-1.因为P(m,y0)在切线PA,PB上,所以有{y0y1=mx1-1, y0y2=mx2-1,A,B满足直线方程y0y=mx-1,而两点唯一确定一条直线,故AB:y0y=mx-1,所以当{x=1m,y=0时,无论y0为何值,等式均成立.故点(1m ,0)恒在直线AB上,故无论P在何处,AB恒过定点(1m,0).4.(1)解由题意知e=ca =√1−b2a2=√22,则a2=2b2.又椭圆C经过点H(2,1),所以4a2+1b2=1.联立解得a2=6,b2=3,所以椭圆C的方程为x 26+y23=1.(2)证明 设直线AB 的方程为x=my-3,A (x 1,y 1),B (x 2,y 2),由{x =my-3,x 26+y 23=1联立消去x ,得(m 2+2)y 2-6my+3=0,所以Δ=36m 2-12(m 2+2)>0,y 1+y 2=6mm 2+2,y 1y 2=3m 2+2,由题意知,y 1,y 2均不为1.设M (x M ,0),N (x N ,0),由H ,M ,A 三点共线知AM ⃗⃗⃗⃗⃗⃗ 与MH ⃗⃗⃗⃗⃗⃗⃗ 共线,所以x M -x 1=(-y 1)(-2-x M ),化简得x M =x 1+2y 11−y 1.由H ,N ,B 三点共线,同理可得x N =x 2+2y 21−y 2.由PM ⃗⃗⃗⃗⃗⃗ =λPG⃗⃗⃗⃗⃗ ,得(x M +3,0)=λ(1,0),即λ=x M +3. 由PN ⃗⃗⃗⃗⃗⃗ =μPG ⃗⃗⃗⃗⃗ ,同理可得μ=x N +3. 所以1λ+1μ=1xM+3+1xN+3=1x 1+2y 11−y 1+3+1x 2+2y 21−y 2+3=1−y 1x1-y 1+3+1−y 2x 2-y 2+3=1−y1(m-1)y1+1−y 2(m-1)y 2=1m-11−y 1y 1+1−y 2y 2=1m-1(y 1+y 2y1y 2-2)=1m-1(6mm 2+23m 2+2-2)=2,所以1λ+1μ为定值.5.(1)解 依题意知:M 到C (0,2)的距离等于M 到直线y=-2的距离,故动点M 的轨迹是以C 为焦点,直线y=-2为准线的抛物线.设抛物线方程为x 2=2py (p>0),则p2=2,则p=4,即抛物线的方程为x 2=8y ,故动圆圆心M 的轨迹E 的方程为x 2=8y. (2)证明 ①由x 2=8y 得y=18x 2,y'=14x.设A (x 1,18x 12),B (x 2,18x 22),P (t ,-2),其中x 1≠x 2, 则切线PA 的方程为y-18x 12=x 14(x-x 1),即y=14x 1x-18x 12.同理,切线PB 的方程为y=14x 2x-18x 22. 由{y =14x 1x-18x 12,y =14x 2x-18x 22,解得{x =x 1+x22,y =x 1x 28, 故{t =x 1+x 22,-2=x 1x 28,即{x 1+x 2=2t,x 1x 2=−16.故直线AB 的方程为y-18x 12=18x 22-18x 12x 2-x 1(x-x 1),化简得y=x 1+x 28x-x 1x 28,即y=t4x+2,故直线AB 过定点(0,2).②由①知:直线AB 的斜率为k AB =t4,(i)当直线PC 的斜率不存在时,直线AB 的方程为y=2,∴PC ⊥AB ,∴∠PCA=∠PCB ;(ii)当直线PC 的斜率存在时,P (t ,-2),C (0,2),直线PC 的斜率k PC =-2-2t-0=-4t,k AB ·k PC =t 4×-4t =-1,故PC ⊥AB ,∠PCA=∠PCB. 综上所述,∠PCA=∠PCB 得证.6.解 (1)因为椭圆C :x 2a 2+y 2b 2=1(a>b>0)过点D (-2,0),所以a=2,又2c=2√3,即c=√3,所以b 2=a 2-c 2=4-3=1,所以椭圆C 的方程为x 24+y 2=1.(2)存在常数λ=2,满足题意. 理由如下:显然直线l 的斜率存在且不为0,设直线l :y=k (x+4),联立{y =k(x +4),x 24+y 2=1,消去y 并整理,得(1+4k 2)x 2+32k 2x+64k 2-4=0, Δ=(32k 2)2-4(1+4k 2)(64k 2-4)>0,得0<k 2<112.设P (x 1,y 1),Q (x 2,y 2),则T (x 2,-y 2),所以x 1+x 2=-32k 21+4k 2,x 1x 2=64k 2-41+4k 2,直线PT :y-y 1=y 1+y2x 1-x 2(x-x 1),令y=0,得x=x 1-y 1(x 1-x 2)y 1+y 2,所以H x 1-y 1(x 1-x 2)y 1+y 2,0,若存在常数λ,使得|AD|·|DH|=λ(|AD|-|DH|)成立, 所以1λ=|AD|-|DH||AD|·|DH|=1|DH|−1|AD|,又因为D (-2,0),A (-4,0),H (x 1-y 1(x 1-x 2)y 1+y 2,0),所以|AD|=2,|DH|=x 1-y 1(x 1-x 2)y 1+y 2+2 =x 1-k(x 1+4)(x 1-x 2)k(x 1+4)+k(x 2+4)+2=x 1-k(x 1+4)(x 1-x 2)k(x 1+x 2)+8k+2=kx 1(x 1+x 2)+8kx 1-k(x 1+4)(x 1-x 2)k(x 1+x 2)+8k+2=kx 12+kx 1x 2+8kx 1-kx 12+kx 1x 2-4kx 1+4kx 2k(x 1+x 2)+8k+2=4k(x 1+x 2)+2kx 1x 2k(x 1+x 2)+8k+2=4k·-32k 21+4k 2+2k·64k 2-41+4k 2k·-32k 21+4k 2+8k +2=-1+2=1,所以1λ=11−12,解得λ=2.所以存在常数λ=2,使得|AD|·|DH|=2(|AD|-|DH|)成立.。
2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)
题型一:弦的垂直平分线问题题型二:动弦过定点的问题题型三:过已知曲线上定点的弦的问题题型四:向量问题题型五:面积问题题型六:弦或弦长为定值、最值问题题型七:直线问题圆锥曲线九大题型归纳题型八:对称问题题型九:存在性问题:(存在点,存在直线y =kx +m ,存在实数,存在图形:三角形(等比、等腰、直角),四边形(矩形、菱形、正方形),圆)题型一:弦的垂直平分线问题1过点T (-1,0)作直线l 与曲线N :y 2=x 交于A 、B 两点,在x 轴上是否存在一点E (x 0,0),使得ΔABE 是等边三角形,若存在,求出x 0;若不存在,请说明理由。
2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)【涉及到弦的垂直平分线问题】这种问题主要是需要用到弦AB 的垂直平分线L 的方程,往往是利用点差或者韦达定理产生弦AB 的中点坐标M ,结合弦AB 与它的垂直平分线L 的斜率互为负倒数,写出弦的垂直平分线L 的方程,然后解决相关问题,比如:求L 在x 轴y 轴上的截距的取值范围,求L 过某定点等等。
有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB 的中点问题,比如:弦与某定点D 构成以D 为顶点的等腰三角形(即D 在AB 的垂直平分线上)、曲线上存在两点AB 关于直线m 对称等等。
2例题分析1:已知抛物线y =-x 2+3上存在关于直线x +y =0对称的相异两点A 、B ,则|AB |等于题型二:动弦过定点的问题1已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为32,且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。
(I )求椭圆的方程;(II )若直线l :x =t (t >2)与x 轴交于点T ,点P 为直线l 上异于点T 的任一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN 是否通过椭圆的焦点?并证明你的结论题型三:过已知曲线上定点的弦的问题1已知点A 、B 、C 是椭圆E :x 2a 2+y 2b 2=1(a >b >0)上的三点,其中点A (23,0)是椭圆的右顶点,直线BC 过椭圆的中心O ,且AC ∙BC =0,BC =2AC ,如图。
高考数学《圆锥曲线》解答题专题复习题
高考数学《圆锥曲线》解答题专题复习题1.已知双曲线22221(00)y x a b a b-=>>,与双曲线22142x y -=有相同的渐近线,且经过点M.(1)求双曲线C 的标准方程.(2)已知直线0x y m -+=与曲线C 交于不同的两点A ,B ,且线段AB 的中点在圆2220x y +=上,求实数m 的值.2.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,1A 、2A 分别为椭圆C 的左、右顶点,1F 、2F 分别为椭圆C 的左、右焦点,112A F =.(1)求椭圆C 的方程;(2)设与x 轴不垂直的直线l 交椭圆C 于P 、Q 两点(P 、Q 在x 轴的两侧),记直线1A P ,2A P ,2A Q ,1A Q 的斜率分别为1k ,2k ,3k ,4k .(i )求12k k 的值;(ii )若()142353k k k k +=+,求2F PQ △面积的取值范围.3.已知双曲线()2222Γ:10,0x y a b a b-=>>的左右顶点分别为点,A B ,其中2AB =,且双曲线过点()2,3C .(1)求双曲线Γ的方程;(2)设过点()1,1P 的直线分别交Γ的左、右支于,D E 两点,过点E 作垂直于x 轴的直线l ,交线段BC 于点F ,点G 满足EF FG =.证明:直线DG 过定点,并求出该定点.4.已知双曲线C 的渐近线方程是y =,点()2,3M在双曲线C 上.(1)求双曲线C 的离心率e 的值;(2)若动直线l :1y kx =+与双曲线C 交于A ,B 两点,问直线MA ,MB 的斜率之和是否为定值?若是,求出该定值;若不是,请说明理由.5.已知椭圆C 的中心在原点,一个焦点为()10F ,(1)求椭圆C 的标准方程;(2)设过焦点F 的直线l 与椭圆C 交于A 、B 两点,1F 是椭圆的另一个焦点,若1ABF 内切圆的半径r =l 的方程.6.已知椭圆2222:1(0)x y C a b a b +=>>的离心率e =C经过点2⎛ ⎝⎭.(1)求椭圆C 的标准方程;(2)过点()2,0P 且斜率不为零的直线与椭圆C 交于,B D 两点,B 关于x 轴的对称点为A ,求证:直线AD 与x 轴交于定点Q .7.已知椭圆221:4T x y +=,1F 、2F 为椭圆的左右焦点,C 、D 为椭圆的左、右顶点,直线1:2l y x m =+与椭圆T 交于A 、B 两点.(1)若12m =-,求AB ;(2)设直线AD 和直线BC 的斜率分别为1k 、2k ,且直线l 与线段12F F 交于点M ,求12k k 的取值范围.8.已知椭圆()2222:10x y C a b a b +=>>12D ⎫⎪⎭,点,A B 分别是椭圆C 的左、右顶点.(1)求椭圆C 的方程;(2)过点()4,0E 的直线l 与椭圆C 交于,P Q 两点(P 在,E Q 之间),直线,AP BQ 交于点M ,记,ABM PQM 的面积分别为12,S S ,求12S S的取值范围.第8题图第9题图9.如图,已知椭圆C 的焦点为()11,0F -,()21,0F,椭圆C 的上、下顶点分别为,A B ,右顶点为D ,直线l 过点D 且垂直于x 轴,点Q 在椭圆C 上(且在第一象限),直线AQ 与l 交于点N ,直线BQ 与x 轴交于点M .(1)求椭圆C 的标准方程;(2)判定AOM (O 为坐标原点)与ADN △的面积之和是否为定值?若是,请求出该定值;若不是,请说明理由.10.已知双曲线过点(A ,它的渐近线方程是20x y ±=.(1)求双曲线的标准方程;(2)若直线l 交C 于,P Q 两点,直线,AP AQ 的倾斜角互补,求直线l 的斜率.11.已知点(2,0)A -,(2,0)B ,平面内一动点M 满足直线AM 与BM 的斜率乘积为14-.(1)求动点M 的轨迹C 的方程;(2)直线l 交轨迹C 于,P Q 两点,若直线AP 的斜率是直线BQ 的斜率的4倍,求坐标原点O 到直线l 的距离的取值范围.12.若双曲线E :2221(0)x y a a-=>y =kx -1与双曲线E 的右支交于A ,B 两点.(1)求k 的取值范围;(2)若AB =,点C 是双曲线上一点,且()OC m OA OB =+,求k ,m 的值.13.已知1F ,2F 分别是椭圆G22+22=1>>0的左、右焦点,且焦距为MN 平行于x 轴,且114F M F N +=.(1)求椭圆E 的方程;(2)设A ,B 为椭圆E 的左右顶点,P 为直线:4l x =上的一动点(点P 不在x 轴上),连AP 交椭圆于C 点,连PB 并延长交椭圆于D 点,试问是否存在λ,使得ACD BCD S S λ= 成立,若存在,求出λ的值;若不存在,说明理由.14.平面上的动点(,)P x y 到定点(0,1)F 的距离等于点P 到直线1y =-的距离,记动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)直线:l y x m =+与曲线C 相交于A ,B 两点,线段AB 的中点为M .是否存在这样的直线l ,使得MF AB ⊥,若存在,求实数m 的值,若不存在,请说明理由.15.已知双曲线()22:1,,24x C y M m -=,斜率为k 的直线l 过点M .(1)若0m =,且直线l 与双曲线C 只有一个交点,求k 的值;(2)已知点(2,0)T ,直线l 与双曲线C 有两个不同的交点A ,B ,直线,TA TB 的斜率分别为12,k k ,若12k k +为定值,求实数m 的值.16.已知椭圆(2222:10)x y C a b a b+=>>的离心率为12,左焦点F 与原点O 的距离为1,正方形PQMN 的边PQ ,MN 与x 轴平行,边PN ,QM 与y 轴平行,2112,,,7777P M ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,过F 的直线与椭圆C 交于A ,B 两点,线段AB 的中垂线为l .已知直线AB 的斜率为k ,且0k >.(1)若直线l 过点P ,求k 的值;(2)若直线l 与正方形PQMN 的交点在边PN ,QM 上,l 在正方形PQMN 内的线段长度为s ,求sAB的取值范围.17.已知F 是椭圆C :2222+1(0)x y a b a b=>>的一个焦点,点13,2M 在椭圆C 上.(1)求椭圆C 的方程;(2)若直线l 与椭圆C 分别相交于A ,B 两点,且12OA OB k k +=-(O 为坐标原点),求直线l 的斜率的取值范围.参考答案1.(1)2212x y -=(2)2m =±2.(1)2211612x y +=(2)(i )34-;(ii )950,2⎛ ⎝⎭3.(1)2213y x -=(2)证明略,(1,0)B 4.(1)2(2)是,35.(1)2212x y +=(2)1x y =±+6.(1)2212x y +=(2)证明略7.(1(2)7⎡-+⎣8.(1)2214x y +=(2)()0,19.(1)2212x y +=(2210.(1)2214x y -=(2)11.(1)2214x y +=(0)y ≠(2)6(0,)512.(1)((2)51,24k m ==±13.(1)2214x y +=(2)存在,314.(1)24x y =;(2)不存在15.(1)12k =±或k =(2)2m =.16.(1)1k =(2)12,78⎛ ⎝⎦17.(1)2214x y +=(2)1[,0)(1,)4-+∞。
2024高考数学专项复习圆锥曲线专题:调和点列-极点极线
圆锥曲线专题:调和点列-极点极线一、问题综述(一)概念明晰(系列概念):1.调和点列:如图,在直线l上有两基点A,B,则在l上存在两点C,D到A,B两点的距离比值为定值,即AC BC =ADBD=λ,则称顺序点列A,C,B,D四点构成调和点列(易得调和关系2AB=1AC+1AD)。
同理,也可以C,D为基点,则顺序点列A,C,B,D四点仍构成调和点列。
所以称A,B和C,D称为调和共轭。
2.调和线束:如图,若A,C,B,D构成调和点列,O为直线AB外任意一点,则直线OA,OC,OB,OD称为调和线束。
若另一直线截调和线束,则截得的四点A ,C ,B ,D 仍构成调和点列。
3.阿波罗尼斯圆:如图,A,B为平面中两定点,则满足APBP=λ(λ≠1)的点P的轨迹为圆O,A,B互为反演点。
由调和点列定义可知,圆O与直线AB交点C,D满足A,C,B,D四点构成调和点列。
4.极点极线:如图,A,B互为阿圆O反演点,则过B作直线l垂直AB,则称A为l的极点,l为A的极线.2024高考数学专项复习5.极点极线推广(二次曲线的极点极线):(1).二次曲线Ax 2+By 2+Cxy +Dx +Ey +F =0极点P (x 0,y 0)对应的极线为Ax 0x +By 0y +Cx 0y +y 0x 2+D x 0+x2+E y 0+y 2+F =0x 2→x 0x ,y 2→y 0y ,xy →x 0y +y 0x 2,x →x 0+x2,y →y 0+y 2(半代半不代)(2)圆锥曲线的三类极点极线(以椭圆为例):椭圆方程x 2a 2+y 2b 2=1①极点P (x 0,y 0)在椭圆外,PA ,PB 为椭圆的切线,切点为A ,B 则极线为切点弦AB :x 0xa 2+y 0yb 2=1;②极点P (x 0,y 0)在椭圆上,过点P 作椭圆的切线l ,则极线为切线l :x 0x a 2+y 0y b 2=1;③极点P (x 0,y 0)在椭圆内,过点P 作椭圆的弦AB ,分别过A ,B 作椭圆切线,则切线交点轨迹为极线x 0xa 2+y 0yb 2=1;(3)圆锥曲线的焦点为极点,对应准线为极线.(二)重要性质性质1:调和点列的几种表示形式如图,若A ,C ,B ,D 四点构成调和点列,则有AC BC =AD BD =λ⇔2AB =1AD +1AC⇔OC 2=OB ⋅OA ⇔AC ⋅AD =AB ⋅AO ⇔AB ⋅OD =AC ⋅BD性质2:调和点列与极点极线如图,过极点P作任意直线,与椭圆及极线交点M,D,N则点M,D,N,P成调和点列(可由阿圆推广)性质3:极点极线配极原则若点A的极线通过另一点D,则D的极线也通过A.一般称A、D互为共轭点.推广:如图,过极点P作两条任意直线,与椭圆分别交于点MN,HG,则MG,HN的交点必在极线上,反之也成立。
高考数学复习---圆锥曲线压轴解答题常考套路归类真题专项练习题(含答案解析)
高考数学复习---圆锥曲线压轴解答题常考套路归类真题专项练习题(含答案解析)1.(2022·浙江·统考高考真题)如图,已知椭圆22112x y +=.设A ,B 是椭圆上异于(0,1)P 的两点,且点0,21Q ⎛⎫⎪⎝⎭在线段AB 上,直线,PA PB 分别交直线132y x =−+于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值; (2)求||CD 的最小值.【解析】(1)设,sin )H θθ是椭圆上任意一点,(0,1)P ,222221144144||12cos (1sin )1311sin 2sin 11sin 111111PH θθθθθ⎛⎫=+−=−−=−+≤⎭+ ⎪⎝,当且仅当1sin 11θ=−时取等号,故PH(2)设直线1:2AB y kx =+,直线AB 方程与椭圆22112x y +=联立,可得22130124k x kx ⎛⎫++−= ⎪⎝⎭,设()()1122,,,A x y B x y ,所以12212211231412k x x k x x k ⎧+=−⎪+⎪⎪⎨⎪=−⎛⎫⎪+ ⎪⎪⎝⎭⎩, 因为直线111:1y PA y x x −=+与直线132y x =−+交于C , 则111114422(21)1C x x x x y k x ==+−+−,同理可得,222224422(21)1D x x x x y k x ==+−+−.则224||(21)1C D x CD x k x −=+−====≥=当且仅当316k=时取等号,故CD2.(2022·全国·统考高考真题)已知双曲线2222:1(0,0)x yC a ba b−=>>的右焦点为(2,0)F,渐近线方程为y=.(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点()()1122,,,P x y Q x y在C上,且1210,0x x y>>>.过P且斜率为Q M.从下面①②③中选取两个作为条件,证明另外一个成立:①M在AB上;②PQ AB∥;③||||MA MB=.注:若选择不同的组合分别解答,则按第一个解答计分.【解析】(1)右焦点为(2,0)F,∴2c=,∵渐近线方程为y=,∴ba=∴b=,∴222244c a b a=+==,∴1a=,∴b=∴C的方程为:2213yx−=;(2)由已知得直线PQ的斜率存在且不为零,直线AB的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB的斜率存在且不为零;若选①③推②,则M为线段AB的中点,假若直线AB的斜率不存在,则由双曲线的对称性可知M在x轴上,即为焦点F,此时由对称性可知P、Q关于x轴对称,与从而12x x=,已知不符;总之,直线AB的斜率存在且不为零.设直线AB的斜率为k,直线AB方程为()2y k x=−,则条件①M在AB上,等价于()()2000022y k x ky k x=−⇔=−;两渐近线的方程合并为2230x y−=,联立消去y 并化简整理得:()22223440k x k x k −−+=设()()3344,,,A x y B x y ,线段中点为(),N N N x y ,则()2342226,2233N N N x x k kx y k x k k +===−=−−, 设()00,M x y ,则条件③AM BM =等价于()()()()222203030404x x y y x x y y −+−=−+−, 移项并利用平方差公式整理得:()()()()3403434034220x x x x x y y y y y ⎡⎤⎡⎤−−++−−+=⎣⎦⎣⎦,()()3403403434220y y x x x y y y x x −⎡⎤⎡⎤−++−+=⎣⎦⎣⎦−,即()000N N x x k y y −+−=,即200283k x ky k +=−;由题意知直线PM的斜率为直线QM∴由))10102020,y y x x y y x x −=−−=−,∴)121202y y x x x −=+−, 所以直线PQ的斜率)1201212122x x x y y m x x x x +−−==−−,直线)00:PM y x x y =−+,即00y y =, 代入双曲线的方程22330x y −−=,即)3yy +−=中,得:()()00003y y ⎡⎤−=⎣⎦, 解得P的横坐标:100x y ⎛⎫+⎪⎪⎭,同理:200x y ⎛⎫=⎪⎪⎭,∴0012012002222000033,2,33y x x x y x x x x y x y x ⎫−=++−=−−⎪−−⎭∴03x m y =, ∴条件②//PQ AB 等价于003m k ky x =⇔=, 综上所述:条件①M 在AB 上,等价于()2002ky k x =−;条件②//PQ AB 等价于003ky x =;条件③AM BM =等价于200283k x ky k +=−;选①②推③:由①②解得:2200002228,433k k x x ky x k k =∴+==−−,∴③成立; 选①③推②:由①③解得:20223k x k =−,20263k ky k =−,∴003ky x =,∴②成立; 选②③推①:由②③解得:20223k x k =−,20263k ky k =−,∴02623x k −=−,∴()2002ky k x =−,∴①成立.3.(2022·全国·统考高考真题)设抛物线2:2(0)C y px p =>的焦点为F ,点(),0D p ,过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,3MF =. (1)求C 的方程;(2)设直线,MD ND 与C 的另一个交点分别为A ,B ,记直线,MN AB 的倾斜角分别为,αβ.当αβ−取得最大值时,求直线AB 的方程.【解析】(1)抛物线的准线为2px =−,当MD 与x 轴垂直时,点M 的横坐标为p , 此时=32pMF p +=,所以2p =, 所以抛物线C 的方程为24y x =;(2)[方法一]:【最优解】直线方程横截式设222231241234,,,,,,,4444y y y y M y N y A y B y ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,直线:1MN x my =+,由214x my y x=+⎧⎨=⎩可得2440y my −−=,120,4y y ∆>=−,由斜率公式可得12221212444MN y y k y y y y −==+−,34223434444AB y y k y y y y −==+−, 直线112:2x MD x y y −=⋅+,代入抛物线方程可得()1214280x y y y −−⋅−=, 130,8y y ∆>=−,所以322y y =,同理可得412y y =,所以()34124422MN AB k k y y y y ===++ 又因为直线MN 、AB 的倾斜角分别为,αβ,所以tan tan 22MN AB k k αβ===, 若要使αβ−最大,则0,2πβ⎛⎫∈ ⎪⎝⎭,设220MN AB k k k ==>,则()2tan tan 1tan 11tan tan 122k k k k αβαβαβ−−===≤=+++, 当且仅当12k k =即k =所以当αβ−最大时,AB k =:AB x n +,代入抛物线方程可得240y n −−=, 34120,4416y y n y y ∆>=−==−,所以4n =,所以直线:4AB x +. [方法二]:直线方程点斜式 由题可知,直线MN 的斜率存在.设()()()()11223344,,,,,,,M x y N x y A x y B x y ,直线():1MN y k x =− 由 2(1)4y k x y x=−⎧⎨=⎩得:()2222240k x k x k −++=,121x x =,同理,124y y =−.直线MD :11(2)2y y x x =−−,代入抛物线方程可得:134x x =,同理,244x x =. 代入抛物线方程可得:138y y =−,所以322y y =,同理可得412y y =,由斜率公式可得:()()21432143212121.22114AB MN y y y y y y k k x x x x x x −−−====−−⎛⎫− ⎪⎝⎭(下同方法一)若要使αβ−最大,则0,2πβ⎛⎫∈ ⎪⎝⎭,设220MN AB k k k ==>,则()2tan tan 1tan 11tan tan 122k k k k αβαβαβ−−===≤=+++ 当且仅当12k k =即k =所以当αβ−最大时,AB k =:AB x n +,代入抛物线方程可得240y n −−=,34120,4416y y n y y ∆>=−==−,所以4n =,所以直线:4AB x =+. [方法三]:三点共线设222231241234,,,,,,,4444y y y y M y N y A y B y ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,设(),0P t ,若 P 、M 、N 三点共线,由221212,,44y y t y t PM PN y ⎛⎫⎛⎫=−=− ⎪ ⎪⎝⎭⎝⎭,所以22122144y y t y t y ⎛⎫⎛⎫−=− ⎪ ⎪⎝⎭⎝⎭,化简得124y y t =-, 反之,若124y y t =-,可得MN 过定点(),0t 因此,由M 、N 、F 三点共线,得124y y =−,由M 、D 、A 三点共线,得138y y =−, 由N 、D 、B 三点共线,得248y y =−,则3412416y y y y ==−,AB 过定点(4,0)(下同方法一)若要使αβ−最大,则0,2πβ⎛⎫∈ ⎪⎝⎭,设220MN AB k k k ==>,则()2tan tan 1tan 11tan tan 122k k k k αβαβαβ−−===≤=+++ 当且仅当12k k =即2k =时,等号成立,所以当αβ−最大时,AB k =:4AB x =+. 【整体点评】(2)法一:利用直线方程横截式,简化了联立方程的运算,通过寻找直线,MN AB的斜率关系,由基本不等式即可求出直线AB 的斜率,再根据韦达定理求出直线方程,是该题的最优解,也是通性通法;法二:常规设直线方程点斜式,解题过程同解法一;法三:通过设点由三点共线寻找纵坐标关系,快速找到直线AB 过定点,省去联立过程,也不失为一种简化运算的好方法.4.(2022·全国·统考高考真题)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,,12A B ⎛−−⎫⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P −的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =.证明:直线HN 过定点.【解析】(1)设椭圆E 的方程为221mx ny +=,过()30,2,,12A B ⎛−−⎫⎪⎝⎭,则41914n m n =⎧⎪⎨+=⎪⎩,解得13m =,14n =,所以椭圆E 的方程为:22143y x +=.(2)3(0,2),(,1)2A B −−,所以2:23+=AB y x ,①若过点(1,2)P −的直线斜率不存在,直线1x =.代入22134x y +=,可得(1,M,N ,代入AB 方程223y x =−,可得(3,T ,由MT TH =得到(5,H −.求得HN 方程:(22y x =−,过点(0,2)−. ②若过点(1,2)P −的直线斜率存在,设1122(2)0,(,),(,)kx y k M x y N x y −−+=. 联立22(2)0,134kx y k x y −−+=⎧⎪⎨+=⎪⎩得22(34)6(2)3(4)0k x k k x k k +−+++=, 可得1221226(2)343(4)34k k x x k k k x x k +⎧+=⎪⎪+⎨+⎪=⎪+⎩,()()12221228234444234k y y k k k y y k ⎧−++=⎪+⎪⎨+−⎪=⎪+⎩,且1221224(*)34kx y x y k −+=+联立1,223y y y x =⎧⎪⎨=−⎪⎩可得111113(3,),(36,).2y T y H y x y ++− 可求得此时1222112:()36y y HN y y x x y x x −−=−+−−, 将(0,2)−,代入整理得12121221122()6()3120x x y y x y x y y y +−+++−−=, 将(*)代入,得222241296482448482436480,k k k k k k k +++−−−+−−= 显然成立,综上,可得直线HN 过定点(0,2).−5.(2022·全国·统考高考真题)已知点(2,1)A 在双曲线2222:1(1)1x yC a a a −=>−上,直线l 交C于P ,Q 两点,直线,AP AQ 的斜率之和为0. (1)求l 的斜率;(2)若tan PAQ ∠=PAQ △的面积.【解析】(1)因为点(2,1)A 在双曲线2222:1(1)1x yC a a a −=>−上,所以224111a a −=−,解得22a =,即双曲线22:12x C y −=.易知直线l 的斜率存在,设:l y kx m =+,()()1122,,,P x y Q x y , 联立2212y kx m x y =+⎧⎪⎨−=⎪⎩可得,()222124220k x mkx m −−−−=, 所以,2121222422,2121mk m x x x x k k ++=−=−−,()()222222Δ16422210120m k m k m k =−+−>⇒−+>且≠k .所以由0AP AQk k +=可得,212111022y y x x −−+=−−, 即()()()()122121210x kx m x kx m −+−+−+−=, 即()()()1212212410kx x m k x x m +−−+−−=,所以()()2222242124102121m mk k m k m k k +⎛⎫⨯+−−−−−= ⎪−−⎝⎭, 化简得,()2844410k k m k +−++=,即()()1210k k m +−+=,所以1k =−或12m k =−,当12m k =−时,直线():21l y kx m k x =+=−+过点()2,1A ,与题意不符,舍去, 故1k =−.(2)[方法一]:【最优解】常规转化不妨设直线,PA AQ 的倾斜角为π,2αβαβ⎛⎫<< ⎪⎝⎭,因为0AP AQ k k +=,所以παβ+=,由(1)知,212220x x m =+>,当,A B 均在双曲线左支时,2PAQ α∠=,所以tan 2α=2tan 0αα+,解得tan α=(负值舍去) 此时P A 与双曲线的渐近线平行,与双曲线左支无交点,舍去; 当,A B 均在双曲线右支时,因为tan PAQ ∠=()tan βα−=tan 2α=−2tan 0αα−,解得tan α,于是,直线):21PA y x =−+,直线):21QA y x =−+,联立)222112y x x y ⎧=−+⎪⎨−=⎪⎩可得,)23241002x x ++−,因为方程有一个根为2,所以P x =,P y=,同理可得,103Q x +=,Q y=53−. 所以5:03PQ x y +−=,163PQ =,点A 到直线PQ的距离d = 故PAQ △的面积为11623⨯=. [方法二]:设直线AP 的倾斜角为α,π02α⎛⎫<< ⎪⎝⎭,由tan PAQ ∠=tan 2PAQ ∠由2PAQ απ+∠=,得tan AP k α=1112y x −−,联立1112y x −=−221112x y −=得1x1y ,同理,2x 2y =12203x x +=,12689x x =而1||2|AP x −,2||2|AQ x −,由tan PAQ ∠=sin PAQ ∠故12121||||sin 2()4|2PAQSAP AQ PAQ x x x x =∠=−++= 【整体点评】(2)法一:由第一问结论利用倾斜角的关系可求出直线,PA PB 的斜率,从而联立求出点,P Q 坐标,进而求出三角形面积,思路清晰直接,是该题的通性通法,也是最优解;法二:前面解答与法一求解点,P Q 坐标过程形式有所区别,最终目的一样,主要区别在于三角形面积公式的选择不一样.。
2024年高考数学专题18 圆锥曲线高频压轴解答题(16大题型)(练习)(原卷版)
专题18 圆锥曲线高频压轴解答题目录01 轨迹方程 (2)02 向量搭桥进行翻译 (3)03 弦长、面积背景的条件翻译 (4)04 斜率之和差商积问题 (5)05 弦长、面积范围与最值问题 (6)06 定值问题 (7)07 定点问题 (9)08 三点共线问题 (10)09 中点弦与对称问题 (11)10 四点共圆问题 (12)11 切线问题 (13)12 定比点差法 (14)13 齐次化 (16)14 极点极线问题 (16)15 同构问题 (18)16 蝴蝶问题 (19)01 轨迹方程1.(2024·重庆·高三重庆南开中学校考阶段练习)已知双曲线22221(0,0)x y a b a b-=>>的一条浙近线方程为y x =,且点P在双曲线上.(1)求双曲线的标准方程;(2)设双曲线左右顶点分别为,A B ,在直线1x =上取一点()()1,0P t t ¹,直线AP 交双曲线右支于点C ,直线BP 交双曲线左支于点D ,直线AD 和直线BC 的交点为Q ,求证:点Q 在定直线上.2.(2024·重庆·统考模拟预测)已知椭圆C :()222210x y a b a b+=>>的长轴长是短轴长的2倍,直线12y x =被椭圆截得的弦长为4.(1)求椭圆C 的方程;(2)设M ,N ,P ,Q 为椭圆C 上的动点,且四边形MNPQ 为菱形,原点О在直线MN 上的垂足为点H ,求H 的轨迹方程.3.(2024·福建莆田·统考一模)曲线C 上任意一点P 到点(2,0)F 的距离与它到直线4x =的距离之比等于(4,0)M 且与x 轴不重合的直线l 与C 交于不同的两点,A B .(1)求C 的方程;(2)求证:ABF △内切圆的圆心在定直线上.02 向量搭桥进行翻译4.(2024·陕西咸阳·校考模拟预测)已知椭圆2222:1(0)x y C a b a b +=>>的离心率是双曲线2213x y -=的离心率的倒数,椭圆C 的左、右焦点分别为12,F F ,上顶点为P ,且122PF PF ×=-uuu r uuu u r.(1)求椭圆C 的方程;(2)当过点()0,2Q 的动直线l 与椭圆C 相交于两个不同点,A B 时,设AQ QB l =uuu ruuu r,求l 的取值范围.5.(2024·上海奉贤·统考一模)已知椭圆22221(0)x y a b a b +=>>的焦距为,椭圆的左右焦点分别为1F 、2F ,直角坐标原点记为O .设点()0,P t ,过点P 作倾斜角为锐角的直线l 与椭圆交于不同的两点B 、C .(1)求椭圆的方程;(2)设椭圆上有一动点T ,求()12PT TF TF ×-uuu r uuu r uuu r的取值范围;(3)设线段BC 的中点为M ,当t ³Q ,使得非零向量OM uuuu r与向量PQ uuu r 平行,请说明理由.6.(2024·云南昆明·高三统考期末)已知动点P 到定点()0,4F 的距离和它到直线1y =距离之比为2;(1)求点P 的轨迹C 的方程;(2)直线l 在x 轴上方与x 轴平行,交曲线C 于A ,B 两点,直线l 交y 轴于点D .设OD 的中点为M ,是否存在定直线l ,使得经过M 的直线与C 交于P ,Q ,与线段AB 交于点N ,PM PN l =uuuu r uuu r ,MQ QN l =uuuur uuu r 均成立;若存在,求出l 的方程;若不存在,请说明理由.03 弦长、面积背景的条件翻译7.(2024·陕西榆林·统考一模)已知椭圆()2222:10x y C a b a b +=>>经过()830,1,,55A P æö-ç÷èø两点.(1)求C 的方程;(2)斜率不为0的直线l 与椭圆C 交于,M N 两点,且点A 不在l 上,AM AN ^,过点P 作y 轴的垂线,交直线=1x -于点S ,与椭圆C 的另一个交点为T ,记SMN V 的面积为1S ,TMN △的面积为2S ,求12S S .8.(2024·四川绵阳·高三绵阳南山中学实验学校校考阶段练习)已知椭圆()2222:10x y E a b a b +=>>的左、右焦点为1F ,2F ,若E 上任意一点到两焦点的距离之和为4,且点æççè在E 上.(1)求椭圆E 的方程;(2)在(1)的条件下,若点A ,B 在E 上,且14OA OB k k ×=-(O 为坐标原点),分别延长AO ,BO 交E 于C ,D 两点,则四边形ABCD 的面积是否为定值?若为定值,求四边形ABCD的面积,若不为定值,请说明理由.9.(2024·上海·高三上海市大同中学校考期末)已知双曲线H :2214x y -=的左、右焦点为1F ,2F ,左、右顶点为1A ,2A ,椭圆E 以1A ,2A 为焦点,以12F F 为长轴.(1)求椭圆E 的离心率;(2)设椭圆E 交y 轴于1B ,2B ,过1B 的直线l 交双曲线H 的左、右两支于C ,D 两点,求2B CD △面积的最小值;(3)设点(),M m n 满足224m n <.过M 且与双曲线H 的渐近线平行的两直线分别交H 于点P ,Q .过M 且与PQ 平行的直线交H 的渐近线于点S ,T .证明:MSMT为定值,并求出此定值.04 斜率之和差商积问题10.(2024·贵州铜仁·校联考模拟预测)在平面直角坐标系中,已知过动点(),M x y 作x 轴垂线,分别与1y =和4y =-交于P ,Q 点,且()12,0A -,()22,0A ,若实数l 使得212OP OQ MA MA l ×=×uuu r uuu r uuuu r uuuu r成立(其中O 为坐标原点).(1)求M l 为何值时M 点的轨迹为椭圆;(2)当l =()4,0B 的直线l 与轨迹M 交于y 轴右侧C ,D 两点,证明:直线1A C ,2A D 的斜率之比为定值.11.(2024·安徽·高三校联考期末)已知抛物线2:2(0)C y px p =>的焦点为F ,点()04,P y 是抛物线C 上一点,点Q 是PF 的中点,且Q 到抛物线C 的准线的距离为72.(1)求抛物线C 的方程;(2)已知圆22:(2)4M x y -+=,圆M 的一条切线l 与抛物线C 交于A ,B 两点,O 为坐标原点,求证:OA ,OB 的斜率之差的绝对值为定值.12.(2024·海南海口·统考模拟预测)在平面直角坐标系xOy 中,已知双曲线2222:1(0,0)x y C a b a b-=>>的左顶点为A ,焦点到渐近线的距离为2.直线l 过点(),0(02)P t t <<,且垂直于x 轴,过P 的直线l ¢交C 的两支于,G H 两点,直线,AG AH 分别交l 于,M N 两点.(1)求C 的方程;(2)设直线,AN OM 的斜率分别为12,k k ,若1212k k ×=,求点P 的坐标.05 弦长、面积范围与最值问题13.(2024·陕西商洛·镇安中学校考模拟预测)已知12,F F 分别为椭圆2222:1(0)x y M a b a b +=>>的左、右焦点,直线1l 过点2F 与椭圆交于,A B 两点,且12AF F △的周长为(2a +.(1)求椭圆M 的离心率;(2)直线2l 过点2F ,且与1l 垂直,2l 交椭圆M 于,C D 两点,若a =ACBD 面积的范围.14.(2024·河南·统考模拟预测)已知抛物线2:4C y x =的焦点为F ,过F 的直线l 交C 于,A B 两点,过F 与l 垂直的直线交C 于,D E 两点,其中,B D 在x 轴上方,,M N 分别为,AB DE 的中点.(1)证明:直线MN 过定点;(2)设G 为直线AE 与直线BD 的交点,求GMN V 面积的最小值.15.(2024·上海嘉定·统考一模)抛物线24y x =上有一动点(,),0P s t t >.过点P 作抛物线的切线l ,再过点P 作直线m ,使得m l ^,直线m 和抛物线的另一个交点为Q .(1)当1s =时,求切线l 的直线方程;(2)当直线l 与抛物线准线的交点在x 轴上时,求三角形OPQ 的面积(点O 是坐标原点);(3)求出线段||PQ 关于s 的表达式,并求||PQ 的最小值;06 定值问题16.(2024·全国·模拟预测)如图,已知12,F F 分别为椭圆C :()222210x y a b a b +=>>的左、右焦点,P 为椭圆C 上一点,若12124PF PF PF PF +=-=uuu r uuu u r uuu r uuu u r,122PF F S =△.(1)求椭圆C 的标准方程;(2)若点P 坐标为),设不过点P 的直线l 与椭圆C 交于A ,B 两点,A 关于原点的对称点为A ¢,记直线l ,PB ,PA ¢的斜率分别为k ,1k ,2k ,若1213k k ×=,求证:直线l 的斜率k 为定值.17.(2024·安徽·高三校联考阶段练习)已知双曲线221222:1(0,0),,x y C a b F F a b -=>>分别是C 的左、右焦点.若C 的离心率2e =,且点()4,6在C 上.(1)求C 的方程.(2)若过点2F 的直线l 与C 的左、右两支分别交于,A B 两点(不同于双曲线的顶点),问:2211AF BF -是否为定值?若是,求出该定值;若不是,请说明理由.18.(2024·全国·高三阶段练习)如图所示,已知抛物线()21,0,1,,y x M A B =-是抛物线与x 轴的交点,过点M 作斜率不为零的直线l 与抛物线交于,C D 两点,与x 轴交于点Q ,直线AC 与直线BD 交于点P .(1)求CM DM CD×的取值范围;(2)问在平面内是否存在一定点T ,使得TP TQ ×uur uuu r为定值?若存在,求出点T 的坐标;若不存在,请说明理由.07 定点问题19.(2024·广东广州·广东实验中学校考一模)设抛物线2:2(0)E y px p =>,过焦点F 的直线与抛物线E 交于点()11,A x y 、()22,B x y .当直线AB 垂直于x 轴时,2AB =.(1)求抛物线E 的标准方程.(2)已知点()1,0P ,直线AP 、BP 分别与抛物线E 交于点C 、D .求证:直线CD 过定点.20.(2024·宁夏银川·高三银川一中校考阶段练习)在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b +=>>的左,右顶点分别为A 、B ,点F 是椭圆的右焦点,3AF FB =uuu r uuu r ,3AF FB ×=uuu r uuu r .(1)求椭圆C 的方程;(2)经过椭圆右焦点F 且斜率不为零的动直线l 与椭圆交于M 、N 两点,试问x 轴上是否存在异于点F 的定点T ,使||||||||MF NT NF MT ×=×恒成立?若存在,求出T 点坐标,若不存在,说明理由.21.(2024·四川甘孜·统考一模)在平面直角坐标系xOy 中,抛物线2:2(0)E y px p =>的焦点为,F E 的准线l 交x 轴于点K ,过K 的直线l 与抛物线E 相切于点A ,且交y 轴正半轴于点P .已知E 上的动点B 到点F 的距离与到直线2x =-的距离之和的最小值为3.(1)求抛物线E 的方程;(2)过点P 的直线交E 于,M N 两点,过M 且平行于y 轴的直线与线段OA 交于点T ,点H 满足MT TH =uuur uuu r.证明:直线HN 过定点.08 三点共线问题22.(2024·广东·高三校联考阶段练习)点F 是抛物线G :22y px =(0p >)的焦点,O 为坐标原点,过点F 作垂直于x 轴的直线l ,与抛物线G 相交于A ,B 两点,AB 4=,抛物线G 的准线与x 轴交于点K .(1)求抛物线G 的方程;(2)设C 、D 是抛物线G 上异于A 、B 两点的两个不同的点,直线AC 、BD 相交于点E ,直线AD 、BC 相交于点G ,证明:E 、G 、K 三点共线.23.(2024·贵州毕节·校考模拟预测)已知F 是抛物线2:2(0)C y px p =>的焦点,过点F 的直线交抛物线C 于,A B 两点,当AB 平行于y 轴时,2AB =.(1)求抛物线C 的方程;(2)若O 为坐标原点,过点B 作y 轴的垂线交直线AO 于点D ,过点A 作直线DF 的垂线与抛物线C 的另一交点为,E AE 的中点为G ,证明:,,G B D 三点共线.24.(2024·贵州贵阳·高三贵阳一中校考期末)已知A ,B 为椭圆()2222:10x y C a b a b+=>>的左、右顶点,P 为椭圆上异于A ,B 的一点,直线AP 与直线BP 的斜率之积为14-,且椭圆C 过点12ö÷ø.(1)求椭圆C 的标准方程;(2)若直线AP ,BP 分别与直线:4l x =相交于M ,N 两点,且直线BM 与椭圆C 交于另一点Q ,证明:A ,N ,Q 三点共线.09 中点弦与对称问题25.(2024·福建福州·高三福建省福州格致中学校考期末)已知椭圆()2222:10x y C a b a b+=>>的离心率为12,椭圆上的点到焦点的最小距离是3.(1)求椭圆C 的方程;(2)是否存在过点31,2Q æöç÷èø的直线交曲线C 于AB 两点,使得Q 为AB 中点?若存在,求该直线方程,若不存在,请说明理由.26.(2024·全国·高三专题练习)已知圆22:(3)4M x y ++=,圆22:(3)100N x y -+=,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C (1)求C 的方程;(2)是否存在过点31,2Q æöç÷èø的直线交曲线C 于AB 两点,使得Q 为AB 中点?若存在,求该直线方程,若不存在,请说明理由.27.(2024·贵州黔东南·高三校考阶段练习)已知椭圆C :()222210x y a b a b +=>>的一个焦点为()1,0F -,且点F 到C 的左、右顶点的距离之积为5.(1)求椭圆C 的标准方程;(2)过点F 作斜率乘积为1-的两条直线1l ,2l ,1l 与C 交于A ,B 两点,2l 与C 交于D ,E 两点,线段AB ,DE 的中点分别为M ,N .证明:直线MN 与x 轴交于定点,并求出定点坐标.10 四点共圆问题28.(2024·湖北·高三校联考阶段练习)已知双曲线22:1x C a =的离心率为2,过C 上的动点M 作曲线C 的两渐近线的垂线,垂足分别为A 和,B ABM V .(1)求曲线C 的方程;(2)如图,曲线C 的左顶点为D ,点N 位于原点与右顶点之间,过点N 的直线与曲线C 交于,G R 两点,直线l 过N 且垂直于x 轴,直线DG ,DR 分别与l 交于,P Q 两点,若,,,O D P Q 四点共圆,求点N 的坐标.29.(2024·河南·高三校联考阶段练习)已知椭圆2222:1x y C a b+=()0a b >>的左、右焦点分别为1F ,2F ,点D 在C 上,132DF =,252DF =,212DF F F >,且12DF F △的面积为32.(1)求C 的方程;(2)设C 的左顶点为A ,直线:6l x =-与x 轴交于点P ,过P 作直线交C 于G ,H 两点直线AG ,AH 分别与l 交于M ,N 两点,O 为坐标原点,证明:O ,A ,N ,M 四点共圆.30.(2024·江苏南通·统考模拟预测)已知动圆M 过点(1,0)F 且与直线=1x -相切,记动圆圆心M 的轨迹为曲线C .(1)求曲线C 的方程;(2)若直线():0l x m m =<与x 轴相交于点P ,点B 为曲线C 上异于顶点O 的动点,直线PB 交曲线C 于另一点D ,直线BO 和DO 分别交直线l 于点S 和T .若,,,O F S T 四点共圆,求m 的值.11 切线问题31.(2024·河南周口·高三校联考阶段练习)已知点()2,1A 的椭圆2222:1(0)x y M a b a b +=>>上,点,B C 为椭圆M 上异于点A 的两点.(1)求椭圆M 的方程;(2)若AB AC ^,过点,B C 两点分别作椭圆M 的切线,这两条切线的交点为D ,求AD 的最小值.32.(2024·山东德州·高三德州市第一中学校考阶段练习)如图所示,已知椭圆C :22163x y +=与直线l :163xy +=.点P 在直线l 上,由点P 引椭圆C 的两条切线PA 、PB ,A 、B 为切点,O 是坐标原点.(1)若点P 为直线l 与y 轴的交点,求PAB V 的面积S ;(2)若OD AB ^,D 为垂足,求证:存在定点Q ,使得DQ 为定值.(注:椭圆22221x ya b+=在其上一点处()00,M x y 的切线方程为00221x x y ya b+=)33.(2024·辽宁辽阳·高三统考期末)在平面直角坐标系xOy 内,已知定点()2,0F ,定直线3:2l x =,动点P 到点F 和直线l P 的轨迹为曲线E .(1)求曲线E 的方程.(2)以曲线E 上一动点M 为切点作E 的切线l ¢,若直线l ¢与直线l 交于点N ,试探究以线段MN 为直径的圆是否过x 轴上的定点.若过定点.求出该定点坐标;若不过,请说明理由.12 定比点差法34.(2024·吉林·统考一模)已知抛物线21:2(0)C y px p =>的焦点F 到其准线的距离为4,椭圆22222:1(0)x y C a b a b +=>>经过抛物线1C 的焦点F .(1)求抛物线1C 的方程及a ;(2)已知O 为坐标原点,过点(1,1)M 的直线l 与椭圆2C 相交于A ,B 两点,若=uuuu r uuurAM mMB ,点N 满足=-uuu r uuu r AN mNB ,且||ON 最小值为125,求椭圆2C 的离心率.35.(2024·江苏·高二专题练习)已知椭圆()2222:10x y a b a bG +=>>的离心率为23,半焦距为()0c c >,且1a c -=.经过椭圆的左焦点F ,斜率为()110k k ¹的直线与椭圆交于A 、B 两点,O 为坐标原点.(1)求椭圆G 的标准方程;(2)当11k =时,求AOB S V 的值;(3)设()1,0R ,延长AR ,BR 分别与椭圆交于C ,D 两点,直线CD 的斜率为2k ,求证:12k k 为定值.36.(2024·安徽合肥·统考一模)在平面直角坐标系xOy 中,F 是抛物线()2:20C x py p =>的焦点,M是抛物线C 上位于第一象限内的任意一点,过,,M F O 三点的圆的圆心为N ,点N 到抛物线C 的准线的距离为34.(1)求抛物线C 的方程;(2)当过点()4,1P 的动直线l 与抛物线C 相交于不同点,A B 时,在线段AB 上取点Q ,满足AP QB AQ PB ×=×u u u r u u u r u u u r u u r,证明:点Q 总在某定直线上.13 齐次化37.已知椭圆22:13x C y +=,()0,1B ,P ,Q 为上的两个不同的动点,23BP BQ k k =,求证:直线PQ 过定点.38.已知椭圆22:14x C y +=,设直线l 不经过点2(0,1)P 且与C 相交于A ,B 两点.若直线2P A 与直线2P B 的斜率的和为1-,证明:直线l 过定点.39.如图,椭圆22:12x E y +=,经过点(1,1)M ,且斜率为k 的直线与椭圆E 交于不同的两点P ,Q(均异于点(0,1)A -,证明:直线AP 与AQ 的斜率之和为2.14 极点极线问题40.(2024·江苏南通·高二统考开学考试)已知双曲线C :22221x y a b -=(0a >,0b >)实轴端点分别为()1,0A a -,()2,0A a ,右焦点为F ,离心率为2,过1A 点且斜率1的直线l 与双曲线C 交于另一点B ,已知1A BF △的面积为92.(1)求双曲线的方程;(2)若过F 的直线l ¢与双曲线C 交于M ,N 两点,试探究直线1A M 与直线2A N 的交点Q 是否在某条定直线上?若在,请求出该定直线方程;如不在,请说明理由.41.(2024·安徽六安·校联考一模)已知椭圆()2222:10x y C a b a b+=>>的离心率为12,短轴长为(1)求椭圆C 的方程;(2)设A ,B 分别为椭圆C 的左、右顶点,若过点()4,0P 且斜率不为0的直线l 与椭圆C 交于M 、N 两点,直线AM 与BN 相交于点Q .证明:点Q 在定直线上.42.(2024·北京海淀·统考模拟预测)已知椭圆M :22221x y a b +=(a >b >0)过A (-2,0),B (0,1)两点.(1)求椭圆M 的离心率;(2)设椭圆M 的右顶点为C ,点P 在椭圆M 上(P 不与椭圆M 的顶点重合),直线AB 与直线CP 交于点Q ,直线BP 交x 轴于点S ,求证:直线SQ 过定点.15 同构问题43.(2024·广东广州·统考一模)已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2,圆M 与y 轴相切,且圆心M 与抛物线C 的焦点重合.(1)求抛物线C 和圆M 的方程;(2)设()()000,2P x y x ¹为圆M 外一点,过点P 作圆M 的两条切线,分别交抛物线C 于两个不同的点()()1122,,,A x y B x y 和点()()3344,,,Q x y R x y .且123416y y y y =,证明:点P 在一条定曲线上.44.(2024·湖北襄阳·襄阳五中校考一模)已知抛物线21:C y x =,圆()222:41C x y -+=.(1)求圆心2C 到抛物线1C 准线的距离;(2)已知点P 是抛物线1C 上一点(异于原点),过点P 作圆2C 的两条切线,交抛物线1C 于A 、B 两点,若直线2PC 的斜率为1k ,直线AB 的斜率为2k ,125·24k k =-,求点P 的坐标.45.(2024·内蒙古呼和浩特·统考一模)拋物线C 的顶点为坐标原点O ,焦点在x 轴上,直线l :2x =交C 于P ,Q 两点,且OP OQ ^.已知点M 的坐标为()4,0,M e 与直线l 相切.(1)求抛物线C 和M e 的标准方程;(2)已知点()8,4N ,点1A ,2A 是C 上的两个点,且直线1NA ,2NA 均与M e 相切.判断直线12A A 与M e 的位置关系,并说明理由.46.(2024·浙江杭州·高二萧山中学校考期末)已知圆C 的方程为:()()22210x y r r ++=>(1)已知过点15,22M æö-ç÷èø的直线l 交圆C 于,A B 两点,若1r =,求直线l 的方程;(2)如图,过点()1,1N -作两条直线分别交抛物线2y x =于点P ,Q ,并且都与动圆C 相切,求证:直线PQ 经过定点,并求出定点坐标.16 蝴蝶问题47.(2024·重庆渝中·高三重庆巴蜀中学校考阶段练习)如图,B ,A 是椭圆22:14x C y +=的左、右顶点,P ,Q 是椭圆C 上都不与A ,B 重合的两点,记直线BQ ,AQ ,AP 的斜率分别是BQ k ,AQ k ,AP k .(1)求证:14BQ AQ k k ×=-;(2)若直线PQ 过定点6,05æöç÷èø,求证:4AP BQ k k =.48.(2024·江苏宿迁·高二统考期末)已知椭圆2222:1(0)x y C a b a b +=>>的左焦点为1(F ,且过点P .(1)求椭圆C 的标准方程;(2)已知12,A A 分别为椭圆C 的左、右顶点,Q 为直线1x =上任意一点,直线12,AQ A Q 分别交椭圆C 于不同的两点,M N .求证:直线MN 恒过定点,并求出定点坐标.49.如图,椭圆的长轴12A A 与x 轴平行,短轴12B B 在y 轴上,中心为(0,)(0)M r b r >>.(1)写出椭圆的方程,求椭圆的焦点坐标及离心率;(2)直线1y k x =交椭圆于两点()()()11222,,,0C x y D x y y >;直线2y k x =交椭圆于两点()33,G x y ,()()444,0H x y y >.求证:1122341234k x x k x x x x x x =++;(3)对于(2)中的中的在C ,D ,G ,H ,设CH 交x 轴于P 点,GD 交x 轴于Q 点,求证:||||OP OQ =(证明过程不考虑CH 或GD 垂直于x轴的情形)。
2024高考数学专项复习圆锥曲线基础知识手册
圆锥曲线一、椭圆及其性质第一定义平面内一动点P 与两定点F 1、F 2距离之和为常数(大于F 1F 2 )的点轨迹第二定义平面内一动点到定点与到准线的距离比是常数的点轨迹MF 1d 1=MF 2d 2=e 焦点焦点在x 轴上焦点在y 轴上图形yxF 1F 2abc O A 1A 2B 2B 1x =a 2cx =-a 2c y x F 1F 2ab c A 1A 2B 2B 1y =a2cy =-a2c标准方程x 2a 2+y 2b 2=1a >b >0y 2a 2+x 2b2=1a >b >0范围-a ≤x ≤a 且-b ≤y ≤b-b ≤x ≤b 且-a ≤y ≤a顶点A 1-a ,0 ,A 2a ,0 ,B 10,-b ,B 20,bA 10,-a ,A 20,a ,B 1-b ,0 ,B 2b ,0轴长长轴长=2a ,短轴长=2b ,焦距=F 1F 2 =2c ,c 2=a 2-b 2焦点F 1-c ,0 、F 2c ,0F 10,-c 、F 20,c焦半径PF 1 =a +e x 0,PF 2 =a -e x 0PF 1 =a -e y 0,PF 2 =a +e y 0焦点弦左焦点弦|AB |=2a +e (x 1+x 2),右焦点弦|AB |=2a -e (x 1+x 2).离心率e =c a=1-b 2a20<e <1 准线方程x =±a 2cy =±a 2c切线方程x 0x a 2+y 0y b 2=1x 0xb 2+y 0y a 2=1通径过椭圆焦点且垂直于对称轴的弦长AB =2b 2a(最短焦点弦)焦点三角形(1)由定义可知:|PF 1|+|PF 2|=2a ,周长为:2a +2c (2)焦点三角形面积:S △F 1PF 2=b 2×tan θ2(3)当P 在椭圆短轴上时,张角θ最大,θ≥1-2e 2cos (4)焦长公式:PF 1 =b 2a -c αcos 、MF 1 =b 2a +c αcos MP =2ab 2a 2-c 22αcos =2ab 2b 2+c 22αsin (5)离心率:e =(α+β)sin α+βsin sin yxF 1F 2θαP OMβ2024高考数学专项复习第一定义平面内一动点P与两定点F1、F2距离之差为常数(大于F1F2)的点轨迹第二定义平面内一动点到定点与到准线的距离比是常数的点轨迹MF1d1=MF2d2=e焦点焦点在x轴上焦点在y轴上图形yxF1F2bc虚轴实轴ayxF1F2实轴虚轴标准方程x2a2-y2b2=1a>0,b>0y2a2-x2b2=1a>0,b>0范围x≤-a或x≥a,y∈R y≤-a或y≥a,x∈R 顶点A1-a,0、A2a,0A10,-a、A20,a轴长虚轴长=2b,实轴长=2a,焦距=F1F2=2c,c2=a2+b2焦点F1-c,0、F2c,0F10,-c、F20,c焦半径|PF1|=a+e x0,|PF2|=-a+e x0左支添“-”离心率e=ca=1+b2a2e>1准线方程x=±a2c y=±a2c渐近线y=±ba x y=±ab x切线方程x0xa2-y0yb2=1x0xb2-y0ya2=1通径过双曲线焦点且垂直于对称轴的弦长AB=2b2a(最短焦点弦)焦点三角形(1)由定义可知:|PF1|-|PF2|=2a(2)焦点直角三角形的个数为八个,顶角为直角与底角为直角各四个;(3)焦点三角形面积:S△F1PF2=b2÷tanθ2=c∙y(4)离心率:e=F1F2PF1-PF2=sinθsinα-sinβ=sin(α+β)sinα-sinβyxF1F2Pθαβ定义平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.方程y 2=2px p >0y 2=-2px p >0x 2=2py p >0x 2=-2py p >0图形yxF x =-p2yxFx =p2y xFy =-p2yxFy =p2顶点0,0对称轴x 轴y 轴焦点F p2,0 F -p 2,0 F 0,p 2 F 0,-p 2准线方程x =-p 2x =p2y =-p 2y =p 2离心率e =1范围x ≥0x ≤0y ≥0y ≤0切线方程y 0y =p x +x 0y 0y =-p x +x 0x 0x =p y +y 0x 0x =-p y +y 0通径过抛物线焦点且垂直于对称轴的弦AB =2p (最短焦点弦)焦点弦AB 为过y 2=2px p >0 焦点的弦,A (x 1,y 1)、B (x 2,y 2),倾斜角为α.则:(1)AF =x 1+p 2BF =x 2+p2AB =x 1+x 2+p ,(2)x 1x 2=p 24y 1y 2=-p 2(3)AF =p 1-αcos BF =p 1+αcos 1|FA |+1|FB |=2P (4)AB =2psin 2αS △AOB =p 22αsin AB 为过x 2=2py (p >0)焦点的弦,A (x 1,y 1)、B (x 2,y 2),倾斜角为α.则:(1)AF =p 1-αsin BF =p1+αsin (2)AB =2p 2αcos S △AOB=p 22αcos (3)AF BF=λ,则:α=λ-1λ+1sin yxFx =-p 2αABO yxFαABOy 2=2px (p >0)y 2=2px (p >0)四、圆锥曲线的通法F 1F 2POxyOxyFP MOxyF 1F 2P椭圆双曲线抛物线点差法与通法1、圆锥曲线综述:联立方程设交点,韦达定理求弦长;变量范围判别式,曲线定义不能忘;弦斜中点点差法,设而不求计算畅;向量参数恰当用,数形结合记心间.★2、直线与圆锥曲线的位置关系(1)直线的设法:1若题目明确涉及斜率,则设直线:y =kx +b ,需考虑直线斜率是否存在,分类讨论;2若题目没有涉及斜率或直线过(a ,0)则设直线:x =my +a ,可避免对斜率进行讨论(2)研究通法:联立y =kx +bF (x ,y )=0得:ax 2+bx +c =0判别式:Δ=b 2−4ac ,韦达定理:x 1+x 2=−b a ,x 1x 2=ca(3)弦长公式:AB =(x 1-x 2)2+(y 1-y 2)2=1+k 2|x 1-x 2|=(1+k 2)⋅[(x 1+x 2)2-4x 1x 2]=1+1k2(y 1+y 2)2−4y 1y 2 3、硬解定理设直线y =kx +φ与曲线x 2m +y 2n=1相交于A (x 1,y 1)、B (x 2,y 2)由:y =kx +φnx 2+my 2=mn,可得:(n +mk 2)x 2+2kφmx +m (φ2-n )=0判别式:△=4mn (n +mk 2-φ2)韦达定理:x 1+x 2=-2kmφn +mk 2,x 1x 2=m (φ2-n )n +mk 2由:|x 1-x 2|=(x 1+x 2)2-4x 1x 2,代入韦达定理:|x 1-x 2|=△n +mk 2★4、点差法:若直线l 与曲线相交于M 、N 两点,点P (x 0,y 0)是弦MN 中点,MN 的斜率为k MN ,则:在椭圆x 2a 2+y 2b 2=1(a >b >0)中,有k MN ⋅y 0x 0=−b 2a2;在双曲线x 2a 2−y 2b 2=1(a >b >0)中,有k MN ⋅y 0x 0=b 2a2;在抛物线y 2=2px (p >0)中,有k MN ⋅y 0=p .(椭圆)设M 、N 两两点的坐标分别为(x 1,y 1)、(x 2,y 2),则有x 12a 2+y 12b 2=1,⋯⋯(1)x 22a 2+y 22b 2=1.⋯⋯(2) (1)−(2),得x 12−x 22a 2+y 12−y 22b 2=0.∴y 2−y 1x 2−x 1⋅y 2+y 1x 2+x 1=−b 2a2.又∵k MN =y 2−y 1x 2−x 1,y 1+y 2x 1+x 2=2y 2x =y x .∴k MN ⋅y x =−b 2a2.圆锥曲线的参数方程1、参数方程的概念在平面直角坐标系中,曲线上任意一点的坐标x ,y 都是某个变数t 的函数x =f (t )y =g (t )并且对于t 的每一个允许值,由这个方程所确定的点M (x ,y )都在这条曲线上,该方程就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.※2、直线的参数方程(1)过定点P (x 0,y 0)、倾斜角为α(α≠π2)的直线的参数方程x =x 0+t cos αy =y 0+t sin α (t 为参数)(2)参数t 的几何意义:参数t 表示直线l 上以定点M 0为起点,任意一点M (x ,y )为终点的有向线段的长度再加上表示方向的正负号,也即|M 0M|=|t |,|t |表示直线上任一点M 到定点M 0的距离.当点M 在M 0上方时,t >0;当点M 在M 0下方时,t <0;当点M 与M 0重合时,t =0;(3)直线方程与参数方程互化:y −y o =tan α(x −x o )⇔x =x 0+t cos αy =y 0+t sin α(t 为参数)(4)直线参数方程:x =x 0+aty =y 0+bt (t 为参数),当a 2+b 2=1时,参数方程为标准型参数方程,参数的几何意义才是代表距离.当a 2+b 2≠1时,将参数方程化为x =x 0+aa 2+b 2t y =y 0+ba 2+b 2t 然后在进行计算.★3、圆的参数方程(1)圆心(a ,b ),半径r 的圆(x -a )2+(y -b )2=r 2参数方程x =a +r cos θy =b +r sin θ (θ为参数);特别:当圆心在原点时,半径为r 的圆x 2+y 2=r 2的参数方程为:x =r cos θy =r sin θ (θ是参数).(2)参数θ的几何意义:θ表示x 轴的正方向到圆心和圆上任意一点的半径所成的角.(3)消参的方法:利用sin 2θ+cos 2θ=1,yxF 1F 2PN OMyxM 0tαO M 1αP (x ,y )rxy可得圆方程:(x -a )2+(y -b )2=r 2★4、椭圆的参数方程(1)椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为x =a cos φy =b sin φ (φ为参数);椭圆y 2a 2+x 2b2=1(a >b >0)的参数方程为x =b cos φy =a sin φ (φ为参数);(2)参数θ的几何意义:参数θ表示椭圆上某一点的离心角.如图所示,点P 对应的离心角为θ=∠QOx (过P 作PQ ⊥x 轴,交大圆即以2a 为直径的圆于Q ),切不可认为是θ=∠POx .5、双曲线的参数方程(1)双曲线x 2a 2-y 2b 2=1(a >b >0)的参数方程x =a sec φy =b tan φ (φ为参数);sec φ=1cos φ双曲线y 2a 2-x 2b2=1(a >b >0)的参数方程x =b cot φy =a csc φ (φ为参数);csc φ=1sin φ(2)参数θ的几何意义:参数θ表示双曲线上某一点的离心角.※6、抛物线的参数方程(1)抛物线y 2=2px 参数方程x =2pt 2y =2pt(t 为参数,t =1tan α);(2)参数t 的几何意义:抛物线上除顶点外的任意一点与原点连线的斜率的倒数.t =1k OP仿射变换与齐次式1、仿射变换:在几何中,一个向量空间进行一次线性变换并接上一个平移,变换为另一个向量空间.※2、椭圆的变换:椭圆b 2x 2+a 2y 2=a 2b 2变换内容x =x y=a b y x =xy =b a yx =b a x y=yx =a b x y =y圆方程x 2+y 2=a 2x 2+y 2=b 2图示yxAB OCyxABOCyxAB OCyxAB OC 点坐标A (x 0,y 0)→A '(x 0,a by 0)A (x 0,y 0)→A '(b ax 0,y 0)斜率变化k '=a bk ,由于k A 'C '⋅k B 'C '=−1.k AC ⋅k BC =b a k A 'C '⋅b a k B 'C '=−b 2a 2k '=a bk ,由于k A 'C '⋅k B 'C '=−1.k AC ⋅k BC =b a k A 'C '⋅b a k B 'C '=−b 2a2弦长变化则AB =1+k 2x 1-x 2 ⇒A 'B '=1+k '2x 1-x 2 =1+(a b)2k 2x 1-x 2 yxαPOQ面积变化S△ABC=b a S△A'B'C'(水平宽不变,铅锤高缩小)S△ABC=a b S△A'B'C'(水平宽扩大,铅垂高不变)3、中点弦问题,k OP⋅k AB=−b2a2,中垂线问题k OPk MP=b2a2,且x M=c2x0a2y N=-c2y0b2,拓展1:椭圆内接△ABC中,若原点O为重心,则仿射后一定得到△OB'C'为120°的等腰三角形;△A'B'C'为等边三角形;拓展2:椭圆内接平行四边形OAPB(A、P、B)在椭圆上,则仿射后一定得菱形OA'P'B' 4、面积问题:(1)若以椭圆x2a2+y2b2=1对称中心引出两条直线交椭圆于A、B两点,且k OA⋅k OB=−b2a2,则经过仿射变换后k OA'⋅k OB'=−1,所以S△AOB为定值.(2)若椭圆方程x2a2+y2b2=1上三点A,B,M,满足:①k OA⋅k OB=−b2a2②S△AOB=ab2③OM=sinαOA+cosαOBα∈0,π2,三者等价※5、平移构造齐次式:(圆锥曲线斜率和与积的问题)(1)题设:过圆锥曲线上的一个定点P作两条直线与圆锥曲线交于A、B,在直线PA和PB斜率之和或者斜率之积为定值的情况下,直线AB过定点或者AB定斜率的问题.(2)步骤:①将公共点平移到坐标原点(点平移:左加右减上减下加)找出平移单位长.②由①中的平移单位长得出平移后的圆锥曲线C ,所有直线方程统一写为:mx+ny=1③将圆锥曲线C 展开,在一次项中乘以mx+ny=1,构造出齐次式.④在齐次式中,同时除以x2,构建斜率k的一元二次方程,由韦达定理可得斜率之积(和).圆锥曲线考点归类(一)条件方法梳理1、椭圆的角平分线定理(1)若点A、B是椭圆x2a2+y2b2=1(a>b>0)上的点,AB与椭圆长轴交点为N,在长轴上一定存在一个点M,当仅当则x M⋅x N=a2时,∠AMN=∠BMN,即长轴为角平分线;(2)若点A、B是椭圆x2a2+y2b2=1(a>b>0)上的点,AB与椭圆短轴交点为N,在短轴上一定存在一个点M,当仅当则y M⋅y N=b2时,∠AMN=∠BMN,即短轴为角平分线;※2、关于角平分线的结论:若直线AO的斜率为k1,直线CO的斜率为k2,EO平分∠AOC则有:k1+k2=tanα+tan(π-α)=0角平分线的一些等价代换条件:作x轴的对称点、点到两边的距离相等.3、四种常用直线系方程(1)定点直线系方程:经过定点P 0(x 0,y 0)的直线系方程为y -y 0=k (x -x 0)(除直线x =x 0),其中k 是待定的系数;经过定点P 0(x 0,y 0)的直线系方程为A (x -x 0)+B (y -y 0)=0,其中A ,B 是待定的系数.(2)共点直线系方程:经过两直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0的交点的直线系方程为(A 1x +B 1y +C 1)+λ(A 2x +B 2y +C 2)=0(除l 2),其中λ是待定的系数.(3)平行直线系方程:直线y =kx +b 中当斜率k 一定而b 变动时,表示平行直线系方程.与直线Ax +By +C =0平行的直线系方程是Ax +By +λ=0(λ≠0),λ是参变量.(4)垂直直线系方程:与直线Ax +By +C =0(A ≠0,B ≠0)垂直的直线系方程是Bx -Ay +λ=0,λ是参变量.4、圆系方程(1)过直线l :Ax +By +C =0与圆C :x 2+y 2+Dx +Ey +F =0的交点的圆系方程是x 2+y 2+Dx +Ey +F +λ(Ax +By +C )=0,λ是待定的系数.(2)过圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x +E 2y +F 2=0的交点的圆系方程是x 2+y 2+D 1x +E 1y +F 1+λ(x 2+y 2+D 2x +E 2y +F 2)=0,λ是待定的系数.★(二)圆锥曲线过定点问题1、直线过定点的背景:(1)直线过定点模型:A ,B 是圆锥曲线上的两动点,M 是一定点,其中α,β分别为MA ,MB 的倾斜角,则:①、MA ⋅MB 为定值⇔直线AB 恒过定点;②、k MA ⋅k MB 为定值⇔直线AB 恒过定点;③、α+β=θ(0<θ<π)⇔直线AB 恒过定点.(2)抛物线中直线过定点:A ,B 是抛物线y 2=2px (p >0)上的两动点,α,β分别为OA ,OB 的倾斜角,则:OA ⊥OB ⇔k OA ⋅k OB =-1⇔α-β =π2⇔直线AB 恒过定点(2p ,0).(3)椭圆中直线过定点模型:A ,B 是椭圆x 2a 2+y 2b2=1(a >b >0)上异于右顶点D 的两动点,其中α,β分别为DA ,DB 的倾斜角,则可以得到下面几个充要的结论:DA ⊥DB ⇔k DA ⋅k DB =-1⇔α-β =π2⇔直线AB 恒过定点(ac 2a 2+b 2,0)2、定点的求解方法:1含参形式简单的直线方程,通过将直线化为y -y 0=k (x -x 0)可求得定点坐标(x 0,y 0)2含参形式复杂的通过变换主元法求解定点坐标.变换主元法:将直线化为h (x ,y )+λf (x ,y )=0,解方程组:h (x ,y )=0f (x ,y )=0 可得定点坐标.eg :直线方程:(2m +1)x +(m -5)y +6=0,将m 看作主元,按照降幂排列:(2x +y )m+x -5y +6=0,解方程组:2x +y =0x -5y +6=0,解得:x =-611y =1211,求得直线过定点(-611,1211).3、关于以AB 为直径的圆过定点问题:(1)直接法:设出参数后,表示出圆的方程.圆的直径式方程:(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0(2)由特殊到一般:利用赋值法,先求出几个位置的圆方程,联立圆方程解出公共交点,该交点即为圆所过的定点,再利用向量数量积为0证明点恒在圆上.★(三)圆锥曲线面积问题1、面积的求解方法:(1)S △ABC =12MN ∙d ,从公式可以看出,求面积重在求解弦长和点到线的距离.(2)S △ABC =12×水平宽×铅锤高,主要以点的坐标运算为主.(3)S △AOB =12x 1y 2-x 2y 1例题1.在平面直角坐标系xOy 中,已知点O 0,0 ,A x 1,y 1 ,B x 2,y 2 不共线,证明:△AOB 的面积为S △AOB =12x 1y 2-x 2y 1 .2、面积中最值的求解(1)f (x )=αx 2+βx +φx +n型:令t =x +n ⇒x =t -n 进行代换后裂项转化为:y =at +bt (2)f (x )=x +n αx 2+βx +φ型:先在分母中配出分子式f (x )=x +n α(x +n )2+λ(x +n )+υ令t =x +n ,此时:y =t αt 2+λt +υ,分子分母同时除t ,此时y =1αt +υt+λ,再利用对勾函数或不等式分析最值.(3)f (x )=αx +βx +n型:令t =x +n ⇒x =t 2-n 进行代换后裂项,可转化为:y =at +bt五、椭圆的二级结论1.PF1+PF2=2a2.标准方程x2a2+y2b2=13.PF1d1=e<14.点P处的切线PT平分△PF1F2在点P处的外角.5.PT平分△PF1F2在点P处的外角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.6.以焦点弦PQ为直径的圆必与对应准线相离.7.以焦点半径PF1为直径的圆必与以长轴为直径的圆内切.8.设A1、A2为椭圆的左、右顶点,则△PF1F2在边PF2(或PF1)上的旁切圆,必与A1A2所在的直线切于A2 (或A1).9.椭圆x2a2+y2b2=1(a>b>0)的两个顶点为A1(-a,0),A2(a,0),与y轴平行的直线交椭圆于P1、P2时A1P1与A2P2交点的轨迹方程是x2a2-y2b2=1.10.若点P0(x0,y0)在椭圆x2a2+y2b2=1a>b>0上,则在点P0处的切线方程是x0xa2+y0yb2=1.11.若P0(x0,y0)在椭圆x2a2+y2b2=1外,则过Po作椭圆的两条切线切点为P1、P2,则切点弦P1P2的直线方程是x0xa2+y0yb2=1.12.AB是椭圆x2a2+y2b2=1的不平行于对称轴的弦,M为AB的中点,则k OM⋅k AB=-b2a2.13.若P0(x0,y0)在椭圆x2a2+y2b2=1内,则被PO所平分的中点弦的方程是x0xa2+y0yb2=x02a2+y02b2.14.若P0(x0,y0)在椭圆x2a2+y2b2=1内,则过PO的弦中点的轨迹方程是x2a2+y2b2=x0xa2+y0yb2.15.若PQ是椭圆x2a2+y2b2=1(a>b>0)上对中心张直角的弦,则1r12+1r22=1a2+1b2(r1=|OP|,r2=|OQ|).16.若椭圆x2a2+y2b2=1(a>b>0)上中心张直角的弦L所在直线方程为Ax+By=1(AB≠0),则(1)1a2+1 b2=A2+B2;(2)L=2a4A2+b4B2a2A2+b2B2.17.给定椭圆C1:b2x2+a2y2=a2b2(a>b>0),C2:b2x2+a2y2=a2-b2a2+b2ab2,则(i)对C1上任意给定的点P(x0,y0),它的任一直角弦必须经过C2上一定点M a2-b2a2+b2x0,-a2-b2a2+b2y0. (ii)对C2上任一点P (x0 ,y0 )在C1上存在唯一的点M ,使得M 的任一直角弦都经过P 点.18.设P(x0,y0)为椭圆(或圆)C:x2a2+y2b2=1(a>0,.b>0)上一点,P1P2为曲线C的动弦,且弦PP1,PP2斜率存在,记为k1,k2,则直线P1P2通过定点M(mx0,-my0)(m≠1)的充要条件是k1⋅k2=-1+m1-m⋅b2a2.19.过椭圆x2a2+y2b2=1(a>0,b>0)上任一点A(x0,y0)任意作两条倾斜角互补的直线交椭圆于B,C两点,则直线BC有定向且k BC=b2x0a2y0(常数).20.椭圆x2a2+y2b2=1(a>b>0)的左右焦点分别为F1,F2,点P为椭圆上任意一点∠F1PF2=γ,则椭圆的焦点三角形的面积为S△F1PF2=b2tanγ2,P±ac c2-b2tan2γ2,±b2c tanγ2.21.若P为椭圆x2a2+y2b2=1(a>b>0)上异于长轴端点的任一点,F1,F2是焦点,∠PF1F2=α,∠PF2F1=β,则a-ca+c=tanα2tanβ2.22.椭圆x2a2+y2b2=1(a>b>0)的焦半径公式:|MF1|=a+ex0,|MF2|=a-ex0(F1(-c,0),F2(c,0),M(x0,y0)).23.若椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1、F2,左准线为L,则当2-1≤e<1时,可在椭圆上求一点P,使得PF1是P到对应准线距离d与PF2的比例中项.24.P为椭圆x2a2+y2b2=1(a>b>0)上任一点,F1,F2为二焦点,A为椭圆内一定点,则2a-|AF2|≤|PA|+|PF1|≤2a+|AF2|,当且仅当A,F2,P三点共线时,等号成立.25.椭圆x2a2+y2b2=1(a>b>0)上存在两点关于直线l:y=k(x-x0)对称的充要条件是x02≤(a2-b2)2a2+b2k2.26.过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.27.过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.28.P是椭圆x=a cosϕy=b sinϕ(a>b>0)上一点,则点P对椭圆两焦点张直角的充要条件是e2=11+sin2ϕ.29.设A,B为椭圆x2a2+y2b2=k(k>0,k≠1)上两点,其直线AB与椭圆x2a2+y2b2=1相交于P,Q,则AP=BQ.30.在椭圆x 2a 2+y 2b 2=1中,定长为2m (o <m ≤a )的弦中点轨迹方程为m 2=1-x 2a 2+y 2b 2a 2cos 2α+b 2sin 2α ,其中tan α=-bx ay ,当y =0时,α=90∘.31.设S 为椭圆x 2a 2+y 2b2=1(a >b >0)的通径,定长线段L 的两端点A ,B 在椭圆上移动,记|AB |=l ,M(x 0,y 0)是AB 中点,则当l ≥ΦS 时,有(x 0)max =a 2c -l 2e c 2=a 2-b 2,e =c a;当l <ΦS 时,有(x 0)max =a 2b4b 2-l 2,(x 0)min=0.32.椭圆x 2a 2+y 2b2=1与直线Ax +By +C =0有公共点的充要条件是A 2a 2+B 2b 2≥C 2.33.椭圆(x -x 0)2a 2+(y -y 0)2b2=1与直线Ax +By +C =0有公共点的充要条件是A 2a 2+B 2b 2≥(Ax 0+By 0+C )2.34.设椭圆x 2a 2+y 2b2=1(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上任意一点,在△PF 1F 2中,记∠F 1PF 2=α,∠PF 1F 2=β,∠F 1F 2P =γ,则有sin αsin β+sin γ=c a =e.35.经过椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)的长轴的两端点A 1和A 2的切线,与椭圆上任一点的切线相交于P 1和P 2,则|P 1A 1|⋅|P 2A 2|=b 2.36.已知椭圆x 2a 2+y 2b2=1(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且OP ⊥OQ .(1)1|OP |2+1|OQ |2=1a 2+1b2;(2)|OP |2+|OQ |2的最小值为4a 2b 2a 2+b 2;(3)S ΔOPQ 的最小值是a 2b 2a 2+b 2.37.MN 是经过椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)焦点的任一弦,若AB 是经过椭圆中心O 且平行于MN 的弦,则|AB |2=2a |MN |.38.MN 是经过椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)焦点的任一弦,若过椭圆中心O 的半弦OP ⊥MN ,则2a |MN |+1|OP |2=1a 2+1b2.39.设椭圆x 2a 2+y 2b2=1(a >b >0),M (m ,o )或(o ,m )为其对称轴上除中心,顶点外的任一点,过M 引一条直线与椭圆相交于P 、Q 两点,则直线A 1P 、A 2Q (A 1,A 2为对称轴上的两顶点)的交点N 在直线l :x =a2m(或y =b 2m)上.40.设过椭圆焦点F 作直线与椭圆相交P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF .41.过椭圆一个焦点F的直线与椭圆交于两点P、Q,A1、A2为椭圆长轴上的顶点,A1P和A2Q交于点M,A2P和A1Q交于点N,则MF⊥NF.42.设椭圆方程x2a2+y2b2=1,则斜率为k(k≠0)的平行弦的中点必在直线l:y=kx的共轭直线y=k x上,而且kk =-b2 a2 .43.设A、B、C、D为椭圆x2a2+y2b2=1上四点,AB、CD所在直线的倾斜角分别为α,β,直线AB与CD相交于P,且P不在椭圆上,则PA⋅PBPC⋅PD=b2cos2β+a2sin2βb2cos2α+a2sin2α.44.已知椭圆x2a2+y2b2=1(a>b>0),点P为其上一点F1,F2为椭圆的焦点,∠F1PF2的外(内)角平分线为l,作F1、F2分别垂直l于R、S,当P跑遍整个椭圆时,R、S形成的轨迹方程是x2+y2=a2c2y2=a2y2+b2x x±c2 a2y2+b2x±c2.45.设△ABC内接于椭圆Γ,且AB为Γ的直径,l为AB的共轭直径所在的直线,l分别交直线AC、BC于E和F,又D为l上一点,则CD与椭圆Γ相切的充要条件是D为EF的中点.46.过椭圆x2a2+y2b2=1(a>b>0)的右焦点F作直线交该椭圆右支于M,N两点,弦MN的垂直平分线交x轴于P,则|PF||MN|=e2.47.设A(x1,y1)是椭圆x2a2+y2b2=1(a>b>0)上任一点,过A作一条斜率为-b2x1a2y1的直线L,又设d是原点到直线L的距离,r1,r2分别是A到椭圆两焦点的距离,则r1r2d=ab.48.已知椭圆x2a2+y2b2=1(a>b>0)和x2a2+y2b2=λ(0<λ<1),一直线顺次与它们相交于A、B、C、D四点,则│AB│=|CD│.49.已知椭圆x2a2+y2b2=1(a>b>0),A、B、是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0,0),则-a2-b2a<x0<a2-b2 a.50.设P点是椭圆x2a2+y2b2=1(a>b>0)上异于长轴端点的任一点,F1、F2为其焦点记∠F1PF2=θ,则(1)|PF1||PF2|=2b21+cosθ.(2)SΔPF1F2=b2tanθ2.51.设过椭圆的长轴上一点B(m,o)作直线与椭圆相交于P、Q两点,A为椭圆长轴的左顶点,连结AP和AQ分别交相应于过H点的直线MN:x=n于M,N两点,则∠MBN=90∘⇔a-ma+m=a2n-m2 b2(n+a)2.52.L是经过椭圆x2a2+y2b2=1(a>b>0)长轴顶点A且与长轴垂直的直线,E、F是椭圆两个焦点,e是离心率,点P∈L,若∠EPF=α,则α是锐角且sinα≤e或α≤arcsin e(当且仅当|PH|=b时取等号).53.L是椭圆x2a2+y2b2=1(a>b>0)的准线,A、B是椭圆的长轴两顶点,点P∈L,e是离心率,∠EPF=α,H是L与X轴的交点c是半焦距,则α是锐角且sinα≤e或α≤arcsin e(当且仅当|PH|=ab c时取等号).54.L是椭圆x2a2+y2b2=1(a>b>0)的准线,E、F是两个焦点,H是L与x轴的交点,点P∈L,∠EPF=α,离心率为e,半焦距为c,则α为锐角且sinα≤e2或α≤arcsin e2(当且仅当|PH|=b c a2+c2时取等号).55.已知椭圆x2a2+y2b2=1(a>b>0),直线L通过其右焦点F2,且与椭圆相交于A、B两点,将A、B与椭圆左焦点F1连结起来,则b2≤|F1A|⋅|F1B|≤(2a2-b2)2a2(当且仅当AB⊥x轴时右边不等式取等号,当且仅当A、F1、B三点共线时左边不等式取等号).56.设A、B是椭圆x2a2+y2b2=1(a>b>0)的长轴两端点,P是椭圆上的一点,∠PAB=α,∠PBA=β,∠BPA=γ,c、e分别是椭圆的半焦距离心率,则有(1)|PA|=2ab2|cosα|a2-c2cos2α.(2)tanαtanβ=1-e2.(3)SΔPAB=2a2b2b2-a2cotγ.57.设A、B是椭圆x2a2+y2b2=1(a>b>0)长轴上分别位于椭圆内(异于原点)、外部的两点,且x A、x B的横坐标x A⋅x B=a2,(1)若过A点引直线与这椭圆相交于P、Q两点,则∠PBA=∠QBA;(2)若过B引直线与这椭圆相交于P、Q两点,则∠PAB+∠QAB=180∘.58.设A、B是椭圆x2a2+y2b2=1(a>b>0)长轴上分别位于椭圆内(异于原点),外部的两点,(1)若过A点引直线与这椭圆相交于P、Q两点,(若BP交椭圆于两点,则P、Q不关于x轴对称),且∠PBA=∠QBA,则点A、B的横坐标x A、x B满足x A⋅x B=a2;(2)若过B点引直线与这椭圆相交于P、Q两点,且∠PAB+∠QAB=180∘,则点A、B的横坐标满足x A⋅x B=a2.59.设A,A 是椭圆x2a2+y2b2=1的长轴的两个端点,QQ 是与AA 垂直的弦,则直线AQ与A Q 的交点P的轨迹是双曲线x2a2-y2b2=1.60.过椭圆x2a2+y2b2=1(a>b>0)的左焦点F作互相垂直的两条弦AB、CD则8ab2a2+b2≤|AB|+|CD|≤2(a2+b2)a.61.到椭圆x 2a 2+y 2b2=1(a >b >0)两焦点的距离之比等于a -c b (c 为半焦距)的动点M 的轨迹是姊妹圆(x ±a )2+y 2=b 2.62.到椭圆x 2a 2+y 2b2=1(a >b >0)的长轴两端点的距离之比等于a -c b (c 为半焦距)的动点M 的轨迹是姊妹圆x ±a e 2+y 2=b e 2.63.到椭圆x 2a 2+y 2b2=1(a >b >0)的两准线和x 轴的交点的距离之比为a -c b (c 为半焦距)的动点的轨迹是姊妹圆x ±a e 2 2+y 2=b e 2 2(e 为离心率).64.已知P 是椭圆x 2a 2+y 2b2=1(a >b >0)上一个动点,A ,A 是它长轴的两个端点,且AQ ⊥AP ,A Q ⊥AP ,则Q 点的轨迹方程是x 2a 2+b 2y 2a4=1.65.椭圆的一条直径(过中心的弦)的长,为通过一个焦点且与此直径平行的弦长和长轴之长的比例中项.66.设椭圆x 2a 2+y 2b 2=1(a >b >0)长轴的端点为A ,A ,P (x 1,y 1)是椭圆上的点过P 作斜率为-b 2x 1a 2y 1的直线l ,过A ,A 分别作垂直于长轴的直线交l 于M ,M ,则(1)|AM ||A M |=b 2.(2)四边形MAA M 面积的最小值是2ab .67.已知椭圆x 2a 2+y2b2=1(a >b >0)的右准线l 与x 轴相交于点E ,过椭圆右焦点F 的直线与椭圆相交于A 、B 两点,点C 在右准线l 上,且BC ⎳x 轴,则直线AC 经过线段EF 的中点.68.OA 、OB 是椭圆(x -a )2a 2+y 2b 2=1(a >0,b >0)的两条互相垂直的弦,O 为坐标原点,则(1)直线AB必经过一个定点2ab 2a 2+b 2,0 .(2)以OA 、OB 为直径的两圆的另一个交点Q 的轨迹方程是x -ab 2a 2+b 2 2+y 2=ab 2a 2+b 2 2(x ≠0).69.P (m ,n )是椭圆(x -a )2a 2+y 2b2=1(a >b >0)上一个定点,PA 、PB 是互相垂直的弦,则(1)直线AB 必经过一个定点2ab 2+m (a 2-b 2)a 2+b 2,n (b 2-a 2)a 2+b 2 .(2)以PA 、PB 为直径的两圆的另一个交点Q 的轨迹方程是x -ab 2+a 2m a 2+b 2 2+y -b 2n a 2+b 2 2=a 2[b 4+n 2(a 2-b 2)](a 2+b 2)2(x ≠m 且y ≠n ).70.如果一个椭圆短半轴长为b ,焦点F 1、F 2到直线L 的距离分别为d 1、d 2,那么(1)d 1d 2=b 2,且F 1、F 2在L 同侧⇔直线L 和椭圆相切.(2)d 1d 2>b 2,且F 1、F 2在L 同侧⇔直线L 和椭圆相离,(3)d 1d 2<b 2,或F 1、F 2在L 异侧⇔直线L 和椭圆相交.71.AB 是椭圆x 2a 2+y 2b2=1(a >b >0)的长轴,N 是椭圆上的动点,过N 的切线与过A 、B 的切线交于C 、D两点,则梯形ABDC的对角线的交点M的轨迹方程是x2a2+4y2b2=1(y≠0).72.设点P(x0,y0)为椭圆x2a2+y2b2=1(a>b>0)的内部一定点,AB是椭圆x2a2+y2b2=1过定点P(x0,y0)的任一弦,当弦AB平行(或重合)于椭圆长轴所在直线时(|PA|⋅|PB|)max=a2b2-(a2y02+b2x02)b2.当弦AB垂直于长轴所在直线时,(|PA|⋅|PB|)min=a2b2-(a2y02+b2x02)a2.73.椭圆焦三角形中,以焦半径为直径的圆必与以椭圆长轴为直径的圆相内切.74.椭圆焦三角形的旁切圆必切长轴于非焦顶点同侧的长轴端点.75.椭圆两焦点到椭圆焦三角形旁切圆的切线长为定值a+c与a-c.76.椭圆焦三角形的非焦顶点到其内切圆的切线长为定值a-c.77.椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).(注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.)78.椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e.79.椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.80.椭圆焦三角形中,椭圆中心到内点的距离、内点到同侧焦点的距离、半焦距及外点到同侧焦点的距离成比例.81.椭圆焦三角形中,半焦距、外点与椭圆中心连线段、内点与同侧焦点连线段、外点与同侧焦点连线段成比例.82.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,则椭圆中心与垂足连线必与另一焦半径所在直线平行.83.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,则椭圆中心与垂足的距离为椭圆长半轴的长.84.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,垂足就是垂足同侧焦半径为直径的圆和椭圆长轴为直径的圆的切点.85.椭圆焦三角形中,非焦顶点的外角平分线与焦半径、长轴所在直线的夹角的余弦的比为定值e.86.椭圆焦三角形中,非焦顶点的法线即为该顶角的内角平分线.87.椭圆焦三角形中,非焦顶点的切线即为该顶角的外角平分线.88.椭圆焦三角形中,过非焦顶点的切线与椭圆长轴两端点处的切线相交,则以两交点为直径的圆必过两焦点.89.已知椭圆x2a2+y2b2=1(a>0,b>0)(包括圆在内)上有一点P,过点P分别作直线y=b a x及y=-b a x的平行线,与x 轴于M ,N ,与y 轴交于R ,Q .,O 为原点,则:(1)|OM |2+|ON |2=2a 2;(2)|OQ |2+|OR |2=2b 2.90.过平面上的P 点作直线l 1:y =b a x 及l 2:y =-b ax 的平行线,分别交x 轴于M ,N ,交y 轴于R ,Q .(1)若|OM |2+|ON |2=2a 2,则P 的轨迹方程是x 2a 2+y 2b2=1(a >0,b >0).(2)若|OQ |2+|OR |2=2b 2,则P 的轨迹方程是x 2a 2+y 2b2=1(a >0,b >0).91.点P 为椭圆x 2a 2+y 2b2=1(a >0,b >0)(包括圆在内)在第一象限的弧上任意一点,过P 引x 轴、y 轴的平行线,交y 轴、x 轴于M ,N ,交直线y =-b ax 于Q ,R ,记ΔOMQ 与ΔONR 的面积为S 1,S 2,则:S 1+S 2=ab 2.92.点P 为第一象限内一点,过P 引x 轴、y 轴的平行线,交y 轴、x 轴于M ,N ,交直线y =-b ax 于Q ,R ,记△OMQ 与△ONR 的面积为S 1,S 2,已知S 1+S 2=ab 2,则P 的轨迹方程是x 2a 2+y 2b2=1(a >0,b >0).93.过椭圆焦点垂直于长轴的弦(通径)是最短的弦,长为2b 2a,过焦点最长弦为长轴.94.过原点最长弦为长轴长2a ,最短弦为短轴长2b .95.与椭圆x 2a 2+y 2b 2=1(a >b >0)有共焦点的椭圆方程为x 2a 2+λ+y 2b 2+λ=1(a >b >0,λ>-b 2).96.与椭圆y 2a 2+x 2b 2=1(a >b >0)有共焦点的椭圆方程为y 2a 2+λ+x 2b 2+λ=1(a >b >0,λ>-b 2).97.焦点三角形:椭圆上的点P (x 0,y 0)与两焦点F 1,F 2构成的△PF 1F 2叫做焦点三角形.若r 1=|PF 1|,r 2=|PF 2|,∠F 1PF 2=θ,△PF 1F 2的面积为S ,则在椭圆x 2a 2+y 2b2=1(a >b >0)中:①当r 1=r 2时,即点P 为短轴端点时,θ最大;cos θ=r 21+r 22-4c 22r 1r 2=r 1+r 2 2-2r 1r 2-4c22r 1r 2=4b 22r 1r 2-1=2b 2r 1r 2-1≥2b 2r 1+r 222-1=2b 2-a 2a 2=b 2-c 2a 2当且仅当r 1=r 2时,等号成立.②S =12|PF 1||PF 2|sin θ=c |y 0|=sin θ1+cos θb 2=b 2tan θ2,当|y 0|=b ,即点P 为短轴端点时,S 取得最大值,最大值为bc ;③△PF 1F 2的周长为2(a +c ).98.AB 为过F 的焦点弦,则1FA +1FB =2ab 299.已知椭圆Γ:x 2a 2+y 2b2=1a >b >0 的左右焦点分别为F 1、F 2.椭圆Γ在点P 处的切线为l ,Q ∈l .且满足∠AQF1=θ0<θ<π2,则点Q在以C0,±cθcot为圆心,a θsin为半径的圆上.六、双曲线的二级结论1.PF1-PF2=2a2.标准方程x2a2-y2b2=13.PF1d1=e>14.点P处的切线PT平分△PF1F2在点P处的内角.5.PT平分△PF1F2在点P处的内角,则焦点在直线PT上的射影H点的轨迹是以实轴为直径的圆,除去实轴的两个端点.6.以焦点弦PQ为直径的圆必与对应准线相交.7.以焦点半径PF1为直径的圆必与以实轴为直径的圆外切.8.设P为双曲线上一点,则△PF1F2的内切圆必切于与P在同侧的顶点.9.双曲线x2a2-y2b2=1(a>0,b>0)的两个顶点为A1(-a,0),A2(a,0),与y轴平行的直线交双曲线于P1、P2时A1P1与A2P2交点的轨迹方程是x2a2+y2b2=1.10.若点P0(x0,y0)在双曲线x2a2-y2b2=1(a>0,b>0)上,则在点P0处的切线方程是x0xa2-y0yb2=1.11.若P0(x0,y0)在双曲线x2a2-y2b2=1(a>0,b>0)外,则过P0作双曲线的两条切线切点为P1、P2,则切点弦P1P2的直线方程是x0xa2-y0yb2=1.12.若AB是双曲线x2a2-y2b2=1(a>0,b>0)的不平行于对称轴且过原点的弦,M为AB的中点,则k OM⋅k AB=b2a2.13.若P0(x0,y0)在双曲线x2a2-y2b2=1(a>0,b>0)内,则被P0所平分的中点弦的方程是x0xa2-y0yb2=x02a2-y02 b2 .14.若P0(x0,y0)在双曲线x2a2-y2b2=1(a>0,b>0)内,则过Po的弦中点的轨迹方程是x2a2-y2b2=x0xa2-y0y b2.15.若PQ是双曲线x2a2-y2b2=1(b>a>0)上对中心张直角的弦,则1r12+1r22=1a2-1b2(r1=|OP|,r2=|OQ|).16.若双曲线x2a2-y2b2=1(b>a>0)上中心张直角的弦L所在直线方程为Ax+By=1(AB≠0),则(1)1a2-1 b2=A2+B2;(2)L=2a4A2+b4B2|a2A2-b2B2|.17.给定双曲线C1:b2x2-a2y2=a2b2(a>b>0),C2:b2x2-a2y2=a2+b2a2-b2ab2,则(i)对C1上任意给定的点P(x0,y0),它的任一直角弦必须经过C2上一定点M a2+b2a2-b2x0,-a2+b2a2-b2y0. (ii)对C2上任一点P (x0 ,y0 )在C1上存在唯一的点M ,使得M 的任一直角弦都经过P 点.18.设P(x0,y0)为双曲线x2a2-y2b2=1(a>0,b>0)上一点,P1P2为曲线C的动弦,且弦PP1,PP2斜率存在,记为k1,k2,则直线P1P2通过定点M(mx0,-my0)(m≠1)的充要条件是k1⋅k2=1+m1-m⋅b2a2.19.过双曲线x2a2-y2b2=1(a>0,b>o)上任一点A(x0,y0)任意作两条倾斜角互补的直线交双曲线于B,C两点,则直线BC有定向且k BC=-b2x0a2y0(常数).20.双曲线x2a2-y2b2=1(a>0,b>0)的左右焦点分别为F1,F2,点P为双曲线上任意一点∠F1PF2=γ,则双曲线的焦点角形的面积为S△F1PF2=b2cotγ2=b2γ2tan,P±ac c2+b2cot2γ2,±b2c cotγ2.21.若P为双曲线x2a2-y2b2=1(a>0,b>0)右(或左)支上除顶点外的任一点,F1,F2是焦点,∠PF1F2=α,∠PF2F1=β,则c-ac+a=tan α2cotβ2(或c-ac+a=tanβ2cotα2).22.双曲线x2a2-y2b2=1(a>0,b>o)的焦半径公式:F1(-c,0),F2(c,0)当M(x0,y0)在右支上时,|MF1|=ex0+a,|MF2|=ex0-a.当M(x0,y0)在左支上时,|MF1|=-ex0-a,|MF2|=-ex0+a.23.若双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1、F2,左准线为L,则当1<e≤2+1时,可在双曲线上求一点P,使得PF1是P到对应准线距离d1与PF2的比例中项.24.P为双曲线x2a2-y2b2=1(a>0,b>0)上任一点,F1,F2为二焦点,A为双曲线左支内一定点,则|AF2|-2a≤|PA|+|PF1|,当且仅当A,F2,P三点共线且P在左支时,等号成立.25.双曲线x2a2-y2b2=1(a>0,b>0)上存在两点关于直线l:y=k(x-x0)对称的充要条件是x02>(a2+b2)2 a2-b2k2k≠0且k≠±a b .26.过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.27.过双曲线焦半径的端点作双曲线的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.28.P是双曲线x=a secϕy=b tanϕ(a>0,b>0)上一点,则点P对双曲线两焦点张直角的充要条件是e2=11-tan2ϕ.29.设A,B为双曲线x2a2-y2b2=k(a>0,b>0,k>0,k≠1)上两点,其直线AB与双曲线x2a2-y2b2=1相交于P,Q,则AP=BQ.30.在双曲线x2a2-y2b2=1中,定长为2m(m>0)的弦中点轨迹方程为m2=1-x2a2-y2b2a2cosh2t+b2sinh2t,coth t=-aybx,x=0时t=0,弦两端点在两支上x2a2-y2b2-1a2sinh2t+b2cosh2t,coth t=-bxay,y=0时t=0,弦两端点在同支上31.设S为双曲线x2a2-y2b2=1(a>0,b>0)的通径,定长线段L的两端点A,B在双曲线右支上移动,记|AB|=l,M(x0,y0)是AB中点,则当l≥ΦS时,有(x0)min=a2c+l2e c2=a2+b2,e=c a;当l<ΦS时,有(x0)min=a2b4b2+l2.32.双曲线x2a2-y2b2=1(a>0,b>0)与直线Ax+By+C=0有公共点的充要条件是A2a2-B2b2≤C2.33.双曲线(x-x0)2a2-(y-y0)2b2=1(a>0,b>0)与直线Ax+By+C=0有公共点的充要条件是A2a2-B2b2≤(Ax0+By0+C)2.34.设双曲线x2a2-y2b2=1(a>0,b>0)的两个焦点为F1、F2,P(异于长轴端点)为双曲线上任意一点,在△PF1F2中,记∠F1PF2=α,∠PF1F2=β,∠F1F2P=γ,则有sinα±(sinγ-sinβ)=c a=e.35.经过双曲线x2a2-y2b2=1(a>0,b>0)的实轴的两端点A1和A2的切线,与双曲线上任一点的切线相交于P1和P2,则|P1A1|⋅|P2A2|=b2.36.已知双曲线x2a2-y2b2=1(b>a>0),O为坐标原点,P、Q为双曲线上两动点,且OP⊥OQ.(1)1|OP|2+1 |OQ|2=1a2-1b2;(2)|OP|2+|OQ|2的最小值为4a2b2b2-a2;(3)SΔOPQ的最小值是a2b2b2-a2.37.MN是经过双曲线x2a2-y2b2=1(a>0,b>0)过焦点的任一弦(交于两支),若AB是经过双曲线中心O且平行于MN的弦,则|AB|2=2a|MN|.38.MN是经过双曲线x2a2-y2b2=1(a>b>0)焦点的任一弦(交于同支),若过双曲线中心O的半弦OP⊥。
高考数学压轴题突破训练——圆锥曲线(含详解)
(Ⅰ)若当点P的坐标为 时, ,求双曲线的方程;
(Ⅱ)若 ,求双曲线离心率 的最值,并写出此时双曲线的渐进线方程.
15. 若F 、F 为双曲线 的左右焦点,O为坐标原点,P在双曲线的左支上,点M在右准线上,且满足; .
(1)求该双曲线的离心率;
(Ⅱ)若直线 与(Ⅰ)中所求点Q
的轨迹交于不同两点F,H,O是坐标原点,
且 ,求△FOH的面积的取值范围。
18. 如图所示,O是线段AB的中点,|AB|=2c,以点A为圆心,2a为半径作一圆,其中 。
(1)若圆A外的动点P到B的距离等于它到圆周的最短距离,建立适当坐标系,求动点P的轨迹方程,并说明轨迹是何种曲线;
(2)D分有向线段 的比为 ,A、D同在以B、C为焦点的椭圆上,
当 ―5≤ ≤ 时,求椭圆的离心率e的取值范围.
29.在直角坐标平面中, 的两个顶点 的坐标分别为 , ,平面内两点 同时满足下列条件:
① ;② ;③ ∥
(1)求 的顶点 的轨迹方程;
(2)过点 的直线 与(1)中轨迹交于 两点,求 的取值范围
由 消去 得: ①
,
而
由方程①知 > <
, < < , .
7.解:解:令
则 即
即
又∵ ∴
所求轨迹方程为
(Ⅱ)解:由条件(2)可知OAB不共线,故直线AB的斜率存在
设AB方程为
则
∵OAPB为矩形,∴OA⊥OB
∴ 得
所求直线方程为 …
8.解:(I)由题意,抛物线顶点为(-n,0),又∵焦点为原点∴m>0
高考数学压轴题突破训练:圆锥曲线
1. 如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A,点B、D在直线l1上(B、D 位于点A右侧),且|AB|=4,|AD|=1,M是该平面上的一个动点,M在l1上的射影点是N,且|BN|=2|DM|.
2025高考数学必刷题 第81讲、圆锥曲线拓展题型一(教师版)
第81讲圆锥曲线拓展题型一必考题型全归纳题型一:定比点差法例1.已知椭圆2222:1x y C a b+=(0a b >>)的离心率为2,过右焦点F 且斜率为k (0k >)的直线与C 相交于A ,B 两点,若3AF FB =,求k【解析】由e =,可设椭圆为2224x y m +=(0m >),设11(,)A x y ,22(,)B x y,,0)F ,由3AF FB =,所以12123133013x x y y +=+⎨+⎪=⎪+⎩,1212330x x y y ⎧+=⎪⇒⎨+=⎪⎩.又2221122222(1)4(2)4x y m x y m ⎧+=⎪⎪⎨⎪+=⎪⎩2221122222(1)4(2)9999(3)4x y m x y m λ⎧+=⎪⎪⨯⎨⎪+=⎪⎩ 按配型由(1)-(3)得212121212(3)(3)(3)(3)84x x x x y y y y m +-++-=-128333x x ⇒-=-,又123x x +=1233x m ⇒=236(,33A ⇒±.又,0)Fk ⇒=.例2.已知22194x y +=,过点(0,3)P 的直线交椭圆于A ,B (可以重合),求PA PB 取值范围.【解析】设11(,)A x y ,22(,)B x y ,(0,3)P ,由AP PB λ=,所以12120131x x y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩121203(1)x x y y λλλ+=⎧⇒⎨+=+⎩.由221122224936(1)4936(2)x y x y ⎧+=⎪⎨+=⎪⎩221122222224936(1)4)936()2(3x y x y λλλ⎧+=⎪⎨+=⎪⨯⎩配比由(1)-(3)得:()()()()()21212121249361x x x x y y y y λλλλλ⇒+-++-=-()()12413y y λλ-⇒-=,又()1231y y λλ+=+11356y λ+⇒=,又[]12,2y ∈-15,5λ⎡⎤⇒∈--⎢⎣⎦,从而1,55PA PB λ⎡⎤=∈⎢⎥⎣⎦.例3.已知椭圆22162x y +=的左右焦点分别为1F ,2F ,A ,B ,P 是椭圆上的三个动点,且11PF F A λ= ,22PF F B μ=若2λ=,求μ的值.【解析】设()00,P x y ,11(,)A x y ,22(,)B x y ,,由11PF F A λ= ,22PF F B μ=得①()1,0F c -满足()0101010111001x x c x x c y y y y λλλλλλλ+⎧-=⎪⎧+=-+⎪⎪+⇒⎨⎨++=⎪⎩⎪=⎪+⎩()2,0F c 满足()0202020211001x x c x x c y y y y μμμμμμμ+⎧=⎪⎧+=-++⎪⎪⇒⎨⎨++=⎪⎩⎪=⎪+⎩②由2200222211221(1)1(2)x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩⇒2200222222211221(1)(3)x y a b x y a b λλλ⎧+=⎪⎪⎨⎪+=⎪⎩③由(1)-(3)得:()()()()010101012221x x x x y y y yx a b λλλλ-+-++=-()()()()()()2010*******x x x x a a x x c λλλλλλ-+⇒=⇒-=---+,又()()011x x c λλ+=-+222202a c a c x c c λ-+⇒=-,同理可得222202a c a c x c c μ-+=-+()()2222222222108a c a c a c c c a c λμλμμ-++⇒+=⋅⇒+=⋅=⇒=-.变式1.设1F ,2F 分别为椭圆2213x y +=的左、右焦点,点A ,B 在椭圆上,若125F A F B = ,求点A 的坐标【解析】记直线1F A 反向延长交椭圆于1B ,由125F A F B = 及椭圆对称性得1115AF F B =,设11(,)A x y ,22(,)B x y,(F .①由定比分点公式得12125155015x x y y +⎧=⎪⎪+⎨+⎪=⎪+⎩1212550x x y y ⎧+=-⎪⇒⎨+=⎪⎩②又221122221(1)31(2)3x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩221122221(1)4(2)25252525(3)3x y x y λ⎧+=⎪⎪⨯⎨⎪+=⎪⎩ 按配型③由(1)-(3)得12121212(5)(5)(5)(5)243x x x x y y y y +-++-=-125x x ⇒-=,又125x x +=-10x ⇒=(0,1)A ⇒±.变式2.已知椭圆22:12C x y +=,设过点()2,2P 的直线l 与椭圆C 交于A ,B ,点Q 是线段AB 上的点,且112PA PB PQ+=,求点Q的轨迹方程.【解析】设11(,)A x y ,22(,)B x y ,()00,Q x y 由112PA PB PQ +=22PQ PQ PA AQ PB QB PA PB PA PB-+⇒+=⇒+=0AQ QB PA AQPA PB PB QB -⇒+=⇒=,记()0AP AQ PB QBλλ==> ,即AP PB λ=- ,AQ QB λ=.①AP PB λ=- ,由定比分点得:()()1212121222112121x x x x y y y y λλλλλλλλ-⎧=⎪⎧-=-⎪⎪-⇒⎨⎨--=-⎪⎪⎩=⎪-⎩AQ QB λ= ,由定比分点得()()121201212001111x x x x x x y y y y y y λλλλλλλλ+⎧=⎪⎧+=+⎪⎪+⇒⎨⎨++=+⎪⎪⎩=⎪+⎩②又2211222222(1)22(2)x y x y ⎧+=⎪⎨⎪+=⎩22112222222222(1)22(23())x y x y λλλλ⎧+=⎪⎨⎪⨯+=⎩配比③由(1)-(3)得:()()()()()212121212221x x x x y y y y λλλλλ+⋅-+⋅+⋅-=-()()()()()20021141121x y λλλλλ⇒+⋅-+⋅+⋅-=-00242x y ⇒+=,即()2200002122x y x y +=+<.题型二:齐次化例4.已知抛物线2:4C y x =,过点(4,0)的直线与抛物线C 交于P ,Q 两点,O 为坐标原点.证明:90POQ ︒∠=.【解析】直线()()1122:4,,,,PQ x my P x y Q x y =+由4x my =+,得14x my-=则由244x my y x =+⎧⎨=⎩,得:244x my y x -=⋅,整理得:210y y m x x ⎛⎫+-= ⎪⎝⎭,即:12121y y x x ⋅=-.所以12121OP OQ y y k k x x ⋅==-,则OP OQ ⊥,即:90POQ ︒∠=.例5.如图,椭圆22:12x E y +=,经过点(1,1)M ,且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点(0,1)A -,证明:直线AP 与AQ 的斜率之和为2.【解析】设直线()()1122:(1)1,,,,PQ mx n y P x y Q x y ++=则21m n +=.由22(1)112mx n y x y ++=⎧⎪⎨+=⎪⎩,得:22[(1)1]12x y ++-=.则22(1)2(1)[(1)]02x y y mx n y ++-+++=,故2111(12)202y y n m x x ++⎛⎫⎛⎫--+= ⎪ ⎪⎝⎭⎝⎭.所以1212112221y y m x x n +++==-.即1212112AP AQ y y k k x x +++=+=.例6.已知椭圆22:14x C y +=,设直线l 不经过点2(0,1)P 且与C 相交于A ,B 两点.若直线2P A 与直线2P B 的斜率的和为1-,证明:直线l 过定点.【解析】设直线:(1)1l mx n y +-=......(1)由22:14x C y +=,得22[(1)1]14x y +-+=即:22(1)2(1)04x y y +-+-=......(2)由(1)(2)得:22(1)2(1)[(1)]04x y y mx n y +-+-+-=整理得:2111(12)204y y n m x x --⎛⎫++⋅+= ⎪⎝⎭则221212112112P A P B y y mk k x x n--+=+=-=-+,则221m n =+,代入直线:(1)1l mx n y +-=,得::(21)2(1)2l n x n y ++-=显然,直线过定点(2,1)-.变式3.已知椭圆22:13x C y +=,()0,1B ,P ,Q 为上的两个不同的动点,23BP BQ k k =,求证:直线PQ过定点.【解析】设直线PQ 方程为:y kx b =+则()2222213163303x y k x kbx b y kx b ⎧+=⎪⇒+++-=⎨⎪=+⎩即12221226133313kb x x k b x x k -⎧+=⎪⎪+⎨-⎪=⎪+⎩,又因为()()()21212121212121211111123BP BQkx x k b x x b y y kx b kx b k k x x x x x x +-++---+-+-=⋅===化简得()221223b b b -=-⇒=-或1b =(舍去).即PQ 直线为3y kx =-,即直线PQ 过定点()0,3-.题型三:极点极线问题例7.(2024·全国·高三专题练习)椭圆方程2222:1(0)x y a b a b Γ+=>>,平面上有一点00(,)P x y .定义直线方程0022:1x x y y l a b +=是椭圆Γ在点00(,)P x y 处的极线.已知椭圆方程22:143x y C +=.(1)若0(1,)P y 在椭圆C 上,求椭圆C 在点P 处的极线方程;(2)若00(,)P x y 在椭圆C 上,证明:椭圆C 在点P 处的极线就是过点P 的切线;(3)若过点(4,0)P -分别作椭圆C 的两条切线和一条割线,切点为X ,Y ,割线交椭圆C 于M ,N 两点,过点M ,N 分别作椭圆C 的两条切线,且相交于点Q .证明:Q ,X ,Y 三点共线.【解析】(1)由题意知,当01x =时,032y =±,所以3(1,2P 或3(1,2P -.由定义可知椭圆C 在点00(,)P x y 处的极线方程为00143x x y y+=,所以椭圆C 在点3(1,)2P 处的极线方程为142x y+=,即240x y +-=点3(1,2P -处的极线方程为142x y -=,即240x y --=(2)因为00(,)P x y 在椭圆C 上,所以2222000013434120x y x y ++=⇒-=,由定义可知椭圆C 在点00(,)P x y 处的极线方程为00143x x y y+=,当00y =时,02x =±,此时极线方程为2x =±,所以P 处的极线就是过点P 的切线.当00y ≠时,极线方程为00000331434+=⇒=-+x x y y x y x y y .联立00022334143x y x y y x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,得20220002021836312094x x x y y x y ⎛⎫-++-= ⎪⎝⎭.()222002002222000036318936()4(3)(12)04142x y x x y y y y ∴⋅--+-=-∆==+.综上所述,椭圆C 在点P 处的极线就是过点P 的切线;(3)设点00(,)Q x y ,11(,)M x y ,22(,)N x y ,由(2)可知,过点M 的切线方程为111:143x x y yl +=,过点N 的切线方程为222:143x x y yl +=.因为1l ,2l 都过点00(,)Q x y ,所以有10102020143143x x y y x x y y ⎧+=⎪⎪⎨⎪+=⎪⎩,则割线MN 的方程为000:143x x y yl +=;同理可得过点(4,0)P -的两条切线的切点弦XY 的方程为34:114xl x -=⇒=-.又因为割线MN 过点(4,0)P -,代入割线方程得04114x x -=⇒=-.所以Q ,X ,Y 三点共线,都在直线1x =-上.例8.(2024·全国·高三专题练习)阅读材料:(一)极点与极线的代数定义;已知圆锥曲线G :22220Ax Cy Dx Ey F ++++=,则称点P (0x ,0y )和直线l :()()00000Ax x Cy y D x x E y y F ++++++=是圆锥曲线G 的一对极点和极线.事实上,在圆锥曲线方程中,以0x x 替换2x ,以02x x+替换x (另一变量y 也是如此),即可得到点P (0x ,0y )对应的极线方程.特别地,对于椭圆22221x y a b+=,与点P (0x ,0y )对应的极线方程为00221x x y y a b +=;对于双曲线22221x y b b-=,与点P (0x ,0y )对应的极线方程为00221x x y y a b -=;对于抛物线22y px =,与点P (0x ,0y )对应的极线方程为()00y y p x x =+.即对于确定的圆锥曲线,每一对极点与极线是一一对应的关系.(二)极点与极线的基本性质、定理①当P 在圆锥曲线G 上时,其极线l 是曲线G 在点P 处的切线;②当P 在G 外时,其极线l 是曲线G 从点P 所引两条切线的切点所确定的直线(即切点弦所在直线);③当P 在G 内时,其极线l 是曲线G 过点P 的割线两端点处的切线交点的轨迹.结合阅读材料回答下面的问题:(1)已知椭圆C :22221(0)x y a b a b +=>>经过点P (4,0)C 的方程并写出与点P 对应的极线方程;(2)已知Q 是直线l :142y x =-+上的一个动点,过点Q 向(1)中椭圆C 引两条切线,切点分别为M ,N ,是否存在定点T 恒在直线MN 上,若存在,当MT TN =时,求直线MN 的方程;若不存在,请说明理由.【解析】(1)因为椭圆22221(0)x y a b a b +=>>过点P (4,0),则2222140a b +=,得4a =,又2c e a ==,所以c =,所以2224b a c =-=,所以椭圆C 的方程为221164x y +=.根据阅读材料,与点P 对应的极线方程为401164x y ⨯+=,即40x -=;(2)由题意,设点Q 的坐标为(0x ,0y ),因为点Q 在直线142y x =-+上运动,所以00142y x =-+,联立221164142x y y x ⎧+=⎪⎪⎨⎪=-+⎪⎩,得28240x x -+=,Δ64424320=-⨯=-<,该方程无实数根,所以直线142y x =-+与椭圆C 相离,即点Q 在椭圆C 外,又QM ,QN 都与椭圆C 相切,所以点Q 和直线MN 是椭圆C 的一对极点和极线.对于椭圆221164x y +=,与点Q (0x ,0y )对应的极线方程为001164x x y y +=,将00142y x =-+代入001164x x y y +=,整理得()0216160x x y y -+-=,又因为定点T 的坐标与0x 的取值无关,所以2016160x y y -=⎧⎨-=⎩,解得21x y =⎧⎨=⎩,所以存在定点T (2,1)恒在直线MN 上.当MT TN =时,T 是线段MN 的中点,设()()1122,,M x y N x y ,,直线MN 的斜率为k ,则2211222211641164x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减,整理得21122112442211616212y y x x x x y y -+⨯=-⋅=-⋅=--+⨯,即12k =-,所以当MT TN = 时,直线MN 的方程为()1122y x -=--,即240x y +-=.例9.(2024秋·北京·高三中关村中学校考开学考试)已知椭圆M :22221x y a b+=(a >b >0)过A (-2,0),B (0,1)两点.(1)求椭圆M 的离心率;(2)设椭圆M 的右顶点为C ,点P 在椭圆M 上(P 不与椭圆M 的顶点重合),直线AB 与直线CP 交于点Q ,直线BP 交x 轴于点S ,求证:直线SQ 过定点.【解析】(1)因为点(2,0)A -,(0,1)B 都在椭圆M 上,所以2a =,1b =.所以c ==所以椭圆M的离心率2c e a ==.(2)由(1)知椭圆M 的方程为2214x y +=,(2,0)C .由题意知:直线AB 的方程为22x y =-.设00(,)P x y (00y ≠,01y ≠±),(22,)Q Q Q y y -,(,0)S S x .因为,,C P Q 三点共线,所以有//CP CQ ,00(2,),(222,)Q Q CP x y CQ y y =-=--,所以00(2)(24)Q Q x y y y -=-.所以000422Q y y y x =-+.所以00000004244(,2222y x y Q y x y x +--+-+.因为,,B S P 三点共线,所以0011s y x x -=-,即001s x x y =-.所以0(,0)1x S y -.所以直线QS 的方程为000000000004242214122y x xy x y xx y y y y x +---+-=+--+,即2200000000044844(1)1x y x y y xx y y y --+-=+--.又因为点P 在椭圆M 上,所以220044x y =-.所以直线QS 的方程为0022(1)21y x x y y --=-+-.所以直线QS 过定点(2,1).变式4.(2024·全国·高三专题练习)若双曲线229x y -=与椭圆2222:1(0)x y C a b a b+=>>共顶点,且它们的离心率之积为43.(1)求椭圆C 的标准方程;(2)若椭圆C 的左、右顶点分别为1A ,2A ,直线l 与椭圆C 交于P 、Q 两点,设直线1A P 与2A Q 的斜率分别为1k ,2k ,且12105k k -=.试问,直线l 是否过定点?若是,求出定点的坐标;若不是,请说明理由.【解析】(1,又两曲线离心率之积为43,所以椭圆的离心;由题意知3a =,所以c =1b =.所以椭圆的标准万程为2219x y +=.(2)当直线l 的斜率为零时,由对称性可知:120k k =-≠,不满足12105k k -=,故直线l 的斜率不为零.设直线l 的方程为x ty n =+,由2219x ty n x y =+⎧⎪⎨+=⎪⎩,得:()2229290t y tny n +++-=,因为直线l 与椭圆C 交于P 、Q 两点,所以()()222244990t n t n ∆=-+->,整理得:2290t n -+>,设()11,P x y 、()22,Q x y ,则12229tn y y t +=-+,212299n y y t -=+,1113y k x =+,2223y k x =-.因为12105k k -=,所以()()()()1121211222121233315333y y x y ty n k x y k y x y ty n x -+-+====+++-,整理得:121245(3)(3)0ty y n y n y +--+=,()1212245(3)(612)ty y n y y n y +-+=-,将12229tn y y t +=-+,212299n y y t -=+代入整理得:()22(2)(3)(2)9t n n n t y --=-+要使上式恒成立,只需2n =,此时满足2290t n -+>,因此,直线l 恒过定点()2,0.变式5.(2024·全国·高三专题练习)已知椭圆2222:1(0)x y E a b a b +=>>且过点⎛ ⎝⎭,A ,B 分别为椭圆E 的左,右顶点,P 为直线3x =上的动点(不在x 轴上),PA 与椭圆E 的另一交点为C ,PB 与椭圆E 的另一交点为D ,记直线PA 与PB 的斜率分别为1k ,2k.(Ⅰ)求椭圆E 的方程;(Ⅱ)求12k k 的值;(Ⅲ)证明:直线CD 过一个定点,并求出此定点的坐标.【解析】(1)由条件可知:221314c e a a b ⎧==⎪⎪⎨⎪+=⎪⎩且222a b c =+,解得2241a b ⎧=⎨=⎩,所以椭圆E 的方程为2214x y +=;(2)因为()()2,0,2,0A B -,设()()3,0P t t ≠,所以()12,32532tt t k k t ====---,所以12155tk k t ==;(3)设()()3,0P t t ≠,所以()():2,:25tPB y t x PA y x =-=+,因为()222544t y x x y ⎧=+⎪⎨⎪+=⎩,所以()222242516161000t x t x t +++-=,所以22164+25C A t x x t +=-,所以22221650824+254+25C t t x t t -=-+=,所以()22025425C C t t y x t =+=+,所以22250820,4+25425t t C t t ⎛⎫- ⎪+⎝⎭,又因为()22244y t x x y ⎧=-⎨+=⎩,所以()2222214161640t x t x t +-+-=,所以221614B D t x x t +=+,所以2222168221414D t t x t t-=-=++,所以()24214D D t y t x t =-=-+,所以222824,1414t t D tt ⎛⎫-- ⎪++⎝⎭,所以222222222508828244+2514:204141442514t t t t t t CD x y t t t t t t ----⎛⎫+-=+ ⎪++⎛⎫⎝⎭--⎪++⎝⎭,所以222282544:14614t t t CD x y t t t --⎛⎫-=+ ⎪++⎝⎭,所以222225454482:661414t t t t CD x y t t t t ---=+⋅+++,所以2544:63t CD x y t -=+,所以直线CD 过定点4,03⎛⎫⎪⎝⎭.题型四:蝴蝶问题例10.(2003·全国·高考真题)如图,椭圆的长轴12A A 与x 轴平行,短轴12B B 在y 轴上,中心为(0,)(0)M r b r >>.(1)写出椭圆的方程,求椭圆的焦点坐标及离心率;(2)直线1y k x =交椭圆于两点()()()11222,,,0C x y D x y y >;直线2y k x =交椭圆于两点()33,G x y ,()()444,0H x y y >.求证:1122341234k x x k x x x x x x =++;(3)对于(2)中的中的在C ,D ,G ,H ,设CH 交x 轴于P 点,GD 交x 轴于Q 点,求证:||||OP OQ =(证明过程不考虑CH 或GD 垂直于x 轴的情形)【解析】(1) 椭圆的长轴12A A 与x 轴平行,短轴12B B 在y 轴上,中心(0,)M r ,∴椭圆方程为2222()1x y r a b -+=焦点坐标为1()F r,2)F r离心率e =(2)证明:将直线CD 的方程1y k x =代入椭圆方程2222()1x y r ab-+=,得2222221()b x a k x r a b +-=整理得22222222211()2()0b a k x k a rx a r a b +-+-=根据韦达定理,得211222212k a r x x b a k +=+,2222122221a r a b x x b a k -=+,所以22121212x x r b x x k r-=+①将直线GH 的方程2y k x =代入椭圆方程2222()1x y r a b -+=,同理可得22343422x x r b x x k r -=+②由①、②得2223411212342k x x k x x r b x x r x x -==++所以结论成立.(3)证明:设点(,0)P p ,点(,0)Q q 由C 、P 、H 共线,得111424x p k x x p k x -=-解得12141124()k k x x p k x k x -=-由D 、Q 、G 共线,同理可得212323x p k x x p k x -=-∴12231223()k k x x q k x k x -=-由1122341234k x x k x x x x x x =++变形得1223121411241223()()k k x x k k x x k x k x k x k x ---=--所以p q =即||||OP OQ =例11.(2024·全国·高三专题练习)已知椭圆2222:1x y C a b +=(0a b >>),四点()11,1P ,()20,1P,31,2P ⎛- ⎝⎭,31,2P ⎛⎫- ⎪ ⎪⎝⎭,41,2P ⎛ ⎝⎭中恰有三点在椭圆C 上.(1)求椭圆C 的方程;(2)蝴蝶定理:如图1,AB 为圆O 的一条弦,M 是AB 的中点,过M 作圆O 的两条弦CD ,EF .若CF ,ED 分别与直线AB 交于点P ,Q ,则MP MQ =.该结论可推广到椭圆.如图2所示,假定在椭圆C 中,弦AB 的中点M 的坐标为10,2⎛⎫⎪⎝⎭,且两条弦CD ,EF 所在直线斜率存在,证明:MP MQ =.【解析】(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点,又由222211134a b a b +>+知,C 不过点1P ,所以点2P 在C 上,因此222111314b a b⎧=⎪⎪⎨⎪+=⎪⎩,解得2241a b ⎧=⎨=⎩,故椭圆C 的方程为2214x y +=;(2)因点M 的坐标10,2⎛⎫⎪⎝⎭在y 轴上,且M 为AB 的中点,所以直线AB 平行于x 轴,设()11,C x y ,()22,D x y ,()33,E x y ,()44,F x y ,设直线CD 的方程为112y k x =+,代入椭圆22:14x C y +=,得:221113044k x k x ⎛⎫++-= ⎪⎝⎭,根据韦达定理得:11221441k x x k +=-+,1221341x x k =-+,①同理,设直线EF 的方程为212y k x =+,代入椭圆22:14x C y +=,得:222213044k x k x ⎛⎫++-= ⎪⎝⎭,根据韦达定理得:23422441k x x k +=-+,3422341x x k =-+,②由于C 、P 、F 三点共线,得111142441212P P y x x k x x x k x y --==--,()12141124P k k x x x k x k x -=-,同理,由于E 、Q 、D 三点共线,得:()12231223Q k k x x x k x k x -=-,结合①和②可得:()()1214122311241223P Q k k x x k k x x x x k x k x k x k x --+=--()()()()()()121412231223112411241223k k x x k x k x k k x x k x k x k x k x k x k x --+--=--()()()()12112421341123223411241223k k k x x x k x x x k x x x k x x x k x k x k x k x --+-=--()()()()()12112342341211241223k k k x x x x k x x x x k x k x k x k x -+-+⎡⎤⎣⎦=--()()()1221122222122111241223343441414141k k k k k k k k k k k x k x k x k x ⎛⎫-----⋅-⋅⎪++++⎝⎭=--()()()()()()()12121222221212112412231212414141410k k k k k k k k k k k x k x k x k x ⎛⎫ ⎪-- ⎪++++⎝⎭==--即P Q x x =-,所以P Q x x =,即MP MQ =.例12.(2021·全国·高三专题练习)(蝴蝶定理)过圆AB 弦的中点M ,任意作两弦CD 和EF ,CF 与ED 交弦AB 于P 、Q ,求证:PM QM =.【解析】如图所示,以M 为原点,AB 所在直线为x 轴建立直角坐标系,设圆方程为222()(||)x y b r b r +-=<设直线CD 、EF 的方程分别为1y k x =,2y k x =.将它们合并为()()120y k x y k x --=,于是过点C 、D 、E 、F 的曲线系方程为()()22212()0x y b r y k x y k x λ+--+--=.令0y =,得()2221210k k x b r λ++-=,即过点C 、D 、E 、F 的曲线系与AB 交于点P 、Q 的横坐标是方程()2221210k k x b r λ++-=的两根.由韦达定理得0P Q x x +=,即M 是PQ 的中点,故PM QM =.变式6.(2024·全国·高三专题练习)蝴蝶定理因其美妙的构图,像是一只翩翩起舞的蝴蝶,一代代数学名家蜂拥而证,正所谓花若芬芳蜂蝶自来.如图,已知圆M 的方程为()222x y b r +-=,直线x my =与圆M 交于()11,C x y ,()22,D x y ,直线x ny =与圆M 交于()33,E x y ,()44,F x y .原点O 在圆M 内.(1)求证:34121234y y y y y y y y ++=.(2)设CF 交x 轴于点P ,ED 交x 轴于点Q .求证:OP OQ =.【解析】(1)已知圆M 的方程为()222x y b r +-=,直线x my =与圆M 交于()11,C x y ,()22,D x y ,联立()222x y b r x my ⎧+-=⎪⎨=⎪⎩,化简得2222(1)20m y by b r +-+-=,则12221b y y m +=+,221221b r y y m -=+,所以1222122y y b y y b r +=-,同理线x ny =与圆M 交于()33,E x y ,()44,F x y ,联立()222x y b r x ny⎧+-=⎪⎨=⎪⎩化简得2222(1)20n y by b r +-+-=,则12221b y y n +=+,221221b r y y n -=+,所以3422342y y b y y b r +=-,故有34122212342y y y y b y y b r y y ++==-,所以34121234y y y y y y y y ++=成立;(2)不妨设点(,0)P p ,点(,0)Q q ,因为C 、P 、F 三点共线,所以414100y y x p x p --=--,化简得411414x y x y p y y -=-,因为点C 在直线x my =上,所以11x my =,点F 在直线x ny =上,所以44x ny =,则4114141414()ny y my y y y n m p y y y y --==--,同理因为E 、Q 、D 三点共线,所以322300y y x q x q --=--,化简得233232x y x y q y y -=-,因为点D 在直线x my =上,所以22x my =,点E 在直线x ny =上,所以33x ny =,则2332233232()my y ny y y y m n q y y y y --==--,又由34121234y y y y y y y y ++=,可得12341111y y y y +=+,41231111y y y y ∴-=-,即32141423y y y y y y y y --=,所以23141432y y y y y y y y =--,则23141432()()y y m n y y n m y y y y --=---,所以p q =-,所以OP OQ =成立.变式7.(2024·陕西西安·陕西师大附中校考模拟预测)已知椭圆()2222:10x y C a b a b+=>>的左、右顶点分别为点A ,B ,且AB 4=,椭圆C 离心率为12.(1)求椭圆C 的方程;(2)过椭圆C 的右焦点,且斜率不为0的直线l 交椭圆C 于M ,N 两点,直线AM ,BN 的交于点Q ,求证:点Q 在直线4x =上.【解析】(1)因为AB 4=,椭圆C 离心率为12,所以2222412a c a a b c =⎧⎪⎪=⎨⎪=+⎪⎩,解得24a =,23b =.所以椭圆C 的方程是22143x y +=.(2)①若直线l的斜率不存在时,如图,因为椭圆C 的右焦点为()1,0,所以直线l 的方程是1x =.所以点M 的坐标是31,2⎛⎫⎪⎝⎭,点N 的坐标是31,2⎛⎫- ⎪⎝⎭.所以直线AM 的方程是()122y x =+,直线BN 的方程是()322y x =-.所以直线AM ,BN 的交点Q 的坐标是()4,3.所以点Q 在直线4x =上.②若直线l 的斜率存在时,如图.设斜率为k .所以直线l 的方程为()1y k x =-.联立方程组()221143y k x x y ⎧=-⎪⎨+=⎪⎩消去y ,整理得()2223484120k x k x k +-+-=.显然0∆>.不妨设()11,M x y ,()22,N x y ,所以2122834k x x k +=+,212241234k x x k-⋅=+.所以直线AM 的方程是()1122y y x x =++.令4x =,得1162=+y y x .直线BN 的方程是()2222y y x x =--.令4x =,得2222y y x =-.所以()()121212126121622222k x k x y y x x x x ---=-+-+-()()()()()()12121261222122k x x k x x x x ---+-=+-分子()()()()1212612221k x x k x x =---+-()()12211212232222k x x x x x x x x =--+--+-⎡⎤⎣⎦.()12122258k x x x x =-++⎡⎤⎣⎦()2222241258283434k k k k k ⎡⎤-⨯⎢⎥=-+++⎢⎥⎣⎦22228244024322034k k k k k ⎛⎫--++== ⎪+⎝⎭.所以点Q 在直线4x =上.变式8.(2024·全国·高三专题练习)已知椭圆C :22x a +22y b=1(a >b >0)的左、右顶点分别为A ,B ,离心率为12,点P 31,2⎛⎫⎪⎝⎭为椭圆上一点.(1)求椭圆C 的标准方程;(2)如图,过点C (0,1)且斜率大于1的直线l 与椭圆交于M ,N 两点,记直线AM 的斜率为k 1,直线BN 的斜率为k 2,若k 1=2k 2,求直线l 斜率的值.【解析】(1)因为椭圆的离心率为12,所以a =2c .又因为a 2=b 2+c 2,所以b.所以椭圆的标准方程为224x c +223y c=1.又因为点P 31,2⎛⎫ ⎪⎝⎭为椭圆上一点,所以214c +2943c=1,解得c =1.所以椭圆的标准方程为24x +23y =1.(2)由椭圆的对称性可知直线l 的斜率一定存在,设其方程为y =kx +1.设M (x 1,y 1),N (x 2,y 2).联立方程组消去y 可得(3+4k 2)x 2+8kx -8=0.所以由根与系数关系可知x 1+x 2=-2834k k +,x 1x 2=-2834k +.因为k 1=112y x +,k 2=222y x -,且k 1=2k 2,所以112y x +=2222y x -.即()21212y x +=()222242y x -.①又因为M (x 1,y 1),N (x 2,y 2)在椭圆上,所以21y =34(4-21x ),22y =34(4-22x ).②将②代入①可得:1122x x -+=()22422x x +-,即3x 1x 2+10(x 1+x 2)+12=0.所以32834k ⎛⎫- ⎪+⎝⎭+102834k k ⎛⎫- ⎪+⎝⎭+12=0,即12k 2-20k +3=0.解得k =16或k =32,又因为k >1,所以k =32.变式9.(2021秋·广东深圳·高二校考期中)已知椭圆()222210x y C a b a b+=>>:的右焦点是()0F ,过点F 的直线交椭圆C 于A ,B 两点,若线段AB 中点Q的坐标为67⎫-⎪⎪⎝⎭.(1)求椭圆C 的方程;(2)已知()0,P b -是椭圆C 的下顶点,如果直线y =kx +1(k ≠0)交椭圆C 于不同的两点M ,N ,且M ,N 都在以P 为圆心的圆上,求k 的值;(3)过点02a D ⎛⎫ ⎪⎝⎭,作一条非水平直线交椭圆C 于R 、S 两点,若A ,B 为椭圆的左右顶点,记直线AR 、BS 的斜率分别为k 1、k 2,则12k k 是否为定值,若是,求出该定值,若不是,请说明理由.【解析】(1)设11(,)A x y ,22(,)B x y ,直线AB 的斜率显然存在,则12x x ≠,因为线段AB 中点Q的坐标为677⎛⎫- ⎪ ⎪⎝⎭,所以12x x +=,12127y y +=-,直线AB的斜率12126073AB QF y y k k x x ---===-,A ,B 两点在椭圆椭圆C 上,所以2211221x y a b +=,2222221x y a b +=,两式相减得22221212121212122222()()()()0x x y y x x x x y y y y a b a b --+-+-+=+=,即1212122212()0x x y y y y a b x x ++-+⋅=-,21207b =,整理得224a b =,①又c =且222a b c =+,②由①②可解得4a =,2b =,所以椭圆C 的方程为221164x y +=.(2)由2211164y kx x y =+⎧⎪⎨+=⎪⎩得22(14)8120k x kx ++-=,则2814M N k x x k +=-+,21214M N x x k=-+,226448(14)0k k ∆=++>,设M ,N 中点为00(,)E x y ,则024214E F x x k x k +==-+,0021114y kx k =+=+,因为M ,N 都在以P 为圆心的圆上,所以PM PN =,则点P 在线段MN 的垂直平分线上,依题意(0,2)P -,所以线段MN 的垂直平分线方程为12y x k=--,M ,N 中点为00(,)E x y 在此直线上,所以有0012y x k =--,即2211421414k k k k =⋅-++,解得4k =±.所以k的值为4±.(3)依题意有()20D ,,(4,0)A -,(4,0)B ,设直线RS 的方程为2(0)x ty t =+≠,由2221164x ty x y =+⎧⎪⎨+=⎪⎩得22(4)4120t y ty ++-=,则244R S t y y t +=-+,2124R S y y t =-+,124(2)22()24(6)66S R S R S R R S R S S R R S S R R S S R S Sx y ty ty y y ty y y y y k y k x y y ty ty y y ty y y ----++=⋅==++++22222124()2242(4)14412126(4)3()64S S S S t t y t y t t t t y t t y t⋅-+⋅+-+⋅+++===-+⋅+⋅-++,所以12k k 为定值13.变式10.(2024·全国·高三专题练习)如图,已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,A ,B 分别是椭圆C 的左、右顶点,右焦点F ,1BF =,过F 且斜率为(0)k k >的直线l 与椭圆C 相交于M ,N 两点,M 在x轴上方.(1)求椭圆C 的标准方程;(2)记AFM △,BFN 的面积分别为1S ,2S ,若1232S S =,求k 的值;(3)设线段MN 的中点为D ,直线OD 与直线4x =相交于点E ,记直线AM ,BN ,FE 的斜率分别为1k ,2k ,3k ,求213()k k k ⋅-的值.【解析】(1)设椭圆的焦距为2(0)c c >.依题意可得12c e a ==,1a c -=,解得2a =,1c =.故2223b a c =-=.所以椭圆C 的标准方程为22143x y +=.(2)设点1(M x ,1)y ,2(N x ,2)y .若1232S S =,则121||||3212||||2AF y BF y = ,即有212y y =-,①设直线MN 的方程为1(0)x my m =+>,与椭圆方程223412x y +=,可得22(43)690m y my ++-=,则122643m y y m +=-+,122943y y m =-+,②将①代入②可得22843m m =+,解得m =则k =;(3)由(2)得1223243D y y m y m +==-+,24143D D x my m =+=+,所以直线OD 的方程为34m y x =-,令4x =,得3E y m =-,即(4,3)E m -.所以3341m k m -==--.所以2121321211()()()22y y k k k k k m k x x ⋅-=⋅+=⋅+-+,122112211212(2)(3)(2)(2)(3)(1)y y my x y y my my x x my my ++++==+-+-,212221212(1)333m y y my m y y my my ++=-+-2122212122(1)3()34m y y my m y y m y y my ++=-+-+,222222222222229(1)9(1)33343439612(1)4344434343m m my my m m m m m my my m m m++-+-+++===+-+-+-++++.变式11.(2024秋·福建莆田·高二莆田华侨中学校考期末)已知点(1,2-A 在椭圆C :22221(0)x y a b a b +=>>上,O 为坐标原点,直线l:21x a =的斜率与直线OA 的斜率乘积为14-(1)求椭圆C 的方程;(2)不经过点A 的直线l:y x t +(0t ≠且t R ∈)与椭圆C 交于P ,Q 两点,P 关于原点的对称点为R (与点A 不重合),直线AQ ,AR 与y 轴分别交于两点M ,N ,求证:AM AN =.【解析】(Ⅰ)由题意,2212124OA b k k a ⋅=-=-=-,即224a b =①又221314a b+=②联立①①解得21a b =⎧⎨=⎩所以,椭圆C 的方程为:2214x y +=.(Ⅱ)设()11,P x y ,()22,Q x y ,()11,R x y --,由22214y x t x y ⎧=+⎪⎪⎨⎪+=⎪⎩,得2210x t +-=,所以240t ∆=->,即22t -<<,又因为0t ≠,所以,()()2,00,2t ∈-⋃,12x x +=,2121x x t ⋅=-,解法一:要证明AM AN =,可转化为证明直线AQ ,AR 的斜率互为相反数,只需证明0AM AN k k +=,即证明0AQ AR k k +=.12122211AQ ARy y k k x x -++=++-()()()()1221121111y x y x x x ⎛⎛-+++ ⎝⎭⎝⎭=+-∴()()()()1221121111x t x x t x x x +-+++⎝⎭⎝⎭=+-()()()12121211x t x x x x +++=+-)()()()2121011t t x x -+==+-∴0AM AN k k +=,∴AM AN =.解法二:要证明AM AN =,可转化为证明直线AQ ,AR 与y 轴交点M 、N 连线中点S 的纵坐标为2-,即AS 垂直平分MN 即可.直线AQ 与AR 的方程分别为:()222:121AQ y l y x x ++=--,()112:121AR y l y x x -+=---,分别令0x =,得2221M y y x -=-1121N y y x -+=-+而21212211M Ny y y y x x --+=+-+,同解法一,可得M N y y +=2M N S y y y +==,即AS 垂直平分MN .所以,AM AN =.变式12.(2022·全国·高三专题练习)极线是高等几何中的重要概念,它是圆锥曲线的一种基本特征.对于圆222x y r +=,与点()00,x y 对应的极线方程为200x x y y r +=,我们还知道如果点()00,x y 在圆上,极线方程即为切线方程;如果点()00,x y 在圆外,极线方程即为切点弦所在直线方程.同样,对于椭圆22221x y a b+=,与点()00,x y 对应的极线方程为00221x x y y a b +=.如上图,已知椭圆C :22143x y +=,()4,P t -,过点P 作椭圆C 的两条切线PA ,PB ,切点分别为A ,B ,则直线AB 的方程为;直线AB 与OP 交于点M ,则sin PMB ∠的最小值是.【答案】103ty x -+-=(或330x ty -+=);7.【解析】(1)由题得AB :4143x ty -+=,即103ty x -+-=,(2)()4,OP t →=-,3k AB t →=,∴AB →的方向向量(),3n t = ,所以cos ,OP nOP n OP n→→→→→→⋅〈〉=sin PMB∠==47=,即()minsin PMB∠故答案为:103tyx-+-=;7。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学专项突破:圆锥曲线专题目录一、知识考点讲解错误!未定义书签。
第一部分了解基本题型错误!未定义书签。
第二部分掌握基本知识错误!未定义书签。
第三部分掌握基本方法错误!未定义书签。
二、知识考点深入透析错误!未定义书签。
三、圆锥曲线之高考链接错误!未定义书签。
四、基础知识专项训练错误!未定义书签。
五、解答题专项训练错误!未定义书签。
附录:圆锥曲线之高考链接参考答案错误!未定义书签。
附录:基础知识专项训练参考答案错误!未定义书签。
附录:解答题专项训练参考答案错误!未定义书签。
一、知识考点讲解一、圆锥曲线的考查重点:高考试卷对圆锥曲线的考查主要是:给出曲线方程,讨论曲线的基本元素和简单的几何性质;或给出曲线满足的条件,判断(或求)其轨迹;或给出直线与曲线、曲线与曲线的位置关系,讨论与其有联系的有关问题(如直线的方程、直线的条数、弦长、曲线中参数的取值范围等);或讨论直线与曲线、曲线与曲线的关系;或考查圆锥曲线与其它知识的综合(如与函数、数列、不等式、向量、导数等)等。
二、圆锥曲线试题的特点:1、突出重点知识的考查。
直线与圆的方程、圆锥曲线的定义、标准方程、几何性质等是圆锥曲线命题的根本,在对圆锥曲线的考查中,直线与圆锥曲线的位置关系仍然是重点。
2、注重数学思想与方法的考查。
3、融合代数、三角、不等式、排列组合、向量和几何等知识,在知识网络的交汇点处设计问题是高考的一大特点,由于向量具有代数和几何的双重身份,使得圆锥曲线与平面向量的整合交汇成为高考命题的热点,导数知识的引入为我们解决圆锥曲线的最值问题和切线问题提供了新的视角和方法。
三、命题重点趋势:直线与圆锥曲线或圆与圆锥曲线1、高考圆锥曲线内容重点仍然是直线与圆锥曲线或圆与圆锥曲线,直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现。
2、热点主要体现在:直线与圆锥曲线的基础题;涉及位置关系的判定;轨迹问题;范围与位置问题;最值问题;存在性问题;弦长问题;对称问题;与平面向量或导数相结合的问题。
3、直线与圆锥曲线的题型涉及函数的与方程,数形结合,分类讨论,化归与转化等重要的数学思想方法,是高考必考内容之一,这类题型运算量比较大,思维层次较高,要求考生分析问题和解决问题的能力、计算能力较高,起到了拉开考生“档次”,有利于选拔的功能,对学生的能力要求也相对较高,是每年高考中平面几何部分出题的重点内容第一部分了解基本题型一、高考中常见的圆锥曲线题型1、直线与圆锥曲线结合的题型(1)求圆锥曲线的轨迹方程:这类题主要考查学生对圆锥曲线的标准方程及其相关性质,要求较低,一是出现在选择题,填空题或者解答题的第一问,较容易。
(2)求直线方程、斜率、线段长度相关问题:此类题目一般比较困难,不仅考查学生对圆锥曲线相关知识的掌握,而且还考查学生的综合处理问题的能力,还要求学生有较强的推算能力。
这类题目容易与向量、数列、三角函数等知识相结合,学生在解题时,可能会因为抓不住解题要领而放弃。
(3)判断直线与圆锥曲线的位置关系:直线与圆锥曲线的位置关系是解析几何的重点内容之一。
可从代数与几何两个角度考虑,①从代数角度看,可通过将表示直线的方程,代入圆锥曲线的方程消元后所得的情况来判断,但要注意的是:对于椭圆方程来讲,所得一元方程必是一元二次方程,而对双曲线方程来讲未必。
例如:将y kx m=+代入22221x ya b-=中消y后整理得:222222222()20b a k x a kmx a m a b----=,当bka=±时,该方程为一次方程,此时直线y kx m=+与双曲线的渐近线平行,当bka=±时,该方程为二次方程,这时可以用判别式来判断直线与双曲线的位置关系。
②从几何角度看,可分为三类:无公共点,仅有一个公共点及两个相异的公共点,具体如下:①直线与圆锥曲线的相离关系,常通过求二次曲线上的点到已知直线的距离的最大值或最小值来解决。
②直线与圆锥曲线仅有一个公共点,对于椭圆,表示直线与其相切;对于双曲线,表示与其相切或与双曲线的渐近线平行,对于抛物线,表示直线与其相切或直线与其对称轴平行。
③直线与圆锥曲线有两个相异的公共点,表示直线与圆锥曲线相割,此时直线被圆锥曲线截得的线段称为圆锥曲线的弦。
2、圆与圆锥曲线结合的题型这类题目要求学生对圆锥曲线、圆以及直线的知识非常熟悉,并有较强的综合能力。
3、圆锥曲线与圆锥曲线结合的题型这类题目在高考中并不是常考题型,但也是一个命题热点。
题目中经常涉及两种圆锥曲线,对这部份知识要求较高,必须熟练掌握才能进行解题,还有这类题目看起来比较复杂,容易使人产生退却之心,所以面对这种题型,我们要克服心理的恐惧,认真分析题意,结合学过的知识来解题。
4、圆锥曲线与向量知识结合的题型在解决解析几何问题时,平面向量的出现不仅可以很明确地反映几何特征,而且又方便计算,把解析几何与平面向量综合在一起进行测试,可以有效地考查考生的数形结合思想.因此许多解析几何问题均可与向量知识进行综合。
高考对解析几何与向量综合考查,采取了新旧结合,以旧带新,使新的内容和旧的内容有机地结合在一起设问,就形成了新的高考命题的热点。
二、常见的一些题型:题型一:数形结合确定直线和圆锥曲线的位置关系;题型二:弦的垂直平分线问题;题型三:动弦过定点的问题;题型四:过已知曲线上定点的弦的问题;题型五:共线向量问题;题型六:面积问题;题型七:弦或弦长为定值问题;题型八:角度问题;问题九:四点共线问题;问题十:范围问题(本质是函数问题);问题十一、存在性问题:(存在点,存在直线y kx m =+,存在实数,存在图形:三角形(等比、等腰、直角),四边形(矩形、菱形、正方形),圆)。
三、热点问题:1、定义与轨迹方程问题;2、交点与中点弦问题;3、弦长及面积问题;4、对称问题;5、最值问题;6、范围问题;7、存在性问题;8、定值、定点、定直线问题。
第二部分 掌握基本知识1、与一元二次方程20(0)ax bx c a ++=≠相关的知识:(三个“二次”问题)(1)判别式:24b ac ∆=-。
(2)韦达定理:若一元二次方程20(0)ax bx c a ++=≠有两个不同的根12,x x , 则1212,b c x x x x a a+=-=。
(3)求根公式:若一元二次方程20(0)ax bx c a ++=≠有两个不同的根12,x x ,则1/2x =。
2、与直线相关的知识:(1)直线方程的五种形式:点斜式、斜截式、两点式、截距式、一般式。
(2)与直线相关的重要内容:①倾斜角与斜率:tan ,[0,)k ααπ=∈;②点到直线的距离公式:d =。
(3)弦长公式:直线y kx b =+上两点1122(,),(,)A x y B x y 间的距离:12AB x =-=12AB y =-,较少用)。
(4)两条直线111222:,:l y k x b l y k x b =+=+的位置关系:①12121l l k k ⊥⇔=-;②212121//b b k k l l ≠=⇔且。
(5)中点坐标公式:已知两点1122(,)(,)A x y B x y ,,若点(,)M x y 是线段A B的中点, 则1212,y 22x x y y x ++==。
3、圆锥曲线的重要知识:考纲要求:对它们的定义、几何图形、标准方程及简单性质,文理科要求有所不同。
文科:掌握椭圆,了解双曲线及抛物线;理科:掌握椭圆及抛物线,了解双曲线。
(1)、圆锥曲线的定义及几何图形:椭圆、双曲线及抛物线的定义及几何图形。
(2)、圆锥曲线的标准方程: ①椭圆的标准方程:22222221(0)x y a b a b c a b +=>>=+且 或 221(0,0)x y m n m n m n+=>>≠且; (距离式方程:2a =)②双曲线的标准方程:22222221(0,0)x y a b c a b a b -=>>=+且 或 221(0)x y m n m n+=⋅<; (距离式方程:2a =)③抛物线的标准方程:22(0)y px p =>,还有三类。
(3)、圆锥曲线的基本性质:必须要熟透,特别是离心率,参数,,a b c 三者的关系,p 的几何意义等。
(4)、圆锥曲线的其它知识:(了解一下,能运用解题更好)①通径:22222b b p a a椭圆:;双曲线:;抛物线: ; ②焦点三角形面积公式:122tan 2F PF P b θ∆=在椭圆上时,S ,1221tan 2F PF P b θ∆=在双曲线上时,S ; (其中2221212121212||||4,cos ,||||cos ||||PF PF c F PF PF PF PF PF PF PF θθθ+-∠==•=⋅) ③焦半径公式:00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,(简记为“左加右减,上加下减”);0||x e x a ±双曲线焦点在轴上时为;11||,||22p p x x y ++抛物线焦点在轴上时为焦点在y 轴上时为。
4、常结合其它知识进行综合考查:(1)圆的相关知识:两种方程,特别是直线与圆、两圆的位置关系。
(2)导数的相关知识:求导公式及运算法则,特别是与切线方程相关的知识。
(3)向量的相关知识:向量数量积的定义及坐标运算,两向量的平行与垂直的判断条件等。
(4)三角函数的相关知识:各类公式及图象与性质等。
(5)不等式的相关知识:不等式的基本性质,不等式的证明方法,均值定理等。
第三部分 掌握基本方法一、圆锥曲线题型的解题方法分析高考圆锥曲线试题常用的数学方法有:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等。
1、解题的通法分析:高考数学试题特别注重对中学数学通性通法的考查,这符合高考命题原则:考查基础知识,注重数学思想,培养实践能力。
中学数学的通性通法是指数学教材中蕴涵的基本数学思想(化归思想、转化思想、分类思想、函数方程的思想、数形结合的思想)和常用的数学方法(数形结合,配方法,换元法,消元法,待定系数法等)。
解决圆锥曲线这部分知识有关的习题时,我们最常用的数学方法有数形结合,待定系数法,化归转化等。
在求解直线与圆锥曲线的问题时我们一般都可以将直线方程与圆锥曲线方程联立,得到一个方程组,通过消元得到一个一元二次方程再来求解。
就是要利用已知条件找到参数与参数之间或是与已知量之间的关系,这时一般会用到韦达定理进行转化。
例如要判断直线与圆锥曲线的位置关系,我们就可以联立直线方程与圆锥曲线方程,消y 得到一个关于x的一个一元二次方程,然后我们就可以根据一个一元二次方程的△=24b ac -的值来判断。