江苏省盐城市滨海县2020-2021学年八年级上学期期末数学试题

合集下载

2020-2021学年江苏省苏州市、常熟市等四市联考八年级(上)期末数学试卷(解析版)

2020-2021学年江苏省苏州市、常熟市等四市联考八年级(上)期末数学试卷(解析版)

2020-2021学年江苏省苏州市张家港市、常熟市等四市联考八年级(上)期末数学试卷一、选择题(共10小题).1.小篆,是在秦始皇统一六国后创制的汉字书写形式.下列四个小篆字中为轴对称图形的是()A.B.C.D.2.下列四个实数、π、、中,无理数的个数有()A.1个B.2个C.3个D.4个3.如图,在平面直角坐标系中,被墨水污染部分遮住的点的坐标可能是()A.(3,2)B.(﹣3,2)C.(﹣3,﹣2)D.(3,﹣2)4.在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,下列条件不能判断△ABC是直角三角形的是()A.∠B=∠C+∠A B.a2=(b+c)(b﹣c)C.∠A:∠B:∠C=3:4:5D.a:b:c=3:4:55.在平面直角坐标系内,将点A(1,2)先向右平移2个单位长度,再向下平移1个单位长度,则平移后所得点的坐标是()A.(3,1)B.(3,3)C.(﹣1,1)D.(﹣1,3)6.如图,在△ABC和△DEF中,AB=DE,BC=EF,∠B+∠E=180°.如果△ABC的面积48cm2,那么△DEF的面积为()A.48cm2B.24cm2C.54cm2D.96cm27.均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()A.B.C.D.8.如图,将长方形ABCD沿对角线BD折叠,使点C落在点C′处,BC′交AD于E,AD =8,AB=4,则重叠部分(即△BDE)的面积为()A.6B.7.5C.10D.209.如图,直线y=﹣2x+2与x轴和y轴分别交于A、B两点,射线AP⊥AB于点A.若点C 是射线AP上的一个动点,点D是x轴上的一个动点,且以C、D、A为顶点的三角形与△AOB全等,则OD的长为()A.2或+1B.3或C.2或D.3或+1 10.如图,一次函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式0<ax+4<2x 的解集是()A.0<x<B.<x<6C.<x<4D.0<x<3二、填空题(本大题共8小题,每小题3分,共24分,请将答案填在答题卡相应的位置上)11.若x3=﹣1,则x=.12.如图,△ABC≌△DEF,点B、F、C、E在同一条直线上,AC、DF交于点M,∠ACB =43°,则∠AMF的度数是°.13.已知一次函数y=x+b的图象经过点A(﹣1,1),则b的值是.14.一个三角形的三边的比是3:4:5,它的周长是36,则它的面积是.15.在平面直角坐标系内,已知点A(a+3,a)、B(a+7,a)关于y轴对称,则AB的长为.16.如图,在△ABC中,∠BAC=105°,将△ABC绕点A逆时针旋转得到△AB′C′.若点B恰好落在BC边上,且AB′=CB′,则∠C′的度数为°.17.如图,直线y=﹣x+8与x轴、y轴分别交于点A、B,∠BAO的角平分线与y轴交于点M,则OM的长为.18.如图,在△ABC中,∠ACB=90°,AC=BC=6cm,D是AB的中点,点E在AC上,过点D作DF⊥DE,交BC于点F.如果AE=2cm,则四边形CEDF的周长是cm.三、解答题(本大题共76分.解答时应写出必要的计算或说明过程,并把解答过程填写在答题卡相应的位置上)19.计算:()2﹣﹣.20.如图,点E、F在AB上,且AE=BF,∠C=∠D,AC∥BD.求证:CF∥DE.21.如图,在Rt△ABC中,∠C=90°,AC=8,AB=10,AB的垂直平分线分别交AB、AC于点D、E.求AE的长.22.已知点P(m,n)在一次函数y=2x﹣3的图象上,且m>2n,求m的取值范围.23.如图,在平面直角坐标系中,A(﹣1,4),B(﹣3,3),C(﹣2,1).(1)已知△A1B1C1与△ABC关于x轴对称,画出△A1B1C1(请用2B铅笔将△A1B1C1描深);(2)在y轴上找一点P,使得△PBC的周长最小,试求点P的坐标.24.如图,在△ABC中,AD是高,E、F分别是AB、AC的中点,AB=8,AC=6.(1)求四边形AEDF的周长;(2)若∠BAC=90°,求四边形AEDF的面积.25.如图,已知直线l:y=2x+b(b>0)分别交x轴、y轴于点A、B.(1)用含b的代数式表示点A的横坐标为;(2)如果△AOB的面积等于4,求b的值;(3)如果直线l与一次函数y=﹣2x﹣1和y=x+2的图象交于同一点,求b的值.26.如图,已知线段MN=4,点A在线段MN上,且AM=1,点B为线段AN上的一个动点.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,旋转角分别为α和β.若旋转后M、N两点重合成一点C(即构成△ABC),设AB=x.(1)△ABC的周长为;(2)若α+β=270°,求x的值;(3)试探究△ABC是否可能为等腰三角形?若可能,求出x的值;若不可能,请说明理由.27.如图,直线y=4﹣x与两坐标轴分别相交于A、B两点,过线段AB上一点M分别作MC⊥OA于点C,MD⊥OB于点D,且四边形OCMD为正方形.(1)正方形OCMD的边长为.(2)将正方形OCMD沿着x轴的正方向移动,得正方形EFGH,设平移的距离为a(0<a≤4).①当平移距离a=1时,正方形EFGH与△AOB重叠部分的面积为;②当平移距离a为多少时,正方形EFGH的面积被直线AB分成1:3两个部分?28.某商店代理销售一种水果.某月30天的销售净利润(扣除每天需要缴纳各种费用50元后的利润)y(元)与销售量x(kg)之间函数关系的图象如图中折线所示.日期销售记录1日库存600kg,进价6元/kg,售价10元/kg(除了促销期间降价,其他时间售价保持不变)9日从1日起的9天内一共售出200kg10、11这两天以进价促销,之后售价恢复到10元/kg日12日补充进货200kg,进价6.5元/kg30日800kg水果全部售完,一共获利1200元请根据图象及如表中销售记录提供的相关信息,解答下列问题:(1)A点纵坐标m的值为;(2)求两天促销期间一共卖掉多少水果?(3)求图象中线段BC所在直线对应的函数表达式.2020-2021学年江苏省苏州市张家港市、常熟市等四市联考八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案填在答题卡相应的位置上)1.小篆,是在秦始皇统一六国后创制的汉字书写形式.下列四个小篆字中为轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念判断即可.解:A、本选项中小篆字不是轴对称图形,不符合题意;B、本选项中小篆字不是轴对称图形,不符合题意;C、本选项中小篆字不是轴对称图形,不符合题意;D、本选项中小篆字是轴对称图形,符合题意;故选:D.【点评】本题考查的是轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列四个实数、π、、中,无理数的个数有()A.1个B.2个C.3个D.4个【分析】根据无理数的概念求解即可.解:=3,π,是无理数,共2个,故选:B.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.3.如图,在平面直角坐标系中,被墨水污染部分遮住的点的坐标可能是()A.(3,2)B.(﹣3,2)C.(﹣3,﹣2)D.(3,﹣2)【分析】根据平面直角坐标系内各象限内点的坐标特点解答即可.解:由图可知被墨水污染部分位于坐标系中第四象限,所以被墨水污染部分遮住的点的坐标应位于第四象限,则可以为:(3,﹣2),故选:D.【点评】本题主要考查点的坐标,掌握平面直角坐标系内各象限内点的坐标特点是解题的关键.4.在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,下列条件不能判断△ABC是直角三角形的是()A.∠B=∠C+∠A B.a2=(b+c)(b﹣c)C.∠A:∠B:∠C=3:4:5D.a:b:c=3:4:5【分析】利用直角三角形的定义和勾股定理的逆定理逐项判断即可.解:A、∵∠B=∠C+∠A,且∠A+∠B+∠C=180°,∴∠B=90°,故△ABC是直角三角形;B、∵a2=(b+c)(b﹣c),∴a2+c2=b2,故△ABC是直角三角形;C、∵∠A:∠B:∠C=3:4:5,且∠A+∠B+∠C=180°,∴最大角∠C=75°≠90°,故△ABC不是直角三角形;D、由条件可设a=3k,则b=4k,c=5k,那么a2+b2=c2,故△ABC是直角三角形;故选:C.【点评】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.也考查了三角形内角和定理.5.在平面直角坐标系内,将点A(1,2)先向右平移2个单位长度,再向下平移1个单位长度,则平移后所得点的坐标是()A.(3,1)B.(3,3)C.(﹣1,1)D.(﹣1,3)【分析】根据平移的法则即可得出平移后所得点的坐标.解:将点A (1,2)先向右平移2个单位长度,再向下平移1个单位长度,则平移后所得点的坐标是(1+2,2﹣1),即(3,1),故选:A .【点评】本题考查了坐标与图形变化中的平移,根据根据平移的法则解答是解题的关键.6.如图,在△ABC 和△DEF 中,AB =DE ,BC =EF ,∠B +∠E =180°.如果△ABC 的面积48cm 2,那么△DEF 的面积为( )A .48cm 2B .24cm 2C .54cm 2D .96cm 2【分析】作AM ⊥BC 于M ,DN ⊥EF 于N ,如图,根据等角的余角相等得到∠ABM =∠E ,则可判断△ABM ≌△DEN ,所以AM =DN ,然后利用三角形的面积公式可得到S △DEF =S △ABC .解:作AM ⊥BC 于M ,DN ⊥EF 于N ,如图,∵∠ABC +∠E =180°,∠ABC +∠ABM =180°,∴∠ABM =∠E ,在△ABM 和△DEN 中,,∴△ABM ≌△DEN (AAS ),∴AM =DN ,∵S △ABC =•BC •AM ,S △DEF =•EF •DN ,而BC =EF ,∴S △DEF =S △ABC =48cm 2.故选:A .【点评】本题考查了三角形的面积:三角形的面积等于底边长与高线乘积的一半,即S△=×底×高.也考查了全等三角形的判定与性质.7.均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()A.B.C.D.【分析】根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.解:注水量一定,从图中可以看出,OA上升较快,AB上升较慢,BC上升最快,由此可知这个容器下面容积较大,中间容积最大,上面容积最小,故选:C.【点评】本题考查利用函数的图象解决实际问题,正确理解函数的图象所表示的意义是解题的关键,注意容器粗细和水面高度变化的关系.8.如图,将长方形ABCD沿对角线BD折叠,使点C落在点C′处,BC′交AD于E,AD =8,AB=4,则重叠部分(即△BDE)的面积为()A.6B.7.5C.10D.20【分析】由折叠的性质和矩形的性质可证BE=DE,设AE=x,则BE=DE=8﹣x,在直角△ABE中利用勾股定理即可列方程求得x的值,然后根据三角形面积公式求解.解:∵四边形ABCD是矩形,∴AD∥BC,∴∠EDB=∠CBD,由折叠的性质得:∠C'BD=∠CBD,∴∠EDB=∠C'BD,∴BE=DE,设AE=x,则BE=DE=8﹣x,在Rt△ABE中,AB2+AE2=BE2,即42+x2=(8﹣x)2,解得:x=3,则AE=3,DE=8﹣3=5,=DE•AB=×5×4=10,则S△BDE故选:C.【点评】本题考查了折叠的性质、矩形的性质以及勾股定理,正确利用勾股定理求得AE 的长是解决本题的关键.9.如图,直线y=﹣2x+2与x轴和y轴分别交于A、B两点,射线AP⊥AB于点A.若点C 是射线AP上的一个动点,点D是x轴上的一个动点,且以C、D、A为顶点的三角形与△AOB全等,则OD的长为()A.2或+1B.3或C.2或D.3或+1【分析】根据题意解方程得到x=0,则y=2,令y=0,则x=1,求得OA=1,OB=2,根据勾股定理得到AB=,①当∠ACD=90°时,如图1,②当∠ADC=90°时,如图2,根据全等三角形的性质即可得到结论.解:∵AP⊥AB,∴∠BAP=∠AOB=90°,∴∠ABO+∠BAO=∠CAD+∠BAO=90°,∴∠ABO=∠CAD,在y=﹣2x+2中,令x=0,则y=2,令y=0,则x=1,∴OA=1,OB=2,由勾股定理得AB=,①当∠ACD=90°时,如图1,∵△AOB≌△DCA,∴AD=AB=,∴OD=1+;②当∠ADC=90°时,如图2,∵△AOB≌△CDA,∴AD=OB=2,∴OA+AD=3,综上所述:OD的长为1+或3.故选:D.【点评】本题考查了一次函数图像上点的坐标特征,待定系数法求函数的解析式,勾股定理的应用和全等三角形的性质等知识,分类讨论是解题关键,以防遗漏.10.如图,一次函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式0<ax+4<2x 的解集是()A.0<x<B.<x<6C.<x<4D.0<x<3【分析】首先求得A的坐标,然后利用待定系数法求出y=﹣x+4,再求得B的坐标,结合图象写出不等式0<ax+4<2x的解集即可.解:∵函数y=2x过点A(m,3),∴2m=3,解得:m=,∴A(,3),代入y=ax+4得,3=a+4,∴a=﹣,∴y=﹣x+4,令y=0,则x=6,∴B(6,0),∴0<ax+4<2x的解集为<x<6.故选:B.【点评】此题主要考查了一次函数与一元一次不等式,关键是求出A、B点的坐标.二、填空题(本大题共8小题,每小题3分,共24分,请将答案填在答题卡相应的位置上)11.若x3=﹣1,则x=﹣1.【分析】根据立方根的定义求解即可.解:∵x3=﹣1,∴x==﹣1,故答案为:﹣1.【点评】本题主要考查了立方根的定义,如果x3=a,则称x是a的立方根,记作.12.如图,△ABC≌△DEF,点B、F、C、E在同一条直线上,AC、DF交于点M,∠ACB =43°,则∠AMF的度数是86°.【分析】根据全等三角形的性质得到∠DFE=∠ACB=43°,根据三角形的外角性质计算,得到答案.解:∵△ABC≌△DEF,∴∠DFE=∠ACB=43°,∵∠AMF是△MFC的一个外角,∴∠AMF=∠DFE+∠ACB=86°,故答案为:86.【点评】本题考查的是全等三角形的性质、三角形的外角性质,掌握全等三角形的对应角相等是解题的关键.13.已知一次函数y=x+b的图象经过点A(﹣1,1),则b的值是2.【分析】把点A的坐标代入函数解析式进行计算即可.解:∵一次函数y=x+b的图象经过点A(﹣1,1),∴1=﹣1+b,解得:b=2,故答案为:2.【点评】此题主要考查了一次函数图象上点的坐标特点,关键是掌握函数图象经过的点必能满足解析式.14.一个三角形的三边的比是3:4:5,它的周长是36,则它的面积是54.【分析】根据勾股定理的逆定理得到三角形是直角三角形,然后根据三角形的面积公式即可得到结论.解:设三角形的三边是3x:4x:5x,∵(3x)2+(4x)2=(5x)2,∴此三角形是直角三角形,∵它的周长是36,∴3x+4x+5x=36,∴3x=9,4x=12,∴三角形的面积=×9×12=54,故答案为:54.【点评】本题考查了勾股定理的逆定理,三角形的面积的计算,熟练掌握勾股定理的逆定理是解题的关键.15.在平面直角坐标系内,已知点A(a+3,a)、B(a+7,a)关于y轴对称,则AB的长为4.【分析】直接利用关于y轴对称点的性质得出a的值,进而得出答案.解:∵点A(a+3,a)、B(a+7,a)关于y轴对称,∴a+3+a+7=0,解得:a=﹣5,故a+3=﹣2,a+7=2,则AB的长为:4.故答案为:4.【点评】此题主要考查了关于y轴对称点的性质,正确得出关于y轴对称点横纵坐标的关系是解题关键.16.如图,在△ABC中,∠BAC=105°,将△ABC绕点A逆时针旋转得到△AB′C′.若点B恰好落在BC边上,且AB′=CB′,则∠C′的度数为25°.【分析】由三角形的内角和定理可得∠B+∠C=75°,由等腰三角形的性质和旋转的性质可得∠B=∠AB'B=2∠C,即可求解.解:∵∠BAC=105°,∴∠B+∠C=75°,∵AB′=CB′,∴∠C=∠CAB',∴∠AB'B=∠C+∠CAB'=2∠C,∵将△ABC绕点A逆时针旋转得到△AB′C′,∴AB=AB',∴∠B=∠AB'B=2∠C,∴∠C=25°,故答案为:25.【点评】本题考查了旋转的性质,等腰三角形的性质,掌握旋转的性质是解题的关键.17.如图,直线y=﹣x+8与x轴、y轴分别交于点A、B,∠BAO的角平分线与y轴交于点M,则OM的长为3.【分析】过M点作MN⊥AB于N,如图,先利用坐标轴上点的坐标特征求出A、B点的坐标,则可计算出AB=10,再利用角平分线的性质得MO=MN,然后利用面积法得到×6•OM +×10•MN =×6×8,从而可求出OM 的长.解:过M 点作MN ⊥AB 于N ,如图,当y =0时,﹣x +8=0,解得x =6,则A (6,0);当x =0时,y =﹣x +8=8,则B (0,8),∴AB ==10,∵AM 平分∠OAB ,∴MO =MN ,∵S △OMA +S △BMA =S △OAB , ∴×6•OM +×10•MN =×6×8,即3OM +5MN =24,∴8OM =24,∴OM =3.故答案为3.【点评】本题考查了一次函数图象上点的坐标特征:一次函数图象上点的坐标满足其解析式.也考查了一次函数的性质.18.如图,在△ABC 中,∠ACB =90°,AC =BC =6cm ,D 是AB 的中点,点E 在AC 上,过点D 作DF ⊥DE ,交BC 于点F .如果AE =2cm ,则四边形CEDF 的周长是 (6+2)cm .【分析】连接CD ,EF ,根据AAS 证明△AED ≌△CFD ,再根据勾股定理可得EF 的长,由△DEF是等腰直角三角形,即可解决问题.解:如图,连接CD,EF,∵∠ACB=90°,AC=BC,∴∠A=45°,∵D是AB的中点,∴CD=AB=AD.∴∠DCA=∠A=∠DCB=45°,∵DF⊥DE,∴∠EDF=90°,∴∠DEF+∠DFC=180°,∵∠AED+∠DEF=180°,∴∠AED=∠DFC,在△AED和△CFD中,,∴△AED≌△CFD(AAS),∴DE=DF,AE=CF=2cm,∴CE=AC﹣AE=6﹣2=4(cm),∴EF===2(cm),∵△DEF是等腰直角三角形,∴DE2+DF2=EF2,∴2DE2=EF2,∴DE=DF=EF=,∴四边形CEDF的周长是CE+CF+DE+DF=CE+AE+2DE=AC+2DE=(6+2)cm.故答案为:(6+2).【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,勾股定理,解决本题的关键是掌握全等三角形的判定与性质.三、解答题(本大题共76分.解答时应写出必要的计算或说明过程,并把解答过程填写在答题卡相应的位置上)19.计算:()2﹣﹣.【分析】原式利用平方根及立方根定义化简,计算即可得到结果.解:原式=3﹣(﹣4)﹣5=3+4﹣5=2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.如图,点E、F在AB上,且AE=BF,∠C=∠D,AC∥BD.求证:CF∥DE.【分析】根据已知条件证明△ACF≌△BDE可得∠AFC=∠BED,进而可得CF∥DE.【解答】证明:∵AE=BF,∴AE+EF=BF+EF,即AF=BE,∵AC∥BD,∴∠A=∠B,在△ACF和△BDE中,,∴△ACF≌△BDE(AAS),∴∠AFC=∠BED,∴CF∥DE.【点评】本题考查了全等三角形的判定与性质,解决本题的关键是掌握全等三角形的判定与性质.21.如图,在Rt△ABC中,∠C=90°,AC=8,AB=10,AB的垂直平分线分别交AB、AC于点D、E.求AE的长.【分析】由勾股定理先求出BC=6,连接BE,根据中垂线的性质设AE=BE=x,知CE =8﹣x,在Rt△BCE中由BC2+CE2=BE2列出关于x的方程,解之可得答案.解:在Rt△ABC中,∠C=90°,AC=8,AB=10,∴BC===6,连接BE,∵DE垂直平分AB,∴AE=BE,设AE=BE=x,则CE=8﹣x,在Rt△BCE中,∵BC2+CE2=BE2,∴62+(8﹣x)2=x2,解得x=,∴AE=.【点评】本题主要考查勾股定理,解题的关键是掌握勾股定理及线段中垂线的性质.22.已知点P(m,n)在一次函数y=2x﹣3的图象上,且m>2n,求m的取值范围.【分析】先由点P(m,n)在一次函数y=2x﹣3的图象上知n=2m﹣3,将其代入m>2n,进一步求解即可.解:∵点P(m,n)在一次函数y=2x﹣3的图象上,∴n=2m﹣3,∵m>2n,∴m>2(2m﹣3),解得m<2.【点评】本题主要考查一次函数图象上点的坐标特征,解题的关键是掌握一次函数图象上点的坐标满足一次函数的解析式.23.如图,在平面直角坐标系中,A(﹣1,4),B(﹣3,3),C(﹣2,1).(1)已知△A1B1C1与△ABC关于x轴对称,画出△A1B1C1(请用2B铅笔将△A1B1C1描深);(2)在y轴上找一点P,使得△PBC的周长最小,试求点P的坐标.【分析】(1)分别作出三个顶点关于x轴的对称点,再首尾顺次连接即可;(2)作点C关于y轴的对称点C′,利用待定系数法求BC′所在直线解析式,再求出x=0时y的值即可.解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,点P即为所求,点C关于y轴的对称点C′(2,1),设BC′所在直线解析式为y=kx+b,则,解得,∴BC′所在直线解析式为﹣x+,当x=0时,y=,所以点P坐标为(0,).【点评】本题主要考查作图﹣轴对称变换,解题的关键是掌握轴对称变换的定义和性质,并据此得出变换后的对称点及待定系数法求直线解析式.24.如图,在△ABC中,AD是高,E、F分别是AB、AC的中点,AB=8,AC=6.(1)求四边形AEDF的周长;(2)若∠BAC=90°,求四边形AEDF的面积.【分析】(1)根据直角三角形的性质得到DE=AB=4,DF=AC=3,根据四边形的周长公式计算,得到答案;(2)根据三角形的面积公式计算即可.解:(1)∵AD是△ABC的高,∴∠ADB=∠ADC=90°,∵E、F分别是AB、AC的中点,AB=8,AC=6,∴DE=AB=4,DF=AC=3,AE=4,AF=3,∴四边形AEDF的周长=AE+DE+DF+AF=14;(2)△ABC的面积=×AB×AC=24,∵E、F分别是AB、AC的中点,∴△ADE的面积=△BDE的面积,△ADF的面积=△CDF的面积,∴四边形AEDF的面积=×△ABC的面积=12.【点评】本题考查的是直角三角形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.25.如图,已知直线l:y=2x+b(b>0)分别交x轴、y轴于点A、B.(1)用含b的代数式表示点A的横坐标为﹣;(2)如果△AOB的面积等于4,求b的值;(3)如果直线l与一次函数y=﹣2x﹣1和y=x+2的图象交于同一点,求b的值.【分析】(1)令y=0,求得x的值即可;(2)求得B的坐标,根据题意得到OA•OB=4,即=4,即可求得b=4;(3)求得一次函数y=﹣2x﹣1和y=x+2的图象的交点,代入直线l的解析式即可求得.解:(1)∵直线l:y=2x+b(b>0)分别交x轴、y轴于点A、B.∴令y=0,则0=2x+b,解得x=﹣,∴点A的横坐标为﹣,故答案为﹣;(2)令x=0,则y=b,∴B(0,b),∵△AOB的面积等于4,∴OA•OB=4,即=4,解得b=4;(2)由解得,∴直线l与一次函数y=﹣2x﹣1和y=x+2的图象交于同一点(﹣1,1),把(﹣1,1)代入y=2x+b(b>0)得,1=﹣2+b,∴b=3.【点评】本题是两条直线相交或平行问题,考查了一次函数图像上点的坐标特征,两条直线交点的求法,三角形的面积等,求得交点坐标是解题的关键.26.如图,已知线段MN=4,点A在线段MN上,且AM=1,点B为线段AN上的一个动点.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,旋转角分别为α和β.若旋转后M、N两点重合成一点C(即构成△ABC),设AB=x.(1)△ABC的周长为4;(2)若α+β=270°,求x的值;(3)试探究△ABC是否可能为等腰三角形?若可能,求出x的值;若不可能,请说明理由.【分析】(1)由旋转的性质得出AC=AM,BC=BN,则可得出答案;(2)求出∠ACB=90°,由勾股定理可得出答案;(3)分三种情况讨论,当AC=BC=1时,当AB=AC=1时,当BC=BA时,由三角形三边关系及等腰三角形的性质可得出答案.解:(1)∵以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,∴AC=AM,BC=BN,∵MN=4,∴△ABC的周长=AC+AB+BC=AM+AB+BN=MN=4.故答案为:4;(2)∵∠MAC=α,∠NBC=β,α+β=270°,∴∠MAC+∠NBC=270°,∴∠CAB+∠CBA=360°﹣270°=90°,∴∠ACB=90°,∵AM=1,AB=x,MN=4,∴AC=1,BC=BN=(3﹣x),由勾股定理得,12+(3﹣x)2=x2,解得x=;(3)存在,理由如下:∵AC=1,△ABC为等腰三角形,∴当AC=BC=1时,则AB=2,此时1+1=2,△ABC不存在,舍去,当AB=AC=1时,同理,不合题意舍去,当BC=AB时,∵AC=1,AB+AC+BC=4,∴AB+BC=3,∴AB=BC=,此时1+,符合题意,∴△ABC能为等腰三角形,AB=x=.【点评】本题是几何变换综合题,考查了旋转的性质,勾股定理,等腰三角形的判定与性质,三角形三边关系,三角形的周长,熟练掌握旋转的性质是解题的关键.27.如图,直线y=4﹣x与两坐标轴分别相交于A、B两点,过线段AB上一点M分别作MC⊥OA于点C,MD⊥OB于点D,且四边形OCMD为正方形.(1)正方形OCMD的边长为2.(2)将正方形OCMD沿着x轴的正方向移动,得正方形EFGH,设平移的距离为a(0<a≤4).①当平移距离a=1时,正方形EFGH与△AOB重叠部分的面积为;②当平移距离a为多少时,正方形EFGH的面积被直线AB分成1:3两个部分?【分析】(1)设点M(x,4﹣x),由正方形的性质可得OC=CM,即可求解;=EM2=,即可求解;(2)①先求出S△MEQ②分两种情况讨论,由等腰直角三角形的性质和正方形的性质可求解.解:(1)设点M(x,4﹣x),∵当四边形OCMD为正方形时,OC=CM,即x=4﹣x,∴x=2,∴CM=OC=2,故答案为2;(2)①∵直线AB的解析式为y=﹣x+4,∴移动过程中正方形EFGH被分割出的三角形是等腰直角三角形,如图1,∵四边形EFGH是正方形,∴正方形EFGH的面积=22=4,当a=1时,EM=1,=EM2=,∴S△MQE∴正方形EFGH与△AOB重叠部分的面积=4﹣=;故答案为;②∵正方形EFGH的面积被直线AB分成1:3两个部分,∴两部分的面积分别为1和3.当0<a≤2时,如图2所示:∵直线AB的解析式为y=4﹣x,∴∠BAO=45°,∴△MQE为等腰直角三角形,∴EQ=ME,∴ME2=1,∴ME=,即a=,当2<a<4时,如图3所示:∵∠BAO=45°,∴△AGQ为等腰直角三角形.∴GQ=GA.∴GA2=1,解得:GA =.∵将y=0代入y=4﹣x得:4﹣x=0,∴x=4,∴OA=4.∴OG=4﹣,即a=4﹣.综上所述,当平移的距离为a =或a=4﹣时,正方形EFGH的面积被直线AB分成1:3两个部分.【点评】本题是一次函数综合题,考查的是一次函数的综合应用,解答本题主要应用了﹣﹣﹣函数图象的点的坐标与函数解析式的关系,正方形的性质,等腰直角三角形的性质和判定,证得△MQE、△GQA是等腰直角三角形是解题的关键.28.某商店代理销售一种水果.某月30天的销售净利润(扣除每天需要缴纳各种费用50元后的利润)y(元)与销售量x(kg)之间函数关系的图象如图中折线所示.日期销售记录1日库存600kg,进价6元/kg,售价10元/kg(除了促销期间降价,其他时间售价保持不变)9日从1日起的9天内一共售出200kg10、11这两天以进价促销,之后售价恢复到10元/kg日12日补充进货200kg,进价6.5元/kg30日800kg水果全部售完,一共获利1200元请根据图象及如表中销售记录提供的相关信息,解答下列问题:(1)A点纵坐标m的值为350;(2)求两天促销期间一共卖掉多少水果?(3)求图象中线段BC所在直线对应的函数表达式.【分析】(1)由表格信息可知,从6月1日到6月9日,成本价6元/kg,售价10元/kg,一共售出200kg,根据利润=每千克的利润×销售量列式计算即可;(2)由题意得出方程,解方程即可;(3)先求出点B的坐标,再由待定系数法求解即可.解:∵从1日起的9天内一共售出200kg,∴总利润为200(10﹣6)﹣9×50=350(元),故答案为:350;(2)设促销期间一共卖掉xkg水果,本月总成本为:600×6+200×6.5+50×30=6400(元),本月总售价为:200×10+x•6+(800﹣200﹣x)•10=(8000﹣4x)元,由图象可知本月总利润为1200元,∴8000﹣4x﹣6400=1200,解得:x=100,即两天促销期间一共卖掉100kg水果;(3)由(2)可知两天促销期间一共卖掉100kg水果,∴B的横坐标200+100=300,∴两天促销期间的净利润为100(6﹣6)﹣2×50=﹣100(元),∴点B的纵坐标为350﹣100=250,∴B(300,250),设直线BC的解析式为y=kx+b,把点B(300,250)和C(800,1200)的坐标代入得:,解得:,∴图象中线段BC所在直线对应的函数表达式为y=x﹣320.。

人教版 2020-2021学年第一学期八年级数学上册期末模拟测试题(含答案)

人教版 2020-2021学年第一学期八年级数学上册期末模拟测试题(含答案)

2020-2021学年第一学期八年级数学上册期末模拟测试题一、选择题(每小题3分,共30分)1.在给出的一组数据0,π,5,3.14,39,227中,无理数的个数有( )A .1B .2C .3D .52.等腰三角形的腰长为10,底边长为12,则其底边上的高为( ) A .13 B .8 C .25 D .643.如图,把“QQ ”笑脸放在直角坐标系中,已知左眼A 的坐标是(-2,3),嘴唇C 点的坐标为(-1,1),则此“QQ ”笑脸右眼B 的坐标是( )A .(0,3)B .(0,1)C .(-1,2)D .(-1,3)4.若方程x -2=0的解也是直线y =(2k -1)x +10与x 轴的交点的横坐标,则k 的值为( )A .2B .0C .-2D .±25.在方程组⎩⎪⎨⎪⎧ax -3y =5,2x +by =1中,如果⎩⎪⎨⎪⎧x =12,y =-1是它的一个解,那么a ,b 的值是( )A .a =4,b =0B .a =12,b =0 C .a =1,b =2 D .a ,b 不能确定6.某校九年级(1)班全体学生2020年初中毕业体育考试的成绩统计如表:根据表中的信息判断,下列结论中错误的是( ) A .该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分7.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP =20°,∠ACP=50°,则∠A+∠P的度数是( )A.70°B.80°C.90°D.100°8.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③不等式kx+b<x+a的解集为x<3中,正确的个数是( )A.0 B.1 C.2 D.39.下列说法:①如果a,b,c为一组勾股数,那么4a,4b,4c仍是勾股数;②如果直角三角形的两边是3,4,那么斜边必是5;③如果一个三角形的三边是12,25,21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a,b,c(a>b=c),那么a2∶b2∶c2=2∶1∶1,其中正确的是( )A.①②B.①③C.①④D.②④10.如图所示中的圆点是有规律地从里到外逐层排列的.设y为第n层(n为正整数)圆点的个数,则下列函数关系中正确的是( )A.y=4n-4 B.y=4n C.y=4n+4 D.y=n2二、填空题(每小题3分,共18分)11.16的平方根是____;-125的立方根是____.12.已知P 1(a -1,5)和P 2(2,b -1)关于x 轴对称,则(a +b)2 020的值为____.13.已知x ,y 是二元一次方程组⎩⎪⎨⎪⎧x -2y =3,2x +4y =5的解,则代数式x 2-4y 2的值为____.14.需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数,现抽取8个排球,通过检测所得数据如下(单位:克):+1,-2,+1,0,+2,-3,0,+1,则这组数据的方差是____.15.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离到达点B 200 m ,结果他在水中实际游了520 m ,则该河流的宽度为____m .16.对于两个不相等的实数a ,b ,定义一种新的运算如下:a*b =a +ba -b(a +b >0),如:3*2=3+23-2=5,那么7*(6*3)=3.三、解答题(共72分) 17.计算: (1)1212-(313+2); (2)(5-25)2;(3)23(375-12-27); (4)(3+2-1)(3-2+1).18.解下列方程组:(1)⎩⎪⎨⎪⎧y +x =1,5x +2y =8; (2)⎩⎪⎨⎪⎧x 2+y 3=132,4x -3y =18;(3)⎩⎪⎨⎪⎧x -2y =-1,x -y =2-2y ; (4)⎩⎪⎨⎪⎧x +y =-1,2x -y +3z =1,x -2y -z =6.19.已知点P(a -1,-b +2)关于x 轴的对称点为M ,关于y 轴的对称点为N ,若点M 与点N 的坐标相等.(1)求a ,b 的值;20.如图,将长方形ABCD 沿直线BD 折叠,使点C 落在点C′处,BC ′交AD 于点E ,AD =8,AB =4,求△BED 的面积.21.某校八年级有200名学生,为了向市团委推荐本年级一名学生参加团代会,按如下程序进行了民主投票,推荐的程序是:首先由全年级学生对六名候选人进行投票,每名学生只能给一名候选人投票,选出票数多的前三名;然后再对这三名候选人(记为甲、乙、丙)进行笔试和面试,两个程序的结果统计如下:请你根据以上信息解答下列问题:(1)请分别计算甲、乙、丙的得票数;(2)若规定每名候选人得一票记1分,将投票、笔试、面试三项得分按照2∶5∶3的比例计入每名候选人的总成绩,成绩最高的将被推荐,请通过计算说明甲、乙、丙哪名学生将被推荐.22.在△ABC中,∠BAC=∠BCA,CD平分∠ACB,CE⊥AB,交AB的延长线于点E,∠BCE=48°,求∠CDE的度数.23.如图,在数轴上与3,5对应的点分别是A,B,点C也在数轴上,且AB=AC,设点C表示的数为x.(1)求x的值;(2)计算|x-3|+6x+5.24.某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,如图表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求y1与y2的函数表达式;(2)解释图中表示的两种方案是如何付推销费的;(3)如果你是推销员,应如何选择付费方案?25.如图,一次函数y=-34x+3的图象与x轴和y轴分别交于点A和点B,将△AOB沿直线CD对折,使点A和点B重合,直线CD与x轴交于点C,与直线AB交于点D.(1)求A,B两点的坐标;(2)求OC的长;(3)设P是x轴上一动点,若使△PAB是等腰三角形,写出点P的坐标.参考答案一、选择题(每小题3分,共30分)1.在给出的一组数据0,π,5,3.14,39,227中,无理数的个数有( C )A.1 B.2 C.3 D.52.等腰三角形的腰长为10,底边长为12,则其底边上的高为( B )A.13 B.8 C.25 D.643.如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(-2,3),嘴唇C点的坐标为(-1,1),则此“QQ”笑脸右眼B的坐标是( A)A.(0,3) B.(0,1) C.(-1,2) D.(-1,3)4.若方程x -2=0的解也是直线y =(2k -1)x +10与x 轴的交点的横坐标,则k 的值为( C )A .2B .0C .-2D .±25.在方程组⎩⎪⎨⎪⎧ax -3y =5,2x +by =1中,如果⎩⎪⎨⎪⎧x =12,y =-1是它的一个解,那么a ,b 的值是( A ) A .a =4,b =0 B .a =12,b =0 C .a =1,b =2 D .a ,b 不能确定6.某校九年级(1)班全体学生2020年初中毕业体育考试的成绩统计如表:根据表中的信息判断,下列结论中错误的是( D )A .该班一共有40名同学B .该班学生这次考试成绩的众数是45分C .该班学生这次考试成绩的中位数是45分D .该班学生这次考试成绩的平均数是45分7.如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,如果∠ABP =20°,∠ACP =50°,则∠A +∠P 的度数是( C )A .70°B .80°C .90°D .100°8.一次函数y 1=kx +b 与y 2=x +a 的图象如图,则下列结论:①k <0;②a >0;③不等式kx +b <x +a 的解集为x <3中,正确的个数是( B )A .0B .1C .2D .39.下列说法:①如果a ,b ,c 为一组勾股数,那么4a ,4b ,4c 仍是勾股数;②如果直角三角形的两边是3,4,那么斜边必是5;③如果一个三角形的三边是12,25,21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a ,b ,c(a >b =c),那么a 2∶b 2∶c 2=2∶1∶1,其中正确的是( C )A .①②B .①③C .①④D .②④10.如图所示中的圆点是有规律地从里到外逐层排列的.设y 为第n 层(n 为正整数)圆点的个数,则下列函数关系中正确的是( B )A .y =4n -4B .y =4nC .y =4n +4D .y =n 2二、填空题(每小题3分,共18分)11.16的平方根是__±2__;-125的立方根是__-5__.12.已知P 1(a -1,5)和P 2(2,b -1)关于x 轴对称,则(a +b)2 020的值为__-1__.13.已知x ,y 是二元一次方程组⎩⎪⎨⎪⎧x -2y =3,2x +4y =5的解,则代数式x 2-4y 2的值为__152__.14.需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数,现抽取8个排球,通过检测所得数据如下(单位:克):+1,-2,+1,0,+2,-3,0,+1,则这组数据的方差是__2.5__.15.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离到达点B 200 m ,结果他在水中实际游了520 m ,则该河流的宽度为__480__m .17.对于两个不相等的实数a ,b ,定义一种新的运算如下:a*b =a +ba -b(a +b >0),如:3*2=3+23-2=5,那么7*(6*3)=3.三、解答题(共72分) 17.计算: (1)1212-(313+2); (2)(5-25)2; 解:- 2. 解:95.(3)23(375-12-27); (4)(3+2-1)(3-2+1). 解:60. 解:2 2.18.解下列方程组:(1)⎩⎪⎨⎪⎧y +x =1,5x +2y =8; (2)⎩⎪⎨⎪⎧x 2+y 3=132,4x -3y =18;(3)⎩⎪⎨⎪⎧x -2y =-1,x -y =2-2y ; (4)⎩⎪⎨⎪⎧x +y =-1,2x -y +3z =1,x -2y -z =6.解:⎩⎨⎧x =2,y =-1. 解:⎩⎨⎧x =9,y =6. 解:⎩⎨⎧x =1,y =1.解:⎩⎨⎧x =1,y =-2,z =-1.19.已知点P(a -1,-b +2)关于x 轴的对称点为M ,关于y 轴的对称点为N ,若点M 与点N 的坐标相等.(1)求a ,b 的值;解:因为点P (a -1,-b +2)关于x 轴的对称点为M ,所以M (a -1,b -2),因为点P (a -1,-b +2)关于y 轴的对称点为N ,所以N (-a +1,-b +2),因为点M 与点N 的坐标相等,所以a -1=-a +1,b -2=-b +2,解得a =1,b =2.(2)猜想点P 的位置并说明理由.解:点P 的位置是原点.理由:因为a =1,b =2,所以点P (a -1,-b +2)的坐标为(0,0),即P 点为原点.20.如图,将长方形ABCD 沿直线BD 折叠,使点C 落在点C′处,BC ′交AD 于点E ,AD =8,AB =4,求△BED 的面积.解:由题意,易知AD ∥BC ,所以∠2=∠3.因为△BC′D 与△BCD 关于直线BD 对称,所以∠1=∠2.所以∠1=∠3.所以EB =ED.设EB =x ,则ED =x ,AE =AD -ED =8-x.在Rt △ABE 中,AB 2+AE 2=BE 2,所以42+(8-x )2=x 2.所以x =5.所以DE =5.所以S △BED =12DE·AB =12×5×4=10.21.某校八年级有200名学生,为了向市团委推荐本年级一名学生参加团代会,按如下程序进行了民主投票,推荐的程序是:首先由全年级学生对六名候选人进行投票,每名学生只能给一名候选人投票,选出票数多的前三名;然后再对这三名候选人(记为甲、乙、丙)进行笔试和面试,两个程序的结果统计如下:请你根据以上信息解答下列问题: (1)请分别计算甲、乙、丙的得票数;解:甲的票数是200×34%=68(票),乙的票数是200×30%=60(票),丙的票数是200×28%=56(票).(2)若规定每名候选人得一票记1分,将投票、笔试、面试三项得分按照2∶5∶3的比例计入每名候选人的总成绩,成绩最高的将被推荐,请通过计算说明甲、乙、丙哪名学生将被推荐.解:甲的平均成绩:68×2+92×5+85×32+5+3=85.1(分),乙的平均成绩:60×2+90×5+95×32+5+3=85.5(分),丙的平均成绩:56×2+95×5+80×32+5+3=82.7(分),因为乙的平均成绩最高,所以应该推荐乙.22.在△ABC 中,∠BAC =∠BCA ,CD 平分∠ACB ,CE ⊥AB ,交AB 的延长线于点E ,∠BCE =48°,求∠CDE 的度数.解:∵CE ⊥AB ,∴∠E =90°.在△BEC 中,∠CBE =180°-∠E -∠BCE =42°,∵∠BAC =∠BCA ,∠CBE =∠BAC +∠BCA ,∴∠BAC =∠BCA =12∠CBE =21°,又∵CD平分∠ACB ,∴∠ACD =12∠ACB =10.5°,∴∠CDE =∠ACD +∠BAC =10.5°+21°=31.5°.23.如图,在数轴上与3,5对应的点分别是A ,B ,点C 也在数轴上,且AB =AC ,设点C 表示的数为x.(1)求x 的值;解:因为数轴上A ,B 两点表示的数分别为3和5,且AB =AC ,所以3-x =5-3,解得x =23- 5.(2)计算|x -3|+6x +5.解:原式=|23-5-3|+623-5+5=5-3+3= 5.24.某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,如图表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求y 1与y 2的函数表达式;解:设y 1=k 1x (k 1≠0),将点(30,600)代入,可得k 1=20,所以y 1=20x.设y 2=k 2x +b (k 2≠0),将点(0,300),(30,600)代入,即⎩⎨⎧b =300,30k 2+b =600,解得⎩⎨⎧k 2=10,b =300.所以y 2=10x +300.(2)解释图中表示的两种方案是如何付推销费的;解:y 1是不推销产品没有推销费,每推销10件产品得推销费200元;y 2是保底工资300元,每推销10件产品再提成100元.(3)如果你是推销员,应如何选择付费方案?解:若业务能力强,平均每月推销都为30件时,两种方案都可以;平均每月推销大于30件时,就选择y 1的付费方案;平均每月推销小于30件时,选择y 2的付费方案.25.如图,一次函数y =-34x +3的图象与x 轴和y 轴分别交于点A 和点B ,将△AOB沿直线CD 对折,使点A 和点B 重合,直线CD 与x 轴交于点C ,与直线AB 交于点D.(1)求A ,B 两点的坐标;解:令y =0,则x =4;令x =0,则y =3,故点A 的坐标为(4,0),点B 的坐标为(0,3).(2)求OC 的长;解:设OC =x ,则AC =CB =4-x ,∵∠BOA =90°,∴OB 2+OC 2=CB 2,32+x 2=(4-x )2,解得x =78,∴OC =78.(3)设P 是x 轴上一动点,若使△PAB 是等腰三角形,写出点P 的坐标.解:设P 点坐标为(x ,0),当PA =PB 时,(x -4)2=x 2+9,解得x =78;当PA =AB 时,(x -4)2=42+32,解得x =9或x =-1;当PB =AB 时,x 2+32=42+32,解得x =-4(x =4,舍去).∴P 点坐标为(错误!,0),(-1,0)或(9,0),(-4,0).1、三人行,必有我师。

江苏省盐城市滨海县2023-2024学年八年级上学期期中数学试题

江苏省盐城市滨海县2023-2024学年八年级上学期期中数学试题

江苏省盐城市滨海县2023-2024学年八年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列汽车标志中,不是由多个全等图形组成的是()A.B.C.D.2.在下列各组数中,是勾股数的是()A.1、2、3B.2、3、4C.3、4、5D.4、5、6 3.已知直角三角形的两条直角边的长分别为5和12,则斜边长为()A.17B.16C.15D.134.如图,工人师傅在安装木制门框时,为防止变形常常钉上两根木条,这样做的依据是()A.三角形具有稳定性B.两点之间,线段最短C.直角三角形的两个锐角互为余角D.垂线段最短5.如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=5,则点P到AB的距离是()A.3B.4C.5D.66.如图,已知DAB CAB ∠=∠,添加下列条件不能判定DAB CAB ≌△△的是()A .DBE CBE ∠=∠B .DC ∠=∠C .DA CA=D .DB CB=7.如图,在ABC 中,,35AC BC A =∠=︒,观察图中尺规作图的痕迹,可知BCG ∠的度数为()A .40︒B .45︒C .50︒D .55︒8.将一根24cm 的筷子置于底面直径为12cm ,高为5cm 的圆柱形水杯中,如图,设筷子露在杯子外面的长度为cm h ,则h 的取值范围是()A .19h ≤B .1119h ≤≤C .1219h ≤≤D .1319h ≤≤二、填空题11.一个等腰三角形的两边长分别是12.在Rt ABC △中,CD 是斜边13.如图,已知90B D ∠=∠=14.如图,要测量小河两岸相对的、两点,且使BC取C D、、在一条直线上.若测量A C E中,∠15.如图,在ABC于点E,交AC于点F,若△中,三边分别是16.在Rt ABC的周长为17.如图,ABC则ADB的周长是.中,18.如图,在锐角ABC点P关于直线AB,BC的对称点分别是三、解答题19.如图,已知,AB AC BD CD ==.求证:B C ∠=∠.20.利用网格画图:(1)在BC 上找一点P ,使点P 到AB 和AC 的距离相等;(2)在射线AP 上找一点Q ,使QB QC =.21.如图,点A B C D 、、、在同一条直线上,点E F 、分别在直线AB 的两侧,且AE BF =,,A B AD BC ∠=∠=.(1)求证:ACE BDF V V ≌;(2)若12,3AB AC ==,求AD 的长.22.如图,在△ABC 中,AB 边的垂直平分线l 1交BC 于点D ,AC 边的垂直平分线l 2交BC 于点E ,l 1与l 2相交于点O ,连接AD ,AE ,△ADE 的周长为12cm .(1)求BC 的长;(2)分别连接OA ,OB ,OC ,若△OBC 的周长为26cm ,求OA 的长.23.如图,四边形ABCD 是公园中的一块空地,90,6m,8m,24m B AB BC CD ∠=︒===,26m AD =.(1)连接AC ,判断ACD 的形状并说明理由;(2)公园为美化环境,欲在该空地上铺草坪,已知草坪每平方米需要费用200元,试问铺满这块空地共需费用多少元?24.求证:如果三角形一边上的中线等于该边长的一半,那么该三角形为直角三角形.(要求:根据图形写出已知、求证并证明)已知:______.求证:______.证明:25.如图,在四边形ABCD 中,,,60AB BC AD CD D ==∠=︒,点E 为CD 上一点,连接AC BE 、交于点F ,BE AD ∥.(1)求证:CEF △是等边三角形;(2)连接BD ,求证:BD 垂直平分AC ;(3)若10,7CD BE ==,求BF 的长.26.若ABC 和ADE V 均为等腰三角形,且AB AC AD AE ===,当BAC ∠和DAE ∠互补时,称ABC 与ADE V 互为“顶补等腰三角形”,ABC 的边BC 上的高AH 叫做ADE V 的“顶心距”.(1)如图1,ABC 与ADE V 互为“顶补等腰三角形”,若连接BD CE 、,判断ABD △与ACE △是否互为“顶补等腰三角形”:______.(填“是”或“否”);(2)如图1,ABC 与ADE V 互为“顶补等腰三角形”,当0180BAC ︒<∠<︒时,若ADE V 的“顶心距”是AH ,求证:2DE AH =.(3)如图2,当90BAC ∠=︒时,ABC 与ADE V 互为“顶补等腰三角形”,连接BD 、CE ,若10,24BD CE ==,求AB 的长.27.在八年级上册“轴对称图形”一章69页中我们曾做过“折纸与证明”的数学活动.折纸,常能为证明一个命题提供思路和方法.请用你所学知识解决下列问题.【感知】(1)①如图1,在ABC 中,AB AC <,将ABC 沿AD 折叠,便点B 正好落在AC 边上的B '处,若70B ∠=︒,35C ∠=︒,则CDB ∠'=______︒.②如图2,在ABC 中,AB AC <,AD 是ABC 的高线,2B C ∠=∠,则13BD AB ==,,求BC 的长.【探究】(2)如图3,2ABC C ∠=∠,AD 为ABC 的外角BAE ∠的平分线,交CB 的延长线于点D ,则线段AB AC BD 、、又有怎样的数量关系?请写出你的猜想并证明.。

2020-2021学年江苏省盐城市滨海县八年级(上)期末物理试卷(附答案详解)

2020-2021学年江苏省盐城市滨海县八年级(上)期末物理试卷(附答案详解)

2020-2021学年江苏省盐城市滨海县八年级(上)期末物理试卷1.下列数据中,最接近生活实际的是()A. 八上物理课本的长度大约是10cmB. 中学生正常步行的速度大约是1.2m/sC. 人的正常体温大约是40℃D. 小华的100m短跑成绩约为7s2.手掌按住正在发声的鼓面,鼓声消失了,原因是()A. 不能传播声音B. 吸收了声波C. 把声音反射回去了D. 使鼓面停止了振动3.下述事例中,利用了红外线的是()A. 验钞机验钞B. 自行车的红色尾灯提示后面车辆C. 声呐测距D. 电视遥控器遥控电视4.高铁是一个非常便捷的交通工具,相比于火车、汽车速度上都会快许多。

因此,为了城市更好的发展,各地区都在尽量建设高铁,盐城也是如此。

2020年12月30日滨海港至上海高铁开通。

如图所示为它正在运行的情景,我们说:司机是静止的。

“静止”所选择的参照物是()A. 路面B. 树木C. 车厢D. 房屋5.如图所示的光现象中,属于光的直线传播现象的是()A. 筷子变弯B. 钢笔错位C. 小孔成像D. 镜中人像6.图示为我国民族吹管乐器−唢呐,用它吹奏名曲《百鸟朝凤》时,模仿的多种鸟儿叫声悦耳动听,让人仿佛置身于百鸟争鸣的森林之中,关于唢呐,下列说法正确的是()A. 用不同的力度吹奏,主要改变声音的音调B. 吹奏时按压不同位置的气孔,主要改变声音的响度C. 唢呐前端的喇叭主要改变声音的音色D. 唢呐模仿的鸟儿叫声令人愉悦,是乐音7.如图所示,这些热学实验中说法错误的是()A. 冰的熔化实验,采用水浴法加热是为了使冰受热均匀B. 加盖子的目的是减少水加热至沸腾的时间C. 金属盘中装热水,水蒸气的液化效果更好D. 在碘锤的上方凹槽中加冷水的目的是使碘蒸气快速凝华8.兴化的“大闸蟹”扬名全国。

为了在运输过程中给螃蟹保鲜,蟹民们将结了冰的矿泉水和螃蟹一起放在泡沫塑料箱中,从而制成了一个简易“冰箱”。

关于螃蟹保鲜,先后利用了()A. 低温的冰升温和熔化吸热B. 矿泉水降温和结冰放热C. 低温的冰升温吸热和熔化放热D. 矿泉水升温和熔化吸热9.小明将一枚硬币放到碗的底部,然后向后退到恰好看不到硬币的位置,如图所示,再让同学向碗里缓缓倒水,直到恰好再次看到完整的硬币,图乙中反映再次看到硬币的光路是()A. B.C. D.10.某学习小组对一辆在平直公路上做直线运动的小车进行观测研究,他们记录了小车在某段时间内通过的路程与所用的时间,并根据记录的数据绘制了路程与时间的关系图象,根据图象可以判断()A. 0~6s内,小车的平均速度是1.5m/sB. 0~5s内,小车的平均速度是0.8m/sC. 2~4s内,小车运动了4mD. 4~6s内,小车运动了6m11.如图所示,小易利用激光灯、可折转的光屏、平面镜等器材探究光的反射定律。

2020--2021学年上学期人教版 八年级数学试题

2020--2021学年上学期人教版 八年级数学试题

2020-2021上学期人教版八年级数学期末试卷一.选择题(共12小题)1.在预防新冠疫情期间,到公共场所都要佩戴口罩,据了解口罩的规格有两种:儿童款(长14cm)和成人款(长17cm),其中超过标准长度的数量记为正数,不足的数量记为负数.质量监督局检查了四个药店的儿童口罩,结果如下,从长度的角度看,最接近标准的儿童口罩是()A.+0.09B.﹣0.21C.+0.15D.﹣0.062.若|a|=a,则a表示()A.正数B.负数C.非正数D.非负数3.已知方程x2﹣3x=0,下列说法正确的是()A.方程的根是x=3B.只有一个根x=0C.有两个根x1=0,x2=3D.有两个根x1=0,x2=﹣34.x、y、c是有理数,则下列判断错误的是()A.若x=y,则x+2c=y+2c B.若x=y,则a﹣cx=a﹣cyC.若x=y,则=D.若=,则x=y5.点P到x轴的距离是3,到y轴的距离是2,且点P在y轴的左侧,则点P的坐标是()A.(﹣2,3)或(﹣2,﹣3)B.(﹣2,3)C.(﹣3,2)或(﹣3,﹣2)D.(﹣3,2)6.如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2019个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是()A.(1,0)B.(0,1)C.(﹣1,1)D.(﹣1,﹣2)7.下列属于圆柱体的是()A.B.C.D.8.沿图中虚线旋转一周,能围成的几何体是()A.B.C.D.9.如图是一个台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔,若一个球按图中所示的方向被击出(球可以经过多次反射),则该球最后落入的球袋是()A.1号袋B.2号袋C.3号袋D.4号袋10.下列说法:①已知△ABC中,AB=6,AC=8,则中线AD的取值范围是1≤AD≤7;②两边和一角对应相等的两个三角形全等;③如果两个三角形关于某直线成轴对称,那么它们是全等三角形;④一腰上的中线也是这条腰上的高的等腰三角形是等边三角形.其中正确的有()A.1个B.2个C.3D.4个11.某校为了解七年级14个班级学生吃零食的情况,下列做法中,比较合理的是()A.了解每一名学生吃零食情况B.了解每一名女生吃零食情况C.了解每一名男生吃零食情况D.每班各抽取7男7女,了解他们吃零食情况12.把25枚棋子放入右图的三角形内,那么一定有一个小三角形中至少放入()枚.A.6B.7C.8D.9二.填空题(共6小题)13.如果汽车向东行驶30千米记作+30千米,那么向西行驶20千米记作千米.14.若x=﹣1为方程x2﹣m=0的一个根,则m的值为.15.点M(﹣2,3)到x轴和y轴的距离之和是.16.个完全相同的圆锥形铁块,可以熔铸成一个与它们等底等高的圆柱.17.如图,在矩形ABCD中,AB=8,BC=4,一发光电子开始置于AB边的点P处,并设定此时为发光电子第一次与矩形的边碰撞,将发光电子沿着PR方向发射,碰撞到矩形的边时均反射,每次反射的反射角和入射角都等于45°,当发光电子与矩形的边碰撞2020次后,它与AB边的碰撞次数是.18.小芸为了解同学们最感兴趣的在线学习方式,设计了如下的调查问题(选项不完整):你最感兴趣的一种在线学习方式是()(单选)A.B.C.D.其他她准备从“①在线听课,②在线讨论,③在线学习2~3小时,④用手机在线学习,⑤在线阅读”中选取三个作为该问题的备选答案,合理的选取是.(填序号)三.解答题(共9小题)19.在抗洪抢险过程中,人民解放军的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天航行路程记录如下:(单位:千米)15,﹣7,18,9,﹣3,6,﹣8(1)通过计算说明B地在A地的什么位置;(2)已知冲锋舟每千米耗油0.5升,油箱容量为40升,若冲锋舟在救援前将油箱加满,请问该冲锋舟在救援过程中是否还需要补充油?20.把下列各数填在相应的括号内:﹣,0,﹣30,,+20,﹣2.6,π,0.,0.3030030003…(每两个3之间逐次增加一个0).正有理数集合:{…};负数集合:{…};整数集合:{…}.21.阅读理解题:下面是小明将等式x﹣4=3x﹣4进行变形的过程:x﹣4+4=3x﹣4+4,①x=3x,②1=3.③(1)小明①的依据是.(2)小明出错的步骤是,错误的原因是.(3)给出正确的解法.22.关于x的方程x﹣2m=﹣3x+4与2﹣x=m的解互为相反数.(1)求m的值;(2)求这两个方程的解.23.已知当m,n都是实数.且满足2m=8+n时,称p(m﹣1,)为“开心点”.(1)判断点A(5,3),B(4,10)是否为“开心点”,并说明理由;(2)若点M(a,2a﹣1)是“开心点”,请判断点M在第几象限?并说明理由.24.综合与实践某“综合与实践”小组开展了“长方体纸盒的制作”实践活动,他们利用边长为acm的正方形纸板制作出两种不同方案的长方体盒子(图1为无盖的长方体纸盒,图2为有盖的长方体纸盒),请你动手操作验证并完成任务.(纸板厚度及接缝处忽略不计)动手操作一:根据图1方式制作一个无盖的长方体盒子.方法:先在纸板四角剪去四个同样大小边长为bcm的小正方形,再沿虚线折合起来.问题解决:(1)该长方体纸盒的底面边长为cm;(请你用含a,b的代数式表示)(2)若a=24cm,b=6cm,则长方体纸盒的底面积为多少cm2;动手操作二:根据图2方式制作一个有盖的长方体纸盒.方法:先在纸板四角剪去两个同样大小边长为bcm的小正方形和两个同样大小的小长方形,再沿虚线折合起来.拓展延伸:(3)该长方体纸盒的体积为多少cm3?(请你用含a,b的代数式表示)25.如图,△ABC中,∠ABC=45°,点A关于直线BC的对称点为P,连接PB并延长.过点C作CD⊥AC,交射线PB于点D.(1)如图①,∠ACB为钝角时,补全图形,判断AC与CD的数量关系:;(2)如图②,∠ACB为锐角时,(1)中结论是否仍成立,并说明理由.26.甲、乙两种水稻试验品种连续5年的平均单位面积产量(单位:t/hm2)如表,试根据这组数据估计哪一种水稻品种好.品种第1年第2年第3年第4年第5年甲9.89.910.11010.2乙9.410.310.89.79.8 27.若从1,2,3,…,n中任取5个两两互素的不同的整数a1,a2,a3,a4,a5,其中总有一个整数是素数,求n的最大值.2020-2021上学期人教版八年级数学期末试卷参考答案与试题解析一.选择题(共12小题)1.【分析】根据题意可知绝对值最小的即为最接近标准的儿童口罩,即可得出答案.【解答】解:根据题意得:|﹣0.06|<|+0.09|<|+0.15|<|﹣0.21|,故选:D.2.【分析】根据绝对值的意义解答即可.【解答】解:∵|a|=a,∴a为非负数,故选:D.3.【分析】本题应对方程进行变形,提取公因式x,将原式化为两式相乘的形式,再根据“两式相乘值为0,这两式中至少有一式值为0”来解题.【解答】解:原方程变形为:x(x﹣3)=0,∴x=0或x﹣3=0,∴x=0或x=3,故选:C.4.【分析】根据等式的性质一一判断即可.【解答】解:A、根据等式的性质1可得出,若x=y,则x+2c=y+2c,原变形正确,故此选项不符合题意;B、根据等式的性质1和2得出,若x=y,则a﹣cx=a﹣cy,原变形正确,故此选项不符合题意;C、由x=y得出=必须c≠0,当c=0时不成立,故本选项符合题意;D、根据等式的性质2可得出,若=,则x=y,原变形正确,故此选项不符合题意;故选:C.5.【分析】根据题意,判断出点P所在的象限,再根据点到y轴的距离是点的横坐标的绝对值,到x轴的距离是点的纵坐标的绝对值,判断即可.【解答】解:∵点P在y轴左侧,∴点P在第二象限或第三象限,∵点P到x轴的距离是3,到y轴距离是2,∴点P的坐标是(﹣2,3)或(﹣2,﹣3),故选:A.6.【分析】由点A,B,C,D的坐标可得出四边形ABCD为矩形及AB,AD的长,由矩形的周长公式可求出矩形ABCD的周长,结合2019=202×10﹣1可得出细线的另一端在线段AD上且距A点1个单位长度,结合点A的坐标即可得出结论.【解答】解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=2,AD=3,四边形ABCD为矩形,∴C矩形ABCD=(3+2)×2=10.∵2019=202×10﹣1,∴细线的另一端在线段AD上,且距A点1个单位长度,∴细线的另一端所在位置的点的坐标是(1,1﹣1),即(1,0).故选:A.7.【分析】根据圆柱体的形状解答即可.【解答】解:A、图形是正方体,不符合题意;B、图形是梯形,不符合题意;C、图形属于圆柱体,符合题意;D、图形是圆,不符合题意;故选:C.8.【分析】根据“面动成体”可知,将长方形沿着长边所在的直线旋转一周,形成的几何体是圆柱,得出判断即可.【解答】解:将长方形沿着一边旋转一周,所形成的几何体是圆柱,故选:B.9.【分析】利用轴对称画出图形即可.【解答】解:如图所示:,该球最后落入的球袋是4号袋,故选:D.10.【分析】根据三角形的三边关系,全等三角形的判定,等边三角形的判定,轴对称的性质一一判断即可.【解答】解:①已知△ABC中,AB=6,AC=8,则中线AD的取值范围是1≤AD≤7,错误,应该是中线AD的取值范围是1<AD<7.②两边和一角对应相等的两个三角形全等,错误,SSA不一定全等.③如果两个三角形关于某直线成轴对称,那么它们是全等三角形,正确.④一腰上的中线也是这条腰上的高的等腰三角形是等边三角形,正确.故选:B.11.【分析】根据样本抽样的原则要求,逐项进行判断即可.【解答】解:根据样本抽样具有普遍性、代表性和可操作性,选项D比较合理,选项A为普查,没有必要,也不容易操作;选项B、C仅代表男生或女生的情况,不能反映全面的情况,不具有代表性,故选:D.12.【分析】把4个小三角形看作4个抽屉,把25枚棋子看作25个元素,那么每个抽屉需要放25÷4=6…1,所以每个抽屉需要放6枚,剩余的1枚无论怎么放,总有一个抽屉里至少有6+1=7,所以,至少有一个小三角形内至少要放7枚棋子,即可得出结论.【解答】解:25÷4=6……1,6+1=7(枚),故选:B.二.填空题(共6小题)13.【分析】根据正数和负数表示相反意义的量,向东行驶记为正,可得向西行驶的表示方法.【解答】解:如果汽车向东行驶30千米记作+30千米,那么向西行驶20千米记作﹣20千米.故答案为:﹣20.14.【分析】把x=﹣1代入方程得1﹣m=0,然后解一元一次方程即可.【解答】解:把x=﹣1代入方程得1﹣m=0,解得m=1.故答案为1.15.【分析】根据点的坐标与其到坐标轴的距离的关系进行解答.【解答】解:点M(﹣2,3)到x轴的距离为:3,到y轴的距离为:2,故点M(﹣2,3)到x轴和y轴的距离之和是:3+2=5.故答案为:5.16.【分析】根据圆柱的体积是同底同高的圆锥的体积的三倍解答即可.【解答】解:因为圆柱的体积是同底同高的圆锥的体积的三倍,所以3个完全相同的圆锥形铁块,可以熔铸成一个与它们等底等高的圆柱.故答案为:3.17.【分析】如图,以AB为x轴,AD为y轴,建立平面直角坐标系,根据反射角与入射角的定义可以在格点中作出图形,可以发现,在经过6次反射后,发光电子回到起始的位置,即可求解.【解答】解:如图以AB为x轴,AD为y轴,建立平面直角坐标系,根据图形可以得到:每6次反弹为一个循环组依次循环,经过6次反弹后动点回到出发点(6,0),且每次循环它与AB边的碰撞有2次,∵2020÷6=336…4,当点P第2020次碰到矩形的边时为第336个循环组的第4次反弹,点P的坐标为(2,0),∴它与AB边的碰撞次数是=336×2+1=673次,故答案为:673.18.【分析】根据题意可得“①在线听课,②在线讨论,⑤在线阅读”合理.【解答】解:根据题意可知:①在线听课,②在线讨论,⑤在线阅读,作为该问题的备选答案合理,故答案为:①②⑤.三.解答题(共9小题)19.【分析】(1)求出所有正负数之和,可以判断B点位置;(2)求所有正负数的绝对值之和,即为行程总和,在确定所需油量即可求解.【解答】解:(1)15﹣7+18+9﹣3+6﹣8=30(千米),答:B地在A地东面30千米;(2)15+7+18+9+3+6+8=66(千米),66×0.5=33<40,答:不需补充.20.【分析】按照有理数的分类填写即可.【解答】解:正有理数集合:{,+20,0.…}负数集合:{,﹣30,﹣2.6…}整数集合:{0,﹣30,+20…}故答案为:,+20,0.;,﹣30,﹣2.6;0,﹣30,+20.21.【分析】根据等式的性质解答即可.【解答】解:(1)小明①的依据是等式的两边都加(或减)同一个数(或整式),结果仍得等式;(2)小明出错的步骤是③,错误的原因是等式两边都除以0;(3)x﹣4=3x﹣4,x﹣4+4=3x﹣4+4,x=3x,x﹣3x=0,﹣2x=0,x=0.故答案为:等式的两边都加(或减)同一个数(或整式),结果仍得等式;③;等式两边都除以0.22.【分析】(1)先分别解关于x的一次方程得到x=m+1和x=2﹣m,再利用相反数的定义得到m+1+2﹣m=0,然后解关于m的方程即可;(2)把m的值分别代入x=m+1和x=2﹣m中得到两方程的解.【解答】解:(1)解方程x﹣2m=﹣3x+4得x=m+1,解方程2﹣x=m得x=2﹣m,根据题意得,m+1+2﹣m=0,解得m=6;(2)当m=6时,x=m+1=×6+1=4,即方程x﹣2m=﹣3x+4的解为x=4;当m=6时,x=2﹣m=2﹣6=﹣4,即方程2﹣x=m的解为x=﹣4.23.【分析】(1)根据A、B点坐标,代入(m﹣1,)中,求出m和n的值,然后代入2m=8+n检验等号是否成立即可;(2)直接利用“开心点”的定义得出a的值进而得出答案.【解答】解:(1)点A(5,3)为“开心点”,理由如下,当A(5,3)时,m﹣1=5,,得m=6,n=4,则2m=12,8+n=12,所以2m=8+n,所以A(5,3)是“开心点”;点B(4,10)不是“开心点”,理由如下,当B(4,10)时,m﹣1=4,,得m=5,n=18,则2m=10,8+18=26,所以2m≠8+n,所以点B(4,10)不是“开心点”;(2)点M在第三象限,理由如下:∵点M(a,2a﹣1)是“开心点”,∴m﹣1=a,,∴m=a+1,n=4a﹣4,代入2m=8+n有2a+2=8+4a﹣4,∴a=﹣1,2a﹣1=﹣3,∴M(﹣1,﹣3),故点M在第三象限.24.【分析】(1)根据折叠可得答案;(2)将a=24,b=6代入底面积的代数式计算即可;(3)根据图2的裁剪,折叠后,表示出长、宽、高进而用代数式表示体积.【解答】解:(1)根据折叠可知,底面是边长为(a﹣2b)(cm)的正方形,故答案为:(a﹣2b);(2)将a=24,b=6代入得,(a﹣2b)2=(24﹣2×6)2=144(cm2)答:长方体纸盒的底面积为144cm2;(3)裁剪后折叠成长方体的长为:(a﹣2b)cm,宽为cm,高为bcm,所以,折叠后长方体的体积为(a﹣2b)××b,即,b(a﹣2b)2,答:长方体的体积为b(a﹣2b)2.25.【分析】(1)结论:AC=CD.想办法证明,AC=CP,CD=CP即可.(2)结论不变,证明方法类似(1).【解答】解:(1)结论:AC=CD.理由:如图①中,设AB交CD于O,∵A,P关于BC对称,CA=CP,∴∠A=∠P,∠ABC=∠CBP=45°,∴∠ABP=∠ABD=90°,∵AC⊥CD,∴∠ACO=∠DBO=90°,∵∠AOC=∠DOB,∴∠D=∠A,∴∠D=∠P,∴CD=CP,∴AC=CD.故答案为:AC=CD.(2)结论不变.理由:如图②中,∵A,P关于BC对称,CA=CP,∴∠A=∠P,∠ABC=∠CBP=45°,∴∠ABP=∠ABD=90°,∵AC⊥CD,∴∠ACD=∠DBA=90°,∴∠ABD+∠ACD=180°,∴∠A+∠BDC=180°,∵∠CDP+∠BDC=180°,∴∠A=∠CDP∴∠CDP=∠P,∴CD=CP,∴AC=CD.26.【分析】首先求得平均产量,然后求得方差,进行比较即可.【解答】解:根据表格中的数据求得甲的平均数=(9.8+9.9+10.1+10+10.2)÷5=10;乙的平均数=(9.4+10.3+10.8+9.7+9.8)÷5=10,甲种水稻产量的方差是:[(9.8﹣10)2+(9.9﹣10)2+(10.1﹣10)2+(10﹣10)2+(10.2﹣10)2]=0.02,乙种水稻产量的方差是:[(9.4﹣10)2+(10.3﹣10)2+(10.8﹣10)2+(9.7﹣10)2+(9.8﹣10)2]=0.244.∴0.02<0.244,∴产量比较稳定的水稻品种是甲.因为甲、乙两种水稻单位面积产量的平均数相等,甲种方差小于乙种方差,所以甲种水稻品种好.27.【分析】只有1和它本身两个因数的数,就是质数(或素数).除了1和它本身以外,还有别的因数的数,就是合数.因为5个整数两两互素,它们的约数只能取2、3、5、7、11,又因为是合数,只能是约数的平方.所以可求解.【解答】解:若n≥49,取整数1,22,32,52,72,这五个整数是五个两两互素的不同的整数,但没有一个整数是素数,∴n≤48,在1,2,3,……,48中任取5个两两互素的不同的整数,若都不是素数,则其中至少有四个数是合数,不妨假设,a1,a2,a3,a4为合数,设其中最小的素因数分别为p1,p2,p3,p4,由于两两互素,∴p1,p2,p3,p4两两不同,设p是p1,p2,p3,p4中的最大数,则p≥7,因为a1,a2,a3,a4为合数,所以其中一定存在一个,aj≥p2≥72=49,与n≤48矛盾,于是其中一定有一个是素数,综上所述,正整数n的最大值为48.。

2021-2022学年八上期末数学题(含答案)

2021-2022学年八上期末数学题(含答案)
(2)当5是腰时,符合三角形的三边关系,
周长=4+5+5=14.
故选D.
【点睛】本题考查的知识点是等腰三角形的性质和三角形的三边关系,解题关键是进行分类讨论,还应验证各种情况是否能构成三角形进行解答.
4.平面直角坐标系中,点(a2+1,2020)所在象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
故选A.
【点睛】本题主要考查轴对称图形,掌握轴对称图形的定义并能正确识别轴对称图形是解答本题的关键.
2.下列实数0, , ,π,其中,无理数共有( )
A.1个B.2个C.3个D.4个
【答案】B
【解析】
【分:无理数有: , .
故选B.
【点睛】本题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.
6.如图,点B,C在线段AD上,AB=CD,AE∥BF,添加一个条件仍不能判定△AEC≌△BFD的是( )
A.AE=BFB.CE=DFC.∠ACE=∠BDFD.∠E=∠F
【答案】B
【解析】
【分析】根据三角形全等的判定定理逐项分析即可.
【详解】解:∵AE∥BF,
∴∠A=∠FBD,
∵AB=CD,
∴AC=BD,
7.满足下列条件时, 不是直角三角形的是( )
A. , , B.
C. D. ,
【答案】C
【解析】
【分析】根据三角形内角和公式和勾股定理的逆定理判定是否为直角三角形.
【详解】解:A、 符合勾股定理的逆定理,故A选项是直角三角形,不符合题意;
B、32+42=52,符合勾股定理的逆定理,故B选项是直角三角形,不符合题意;
(3)乙车出发后小时追上甲车.

人教版2020---2021学年度八年级数学(上)期末考试卷及答案(含两套题)

人教版2020---2021学年度八年级数学(上)期末考试卷及答案(含两套题)

密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期八年级数学(上)期末测试卷及答案(满分:150分 时间: 120分钟)第Ⅰ卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.若代数式4xx -有意义,则实数x 的取值范围是( ) A .x =0 B .x =4C .x ≠0D .x ≠42.随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.0000007平方毫米,将数字0.0000007用科学记数法可以表示为( ) A .6710-⨯ B .60.710-⨯C .7710-⨯D .87010-⨯3.下列式子,成立的是( ) A .a 2·a 3=a 6 B .(a 2)3=a 5C .a –1=–aD .(–a +b )(–a –b )=a 2–b 24.如果把分式xyx y+中的x 和y 都扩大2倍,那么分式的值( )A .扩大4倍B .扩大2倍C .不变D .缩小2倍5.若等腰三角形中有两边长分别为3和7,则这个三角形的周长为( ) A .13 B .13或17C .10D .176.在平面直角坐标系中,将点A (–1,2)向右平移4个单位长度得到点B ,则点B 关于y 轴的对称点B ′的坐标为( ) A .(–3,2) B .(3,–2) C .(3,2)D .(2,–3)7.如图,在△ABC 和△BDE 中,点C在边BD 上,边AC 交边BE 于点F ,若AC =BD ,AB =ED ,BC =BE ,则∠ACB 等于( )A .∠DB .∠EC .∠EBDD .∠ABF8.点O 在ABC △(非等边三角形)内,且OA OB OC ==,则点O为( )A .ABC △的三条角平分线的交点题号一 二 三 总分 得分B .ABC △的三条高线的交点C .ABC △的三条边的垂直平分线的交点D .ABC △的三条边上的中线的交点9.如图,AE ∥DF ,AE =DF ,则添加下列条件还不能使△EAC≌△FDB 的为( )A .AB =CD B .CE ∥BFC .∠E =∠FD .CE =BF10.如图,AD 是△ABC 的角平分线,DE ⊥AB 于E ,△ABC 的面积为10,AB =6,DE =2,则AC 的长是( )A .4B .4.5C .4.8D .5 11.从3-,2-,1-,32-,1,3这六个数中,随机抽取一个数,记为a .关于x 的方程211x ax +=-的解是正数,那么这6个数中所有满足条件的a 的值有( ) A .3个B .2个C .1个D .4个12.如图,在等边三角形ABC 中,BC 边上的中线AD =6,是AD 上的一个动点,F 是边AB 上的一个动点,在点F 运动的过程中,EB +EF 的最小值是A .5B .6C .7D .8第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)13.若23a b =,则a b b -=__________.14.若3a b +=,1ab =,则22ab +=__________.15.若一个多边形的内角和是900º,则这个多边形是__________边形.16.如图,依据尺规作图的痕迹,计算α∠=__________°.17.已知ABC ∆中,它的三边长a 、b 、c 都是正整数,其中a 是最长边,且满足22106340a b a b +--+=,则符合条件的c密线学校 班级 姓名 学号密 封 线 内 不 得 答 题值为__________.18.如图,∠ABC =∠ACB ,AD 、BD 、CD 分别平分△ABC 的外角∠EAC 、内角∠ABC 、外角∠ACF .以下结论:①AD∥BC ;②∠ACB =2∠ADB ;③∠ADC =90°−12∠ABC ;④BD 平分∠ADC ;⑤∠BDC =12∠BAC .其中正确的结论有__________(填序号)三、解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分6分) (1)解方程:22+11x x x x+=+;(2)解方程:2227361x x x x x -=+--. 20.(本小题满分6分)(1)因式分解22(2)(22)1a ab b a b -++-++;(2)先化简,再求值24512(1)(),11a a a a a a-+-÷----其中1a =-. 21.(本小题满分6分)如图,点B 、C 、D 、E 在同一条直线上,已知AB =FC ,AD =FE ,BC =DE . (1)求证:△ABD ≌△FCE .(2)AB 与FC 的位置关系是_________(请直接写出结论)22.(本小题满分8分)如图,在△ABC 中,AB =AC ,∠A =36°,AC 的垂直平分线交AB 于E ,D 为垂足,连接EC . (1)求∠ECD 的度数; (2)若CE =5,求BC 的长.23.(本小题满分8分)超市用2500元购进某品牌苹果,以每千克8元的单价试销.销售良好,超市又安排4500元补货.补货进价比上次每千克少0.5元,数量是上次的2倍.(1)求两次进货的单价分别是多少元.(2)当售出大部分后,余下200千克按7.5折售完,求两次销售苹果的毛利.24.(本小题满分10分)如图,△ABC 中,∠BAC =90°,AD⊥BC ,垂足为D .(1)求作∠ABC 的平分线,分别交AD ,AC 于E ,F 两点;(要求:尺规作图,保留作图痕迹,不写作法)(2)证明:AE=AF.25.(本小题满分10分)如图,网格中有格点△ABC与△DEF.(1)△ABC与△DEF是否全等?(不说理由.)(2)△ABC与△DEF是否成轴对称?(不说理由)(3)若△ABC与△DEF成轴对称,请画出它的对称轴l.并在直线l上画出点P,使PA+PC最小.26.(本小题满分12分)探究下面的问题:(1)如图甲,在边长为a的正方形中去掉一个边长为b的小正方形(a>b),把余下的部分剪拼成如图乙的一个长方形,通过计算两个图形(阴影部分)的面积,验证了一个等式,这个等式是________(用式子表示),即乘法公式中的___________公式.(2)运用你所得到的公式计算:①10.7×9.3;②(23)(23)x y z x y z+---.27.(本小题满分12分)在△ABC中,∠BAC=100°,∠∠ACB,点D在直线BC上运动(不与点B、C点E在射线AC上运动,且∠ADE=∠AED,设∠DAC=(1)如图①,当点D在边BC上时,且n=36°BAD=__________,∠CDE=__________;(2)如图②,当点D运动到点B变,请猜想∠BAD和∠CDE(3)当点D运动到点C的右侧时,其他条件不变,∠和∠CDE还满足(2)中的数量关系吗?请画出图形,明理由.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题参考答案一1 2 3 4 5 6 7 8 9 10 11 12 DCDBDACCDABB二、13.【答案】3-【解析】∵23a b =,∴设a =2k ,b =3k (k ≠0),则23133a b k k b k --==-, 故答案为:13-.14.【答案】7【解析】∵a +b =3,ab =1,∴22a b +=(a +b )2–2ab =9–2=7;故答案为7. 15.【答案】七【解析】设这个多边形是n 边形,根据题意得,()2180900n -⋅︒=︒,解得7n =.故答案为:7. 16.【答案】56【解析】如图,∵四边形ABCD 是长方形,∴AD ∥BC ,∴∠DAC =∠ACB =68°, ∵由作法可知,AF 是∠DAC 的平分线,∴∠EAF =12∠DAC =34°,∵由作法可知,EF 是线段AC 的垂直平分线,∴∠AEF =90°, ∴∠AFE =90°−34°=56°,∴∠α=56°.故答案为:56.17.【答案】6或7【解析】a 2+b 2–10a –6b +34=0, a 2–10a +25+b 2–6b +9=0,(a –5)2+(b –3)2=0, 则a –5=0,b –3=0,解得,a =5,b =3, 则5–3<c <3+5,即2<c <8,∴△ABC 的最大边c 的值为6或7, 故答案为:6或7. 18.【答案】①②③⑤【解析】∵AD 平分∠EAC ,∴∠EAC =2∠EAD , ∵∠EAC =∠ABC +∠ACB ,∠ABC =∠ACB ,∴∠EAD =∠ABC ,∴AD ∥BC ,∴①正确; ∵AD ∥BC ,∴∠ADB =∠DBC ,∵BD 平分∠ABC ,∠ABC =∠ACB ,∴∠ABC =∠ACB =2∠DBC ,∴∠ACB =2∠ADB ,∴②正确;∵AD平分∠EAC,CD平分∠ACF,∴∠DAC=12∠EAC,∠DCA=12∠ACF,∵∠EAC=∠ABC+∠ACB,∠ACF=∠ABC+∠BAC,∠ABC+∠ACB+∠BAC=180°,∴∠ADC=180°−(∠DAC+∠ACD)=180°−12(∠EAC+∠ACF)=180°−12(∠ABC+∠ACB+∠ABC+∠BAC)=180°−12(180°+∠ABC)=90°−12∠ABC,∴③正确;∵BD平分∠ABC,∴∠ABD=∠DBC,∵∠ADB=∠DBC,∠ADC=90°−12∠ABC,∴∠ADB不一定等于∠CDB,∴④错误;∵∠ACF=2∠DCF,∠ACF=∠BAC+∠ABC,∠ABC=2∠DBC,∠DCF=∠DBC+∠BDC,∴∠BAC=2∠BDC,∴∠BDC=12∠BAC,∴⑤正确;故答案为:①②③⑤.三、19.【解析】(1)方程两边都乘x(x+1),得x2+x2+x=2(x+1)2,解得:x=−23,检验:当x=−23时,x(x+1)≠0,∴x=−23是原方程的解.(3分)(2)去分母得:7x−7+3x+3=6x,解得:x=1,经检验x=1是增根,分式方程无解.(6分)20.【解析】(1)原式=(a2–2ab+b2)–(2a–2b)+1=(a–b)2–2(a–b)+1=(a–b–1)2.(3分)(2)原式()()()211452(2)111a a a a aa a a a+--+--=÷=---•()12a aa-=-a(a–2当a=–1时,原式=–1×(–1–2)=3.(6分)21.【解析】(1)∵BC=DE,∴BC+CD=DE+CD,即BD=CE.在△ABD和△FCE中,AB FCAD FEBD CE=⎧⎪=⎨⎪=⎩,∴△ABD≌△FCE(SSS).(4分)(2)AB∥FC.(6分)由(1)可知△ABD≌△FCE,∴∠B=∠FCE(全等三角形的对应角相等),∴AB∥FC(同位角相等,两直线平行).22.【解析】(1)∵DE垂直平分AC,∠A=36°,∴CE=AE,∴∠ECD=∠A=36°;(4分)(2)∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴∠BEC =∠A +∠ECD =72°,∴∠BEC =∠B ,∴BC =EC =5.(8分)23.【解析】(1)设第一次进货的单价是x 元,则第二次进货的单价是(0.5)x -元,根据题意,得2500450020.5x x ⨯=-,解得5x =. 经检验:5x =是原方程的解.第二次进货的单价是:50.5 4.5()-=元.答:第一次进货的单价是5元,第二次进货的单价是4.5元.(4分)(2)两次销售苹果的毛利:25004500200820080.752500450046005 4.5⎛⎫+-⨯+⨯⨯--=⎪⎝⎭(元). 答:两次销售苹果的毛利为4600元.(8分) 24.【解析】(1)如图所示,射线BF 即为所求:(4分)(2)证明:∵AD ⊥BC ,∴∠ADB =90°,∴∠BED +∠EBD =90°,∵∠BAC =90°,∴∠AFE +∠ABF =90°,(7分) ∵∠EBD =∠ABF ,∴∠AFE =∠BED ,∵∠AEF =∠BED ,∴∠AEF =∠AFE ,∴AE =AF .(10分) 25.【解析】(1)全等.(3分)根据坐标系可以看出AB DEBC EFAC DF =⎧⎪=⎨⎪=⎩,∴△ABC ≅△DEF ;(2)成轴对称.(6分)根据坐标系可以看出△ABC 与△DEF 关于直线l 成轴对称; (3)如图所示:点P 即为所求.(10分)26.【解析】(1)a 2–b 2=(a +b )(a −b );平方差.(6分)由图知:大正方形减小正方形剩下的部分面积为a 2–b 2; 拼成的长方形的面积:(a +b )×(a −b ),所以得出:a 2–b 2=(a +b )(a −b );故答案为:a 2–b 2=(a +b )(a −b );平方差. (2)①原式=(10+0.7)×(10–0.7) =102–0.72 =100–0.49 =99.51.(9分)②原式=(x –3z +2y )(x –3z –2y ) =(x –3z )2–(2y )2 =x 2–6xz +9z 2–4y 2.(12分)27.【解析】(1)∠BAD =∠BAC –∠DAC =100°–36°=64°.∵在△ABC 中,∠BAC =100°,∠ABC =∠ACB , ∴∠ABC =∠ACB =40°,∴∠ADC =∠ABC +∠BAD =40°+64°=104°. ∵∠DAC =36°,∠ADE =∠AED , ∴∠ADE =∠AED =72°,∴∠CDE =∠ADC –∠ADE =104°–72°=32°. 故答案为64°,32°;(4分)(2)∠BAD =2∠CDE ,理由如下:(5分) 如图②,在△ABC 中,∠BAC =100°, ∴∠ABC =∠ACB =40°. 在△ADE 中,∠DAC =n ,∴∠ADE =∠AED =1802n︒-.(6分)∵∠ACB =∠CDE +∠AED ,∴∠CDE =∠ACB –∠AED =40°–1802n ︒-=1002n -︒. ∵∠BAC =100°,∠DAC =n , ∴∠BAD =n –100°,∴∠BAD =2∠CDE ;(8分) (3)∠BAD =2∠CDE ,理由如下: 如图③,在△ABC 中,∠BAC =100°,∴∠ABC =∠ACB =40°,∴∠ACD =140°.(9分) 在△ADE 中,∠DAC =n , ∴∠ADE =∠AED =1802n︒-.(10分)∵∠ACD =∠CDE +∠AED , ∴∠CDE =∠ACD –∠AED =140°–1802n ︒-=1002n︒+. ∵∠BAC =100°,∠DAC =n , ∴∠BAD =100°+n , ∴∠BAD =2∠CDE .(12分)密线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期八年级数学(上)期末测试卷及答案(满分:150分 时间: 120分钟)第Ⅰ卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.下列图形中,是轴对称图形的是( )A .B .C .D .2.下列分式中,属于最简分式的是( )A .1113xB .221xx +C .211x x +-D .11x x --3.以下列各组线段为边,能组成三角形的是( ) A .2cm ,5cm ,8cm B .3cm ,3cm ,6cm C .3cm ,4cm ,5cmD .1cm ,2cm ,3cm4.如果一个多边形的每一个内角都是108°,那么这个多边形是( ) A .五边形 B .六边形C .七边形D .八边形5.下列运算正确的是( ) A .236a a a ⋅= B .220a a ÷=C .2353()a b a b =D .752a a a ÷=6.下列各式分解因式正确的是( ) A .()()2919191x x x -=+- B .()()422111a a a -=+- C .()()228199a b a b a b --=--+D .()()()32a ab a a b a b -+=-+-7.已知ab ≠0,则坐标平面内四个点A (a ,b ),B (a ,–b ),C (–a ,b ),D (–a ,–b )中关于y 轴对称的是( ) A .A 与B ,C 与DB .A 与D ,B 与C C .A 与C ,B 与DD .A 与B ,B 与C8.如图,△ABC ≌△ADE ,若∠E =70°,∠D =30°,∠CAD =35°,则∠BAD 的度数为( )A .40°B .45°C .50°D .55°9.光明家具厂生产一批学生课椅,计划在30天内完成并交付题号一 二 三 总分 得分不得答题使用.若每天多生产100把,则23天完成且还多生产200把.设原计划每天生产x把,根据题意,可列分式方程为( )A.3020023100xx+=+B.3020023100xx-=+C.3020023100xx+=-D.3020023100xx-=-10.解关于x的方程6155x mx x-+=--(其中m为常数)产生增根,则常数m的值等于( )A.–2 B.2C.–1 D.111.如图,△ABC中,AB的垂直平分线交AC于D,如果AC=5cm,BC=4cm,那么△DBC的周长是( )A.6cm B.7cmC.8cm D.9cm12.如图,BP平分ABC∠交CD于点F,DP平分ADC∠交AB于点E,若40A∠=︒,38P∠=︒,则C∠的度数为( )A.36︒B.39︒C.38︒D.40︒第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)13.一种细菌的半径是0.00003厘米,数据0.00003数法表示为_________.14.计算:2232aa a a---=_________.15.若分式33xx--的值为零,则x=_________.16.如图,ABC∆中,90C∠=︒,30A∠=︒,AB的垂直平分线交于D,交AB于E,2CD=,则AC=_________.17.在等腰ABC∆中,一腰上的高与另一腰的夹角为26︒角的度数为__________.18.如图,在△ABC中,AB=AC,∠BAC=50°,∠BAC线与AB的垂直平分线交于点O,将∠C沿EF(E在上,F在AC上)折叠,点C与点O恰好重合,则∠为________度.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题三、解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分6分)计算:(1)()()22x y x y x ---;(2)2344(1)11x x x x x ++-+÷++.20.(本小题满分6分)因式分解:(1)4x 2–16;(2)(x +y )2–10(x +y )+25.21.(本小题满分6分)如图,AD 与BC 交于E ,∠1=∠2=∠3,∠4=∠5.求证:BD =E C .22.(本小题满分8分)如图,五边形ABCDE 的内角都相等,EF 平分∠AED .求证:EF ⊥BC .23.(本小题满分8分)如图,△ABC 的顶点均在格点上.(1)分别写出点A ,点B ,点C 的坐标.(2)若△A 'B 'C '与△ABC 关于y 轴对称,在图中画出△A 'B 'C ',并写出相应顶点的坐标.24.(本小题满分10分)如图,ABC ∆与DCB ∆中,AC 与BD 交于点E ,且A D ∠=∠,AB DC =.(1)求证:ABC DCB ∆≅∆;(2)当50AEB ∠=︒,求EBC ∠的度数.25.(本小题满分10分)嘉嘉同学动手剪了如图①所示的正方形与长方形卡片若干张.(1)他用1张1号、1张2号和2张3号卡片拼出一个新的图形(如图②).根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是________. (2)如果要拼成一个长为(a +2b ),宽为(a +b )的大长方形,则需要1号卡片________张,2号卡片________张,3号卡片________张.26.(本小题满分12分)市区某中学美化校园招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要30天;若由甲队先做10天,剩下的工程由甲、乙合做12天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元,若该工程计划在35天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱,还是由甲乙两队全程合作完成该工程省钱?27.(本小题满分12分)如图,在ABC ∆中,已知45ABC ∠=,过点C 作CD AB ⊥于点D ,过点B 作BM AC ⊥于点M ,连接MD ,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题故答案为:11a --.15.【答案】–3【解析】依题意,得|x |–3=0且x –3≠0,解得x =–3.故答案是:–3.16.【答案】6【解析】连接BD ,∵在△ABC 中,∠C =90°,∠A =30°,∴∠ABC =60°, ∵AB 的垂直平分线交AC 于D ,交AB 于E ,∴AD =BD ,DE ⊥AB ,∴∠ABD =∠A =30°,∴∠DBC =30°, ∵CD =2,∴BD =2CD =4,∴AD =4,∴AC =6.17.【答案】58°或32°【解析】①如图①,∵AB =AC ,∠ABD =26°,BD ⊥AC ,∴∠A =64°,∴∠ABC =∠C =(180°–64°)÷2=58°;②如图②,∵AB =AC ,∠ABD =26°,BD ⊥AC , ∴∠BAC =26°+90°=116°,∴∠ABC =∠C =(180°–116°)÷2=32°,故答案为:58°或32°.18.【答案】50°【解析】如图,连接OB ,OC ,∵∠BAC =50°,AO 为∠BAC 的平分线,∴∠BAO =12∠BAC =12×50°=25°.又∵AB =AC ,∴∠ABC =∠ACB =65°.∵DO 是AB 的垂直平分线,∴OA =OB ,∴∠ABO =∠BAO =25°,∴∠OBC =∠ABC –∠ABO =65°–25°=40°.∵AO 为∠BAC 的平分线,AB =AC ,∴直线AO 垂直平分BC ,∴OB =OC ,∴∠OCB =∠OBC =40°,∵将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,题∴OE =CE .∴∠COE =∠OCB =40°;在△OCE 中,∠OEC =180°–∠COE –∠OCB =180°–40°–40°=100°,∴∠CEF =12∠CEO =50°.故答案为:50°. 三、19.【解析】(1)原式=22222x xy y xy x -+-+=2233x xy y -+;(3分)(2)原式=231x+11(2)x x x x --+⨯++()(1)=223111(2)x x x x -++⨯++=2(2)(2)11(2)x x x x x -++⨯++=22xx -+.(6分)20.【解析】(1)4x 2–16=4(x 2–4)=4(x +2)(x –2);(3分) (2)(x +y )2–10(x +y )+25 =(x +y –5)2.(6分) 21.【解析】1=2314,43AEC ABD ∠∠=∠∠=∠+∠∠=∠+∠,,∴AEC ABD ∠=∠.(2分)45∠=∠,AB AE =∴.在ABD △和AEC 中1=2AB AE ABD AEC ∠∠⎧⎪=⎨⎪∠=∠⎩,(4分)∴ABD AEC ≅.∴BD =EC .(6分)22.【解析】∵五边形ABCDE 的内角都相等,∴∠C =∠D =∠AED =180°×(5–2)÷5=108°,(2分)又EF 平分∠AED , ∴°1542FED AED ∠=∠=,(4分)∴在四边形DEFC 中360EFC D C FED ︒∠=-∠-∠-∠=90°,∴EF ⊥BC .(8分)23.【解析】(1)点A (3,4),B (1,2),C (5,1(3分)(2)如图所示,△A 'B 'C '即为所求,(5分)点A ′(﹣3,4),B ′(﹣1,2),C ′(﹣5,1).(8密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题24.【解析】(1)在△ABE 和△DCE中,A D AEB DEC AB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△DCE (AAS ),∴BE =EC ,∠ABE =∠DCE ,(4分)∴∠EBC =∠ECB ,∵∠EBC +∠ABE =∠ECB +∠DCE ,∴∠ABC =∠DBC ,(6分)在△ABC 和△DCB中,A DAB DC ABC DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△DCB (ASA );(8分) (2)∵∠AEB =50°,∴∠EBC +∠ECB =50°, ∵∠EBC =∠ECB ,∴∠EBC =25°.(10分)25.【解析】(1)这个乘法公式是(a +b )2=a 2+2ab +b 2,故答案为:(a +b )2=a 2+2ab +b 2;(4分)(2)要拼成一个长为(a +2b ),宽为(a +b )的大长方形,根据(a +2b )(a +b )=a 2+3ab +2b 2,则需要1号卡片1张,2号卡片2张,3号卡片3张.故答案为:1;2;3.(10分)26.【解析】(1)设乙队单独完成这项工程需要x 天,依题意,得:101212130x ++=,解得x =45,经检验,x =45是所列分式方程的解,且符合题意. 答:乙队单独完成这项工程需要45天.(6分) (2)甲乙两队全程合作需要1÷(11+3045)=18(天),甲队单独完成该工程所需费用为3.5×30=105(万元); ∵乙队单独完成该工程需要45天,超过35天的工期, ∴不能由乙队单独完成该项工程;甲、乙两队全程合作完成该工程所需费用为(3.5+2)×18=99(万元).∵105>99,∴在不超过计划天数的前提下,由甲、乙两队全程合作完成该工程省钱.(12分) 27.【解析】(1)∵45ABC ∠=,CD AB ⊥,∴45ABC DCB ∠=∠=,∴BD DC =,∵90BDC MDN ∠=∠=,∴BDN CDM ∠=∠,(3分) ∵CD AB ⊥,BM AC ⊥, ∴90ABM A ACD ∠=-∠=∠,在DBN ∆和DCM ∆中,BDN CDM BD DCDBN DCM ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴DBN ∆≌DCM ∆;(6分) (2)结论:NEME CM ,证明:由(1)DBN ∆≌DCM ∆可得DM DN =. 作DF MN ⊥于点F , 又ND MD ⊥,∴DF FN =,在DEF ∆和CEM ∆中,DEF CEM DFE CMEDE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴DEF ∆≌CEM ∆,∴EF EM =,DF CM =,∴CM DF FN NE FE NE ME ===-=-.(12分)。

江苏省盐城市滨海县第一初级中学教育集团2022-2023学年八年级上学期第二次练习数学试题

江苏省盐城市滨海县第一初级中学教育集团2022-2023学年八年级上学期第二次练习数学试题

14.已知函数23(2)4my m x -=-+是关于x 的一次函数,则m的值是_______.15.在弹簧限度内,弹簧挂上物体后弹簧的长度与所挂物体的质量之间的关系如表:21.已知实数9a +的一个平方根是5-,2b a -的立方根是2-.(1)求a 、b 的值.(2)求2a b +的算术平方根.四、填空题22.如图,ABC V 中,AB AC =,120BAC Ð=°,AD 是BC 边上的中线,且BD BE =,计算ADE Ð的度数.五、解答题23.已知:y 与2x -成正比例,且当4x =时,6y =(1)写出y 与x 之间的函数关系式;(2)若点(21,3)m +是该函数图象上的一点,求m 的值.24.如图,在正方形网格中,每个小正方形的边长为1,A 、B 、C 三点都在格点上(网格线的交点叫做格点),现将ABC V 先向上平移4个单位长度,再向右平移3个单位长度就得到111A B C △(1)问题解决:如图1,在等腰直角ABC V 中,90ACB а=,DE ,AD DE ^于D ,BE DE ^于E ,求证:ADC CEB △≌△(2)问题探究:如图2,在等腰直角ABC V 中,90ACB а=,CE ,AD CE ^于D ,BE CE ^于E , 3.2cm 2.3cm AD DE ==,解得:3k =,∴y 与x 函数关系式为3(2)36y x x =-=-;(2)把点(21,3)m +代入36y x =-得:()33216m =+-,解得1m =.【点睛】此题考查了待定系数法求一次函数解析式,以及一次函数图像上点的坐标特征,熟练掌握待定系数法是解本题的关键.24.(1)()5,3,画图见解析(2)5(3)等腰直角三角形,理由见解析【分析】(1)将A 、B 、C 三点先向上平移4个单位长度,再向右平移3个单位长度,得到对应点,顺次连接即可;(2)利用轴对称求最短路径,作点B 关于x 轴的对称点B ¢,连接B C ¢与x 轴交于点P ,B C ¢的长度即为PB PC +的最小值;(3)利用勾股定理分别求出三条边长,再利用勾股定理的逆定理判断是否是直角三角形.【详解】(1)解:111A B C △如下图所示:(3)解:ABC V 是等腰直角三角形,理由如下:由勾股定理可知:22224117AB BC ==+=,2225334AC =+=,\AB BC =,222AB BC AC +=,\ABC V 是等腰直角三角形.【点睛】本题考查平移作图,勾股定理及其逆定理,轴对称求最短路径,掌握平移作图方法是解题的关键.25.(1)见解析;(2)线段ED 的长为13.【分析】(1)利用等腰直角三角形的性质,证明△ACE ≌△BCD ,即可解答;(2)由AD =5,AB =17,求得BD =17-5=12,由(1)可知△ACE ≌△BCD ,结合△ABC 是等腰直角三角形,得到∠EAC =∠B =45°,AE =BD =12,进而∠EAD =90°,根据勾股定理即可解答.【详解】解:(1)∵△ABC 和△ECD 都是等腰直角三角形,∴AC =BC ,CD =CE ,∵∠ACB =∠DCE =90°,∴∠ACE +∠ACD =∠BCD +∠ACD ,∴∠ACE =∠BCD ,在△ACE 和△BCD 中,AC BC ACE BCD CE CD =ìïÐ=Ðíï=î,∴△ACE ≌△BCD (SAS ),∴BD =AE ;(2)∵AD =5,AB =17,∴BD =17-5=12,由(1)得AE =BD =12,∵△ACE ≌△BCD ,△ABC 是等腰直角三角形,∴∠EAC =∠B =∠BAC =45°,ADC CEB DAC ECB AC CB Ð=ÐìïÐ=Ðíï=î,∴AAS ADC CEB V V ≌();(2)∵,BE CE AD CE ^^,∴90ADC CEB Ð=Ð=°,∴90CBE ECB Ð+Ð=°,∵90ACB Ð=°,∴90ECB ACD Ð+Ð=°,∴ACD CBE Ð=Ð,在ADC △和CEB V 中,ACD CBE ADC CEB AC CB Ð=ÐìïÐ=Ðíï=î,∴AAS ADC CEB V V ≌(),∴ 3.2cm,AD CE CD BE ===,∴()3.2 2.30.9BE CD CE DE cm ==-=-=,即BE 的长为0.9cm ;(3)如图3,点B 在第一象限过点C 作直线l x ∥轴,交y 轴于点G ,过A 作AE l ^于点E ,过B 作BF l ^于点F ,交x 轴于点H ,则90AEC CFB ACB Ð=Ð=Ð=°,∵(1,0),(1,3)A C -,∴1,1,3EG OA CG FH AE OG ======,∴2CE EG CG =+=,∵90,90ACE EAC ACE FCB °°Ð+Ð=Ð+Ð=,∴EAC FCB Ð=Ð,在AEC △和CFB V 中,AEC CFB EAC FCB AC CB Ð=ÐìïÐ=Ðíï=î,∴(AAS)AEC CFB ≌V V ,∴3,2AE CF BF CE ====,∴134,321FG CG CF BH FH BF =+=+==-=-=,∴B 点坐标为(4,1).如图4,点B在第二象限.过点C 作CE OA ^于E ,过点B 作BF CE ^于点F ,交y 轴于点G .∵(1,0),(1,3)A C -,∴1,1,3FG OE OA CE ====,∴112AE =+=.∵90,90ACE BCF ACE CAE °°Ð+Ð=Ð+Ð=,∴CAE BCF Ð=Ð,在AEC △和CFB V 中,AEC CFB CAE BCF AC CB Ð=ÐìïÐ=Ðíï=î,∴(AAS)AEC CFB ≌V V ,∴2,3AE CF BF CE ====,∴312,325BG BF FG EF CE CF =-=-==+=+=,∴B 点坐标为(2,5)-.综上,B点坐标为(2,5)-或(4,1).【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,余角的性质,坐标与图形,以及“一线三垂直”模型等知识,正确作出辅助线构造全等三角形是解答本题的关键.。

2020-2021年秋季八年级上学期期末考试数学试题(含答案) (12)

2020-2021年秋季八年级上学期期末考试数学试题(含答案)  (12)

2020-2021年秋季八年级上学期期末考试数学试题数学试题一、选择题(本大题共10小题,共30分)1.下列运算正确的是()A. a2+a2=a4B. (-b2)3=-b6C. 2x•2x2=2x3D. (m-n)2=m2-n22.一个正数的两个平方根分别是2a-1与-a+2,则a的值为()A. 1B. -1C. 2D. -23.如图,在△ABC中,∠C = 90°,AB的垂直平分线MN分别交AC,AB于点D,E.若∠CBD:∠DBA = 2 :1,则∠A为()A. 20°B. 25°C. 22.5°D. 30°4.如图,已知等腰三角形ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.∠EBC=∠BACB. AE=BEC.AE=ECD. ∠EBC=∠ABE5.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长为()A. 4B. 16C.D. 4或6.如图,在△ABC中,AB=8,BC=10,AC=6,则BC边上的高A. 8AD为()B. 9C. D. 107.用反证法证明“在一个三角形中,至少有一个内角小于或等于60°”时应假设()A. 三角形中有一个内角小于或等于60°B. 三角形中有两个内角小于或等于60°C. 三角形中有三个内角小于或等于60°D. 三角形中没有一个内角小于或等于60°8.小明家下个月的开支预算如图所示,如果用于衣服上的支是200元,则估计用于食物上的支出是()A. 200元B. 250元C. 300元D. 3509.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A. 0.1B. 0.2C. 0.3D. 0.410.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点B落在点B′处,则重叠部分△AFC的面积为()A. 12B. 10C. 8D. 6二、填空题(本大题共5小题,共15分)11.计算:|-2|-=______.12.如图,以数轴的单位长度线段为边长作一个正方形,以表示数2 的点为圆心,正方形对角线长为半径画半圆,交数轴于点A和点B,则点A表示的数是_____________.13.如图示,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是______.14.实数,-2,π,,中,其中无理数出现的频数是______.15.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为______.三、解答题(本大题共9小题,共75分)16.(8分)已知2a-1的算术平方根是3,3a+b-1的平方根是±4,c是的整数部分,求a+2b-c的平方根.17.(8分)计算(1)(3x-2)(2x+3)-(x-1)2(2).18.(9分)如图,△ABC中,AB=BC,∠ABC=45°,BE⊥AC于点E,AD⊥BC于点D,BE与AD相交于F.(1)求证:BF=AC;(2)若CD=1,求AF的长.19.(9分)如图,四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°.(1)判断∠D是否是直角,并说明理由.(2)求四边形ABCD的面积20.(9分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m=______;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为______;(4)已知该校共有1200名学生,请你估计该校约有______名学生最喜爱足球活动.21.(10分)如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米.(1)此时梯子顶端离地面多少米?(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?22.(10分)为整治城市街道的汽车超速现象,交警大队在某街道旁进行了流动测速.如图,一辆小汽车在某城市街道上直行,某一时刻刚好行驶到离车速检测仪A60m的C处,过了4s后,小汽车到达离车速检测仪A100m的B处,已知该段城市街道的限速为60km/h,请问这辆小汽车是否超速?23.(12分)如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)当t=2秒时,求PQ的长;(2)求出发时间为几秒时,△PQB是等腰三角形?(3)若Q沿B→C→A方向运动,则当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.参考答案1.B2.B3.C4.A5.D6.C7.D8.C9.A 10.B11.0 12.2-13.5 14.2 15.1016.解:由题意得:,………………………………………….2分∴a=5,b=2.……………………………………………………………………….4分∵9<13<16,∴3<<4.∴c=3.………………………………………………………………………………5分∴a+2b-c=6.…………………………………………………………………………7分∴a+2b-c的平方根是±.………………………………………………………….8分17.解:(1)(3x-2)(2x+3)-(x-1)2=6x2+9x-4x-6-x2+2x-1………………………………………………………………..2分=5x2+7x-7;…………………………………………………………………………4分(2)原式=x2-4y2-2xy+4y2+2xy……………………………………………………………6分=x2.………………………………………………………………………8分18.解:(1)AD⊥BD,∠BAD=45°,∴AD=BD,…………………………………………………1分∵∠BFD=∠AFE,∠AFE+∠CAD=90°,∠CAD+∠ACD=90°,∴∠BFD=∠ACD,…………………………………………..2分在△BDF和△ACD中,,∴△BDF≌△ACD(AAS),………………………………..4分∴BF=AC;……………………………………………….5分(2)连接CF,…………………………………………………………6分∵△BDF≌△ADC,∴DF=DC,∴△DFC是等腰直角三角形.……………………………………………..7分∵CD=1,CF=∵AB=BC,BE⊥AC,∴AE=EC,BE是AC的垂直平分线.∴AF=CF,………………………………………………………………8分∴AF=.………………………………………………………………9分19解:(1)连接AC,…………………………………………………1分∵∠B=90°,∴AC2=BA2+BC2=400+225=625,………………………2分∵DA2+CD2=242+72=625,…………………………………3分∴AC2=DA2+DC2,…………………………………………4分∴△ADC是直角三角形,即∠D是直角;…………………5分(2)∵S四边形ABCD=S△ABC+S△ADC,………………………………6分∴…………………….7分…………………………………………….8分=234.……………………………………………………………………9分20.(1)150 ;…………………………………………………………2分(2)“足球“的人数=150×20%=30人,……………………………..4分补全上面的条形统计图如图所示;…………5分(3)36°;…………………………………………………………………………7分(4)240…………………………………………………………………………….9分21.解:(1)根据题意得△ABE是直角三角形……………………1分AB2=BE2+AE2…………………………………………………………………………………2分∵AB=25米,BE=7米,梯子距离地面的高度AE==24米.……………….4分答:此时梯子顶端离地面24米;……………………………5分(2)∵梯子下滑了4米,即梯子距离地面的高度CE=(24-4)=20米,……………….7分∴BD+BE=DE===15,………………………………………………8分∴DE=15-7=8(米),即下端滑行了8米.……………………………………………….9分答:梯子底端将向左滑动了8米.………………………………………………………..10分22.解:超速.…………………………………………………………………………….1分理由如下:在Rt△ABC中,AC=60m,AB=100m,……………………………………………………3分由勾股定理可得BC===80m,……………………………………6分∴汽车速度为80÷4=20m/s=72km/h,……………………………………………………….8分∵72>60,……………………………………………………………………………………..9分∴这辆小汽车超速了.………………………………………………………………………10分23.(1)解:(1)BQ=2×2=4cm,……………………………………………………….1分BP=AB-AP=8-2×1=6cm,…………………………………………………………………..2分∵∠B=90°,=2(cm);………………………………………………4分(2)解:根据题意得:BQ=BP,…………………………………………………………5分即2t=8-t,……………………………………………………………………………………6分解得:;…………………………………………………………………………………7分即出发时间为秒时,△PQB是等腰三角形;………………………………………………8分(3)解:分三种情况:①当CQ=BQ时,如图1所示:则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°,∠A+∠C=90°,∴∠A=∠ABQ∴BQ=AQ,∴CQ=AQ=5∴BC+CQ=11,∴t=11÷2=5.5秒.…………………………………………9分②当CQ=BC时,如图2所示:则BC+CQ=12∴t=12÷2=6秒.………………………………………10分③当BC=BQ时,如图3所示:过B点作BE⊥AC于点E,则(cm)∴(cm),∴CQ=2CE=7.2cm,∴BC+CQ=13.2cm,∴t=13.2÷2=6.6秒.……………………………………………..11分由上可知,当t为5.5秒或6秒或6.6秒时,△BCQ为等腰三角形.…………….12分。

2020--2021 学年上学期人教版 八年级数学试题

2020--2021 学年上学期人教版 八年级数学试题

2020-2021上学期人教版八年级数学期末试卷一.选择题(共12小题)1.《九章算术》中有注:“今两算得失相反,要令正负以名之.”意思是:“今有两数若其意义相反,则分别叫做正数和负数.”如果高于海平面200米记为+200米,那么低于海平面300米应记为()A.﹣300米B.+500米C.+300米D.﹣100米2.设三个互不相等的有理数,既可表示为1、a+b、a的形式,又可表示为0、、b的形式,则a2017+b2017的值为()A.0B.﹣1C.1D.23.设■,●,▲分别表示三种不同的物体,如图所示,前两架天平保持平衡,如果要使第三架天平也平衡,那么以下方案不正确的是()A.B.C.D.4.已知方程x2k﹣1+k=0是关于x的一元一次方程,则方程的解等于()A.﹣1B.1C.D.﹣5.点A的坐标(x,y)满足(x+3)2+|y+2|=0,则点A的位置在()A.第一象限B.第二象限C.第三象限D.第四象限6.如图,已知直线l1、l2经过坐标原点O,且l1与x轴所夹锐角为15°,l2与y轴所夹锐角为30°.在直线l1和l2之间依次构造正方形A1B1C1A2、正方形A2B2C2A3,正方形A3B3C3A4正方形A4B4C4A5…点A1、点A2、点A3、点A4、点A5…依次落在直线l1上,点B1、点B2、点B3、点B4…依次落在直线l2上,且A1B1=1,则点B2020的坐标为()A.(22018,22018)B.(22017,22017)C.(22018,22018)D.(22018,22018)7.如图形状的四张纸板,按图中线经过折叠可以围成一个直三棱柱的是()A.B.C.D.8.用一个平面去截正方体,截面图形不可能是()A.B.C.D.9.如图,弹性小球从点P(0,1)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到正方形的边时的点为P1(﹣2,0),第2次碰到正方形的边时的点为P2,…,第n次碰到正方形的边时的点为P n,则点P2020的坐标是()A.(0,1)B.(﹣2,4)C.(﹣2,0)D.(0,3)10.在△ABC中,AB=AC,点D在边AC上,连接BD,点E在边AB上,△BCD和△BED 关于BD对称,若△ADE是等腰三角形,则∠BAC=()A.36°B.72°C.90°D.108°11.以下调查中,最适宜采用普查方式的是()A.检测某批次汽车的抗撞击能力B.调查黄河的水质情况C.调查全国中学生视力和用眼卫生情况D.检查我国“神州八号”航天飞船各零部件的情况12.要将9个参加数学竞赛的名额分配给6所学校,每所学校至少要分得一个名额,那么不同的分配方案共有()A.56种B.36种C.28种D.72种二.填空题(共6小题)13.如果小明的爸爸收入10万元记作+10万元,那么小明的爸爸支出4万元记作万元.14.已知x=﹣3是方程ax﹣6=a+10的解,则a=.15.写出一个在x轴正半轴上的点坐标.16.如图,正方体的每条棱上放置相同数目的小球,设每条棱上的小球数为a,则正方体上小球总数为(用含a的代数式表示).17.如图,在6×6的正方形网格中,选取13个格点,以其中的三个格点A,B,C为顶点画△ABC,请你在图中以选取的格点为顶点再画出一个△ABP,使△ABP与△ABC成轴对称.这样的P点有个?(填P点的个数)18.进行数据的收集调查,一般可分为以下6个步骤,但它们的顺序弄乱了.正确的顺序是.(用字母按顺序写出即可).A.明确调查问题B.记录结果C.得出结论D.确定调查对象E.展开调查F.选择调查方法.三.解答题(共9小题)19.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫(A,B,C,D都在格点上).规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中:(1)A→C(,),B→C(,),C→D(,);(2)若这只甲虫的行走路线为A→B→C→D,则该甲虫走过的路程是;(3)若这只甲虫从A处去甲虫P处的行走路线依次为(+3,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置.(4)若图中另有两个格点M、N,且M→A(2﹣a,b﹣5),M→N(4﹣a,b﹣3),则N →A应记为什么?20.在数轴上点A表示数a,点B表示数b,点C表示数c;a是最大的负整数,a、b、c 满足|a+b|+(c﹣5)2=0.(1)填空:a=,b=,c=;(2)P为数轴上一动点,其对应的数是x,当P在线段AC上,且P A+PB+PC=7时,求x的值.(3)若点P,Q分别从A,C同时出发,匀速相向运动,点P的速度为3个单位/秒,点Q的速度为1个单位/秒.当点P运动到C后迅速以原速返回A;点Q运动至B点后停止运动,同时P点也停止运动.求在此运动过程中P,Q的相遇点在数轴上对应的数.21.我们规定,若关于x的一元一次方程mx=n(m≠0)的解为n﹣m,则称该方程为差解方程,例如:5x=的解为x=﹣5,则该方程5x=就是差解方程.请根据上边规定解答下列问题(1)若关于x的一元一次方程3x=a+1是差解方程,则a=.(2)若关于x的一元一次方程3x=a+b是差解方程且它的解为x=a,求代数式4a2b﹣[2a2﹣2(ab2﹣2a2b)]的值(提示:若m+n+1=m,移项合并同类项可以把含有m的项抵消掉,得到关于n的一元一次方程,求得n=﹣1)22.计算:(1)2+(﹣1)2019+(2+1)(﹣2﹣1)﹣|﹣3×|化简:(2)﹣3(2x2﹣xy)+4(x2+xy﹣6)解方程:(3)23.在平面直角坐标系xOy中,对于点P(a,b)和点Q(a,b′),给出如下定义:若b′=,则称点Q为点P的限变点.例如:点(2,3)的限变点的坐标是(2,2),点(﹣2,﹣5)的限变点的坐标是(﹣2,5),点(1,3)的限变点的坐标是(1,3).(1)①点(,﹣1)的限变点的坐标是;②如图1,在点A(﹣2,1)、B(2,1)中有一个点是直线y=2上某一个点的限变点,这个点是;(填“A”或“B”)(2)如图2,已知点C(﹣2,﹣2),点D(2,2),若点P在射线OC和OD上,其限变点Q的纵坐标b的取值范围是b′≥m或b′≤n,其中m>n,令s=m﹣n,直接写出s的值.(3)如图3,若点P在线段EF上,点E(﹣2,﹣5),点F(k,k﹣3),其限变点Q的纵坐标b′的取值范围是﹣2≤b′≤5,直接写出k的取值范围.24.综合与实践某“综合与实践”小组开展了“长方体纸盒的制作”实践活动,他们利用边长为acm的正方形纸板制作出两种不同方案的长方体盒子(图1为无盖的长方体纸盒,图2为有盖的长方体纸盒),请你动手操作验证并完成任务.(纸板厚度及接缝处忽略不计)动手操作一:根据图1方式制作一个无盖的长方体盒子.方法:先在纸板四角剪去四个同样大小边长为bcm的小正方形,再沿虚线折合起来.问题解决:(1)该长方体纸盒的底面边长为cm;(请你用含a,b的代数式表示)(2)若a=24cm,b=6cm,则长方体纸盒的底面积为多少cm2;动手操作二:根据图2方式制作一个有盖的长方体纸盒.方法:先在纸板四角剪去两个同样大小边长为bcm的小正方形和两个同样大小的小长方形,再沿虚线折合起来.拓展延伸:(3)该长方体纸盒的体积为多少cm3?(请你用含a,b的代数式表示)25.如图,点P在∠AOB的内部,点C和点P关于OA对称,点P关于OB对称点是D,连接CD交OA于M,交OB于N.(1)①若∠AOB=60°,则∠COD=°;②若∠AOB=α,求∠COD的度数.(2)若CD=4,则△PMN的周长为.26.2020年注定是不平凡的一年,新年伊始,一场突如其来的疫情席卷全国,全国人民万众一心,抗战疫情.为了早日取得抗疫的胜利,各级政府、各大新闻媒体都加大了对防疫知识的宣传.某校为了了解初一年级共480名同学对防疫知识的掌握情况,对他们进行了防疫知识测试.现随机抽取甲、乙两班各15名同学的测试成绩(满分100分)进行整理分析,过程如下:【收集数据】甲班15名学生测试成绩分别为:78,83,89,97,98,85,100,94,87,90,93,92,99,95;100.乙班15名学生测试成绩中90≤x<95的成绩如下:91,92,94,90,93【整理数据】:班级75≤x<8080≤x<8585≤x<9090≤x<9595≤x≤100甲11346乙12354【分析数据】:班级平均数众数中位数方差甲92a9341.1乙9087b50.2【应用数据】:(1)根据以上信息,可以求出:a=分,b=分;(2)若规定测试成绩92分及其以上为优秀,请估计参加防疫知识测试的480名学生中成绩为优秀的学生共有多少人;(3)根据以上数据,你认为哪个班的学生防疫测试的整体成绩较好?请说明理由(一条理由即可).27.120人参加数学竞赛,试题共有5道大题,已知第1、2、3、4、5题分别有96、83、74、66、35人做对,如果至少做对3题便可获奖,问:这次竞赛至少有几人获奖?2020-2021上学期人教版八年级数学期末试卷参考答案与试题解析一.选择题(共12小题)1.【分析】根据相反意义的量可以用正负数来表示,高于海平面200米记为+200米,那么低于海平面300米应记为﹣300米.【解答】解:如果高于海平面200米记为+200米,那么低于海平面300米应记为﹣300米.故选:A.2.【分析】由题意三个互不相等的有理数,既可表示为1、a+b、a的形式,又可表示为0、、b的形式,可知这两个三数组分别对应相等.从而判断出a、b的值.代入计算出结果.【解答】解:∵三个互不相等的有理数,既可表示为1、a+b、a的形式,又可表示为0、、b的形式,∴这两个三数组分别对应相等.∴a+b、a中有一个是0,由于有意义,所以a≠0,则a+b=0,所以a、b互为相反数.∴=﹣1,b=1,a=﹣1.∴a2017+b2017=(﹣1)2017+12017=0.故选:A.3.【分析】根据第一个天平可得2●=▲+■,根据第二个天平可得●+▲=■,可得出答案.【解答】解:根据图示可得:2●=▲+■①,●+▲=■②,由①②可得●=2▲,■=3▲,则■+●=5▲=2●+▲=●+3▲.故选:A.4.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).根据定义可列出关于k的方程,求解即可.【解答】解:由一元一次方程的特点得,2k﹣1=1,解得:k=1,∴一元一次方程是:x+1=0解得:x=﹣1.故选:A.5.【分析】根据非负数的性质求得x,y的值,再进一步判断点的位置.【解答】解:∵(x+3)2+|y+2|=0,∴x=﹣3<0,y=﹣2<0.则点A在第三象限.故选:C.6.【分析】根据一次函数,得出OB1、OB2等的长度,继而得知B1、B2等点的坐标,从中找出规律,进而可求出点B2020的坐标.【解答】解:∵l1与x轴所夹锐角为15°,l2与y轴所夹锐角为30°,∴l1与l2所夹锐角为45°,l2与x轴所夹锐角为60°,∴△A1B1O,△A2B2O,△A3B3O,…都是等腰直角三角形,∴B1O=20,B2O=21,B3O=22,…,B n O=2n﹣1,∴点B2020的坐标为(22020﹣1×,22020﹣1×),即(22018,22018).故选:A.7.【分析】根据直三棱柱的特点作答.【解答】解:A、围成三棱柱时,两个三角形重合为同一底面,而另一底面没有,故不能围成直三棱柱;B、D的两底面不是三角形,故也不能围成直三棱柱;只有C经过折叠可以围成一个直三棱柱.故选:C.8.【分析】正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.据此选择即可.【解答】解:正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.因此不可能是七边形,故选:D.9.【分析】按照反弹规律依次画图,写出点的坐标,再找出规律即可.【解答】解:如图,根据反射角等于入射角画图,可知光线从P2反射后到P3(0,3),再反射到P4(﹣2,4),再反射到P5(﹣4,3),再反射到P点(0,1)之后,再循环反射,每6次一循环,2020÷6=336……4,即点P2020的坐标是(﹣2,4),故选:B.10.【分析】如图,设∠A=x.首先证明∠ABC=∠C=2x,利用三角形的内角和定理构建方程求出x即可.【解答】解:如图,设∠A=x.∵EA=ED,∴∠A=∠ADE=x,∵∠BED=∠A+∠ADE=2x,△BDE与△BDC关于BD对称,∴∠BED=∠C=2x,∵AB=AC,∴∠ABC=∠C=2x,∵∠A+∠ABC+∠C=180°,∴5x=180°,∴x=36°,∴∠A=36°,故选:A.11.【分析】检测某批次汽车的抗撞击能力不适宜用普查,可采用抽查;调查黄河的水质情况,不容易使用普查;调查全国中学生视力和用眼卫生情况,由于数量多,分布不均等因素,不适合普查,检查我国“神州八号”航天飞船各零部件的情况,必须使用普查,【解答】解:检测某批次汽车的抗撞击能力不适宜用普查,可采用抽查;调查黄河的水质情况,不容易使用普查;调查全国中学生视力和用眼卫生情况,由于数量多,分布不均等因素,不适合普查,检查我国“神州八号”航天飞船各零部件的情况,必须使用普查,故选:D.12.【分析】可以将问题转化为9个人站成一排,每所学校至少要1名,就有8个空然后插入5个板子把他们隔开,从8个里选5个即可答案.【解答】解:可以利用9个人站成一排,每所学校至少要1名,就有8个空,然后插入5个板子把他们隔开,从8个里选5个,就是C85==56,故选:A.二.填空题(共6小题)13.【分析】用正负数来表示具有意义相反的两种量:收入记作正,则支出就记为负,由此得出小明的爸爸支出4万元,记作﹣4万元.【解答】解:如果小明的爸爸收入10万元记作+10万元,那么小明的爸爸支出4万元记作﹣4万元.故答案为:﹣4.14.【分析】根据方程解的定义,将方程的解代入方程可得关于字母系数a的一元一次方程,解方程可求出a的值.【解答】解:把x=﹣3代入方程ax﹣6=a+10,得:﹣3a﹣6=a+10,解方程得:a=﹣4.故填:﹣4.15.【分析】根据x的正半轴上点的横坐标大于零,纵坐标等于零,可得答案.【解答】解:写出一个在x轴正半轴上的点坐标(1,0),故答案为:(1,0).16.【分析】每条棱上有a个小球,12条棱就有12a个小球,这时,每个顶点处的小球被多计算了2次,于是可得答案.【解答】解:因为正方体有12条棱,所以12条棱上有12a个小球,但每个顶点处的小球被多计算2次,8个顶点就被多计算2×8=16次,所以正方体上小球总数为12a﹣16,故答案为:12a﹣16.17.【分析】根据轴对称图形的性质画出图形即可.【解答】解:如图,满足条件的△ABP有2个,故答案为2.18.【分析】根据数据的收集调查的步骤,即可解答.【解答】解:进行数据的收集调查,一般可分为以下6个步骤:明确调查问题,确定调查对象,选择调查方法,展开调查,记录结果,得出结论;故答案为:ADFEBC.三.解答题(共9小题)19.【分析】(1)根据规定及实例可知A→C记为(+4,+4),B→C记为(+3,0),C→D 记为(+1,﹣3);(2)根据点的运动路径,表示出运动的距离,相加即可得到行走的总路径长;(3)按题目所示平移规律,通过平移即可得到点P的坐标,在图中标出即可.(4)根据M→A(2﹣a,b﹣5),M→N(4﹣a,b﹣3),可知4﹣a﹣(2﹣a)=2,b﹣3﹣(b﹣5)=2,从而得到点A向右走2个格点,向上走2个格点到点N,从而得到N→A应记为什么.【解答】解:(1)∵规定:向上向右走为正,向下向左走为负,∴A→C记为(+4,+4),B→C记为(+3,0),C→D记为(+1,﹣3);故答案为:+4;+4;+3;0;+1;﹣3;(2)据已知条件可知:A→B表示为:(+1,+4),B→C记为(+3,0),C→D记为(+1,﹣3);∴该甲虫走过的路线长为1+4+3+1+3=12.故答案为:12;(3)P点位置如图所示.(4)∵M→A(2﹣a,b﹣5),M→N(4﹣a,b﹣3),∴4﹣a﹣(2﹣a)=2,b﹣3﹣(b﹣5)=2,∴从而得到点A向右走2个格点,向上走2个格点到点N,∴N→A应记为(﹣2,﹣2).20.【分析】(1)由a是最大的负整数可得a为﹣1,再结合|a+b|+(c﹣5)2=0,可求得b 与c的值;(2)由P A+PB+PC=7,结合数轴上的两点所表示的距离的含义,分类去掉绝对值号,并分别解得x的值即可.(3)设运动时间为t,分两种情况分别得出关于t的方程并求解即可:①当P、Q第一次相遇时;②当P到达C点返回追上Q时.【解答】解:(1)∵a是最大的负整数,∴a=﹣1;∵|a+b|+(c﹣5)2=0,|a+b|≥0,(c﹣5)2≥0,∴a+b=0,c﹣5=0,∴b=﹣a=﹣(﹣1)=1,c=5.故答案为:﹣1,1,5;(2)∵P A+PB+PC=7,∴|x+1|+|x﹣1|+|x﹣5|=7,①当点P在线段AB上,即当﹣1≤x<1时,x+1+1﹣x+5﹣x=7,解得:x=0;②当点P在线段BC上,即当1≤x≤5时,x+1+x﹣1+5﹣x=7,解得:x=2.综上所述,x的值是0或2.(3)设运动时间为t,①当P、Q第一次相遇时,有:3t+t=5﹣(﹣1),解得:t=1.5,此时,相遇点在数轴上对应的数为5﹣1.5=3.5;②当P到达C点返回追上Q时,有:3t﹣t=5﹣(﹣1)解得:t=3,此时,相遇点在数轴上对应的数为5﹣3=2.∴在此运动过程中P,Q的相遇点在数轴上对应的数是3.5或2.21.【分析】(1)根据差解方程的定义,得到关于a的新方程,求解即可;(2)根据差解方程的定义,先求出a、b的值,再化简代数式,把a、b的值代入计算即可.【解答】解:(1)∵关于x的一元一次方程3x=a+1是差解方程,∴=a+1﹣3解,得故答案为:(2)∵关于x的一元一次方程3x=a+b是差解方程且它的解为x=a,∴a==a+b﹣3解,得,b=3.4a2b﹣[2a2﹣2(ab2﹣2a2b)]=4a2b﹣(2a2﹣2ab2+4a2b)=4a2b﹣2a2+2ab2﹣4a2b=﹣2a2+2ab2当,b=3时,原式=﹣2×+2××9=.22.【分析】(1)根据有理数的混合运算的顺序和计算方法进行计算即可;(2)按照整式加减的计算方法进行计算;(3)依照一元一次方程的求解步骤求解即可.【解答】解:(1)原式=2+(﹣1)+(﹣9)﹣1=﹣9;(2)原式=﹣6x2+3xy+4x2+4xy﹣24=﹣2x2+7xy﹣24;(3)去分母得4(7x﹣1)﹣6(5x+1)=24﹣3(3x+2)去括号得28x﹣4﹣30x﹣6=24﹣9x﹣6移项得28x﹣30x+9x=24﹣6+4+6合并同类项得7x=28系数化为1得x=4.23.【分析】(1)①利用限变点的定义直接解答即可;②先利用逆推原理求出限变点A(﹣2,1)、B(2,1)对应的原来点坐标,然后把原来点坐标代入到y=2,满足解析式的就是答案;(2)先OC,OD的关系式,再求出点P的限变点Q满足的关系式,然后根据图象求出m,n的值,从而求出S即可;(3)先求出线段的关系式,再求出点P的限变点所满足的关系式,根据图象求解即可.【解答】(1)①∵a=<2,∴b′=|b|=|﹣1|=1,∴坐标为(,1).故答案为(,1).②s=3.∵对于限变点来说,横坐标保持不变,∴限变点A(﹣2,1)对应的原来点的坐标为:(﹣2,1)或(﹣2,﹣1),限变点B(2,1]对应的原来点的坐标为:(2.2),∵(2,2)满足y=2,∴这个点是B,故答案为:B;(2)∵点C的坐标为(﹣2,﹣2),∴OC的关系式为:y=x(x≤0),∵点D的坐标为(2,﹣2),∴OD的关系式为:y=﹣x(x≥0),∴点P满足的关系式为:y=,当x≥2时:b'=一x﹣1,当0<x<2时:b'=﹣x﹣1,当x≤0时,b=|x|=﹣x,图象如图1所示,通过图象可以得出:当x≥2时,b'≤﹣3,n=﹣3,当x<2时,b'≥0,∴m=0,∴s=m﹣n=0﹣(﹣3)=3;(3)设线段E的关系式为:y=ax+c(a≠0,﹣2≤x≤k,k>﹣2),把E(﹣2,﹣5),F(k,k﹣3)代入,得,解得,∴线段EP的关系式为y=x一3(﹣2≤x≤k,k>﹣2),∴线段E上的点P的限变点Q的纵坐标满足的关系式b'=,图象如图2所示:当x=2时,b'取最小值,b'=2﹣4=﹣2,当b'=5时,x﹣4=5或﹣x+3=5,解得:x=9或x=﹣2,当b'=1时,x﹣4=1,解得:x=5,∵﹣2≤b'<5,∴由图象可知,k的取值范围是:5≤k≤9.24.【分析】(1)根据折叠可得答案;(2)将a=24,b=6代入底面积的代数式计算即可;(3)根据图2的裁剪,折叠后,表示出长、宽、高进而用代数式表示体积.【解答】解:(1)根据折叠可知,底面是边长为(a﹣2b)(cm)的正方形,故答案为:(a﹣2b);(2)将a=24,b=6代入得,(a﹣2b)2=(24﹣2×6)2=144(cm2)答:长方体纸盒的底面积为144cm2;(3)裁剪后折叠成长方体的长为:(a﹣2b)cm,宽为cm,高为bcm,所以,折叠后长方体的体积为(a﹣2b)××b,即,b(a﹣2b)2,答:长方体的体积为b(a﹣2b)2.25.【分析】(1)根据轴对称的性质,可知∠AOC=∠AOP,∠BOD=∠BOP,可以求出∠COD的度数;(2)根据轴对称的性质,可知CM=PM,DN=PN,根据周长定义可以求出△PMN的周长;【解答】解:(1)①∵点C和点P关于OA对称,∴∠AOC=∠AOP,∵点P关于OB对称点是D,∴∠BOD=∠BOP,∴∠COD=∠AOC+∠AOP+∠BOP+∠BOD=2(∠AOP+∠BOP)=2∠AOB=2×60°=120°,故答案为:120°.②∵点C和点P关于OA对称.∴∠AOC=∠AOP,∵点P关于OB对称点是D,∴∠BOD=∠BOP,∴∠COD=∠AOC+∠AOP+∠BOP+∠BOD=2(∠AOP+∠BOP)=2∠AOB=2α.(2)根据轴对称的性质,可知CM=PM,DN=PN,所以△PMN的周长为:PM+PN+MN=CM+DN+MN=CD=4,故答案为:426.【分析】由收集的数据即可得;(1)根据众数和中位数的定义求解可得;(2)用总人数乘以乙班样本中合格人数所占比例可得;(3)甲、乙两班的方差判定即可.【解答】解:(1)在78,83,89,97,98,85,100,94,87,90,93,92,99,95,100,这组数据中,100出现的次数最多,故a=100分;乙班15名学生测试成绩中,中位数是第8个数,即出现在90≤x<95这一组中,故b=91分;故答案为:100,91;(2)480×=256(人),即480名学生中成绩为优秀的学生共有256人;(3)甲班的学生掌握防疫测试的整体水平较好,∵甲班的方差<乙班的方差,∴甲班的学生掌握疫情防疫相关知识的整体水平较好.27.【分析】首先算出每一道题做错的人数,分为五个组,用不同的颜色表示,转化为染色问题,构造抽屉解决问题.【解答】解:将这120人分别编号为P1,P2,…,P120,并视为数轴上的120个点,用A k表示这120人之中未答对第k题的人所成的组,|A k|为该组人数,k=1,2,3,4,5,则|A1|=24,|A2|=37,|A3|=46,|A4|=54,|A5|=85,将以上五个组分别赋予五种颜色,如果某人未做对第k题,则将表示该人点染第k色,k=1,2,3,4,5,问题转化为,求出至少染有三色的点最多有几个?由于|A1|+|A2|+|A3|+|A4|+|A5|=246,故至少染有三色的点不多于=82个,图是满足条件的一个最佳染法,即点P1,P2,…,P85这85个点染第五色;点P1,P2,…,P37这37个点染第二色;点P38,P39,…,P83这46个点染第四色;点P1,P2,…,P24这24个点染第一色;点P25,P26,…,P78这54个点染第三色;于是染有三色的点最多有78个.因此染色数不多于两种的点至少有42个,即获奖人数至少有42个人(他们每人至多答错两题,而至少答对三题,例如P79,P80,…,P120这42个人).答:获奖人数至少有42个人.。

2021-2022学年江苏省盐城市滨海县八年级(上)期中数学试题及答案解析

2021-2022学年江苏省盐城市滨海县八年级(上)期中数学试题及答案解析

2021-2022学年江苏省盐城市滨海县八年级(上)期中数学试卷一、选择题(本大题共8小题,共24.0分。

在每小题列出的选项中,选出符合题目的一项)1.现实世界中,对称现象无处不在,中国的方块字中有些也具备对称性,下列汉字不是轴对称图形的是( )A. 一B. 中C. 王D. 语2.下列各组数分别为一个三角形三边的长,其中能构成直角三角形的一组是( )A. 2,3,4B. 6,8,10C. 5,12,14D. 1,1,23.如图,△ABC≌△ADE,若∠B=80°,∠C=30°,则∠E的度数为( )A. 80°B. 35°C. 70°D. 30°4.如图,在△ABC中,∠B=36°,AB=AC,AD是△ABC的中线,则∠BAD的度数是( )A. 36°B. 54°C. 72°D. 108°5.如图,在△ABC中,∠C=90°,AC=4,BC=2.以AB为一条边向三角形外部作正方形,则正方形的面积是( )A. 8B. 12C. 18D. 206.如图所示,公路AC、BC互相垂直,点M为公路AB的中点,为测量湖泊两侧C、M两点间的距离,若测得AB的长为6km,则M、C两点间的距离为( )A. 2.5kmB. 4.5kmC. 5kmD. 3km7.下列说法正确的是( )A. 两个全等图形面积一定相等B. 两个等边三角形一定是全等图形C. 形状相同的两个图形一定全等D. 两个正方形一定是全等图形8.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3的度数为( )A. 90°B. 135°C. 150°D. 180°二、填空题(本大题共10小题,共30.0分)9.用一根长12cm的铁丝围成一个等边三角形,那么这个等边三角形的边长______ cm.10.在△ABC中,AB=AC,∠A=40°,则∠B的度数为______°.11.木工师傅要做扇长方形纱窗,做好后量得长为6分米,宽为4分米,对角线为7分米,则这扇纱窗______(填“合格”或“不合格”).12.若(a−4)2+|b−2|=0,则有两边长为a、b的等腰三角形的周长为______.13.如图,A、F、C、D在同一条直线上,△ABC≌△DEF,AF=1,FD=3.则线段FC的长为.14.如图,△ABC中,AB=AC,∠1=∠2,BC=6cm,那么BD的长______ cm.15.如图,△ABC中,边AB的垂直平分线分别交AB,BC于点D,E,连接AE,若AC=2cm,BC=5cm,则△AEC的周长是______ cm.16.如图,在网格图中选择一个格子涂阴影,使得整个图形是以虚线为对称轴的轴对称图形,则把阴影涂在图中标有数字的格子内.17.若一个三角形的三边之比为5:12:13,且周长为60cm,则它的面积为______cm2.18.如图,Rt△ABC中,∠ACB=90°,AB=5,BC=3,将斜边AB绕点A顺时针旋转90°至AB′,连接B′C,则△AB′C的面积为______.三、解答题(本大题共9小题,共96.0分。

2019-2020学年江苏省盐城市滨海县八年级(上)期末数学试卷(解析版)

2019-2020学年江苏省盐城市滨海县八年级(上)期末数学试卷(解析版)

2019-2020学年江苏省盐城市滨海县八年级第一学期期末数学试卷一、选择题(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上.)1.﹣的绝对值是()A.﹣B.C.D.﹣2.下列各点中位于第一象限的点是()A.(3,4)B.(﹣3,4)C.(3,﹣4)D.(﹣3,﹣4)3.下列四个实数中,无理数是()A.2B.C.0D.﹣14.以下列数组为边长中,能构成直角三角形的是()A.6,7,8B.0.2,0.3,0.5C.1,1,D.,,5.下列函数中,y是x的正比例函数的是()A.y=﹣B.y=﹣2x﹣2C.y=2(x﹣2)D.y=6.如图,AD是△ABC的高,下列不能使△ABD≌△ACD的条件是()A.BD=CD B.∠BAC=90°C.∠B=∠C D.AB=AC7.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,若BC=7,AC=6,则△ACE的周长为()A.8B.11C.13D.158.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,过点D作DE⊥AB于E,CD=3cm,AB=10cm,则△ABD的面积是()A.30cm2B.18cm2C.15cm2D.24cm2二、填空题(本大题共10小题,每小题3分,共30分.请把答案填写在答题卡相应位置.)9.16的算术平方根是.10.等腰三角形中一个角是100°,则底角为°.11.5G信号的传播速度为300 000 000m/s,将300 000 000用科学记数法表示为.12.直角三角形的斜边为10cm,两直角边之比为3:4,那么这个直角三角形的周长为.13.已知点P(﹣3,4),关于y轴对称的点的坐标为.14.如果将直线y=3x﹣1平移,使其经过点(0,2),那么平移后所得直线的表达式是.15.已知P1(1,y1),P2(2,y2)是一次函数y=﹣x+3的图象上的两点,则y1y2(填“>”或“<”或“=”).16.如图,在△ABC中,AB=AC,AD是△ABC的顶角平分线,点E是AB的中点,CD=3,DE=5,则△ABC的周长为.17.如图,关于x的一次函数l1:y1=k1x+b1,l2:y2=k2x+b2的图象如图所示,则关于x的不等式k1x+b1>k2x+b2的解集为.18.如图,在平面直角坐标系中,点A、B的坐标分别为(1,4)、(4,4),若直线y=2x+b与线段AB有公共点,则b的值可以为.(写出一个即可)三、解答题(本大题共9小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.)19.(1)计算:+(﹣1)2020;(2)求x的值:(x﹣1)2=16.20.已知如图:点A,F,E,D在同一条直线上,AB=CD,BE=CF,AF=DE.求证:△ABE≌△DCF.21.如图所示是常见的工具“人字梯”,量得“人字梯”两侧OA=OB=2.6米,当“人字梯”两脚之间的距离AB=2米时,求此时“人字梯”的高度.22.在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在正方形网格的格点(网格线的交点)上.(1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1,3)点B坐标为(2,1);(2)请作出△ABC关于y轴对称的△A'B'C',并写出点C'的坐标;(3)判断△ABC的形状.并说明理由.23.已知一次函数y1=﹣2x+4,完成下列问题:(1)画出此函数的图象;(2)将函数y1的图象向下平移2个单位,得到函数y2的图象,直接写出函数y2的表达式;(3)当x时,y2>0.24.在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP =CQ.(1)求证:△ABP≌△ACQ;(2)请判断△APQ是什么形状的三角形?试说明你的结论.25.为倡导绿色出行,某共享单车近期登陆徐州,根据连续骑行时长分段计费:骑行时长在2h以内(含2h)的部分,每0.5h计费1元(不足0.5h按0.5h计算);骑行时长超出2h的部分,每小时计费4元(不足1h按1h计算).根据此收费标准,解决下列问题:(1)连续骑行5h,应付费多少元?(2)若连续骑行xh(x>2且x为整数)需付费y元,则y与x的函数表达式为;(3)若某人连续骑行后付费24元,求其连续骑行时长的范围.26.某景区在同一线路上顺次有三个景点A,B,C,甲、乙两名游客从景点A出发,甲步行到景点C;乙花20分钟时间排队后乘观光车先到景点B,在B处停留一段时间后,再步行到景点C.甲、乙两人离景点A的路程s(米)关于时间t(分钟)的函数图象如图所示.(1)甲的速度是米/分钟;(2)当20≤t≤30时,求乙离景点A的路程s与t的函数表达式;(3)乙出发后多长时间与甲在途中相遇?(4)若当甲到达景点C时,乙与景点C的路程为360米,则乙从景点B步行到景点C 的速度是多少?27.如图,直线y=x+4分别交x轴、y轴于点A、B,点C在x轴的正半轴上,且OA=2OC.(1)求直线BC的函数表达式;(2)点P是线段BC上一点,且S△ACP=S△ABC,求点P的坐标;(3)在(2)的条件下,点N是x轴上的一个动点,点M是线段AB上的一个动点,当点P、M、N为顶点的三角形为等腰直角三角形时,求出点N的坐标.附加题(本题满分0分)28.如图1,在平面直角坐标系中,直线y=x+4与x轴交于点A,与y轴交于点B,点C 是点B关于x轴的对称点,点P在线段AC上,点Q为线段AB延长线上一点,且CP=BQ,PQ交y轴于D.(1)设点Q横坐标为m,△PAQ的面积为S,求S与m的关系式(不要求写m的取值范围);(2)如图2,点M在x轴正半轴上,且MP=MQ,若∠AQM=45°,求直线PQ的函数表达式.参考答案一、选择题(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上.)1.﹣的绝对值是()A.﹣B.C.D.﹣【分析】根据绝对值的定义,可以得到﹣的绝对值是多少.解:﹣的绝对值是,故选:B.2.下列各点中位于第一象限的点是()A.(3,4)B.(﹣3,4)C.(3,﹣4)D.(﹣3,﹣4)【分析】根据各象限内点的坐标特征对各选项分析判断利用排除法求解.解:A.(3,4)在第一象限,故本选项符合题意;B.(﹣3,4)在第二象限,故本选项不合题意;C.(3,﹣4)在第四象限,故本选项不合题意;D.(﹣3,﹣4)在第三象限,故本选项不合题意.故选:A.3.下列四个实数中,无理数是()A.2B.C.0D.﹣1【分析】根据无理数是无限不循环小数,可得答案.解:A、2是有理数,故A错误;B、是无理数,故B正确;C、0是有理数,故C错误;D、﹣1是有理数,故D错误;故选:B.4.以下列数组为边长中,能构成直角三角形的是()A.6,7,8B.0.2,0.3,0.5C.1,1,D.,,【分析】根据勾股定理的逆定理对四个选项进行逐一判断即可.解:A、由于62+72=85≠82=64,故本选项错误;B、0.22+0.32=0.13≠0.52=0.25,故本选项错误;C、由于12+12=2≠()2=3,故本选项错误;D、由于()2+()2=()2=5,故本选项正确.故选:D.5.下列函数中,y是x的正比例函数的是()A.y=﹣B.y=﹣2x﹣2C.y=2(x﹣2)D.y=【分析】分别根据反比例函数的定义、正比例函数及一次函数的定义对各选项进行逐一分析即可.解:A、该函数是正比例函数,故本选项正确.B、该函数是一次函数,故本选项错误.C、该函数是一次函数,故本选项错误.D、该函数是反比例函数,故本选项错误.故选:A.6.如图,AD是△ABC的高,下列不能使△ABD≌△ACD的条件是()A.BD=CD B.∠BAC=90°C.∠B=∠C D.AB=AC【分析】添加AB=AC,∠B=∠C,可得△ABC是等腰三角形,再根据三线合一的性质可得BD=CD,再利用SSS定理可判定△ABD≌△ACD.解:当∠B=∠C时,可得AB=AC,△ABD≌△ACD,或直接添加AB=AC,∵AD是△ABC的边BC上的高,AB=AC,∴BD=CD,∵在△ABD和△ADC中,∴△ABD≌△ACD(SSS),或直接添加BD=CD,故选:B.7.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,若BC=7,AC=6,则△ACE的周长为()A.8B.11C.13D.15【分析】根据线段垂直平分线的性质得AE=BE,然后利用等线段代换即可得到△ACE 的周长=AC+BC,再把BC=6,AC=5代入计算即可.解:∵DE垂直平分AB,∴AE=BE,∴△ACE的周长=AC+CE+AE=AC+CE+BE=AC+BC=7+6=13.故选:C.8.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,过点D作DE⊥AB于E,CD=3cm,AB=10cm,则△ABD的面积是()A.30cm2B.18cm2C.15cm2D.24cm2【分析】由角平分线的性质得出CD=DE=3cm,根据三角形面积公式可得出答案.解:∵AD平分∠CAB,∠C=90°,DE⊥AB,∴CD=DE=3cm,∵AB=10cm,∴△ABD的面积=AB•DE==15(cm2).故选:C.二、填空题(本大题共10小题,每小题3分,共30分.请把答案填写在答题卡相应位置.)9.16的算术平方根是4.【分析】根据算术平方根的定义即可求出结果.解:∵42=16,∴=4.故答案为:4.10.等腰三角形中一个角是100°,则底角为40°.【分析】因为三角形的内角和为180°,所以100°只能为顶角,从而可求出底角.解:∵100°为三角形的顶角,∴底角为:(180°﹣100°)÷2=40°.故答案为:40.11.5G信号的传播速度为300 000 000m/s,将300 000 000用科学记数法表示为3×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:将300 000 000用科学记数法表示为:3×108.故答案为:3×108.12.直角三角形的斜边为10cm,两直角边之比为3:4,那么这个直角三角形的周长为24cm.【分析】设两直角边分别为3x,4x,根据勾股定理求出两直角边长,根据三角形的周长公式计算,得到答案.解:设两直角边分别为3x,4x,由勾股定理得,(3x)2+(4x)2=102,解得,x=2,则两直角边分别为6cm,8cm,∴这个直角三角形的周长=6cm+8cm+10cm=24cm,故答案为:24cm.13.已知点P(﹣3,4),关于y轴对称的点的坐标为(3,4).【分析】本题比较容易,考查平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于y轴对称的点,纵坐标相同,横坐标互为相反数.解:首先可知点P(﹣3,4),再由平面直角坐标系中关于y轴对称的点的坐标特点:横坐标互为相反数,纵坐标不变,可得:点P关于y轴的对称点的坐标是(3,4).故答案为:(3,4).14.如果将直线y=3x﹣1平移,使其经过点(0,2),那么平移后所得直线的表达式是y =3x+2.【分析】根据平移不改变k的值可设平移后直线的解析式为y=3x+b,然后将点(0,2)代入即可得出直线的函数解析式.解:设平移后直线的解析式为y=3x+b.把(0,2)代入直线解析式得2=b,解得b=2.所以平移后直线的解析式为y=3x+2.故答案为:y=3x+2.15.已知P1(1,y1),P2(2,y2)是一次函数y=﹣x+3的图象上的两点,则y1>y2(填“>”或“<”或“=”).【分析】由k=﹣1<0,利用一次函数的性质可得出y随x的增大而减小,结合1<2,即可得出y1>y2.解:∵k=﹣1<0,∴y随x的增大而减小,又∵P1(1,y1),P2(2,y2)是一次函数y=﹣x+3的图象上的两点,且1<2,∴y1>y2.故答案为:>.16.如图,在△ABC中,AB=AC,AD是△ABC的顶角平分线,点E是AB的中点,CD=3,DE=5,则△ABC的周长为26.【分析】根据等腰三角形的性质得到BC=2CD=6,AD⊥BC,根据直角三角形的性质求出AB,根据三角形的周长公式计算,得到答案.解:∵AB=AC,AD是△ABC的顶角平分线,CD=3,∴BC=2CD=6,AD⊥BC,在Rt△ADB中,点E是AB的中点,DE=5,∴AB=2DE=10,∴△ABC的周长=AB+AC+BC=26,故答案为:26.17.如图,关于x的一次函数l1:y1=k1x+b1,l2:y2=k2x+b2的图象如图所示,则关于x的不等式k1x+b1>k2x+b2的解集为x.【分析】观察图象写出y1=k1x+b1的图象在l2:y2=k2x+b2的图象是上方的自变量的取值范围即可;解:观察图象可知,不等式k1x+b1>k2x+b2的解集为x<,故答案为x<.18.如图,在平面直角坐标系中,点A、B的坐标分别为(1,4)、(4,4),若直线y=2x+b与线段AB有公共点,则b的值可以为0(答案不唯一).(写出一个即可)【分析】利用一次函数图象上点的坐标特征分别求出当直线经过点A和点B时的b的值,进而可得出当直线y=2x+b与线段AB有公共点时b的取值范围,取其内的任意一值即可得出结论.解:当直线y=2x+b经过点A(1,4)时,4=2×1+b,解得:b=2;当直线y=2x+b经过点B(4,4)时,4=2×4+b,解得:b=﹣4.又∵直线y=2x+b与线段AB有公共点,∴﹣4≤b≤2.故答案为:0(答案不唯一).三、解答题(本大题共9小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.)19.(1)计算:+(﹣1)2020;(2)求x的值:(x﹣1)2=16.【分析】(1)直接利用算术平方根以及立方根、有理数的乘方运算法则分别化简,进而得出答案;(2)直接利用平方根的性质计算得出答案.解:(1)原式=2﹣2+1=1;(2)(x﹣1)2=16,则x﹣1=±4,则x=5或x=﹣3.20.已知如图:点A,F,E,D在同一条直线上,AB=CD,BE=CF,AF=DE.求证:△ABE≌△DCF.【分析】认真读题,观察图形,要根据已知AF=DE由等式的性质得到三角形的边相等,这样条件符合了SSS,可得三角形全等.【解答】证明:∵AF=DE(已知),∴AF﹣EF=DE﹣EF(等式性质),即AE=DF.在△ABE和△DCF中,,∴△ABE≌△DCF(SSS).21.如图所示是常见的工具“人字梯”,量得“人字梯”两侧OA=OB=2.6米,当“人字梯”两脚之间的距离AB=2米时,求此时“人字梯”的高度.【分析】直接根据等腰三角形的性质和勾股定理即可得出结论.解:如图,过点O作OH⊥AB于点H.∵OA=OB,AB=2,∴AH=AB=1.在Rt△AOH中,OH===2.4.答:此时“人字梯”的高度为2.4米.22.在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在正方形网格的格点(网格线的交点)上.(1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1,3)点B坐标为(2,1);(2)请作出△ABC关于y轴对称的△A'B'C',并写出点C'的坐标;(3)判断△ABC的形状.并说明理由.【分析】(1)根据点A及点C的坐标,易得y轴在C的右边一个单位,x轴在C的下方3个单位,建立直角坐标系即可;(2)根据对称轴垂直平分对应点连线,可得各点的对称点,顺次连接即可;(3)根据勾股定理的逆定理判断即可;解:(1)如图所示:(2)如图所示:△A'B'C'即为所求:C'的坐标为(﹣5,5);(3)∵AB2=1+4=5,AC2=4+16=20,BC2=9+16=25,∴AB2+AC2=BC2,∴△ABC是直角三角形.23.已知一次函数y1=﹣2x+4,完成下列问题:(1)画出此函数的图象;(2)将函数y1的图象向下平移2个单位,得到函数y2的图象,直接写出函数y2的表达式;(3)当x<1时,y2>0.【分析】(1)分别求出直线与x,y轴的交点,画出函数图象,进而解答即可;(2)根据一次函数平移的性质得出函数表达式即可得出结论;(3)根据函数图象与坐标轴的交点可直接得出结论.解:(1)当x=2时,y=0;当x=0时,y=4;所以函数的图象为:(2)将函数y1的图象向下平移2个单位,得到函数y2=﹣2x+2.(3)当y2>0时,可得:﹣2x+2>0,解得:x<1.故答案为:<1.24.在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP =CQ.(1)求证:△ABP≌△ACQ;(2)请判断△APQ是什么形状的三角形?试说明你的结论.【分析】(1)根据等边三角形的性质可得AB=AC,再根据SAS证明△ABP≌△ACQ;(2)根据全等三角形的性质得到AP=AQ,再证∠PAQ=60°,从而得出△APQ是等边三角形.【解答】证明:(1)∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,在△ABP和△ACQ中,,∴△ABP≌△ACQ(SAS),(2)∵△ABP≌△ACQ,∴∠BAP=∠CAQ,AP=AQ,∵∠BAP+∠CAP=60°,∴∠PAQ=∠CAQ+∠CAP=60°,∴△APQ是等边三角形.25.为倡导绿色出行,某共享单车近期登陆徐州,根据连续骑行时长分段计费:骑行时长在2h以内(含2h)的部分,每0.5h计费1元(不足0.5h按0.5h计算);骑行时长超出2h的部分,每小时计费4元(不足1h按1h计算).根据此收费标准,解决下列问题:(1)连续骑行5h,应付费多少元?(2)若连续骑行xh(x>2且x为整数)需付费y元,则y与x的函数表达式为y=4x ﹣4;(3)若某人连续骑行后付费24元,求其连续骑行时长的范围.【分析】(1)连续骑行5h,要分两个阶段计费:前两个小时,按每个小时2元计算,后3个小时按每个小时计算,可得结论;(2)根据超过2h的计费方式可得:y与x的函数表达式;(3)根据题意可知:里程超过2个小时,根据(2)的表达式可得结果.解:(1)当x=5时,y=2×2+4×(5﹣2)=16,∴应付16元;(2)y=4(x﹣2)+2×2=4x﹣4;故答案为:y=4x﹣4;(3)当y=24,24=4x﹣4,x=7,∴连续骑行时长的范围是:6<x≤7.26.某景区在同一线路上顺次有三个景点A,B,C,甲、乙两名游客从景点A出发,甲步行到景点C;乙花20分钟时间排队后乘观光车先到景点B,在B处停留一段时间后,再步行到景点C.甲、乙两人离景点A的路程s(米)关于时间t(分钟)的函数图象如图所示.(1)甲的速度是60米/分钟;(2)当20≤t≤30时,求乙离景点A的路程s与t的函数表达式;(3)乙出发后多长时间与甲在途中相遇?(4)若当甲到达景点C时,乙与景点C的路程为360米,则乙从景点B步行到景点C 的速度是多少?【分析】(1)由图象可得甲行走的路程和时间,即可求甲的速度;(2)由待定系数法可求乙离景点A的路程s与t的函数表达式;(3)两人相遇实际上是函数图象求交点;(4)由乙从B景点开始行走的路程+360=景点B和景点C之间的距离,可列方程解即可.解:(1)甲的速度==60米/分钟,故答案为:60(2)当20≤t≤30时,设s=mt+n,由题意得解得∴s=300t﹣6000(3)当20≤t≤30时,60t=300t﹣6000,解得t=25,∴乙出发后时间=25﹣20=5,当30≤t≤60时,60t=3000,解得t=50,∴乙出发后时间=50﹣20=30,综上所述:乙出发5分钟和30分钟时与甲在途中相遇;(4)设乙从B步行到C的速度是x米/分钟,由题意得5400﹣3000﹣(90﹣60)x=360,解得x=68,所以乙从景点B步行到景点C的速度是68米/分钟.27.如图,直线y=x+4分别交x轴、y轴于点A、B,点C在x轴的正半轴上,且OA=2OC.(1)求直线BC的函数表达式;(2)点P是线段BC上一点,且S△ACP=S△ABC,求点P的坐标;(3)在(2)的条件下,点N是x轴上的一个动点,点M是线段AB上的一个动点,当点P、M、N为顶点的三角形为等腰直角三角形时,求出点N的坐标.【分析】(1)直线y=x+4分别交x轴、y轴于点A、B,则点A(﹣4,0),点B(0,4),OA=2OC,则点C(2,0),即可求解;(2)根据S△ACP=S△ABC可得y P=OB=×4=2,把y=2代入直线BCy=﹣2x+4得:x=1,可得答案;(3)设点M(m,m+4),分三种情况:①当∠MPN=90°时,PM=PN,②当∠PMN =90°时,PM=MN,③当∠PNM=90°时,PN=MN,求出点N的坐标即可.解:(1)直线y=x+4,当x=0时,y=4,当y=0时,x=﹣4,∴点A(﹣4,0),点B(0,4),∴OA=4,∵OA=2OC,∴OC=2,即点C坐标为(2,0),设直线BC的函数表达式为y=kx+b,则,解得:,∴直线BC的函数表达式为y=﹣2x+4;(2)∵S△ACP=S△ABC,∴AC×|y P|=×AC×OB,∵P是线段BC上一点,∴y P=OB=×4=2,把y=2代入直线BCy=﹣2x+4得:x=1,∴点P的坐标为(1,2);(3)设点M(m,m+4),①当∠MPN=90°时,PM=PN,过点P作PD⊥x轴于点D,过点M作ME⊥PD于点E,∴∠MEP=∠PDN=90°,∠PME+∠MPE=90°,∵∠MPN=90°,∴∠NPD+∠MPE=90°,∴∠NPD=∠PME,∵PM=PN,∴△MEP≌△PDN(AAS),∴ME=PD,PE=DN,∵点P的坐标为(1,2),∴PD=2,∴ME=1﹣m=2,m=﹣1,∴M(﹣1,3),∴PE=DN=3﹣2=1,∴N(0,0);②当∠PMN=90°时,PM=MN,过点M作MH⊥x轴于点H,过点P作PG⊥MH于点G,同①得△PMG≌△MNH,∴PG=MH,MG=NH,即:m+4=1﹣m,m=﹣,∴M(﹣,),∴MG=NH=﹣2=,∴N(﹣2,0);③当∠PNM=90°时,PN=MN,过点M、P分别作x轴的垂线,垂足分别为K、Q,同①得△MKN≌△NQP(AAS),∴MK=NQ,KN=PQ,即:1﹣m=2+m+4,m=﹣,∴M(﹣,),则:MK=NQ=,∴N(﹣,0),综上所述:N(0,0)或(﹣2,0)或(﹣,0).附加题(本题满分0分)28.如图1,在平面直角坐标系中,直线y=x+4与x轴交于点A,与y轴交于点B,点C 是点B关于x轴的对称点,点P在线段AC上,点Q为线段AB延长线上一点,且CP=BQ,PQ交y轴于D.(1)设点Q横坐标为m,△PAQ的面积为S,求S与m的关系式(不要求写m的取值范围);(2)如图2,点M在x轴正半轴上,且MP=MQ,若∠AQM=45°,求直线PQ的函数表达式.【分析】(1)先求出点A,点B坐标,由对称可求点C坐标,由待定系数法可求AC的解析式,过点P作PE⊥y轴于点E,PG∥AB交y轴于G,过点Q作QF⊥y轴于点F,由“AAS”可证△PDG≌△QDB,可得S△PDG=S△QDB,可得FQ=m,FB=m+4﹣4=m,由“AAS”可证△PCE≌△QBF,可得CE=BF=m=GE,PE=QF=m,CG=m,根据S=S△PAQ=S四边形ABDP+S△QDB=S四边形ABDP+S△PDG=S四边形ABGP,=S△ABC﹣S△PCG即可求解;(2)如图2,连接BM,CM,过点P作PE⊥BC,由“SSS”可证△CPM≌△BQM,△ABM≌△ACM,可得∠ABM=∠ACM=∠MBQ=90°,,∠CPM=∠PMC=45°,CP =CM,得出∠PCO=∠CMO,且∠PEC=∠COM=90°,CM=CP,由“AAS”可证△CPE≌△MCO,可得CE=OM,PE=CO=4,可求m的值,可得点P,点Q的坐标,即可求直线PQ的解析式.解:(1)∵y=x+4与x轴交于点A,与y轴交于点B,∴点B(0,4),点A(﹣8,0),∵点C是点B关于x轴的对称点,∴点C(0,﹣4),设直线AC表达式为:y=kx+b,由题意可得:,解得:k=﹣,∴直线AC表达式为:y=﹣x﹣4,如图,过点P作PE⊥y轴于点E,PG∥AB交y轴于G,过点Q作QF⊥y轴于点F,∵点C与点B关于x轴对称,∴AB=AC,∴∠ABC=∠ACB,∵PG∥AB,∴∠PGC=∠ABC=∠ACB,∠GPD=∠BQD,∴∠PGC=∠ACB,∴PC=PG=BQ,又∵∠PDG=∠QDB,∴△PDG≌△QDB(AAS),∴S△PDG=S△QDB,∵点Q横坐标为m,∴点Q(m,m+4),∴FQ=m,FB=m+4﹣4=m,∵PC=BQ,∠PCE=∠ABC=∠QBF,∠CEP=∠BFQ=90°,∴△PCE≌△QBF(AAS),∴CE=BF=m=GE,PE=QF=m,∴CG=m,∴S△PAQ=S四边形ABDP+S△QDB=S四边形ABDP+S△PDG=S四边形ABGP,∴S=S△ABC﹣S△PCG=×8×8﹣×m×m=32﹣m2;(2)如图2,连接BM,CM,过点P作PE⊥BC于E,∵AB=AC,AO⊥BC,∴AO是BC的垂直平分线,∴BM=CM,∵PC=BQ,PM=MQ,∴△CPM≌△BQM(SSS),∴∠MCP=∠MBQ,∠CPM=∠AQM=45°,∵AM=AM,BM=CM,AB=AC,∴△ABM≌△ACM(SSS),∴∠ABM=∠ACM,∵∠MCP=∠MBQ,∴∠ABM=∠ACM=∠MBQ=90°,且∠PMC=45°,∴∠CPM=∠PMC=45°,∴CP=CM,∵∠PCO+∠MCO=90°,∠MCO+∠CMO=90°,∴∠PCO=∠CMO,且∠PEC=∠COM=90°,CM=CP,∴△CPE≌△MCO(AAS),∴CE=OM,PE=CO=4,∴把x=﹣4代入y=﹣x﹣4,得y=﹣2,∴P(﹣4,﹣2),Q(4,6),设直线PQ的表达式为:y=ax+c,∴,解得:,,∴直线PQ的表达式为:y=x+2.。

2020-2021学年江苏省常州市八年级(上)期末数学试卷

2020-2021学年江苏省常州市八年级(上)期末数学试卷

2020-2021学年江苏省常州市八年级(上)期末数学试卷一、选择题(本大题共8小题,每小题2分,共16分)1.(2分)下面四个手机的图标中,属于轴对称图形的是()A.B.C.D.2.(2分)下列实数:,0,,﹣1.5,,2.161161116…,其中无理数有()A.1个B.2个C.3个D.4个3.(2分)在平面直角坐标系中,点P(2,﹣3)关于x轴对称的点的坐标是()A.(2,3)B.(2,﹣3)C.(﹣2,3)D.(﹣2,﹣3)4.(2分)下列各组数中,能作为直角三角形的三边长的是()A.2,3,4B.6,8,9C.5,12,13D.,,5.(2分)如图,已知AC=BD,添加下列一个条件后,仍无法判定△ABC≌△BAD的是()A.∠ABC=∠BAD B.∠C=∠D=90°C.∠CAB=∠DBA D.CB=DA6.(2分)若一次函数y=kx+b的图象经过第一、二、四象限,则()A.k>0,b>0B.k>0,b<0C.k<0,b<0D.k<0,b>0 7.(2分)如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB,垂足为E,下列结论:①CD=ED;②BD=CD;③AC+BE=AB;④S△BDE:S△ACD=BD:AC,其中正确的有()A.①③B.①②③C.①③④D.①②③④8.(2分)周末,小明骑自行车从家里出发去游玩.从家出发1小时后到达迪诺水镇,游玩一段时间后按原速前往万达广场.小明离家1小时50分钟后,妈妈驾车沿相同路线前往万达广场.妈妈出发25分钟时,恰好在万达广场门口追上小明.如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象,则下列说法中正确的是()A.小明在迪诺水镇游玩1h后,经过h到达万达广场B.小明的速度是20km/h,妈妈的速度是60km/hC.万达广场离小明家26kmD.点C的坐标为(,25)二、填空题(本大题共8小题,每小题2分,共16分)9.(2分)比较大小:2(用“>”或“<”号填空).10.(2分)小亮的体重为44.85kg,精确到0.1kg得到的近似值为kg.11.(2分)若一次函数y=2x﹣3的图象经过点A(a,1),则a=.12.(2分)如图,△ABC≌△DEF,BE=5,BF=1,则CF=.13.(2分)《九章算术》中有一个“折竹抵地”问题:“今有竹高九尺,末折抵地,去本三尺,问折者高几何?”意思是:现有竹子高9尺,折后竹尖抵地与竹子底部的距离为3尺,问折处高几尺?即:如图,AB+AC=9尺,BC=3尺,则AC尺.14.(2分)一次函数y1=kx+b与y2=x+a的图象如图所示,则不等式kx+b<x+a的解集为.15.(2分)在△ABC中,AB=AC,BC=10,AB的垂直平分线与AC的垂直平分线分别交BC于点D,E,且DE=4,则AD+AE的值为.16.(2分)如图,Rt△ABC中,∠BAC=90°,分别以△ABC的三条边为直角边作三个等腰直角三角形:△ABD、△ACE、△BCF,若图中阴影部分的面积S1=6.5,S2=3.5,S3=5.5,则S4=.三、解答题(本大题共9小题,共68分。

2020-2021学年江苏省盐城市滨海县八年级(上)期中物理试卷(Word+答案)

2020-2021学年江苏省盐城市滨海县八年级(上)期中物理试卷(Word+答案)

2020-2021学年江苏省盐城市滨海县八年级(上)期中物理试卷一、单选题(12×2=24分)1.(2分)如图是用温度计测量水的温度的实际操作,其中正确的是()A.B.C.D.2.(2分)给体温计消毒,下列方法可行的是()A.放入沸水中煮B.放入温水中泡C.在酒精灯上烧D.用酒精棉花擦洗3.(2分)一束光线射到平面镜上,若要使反射角为20°,则入射光线与平面镜的夹角应为()A.70°B.40°C.20°D.80°4.(2分)下列属于从传播环节防治噪声的是()A.教室内请勿大声喧哗B.放鞭炮时用手捂住耳朵C.城区道路口安装噪声监测仪D.高架道路两旁建隔音墙5.(2分)声音是一种波,下列实例中能说明声音具有能量的是()A.回声测距B.雷雨时总是先看到闪电,后听到雷声C.飞机飞过时,活动的窗玻璃也跟着振动起来D.宇航员在月球上不能听到彼此的谈话6.(2分)如图所示是某地天气预报的截图,关于图中信息的说法正确的是()A.5℃读作“5度”B.云是由水蒸气组成的C.云的形成过程放出热量D.雨和雪都是液态的水7.(2分)2020年6月21日。

我国部分地区发生日食现象。

图是某地市民在发生日食现象时,在地面上看到的阳光透过树叶间呈现的月牙形状。

下列四个选项中所涉及的物理原理与该市民看到的现象原理相同的是()A.湖面倒影成画B.民间艺术皮影戏C.白光通过三棱镜D.水中筷子弯折8.(2分)下列的实验和实例,能说明声音的产生或传播条件的一组是()①在鼓面上放些碎纸屑,敲鼓时可观察到纸屑在不停地跳动;②放在真空罩里的手机,当有来电时,只见指示灯闪烁,听不见铃声;③拿一张硬纸片,让它在木梳齿上划过,一次快些,一次慢些,比较两次的不同;④锣发声时用手按住锣,锣声就消失了。

A.①②④B.②③④C.①③④D.①②③9.(2分)红外线和紫外线在生活中都有很多的应用,体现了科技的力量。

人教版2020-2021学年八年级数学上册期末试卷及答案

人教版2020-2021学年八年级数学上册期末试卷及答案

2020-2021学年八年级数学上册期末试卷一.选择题(共8小题)1.使分式有意义的x的取值范围为()A.x≠﹣2B.x≠2C.x≠0D.x≠±22.下列多项式中能用完全平方公式分解的是()A.x2﹣x+1B.1﹣2x+x2C.﹣a2+b2﹣2ab D.4x2+4x﹣13.如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长是()A.8B.10C.12D.144.关于x的方程无解,则m的值为()A.﹣5B.﹣8C.﹣2D.55.二班学生某次测试成绩统计如下表:则得分的众数和中位数分别是()得分(分)60708090100人数(人)7121083A.70分,70分B.80分,80分C.70分,80分D.80分,70分6.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,Q为对角线AC 上的动点,则△BEQ周长的最小值为()A.5B.6C.D.87.在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是()A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形8.如图,在▱ABCD中,AD=2AB,F是AD的中点,E是AB上一点,连接CF、EF、EC,且CF=EF,下列结论正确的个数是()①CF平分∠BCD;②∠EFC=2∠CFD;③∠ECD=90°;④CE⊥AB.A.1个B.2个C.3个D.4个二.填空题(共6小题)9.若代数式的值为零,则x的取值应为.10.某校规定学生的期末学科成绩由三部分组成,将课堂、作业和考试三项得分按1:3:6的权重确定每个人的期末成绩.小明同学本学期数学这三项得分分别是:课堂98分,作业95分,考试85分,那么小明的数学期末成绩是分.11.如果x+=3,则的值等于12.如图,△ABC中,∠ACB=90°,∠A=25°,将△ABC绕点C逆时针旋转至△DEC 的位置,点B恰好在边DE上,则∠θ=度.13.在菱形ABCD中,对角线AC、BD交于点O,若△ABC的周长为32,BD=16,则菱形ABCD的面积为14.已知:如图,△ABC的面积为12,将△ABC沿BC方向移到△A′B′C′的位置,使B′与C重合,连结AC′交A′C于D,则△C′DC的面积为.三.解答题(共10小题)15.如图,方格纸上每个小方格的边长都是1,△ABC是通过△A1B1C1旋转得到.(1)在图中标出旋转中心点O;(2)画出△ABC向下平移4个单位长度,再向右平移4个单位长度得到的△A2B2C2.16.因式分解(1)a3﹣16a;(2)8a2﹣8a3﹣2a17.计算:(1)+(﹣2bc)×;(2)先化简,再求值:(﹣1)•,其中x=﹣5.18.解分式方程(1)(2)19.某市举行知识大赛,A校、B校各派出5名选手组成代表队参加决赛,两校派出选手的决赛成绩如图所示.(1)根据图示填写下表:平均数/分中位数/分众数/分A校85B校85100(2)结合两校成绩的平均数和中位数,分析哪个学校的决赛成绩较好;(3)计算两校决赛成绩的方差,并判断哪个学校代表队选手成绩较为稳定.20.如图,在▱ABCD中,G是CD上一点,连接BG且延长交AD的延长线于点E,AF=CG,∠E=30°,∠C=50°,求∠BFD的度数.21.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)试判断四边形ADCF的形状,并证明;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明.22.小明元旦前到文具超市用15元买了若干练习本,元旦这一天,该超市开展优惠活动,同样的练习本比元旦前便宜0.2元,小明又用20.7元钱买练习本,所买练习本的数量比上一次多50%,小明元旦前在该超市买了多少本练习本?23.(1)如图1,O是等边△ABC内一点,连接OA、OB、OC,且OA=3,OB=4,OC=5,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.求:①旋转角的度数;②线段OD的长;③求∠BDC的度数.(2)如图2所示,O是等腰直角△ABC(∠ABC=90°)内一点,连接OA、OB、OC,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.当OA、OB、OC满足什么条件时,∠ODC=90°?请给出证明.24.在正方形ABCD中,BD是一条对角线,点P在CD上(与点C,D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QM⊥BD于M,连接AM,PM (如图1).(1)判断AM与PM的数量关系与位置关系并加以证明;(2)若点P在线段CD的延长线上,其它条件不变(如图2),(1)中的结论是否仍成立?请说明理由.参考答案与试题解析一.选择题(共8小题)1.使分式有意义的x的取值范围为()A.x≠﹣2B.x≠2C.x≠0D.x≠±2【分析】根据分式有意义的条件即可求出答案.【解答】解:x+2≠0,∴x≠﹣2故选:A.2.下列多项式中能用完全平方公式分解的是()A.x2﹣x+1B.1﹣2x+x2C.﹣a2+b2﹣2ab D.4x2+4x﹣1【分析】根据完全平方公式:a2±2ab+b2=(a±b)2可得答案.【解答】解:A、x2﹣x+1不能用完全平方公式分解,故此选项错误;B、1﹣2x+x2能用完全平方公式分解,故此选项正确;C、﹣a2+b2﹣2ab不能用完全平方公式分解,故此选项错误;D、4x2+4x﹣1不能用完全平方公式分解,故此选项错误;故选:B.3.如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长是()A.8B.10C.12D.14【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.【解答】解:根据题意,将周长为8个单位的△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=8,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.故选:B.4.关于x的方程无解,则m的值为()A.﹣5B.﹣8C.﹣2D.5【分析】分式方程去分母转化为整式方程,由分式方程无解得到x+1=0,求出x的值,代入整式方程求出m的值即可.【解答】解:去分母得:3x﹣2=2x+2+m,由分式方程无解,得到x+1=0,即x=﹣1,代入整式方程得:﹣5=﹣2+2+m,解得:m=﹣5,故选:A.5.二班学生某次测试成绩统计如下表:则得分的众数和中位数分别是()得分(分)60708090100人数(人)7121083A.70分,70分B.80分,80分C.70分,80分D.80分,70分【分析】根据一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,则中间的数(或中间两个数据的平均数)就是这组数据的中位数解答即可.【解答】解:由于总人数为7+12+10+8+3=40人,所以中位数为第20、21个数据平均数,即中位数为=80(分),因为70分出现次数最多,所以众数为70分,故选:C.6.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,Q为对角线AC 上的动点,则△BEQ周长的最小值为()A.5B.6C.D.8【分析】连接BD,DE,根据正方形的性质可知点B与点D关于直线AC对称,故DE 的长即为BQ+QE的最小值,进而可得出结论.【解答】解:连接BD,DE,∵四边形ABCD是正方形,∴点B与点D关于直线AC对称,∴DE的长即为BQ+QE的最小值,∵DE=BQ+QE==5,∴△BEQ周长的最小值=DE+BE=5+1=6.故选:B.7.在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是()A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形【分析】由矩形的判定和菱形的判定即可得出结论.【解答】解:若AD⊥BC,则四边形AEDF是平行四边形,不一定是矩形;选项A错误;若AD垂直平分BC,则四边形AEDF是菱形,不一定是矩形;选项B错误;若BD=CD,则四边形AEDF是平行四边形,不一定是菱形;选项C错误;若AD平分∠BAC,则四边形AEDF是菱形;正确;故选:D.8.如图,在▱ABCD中,AD=2AB,F是AD的中点,E是AB上一点,连接CF、EF、EC,且CF=EF,下列结论正确的个数是()①CF平分∠BCD;②∠EFC=2∠CFD;③∠ECD=90°;④CE⊥AB.A.1个B.2个C.3个D.4个【分析】①只要证明DF=DC,利用平行线的性质可得∠DCF=∠DFC=∠FCB;②延长EF和CD交于M,根据平行四边形的性质得出AB∥CD,根据平行线的性质得出∠A=∠FDM,证△EAF≌△MDF,推出EF=MF,求出CF=MF,求出∠M=∠FCD =∠CFD,根据三角形的外角性质求出即可;③④求出∠ECD=90°,根据平行线的性质得出∠BEC=∠ECD,即可得出答案.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∵AF=DF,AD=2AB,∴DF=DC,∴∠DCF=∠DFC=∠FCB,∴CF平分∠BCD,故①正确,延长EF和CD交于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠FDM,在△EAF和△MDF中,,∴△EAF≌△MDF(ASA),∴EF=MF,∵EF=CF,∴CF=MF,∴∠FCD=∠M,∵由(1)知:∠DFC=∠FCD,∴∠M=∠FCD=∠CFD,∵∠EFC=∠M+∠FCD=2∠CFD;故②正确,∵EF=FM=CF,∴∠ECM=90°,∵AB∥CD,∴∠BEC=∠ECM=90°,∴CE⊥AB,故③④正确,故选:D.二.填空题(共6小题)9.若代数式的值为零,则x的取值应为2.【分析】分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.【解答】解:若代数式的值为零,则(x﹣2)=0或(x﹣1)=0,即x=2或1,∵|x|﹣1≠0,x≠1,∴x的取值应为2,故代数式的值为零,则x的取值应为2.10.某校规定学生的期末学科成绩由三部分组成,将课堂、作业和考试三项得分按1:3:6的权重确定每个人的期末成绩.小明同学本学期数学这三项得分分别是:课堂98分,作业95分,考试85分,那么小明的数学期末成绩是89.3分.【分析】因为数学期末成绩由课堂、作业和考试三部分组成,并按1:3:6的比例确定,所以利用加权平均数的公式即可求出答案.【解答】解:小明的数学期末成绩是=89.3(分),故答案为:89.3.11.如果x+=3,则的值等于【分析】由x+=3得x2+2+=9,即x2+=7,整体代入原式==,计算可得.【解答】解:∵x+=3,∴(x+)2=9,即x2+2+=9,则x2+=7,∵x≠0,∴原式====,故答案为:.12.如图,△ABC中,∠ACB=90°,∠A=25°,将△ABC绕点C逆时针旋转至△DEC 的位置,点B恰好在边DE上,则∠θ=50度.【分析】根据三角形内角和定理求出∠ABC,根据旋转变换的性质得到∠E=∠ABC=65°,CE=CB,∠ECB=∠DCA,计算即可.【解答】解:∵∠ACB=90°,∠A=25°,∴∠ABC=65°,由旋转的性质可知,∠E=∠ABC=65°,CE=CB,∠ECB=∠DCA,∴∠ECB=50°,∴∠θ=50°,故答案为:50.13.在菱形ABCD中,对角线AC、BD交于点O,若△ABC的周长为32,BD=16,则菱形ABCD的面积为96【分析】可设菱形ABCD的边长为x,则AC=32﹣2x,根据菱形可得AO=16﹣x,BO =8,根据勾股定理可求x,进一步得到AC,再根据菱形的面积公式即可求解.【解答】解:如图,设菱形ABCD的边长为x,则AC=32﹣2x,AO=16﹣x,BO=8,依题意有(16﹣x)2+82=x2,解得x=10,AC=32﹣2x=12,则菱形ABCD的面积为16×12÷2=96.故答案为:96.14.已知:如图,△ABC的面积为12,将△ABC沿BC方向移到△A′B′C′的位置,使B′与C重合,连结AC′交A′C于D,则△C′DC的面积为6.【分析】根据题意,可求得D为A′B′的中点,则可知△C′DC的面积为△ABC的面积的一半.【解答】解:∵将△ABC沿BC方向移到△A′B′C′的位置,使B′与C重合,∴AB∥A′B′,∵BC=CC′,∴D为A′B′的中点,∴△C′DC的面积为△ABC的面积的一半,即为6.故答案为:6.三.解答题(共10小题)15.如图,方格纸上每个小方格的边长都是1,△ABC是通过△A1B1C1旋转得到.(1)在图中标出旋转中心点O;(2)画出△ABC向下平移4个单位长度,再向右平移4个单位长度得到的△A2B2C2.【分析】(1)连接AA,BB 1,作线段AA1,BB1的垂直平分线交于点O,点O即为所求.(2)分别作出A,B,C的对应点A2,B2,C2即可.【解答】解:(1)如图,点O即为所求.(2)如图,△A2B2C2即为所求.16.因式分解(1)a3﹣16a;(2)8a2﹣8a3﹣2a【分析】(1)首先提公因式a,再利用平方差进行分解即可;(2)首先提公因式﹣2a,再利用完全平方公式进行分解即可.【解答】解:(1)原式=a(a2﹣16)=a(a+4)(a﹣4);(2)原式=﹣2a(4a2﹣4a+1)=﹣2a(2a﹣1)2.17.计算:(1)+(﹣2bc)×;(2)先化简,再求值:(﹣1)•,其中x=﹣5.【分析】(1)先计算乘法,再计算加法即可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:(1)原式=﹣=﹣=;(2)原式=•=•=﹣,当x=﹣5时,原式=﹣=﹣.18.解分式方程(1)(2)【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:x﹣1=﹣1﹣2x+4,移项合并得:3x=4,解得:x=,经检验x=是分式方程的解;(2)去分母得:x2+2x﹣x2﹣x+2=3,解得:x=1,经检验x=1是增根,分式方程无解.19.某市举行知识大赛,A校、B校各派出5名选手组成代表队参加决赛,两校派出选手的决赛成绩如图所示.(1)根据图示填写下表:平均数/分中位数/分众数/分A校858585B校8580100(2)结合两校成绩的平均数和中位数,分析哪个学校的决赛成绩较好;(3)计算两校决赛成绩的方差,并判断哪个学校代表队选手成绩较为稳定.【分析】(1)根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义回答;(2)根据平均数和中位数的统计意义分析得出即可;(3)分别求出A校、B校的方差即可.【解答】解:(1)A校平均数为:×(75+80+85+85+100)=85(分),众数85(分);B校中位数80(分).填表如下:平均数/分中位数/分众数/分A校858585B校8580100故答案为:85;85;80.(2)A校成绩好些.因为两个队的平均数都相同,A校的中位数高,所以在平均数相同的情况下中位数高的A校成绩好些.(3)∵A校的方差s12=×[(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+(100﹣85)2]=70,B校的方差s22=×[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160.∴s12<s22,因此,A校代表队选手成绩较为稳定.20.如图,在▱ABCD中,G是CD上一点,连接BG且延长交AD的延长线于点E,AF=CG,∠E=30°,∠C=50°,求∠BFD的度数.【分析】先根据平行四边形的性质和三角形的内角和定理求出∠ABC与∠ABE度数,据此得出∠CBG度数,再证△BCG≌△EAF得出∠AEF=∠CBG,继而由三角形外角性质可得答案.【解答】解:∵四边形ABCD是平行四边形,∠C=50°,∴∠A=∠C=50°,∠ABC=180°﹣∠C=130°,AE=BC,∵∠E=30°,∴∠ABE=180°﹣∠A﹣∠E=100°,∴∠CBG=30°,在△BCG和△EAF中,∵,∴△BCG≌△EAF(SAS),∴∠CBG=∠AEF=30°,则∠BFD=∠A+∠AEF=80°.21.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)试判断四边形ADCF的形状,并证明;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明.【分析】(1)由E是AD的中点,过点A作AF∥BC,易证得△AFE≌△DBE,然后证得AF=BD=CD,即可证得四边形ADCF是平行四边形;(2)由AB⊥AC,AD是BC边上的中线,可得AD=CD=BC,然后由四边形ADCF 是平行四边形,证得四边形ADCF是菱形.【解答】(1)解:四边形CDAF是平行四边形,理由如下:∵E是AD的中点,∴AE=ED,∵AF∥BC,∴∠AFE=∠DBE,∠F AE=∠BDE,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS),∴AF=BD,∵AD是BC边中线,∴CD=BD,∴AF=CD,∴四边形CDAF是平行四边形;(2)四边形ADCF是菱形,∵AC⊥AB,AD是斜边BC的中线,∴AD=BC=DC,∵四边形ADCF是平行四边形,∴平行四边形ADCF是菱形.22.小明元旦前到文具超市用15元买了若干练习本,元旦这一天,该超市开展优惠活动,同样的练习本比元旦前便宜0.2元,小明又用20.7元钱买练习本,所买练习本的数量比上一次多50%,小明元旦前在该超市买了多少本练习本?【分析】设小明元旦前在该超市买了x本练习本,则元旦这一天在该超市买了1.5x本练习本,根据单价=总价÷数量结合元旦这天的单价比元旦前便宜0.2元,即可得出关于x 的分式方程,解之经检验后即可得出结论.【解答】解:设小明元旦前在该超市买了x本练习本,则元旦这一天在该超市买了1.5x 本练习本,根据题意得:﹣=0.2,解得:x=6,经检验,x=6是原方程的解,且符合题意.答:小明元旦前在该超市买了6本练习本.23.(1)如图1,O是等边△ABC内一点,连接OA、OB、OC,且OA=3,OB=4,OC=5,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.求:①旋转角的度数;②线段OD的长;③求∠BDC的度数.(2)如图2所示,O是等腰直角△ABC(∠ABC=90°)内一点,连接OA、OB、OC,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.当OA、OB、OC满足什么条件时,∠ODC=90°?请给出证明.【分析】(1)①根据等边三角形的性质得BA=BC,∠ABC=60°,再根据旋转的性质得∠OBD=∠ABC=60°,于是可确定旋转角的度数为60°;②由旋转的性质得BO=BD,加上∠OBD=60°,则可判断△OBD为等边三角形,所以OD=OB=4;③由△BOD为等边三角形得到∠BDO=60°,再利用旋转的性质得CD=AO=3,然后根据勾股定理的逆定理可证明△OCD为直角三角形,∠ODC=90°,所以∠BDC=∠BDO+∠ODC=150°;(2)根据旋转的性质得∠OBD=∠ABC=90°,BO=BD,CD=AO,则可判断△OBD 为等腰直角三角形,则OD=OB,然后根据勾股定理的逆定理,当CD2+OD2=OC2时,△OCD为直角三角形,∠ODC=90°.【解答】解:(1)①∵△ABC为等边三角形,∴BA=BC,∠ABC=60°,∵△BAO绕点B顺时针旋转后得到△BCD,∴∠OBD=∠ABC=60°,∴旋转角的度数为60°;②∵△BAO绕点B顺时针旋转后得到△BCD,∴BO=BD,而∠OBD=60°,∴△OBD为等边三角形;∴OD=OB=4;③∵△BOD为等边三角形,∴∠BDO=60°,∵△BAO绕点B顺时针旋转后得到△BCD,∴CD=AO=3,在△OCD中,CD=3,OD=4,OC=5,∵32+42=52,∴CD2+OD2=OC2,∴△OCD为直角三角形,∠ODC=90°,∴∠BDC=∠BDO+∠ODC=60°+90°=150°;(2)OA2+2OB2=OC2时,∠ODC=90°.理由如下:∵△BAO绕点B顺时针旋转后得到△BCD,∴∠OBD=∠ABC=90°,BO=BD,CD=AO,∴△OBD为等腰直角三角形,∴OD=OB,∵当CD2+OD2=OC2时,△OCD为直角三角形,∠ODC=90°,∴OA2+2OB2=OC2,∴当OA、OB、OC满足OA2+2OB2=OC2时,∠ODC=90°.24.在正方形ABCD中,BD是一条对角线,点P在CD上(与点C,D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QM⊥BD于M,连接AM,PM (如图1).(1)判断AM与PM的数量关系与位置关系并加以证明;(2)若点P在线段CD的延长线上,其它条件不变(如图2),(1)中的结论是否仍成立?请说明理由.【分析】(1)先判断出△DMQ是等腰直角三角形,再判断出△MDP≌△MQC(SAS),最后进行简单的计算即可;(2)先判断出△DMQ是等腰直角三角形,再判断出△MDP≌△MQC(SAS),最后进行简单的计算即可.【解答】解:(1)连接CM,∵四边形ABCD是正方形,QM⊥BD,∴∠MDQ=45°,∴△DMQ是等腰直角三角形.∵DP=CQ,在△MDP与△MQC中∴△MDP≌△MQC(SAS),∴PM=CM,∠MPC=∠MCP.∵BD是正方形ABCD的对称轴,∴AM=CM,∠DAM=∠MCP,∴∠AMP=180°﹣∠ADP=90°,∴AM=PM,AM⊥PM.(2)成立,理由如下:连接CM,∵四边形ABCD是正方形,QM⊥BD,∴∠MDQ=45°,∴△DMQ是等腰直角三角形.∵DP=CQ,在△MDP与△MQC中∴△MDP≌△MQC(SAS),∴PM=CM,∠MPC=∠MCP.∵BD是正方形ABCD的对称轴,∴AM=CM,∠DAM=∠MCP,∴∠DAM=∠MPC,∵∠PND=∠ANM∴∠AMP=∠ADP=90°∴AM=PM,AM⊥PM.1、三人行,必有我师。

2020--2021学年上学 期人教版 八年级 数学试题

2020--2021学年上学 期人教版 八年级 数学试题

2020-2021上学期人教版八年级数学期末试卷一.选择题(共12小题)1.给出下列说法:(1)等边三角形是等腰三角形;(2)三角形按边的相等关系分类可分为等腰三角形、等边三角形和不等边三角形;(3)三角形按角的大小分类可分为锐角三角形、直角三角形和钝角三角形.其中,正确的有()个.A.1B.2C.3D.02.有两条高在三角形外部的三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不确定3.下列图形中,不具有稳定性的是()A.B.C.D.4.如图所示的2×2正方形网格中,∠1+∠2等于()A.105°B.90°C.85°D.95°5.如图,△ABC≌△DEC,点E在边AB上,∠DEC=75°,则∠BCE的度数是()A.25°B.30°C.40°D.75°6.如图,AE=AC,若要判断△ABC≌△ADE,则不能添加的条件为()A.DC=BE B.AD=AB C.DE=BC D.∠C=∠E7.如图,△ABC中,∠C=90°,ED垂直平分AB,若AC=12,EC=5,且△ACE的周长为30,则BE的长为()A.5B.10C.12D.138.在平面直角坐标系中,等腰△ABC的顶点A、B的坐标分别为(0,0)、(2,2),若顶点C落在坐标轴上,则符合条件的点C有()个.A.5B.6C.7D.89.已知关于与x,y的方程组,则下列结论中正确的是()①当x,y的值互为相反数时,a=20;②当2x•2y=16时,a=18;③当不存在一个实数a,使得x=y.A.①②B.①③C.②③D.①②③10.下列等式中正确的个数是()①a5+a5=a10;②(﹣a)6•(﹣a)3•a=a10;③﹣a4•(﹣a)5=a20;④25+25=26.A.0个B.1个C.2个D.3个11.某种病毒近似于球体,它的半径约为0.000000005米,用科学记数法表示为()A.5×108B.5×109C.5×10﹣8D.5×10﹣912.在代数式,,xy+x2,中分式有()个.A.1B.2C.3D.4二.填空题(共6小题)13.如图,在△ABC中,AD⊥BC于D,那么图中以AD为高的三角形共有个.14.如图,BD是△ABC的中线,AB=6cm,BC=4cm,则△ABD和△BCD的周长差为cm.15.如图,在由6个相同的小正方形拼成的网格中,∠1+∠2=°.16.如图,在△ABC中,∠B=40°,∠C=45°,AB的垂直平分线交BC于点D,AC的垂直平分线交BC于点E,则∠DAE=.17.若x m=2,x n=3,则x m+2n的值为.18.科学家在实验中检测处某微生物约为0.0000025米长,用科学记数法表示0.0000025为.三.解答题(共9小题)19.观察以下图形,回答问题:(1)图②有个三角形;图③有个三角形;图④有个三角形;…猜测第七个图形中共有个三角形.(2)按上面的方法继续下去,第n个图形中有个三角形(用含n的代数式表示结论).20.如图,在△ABC中(AC>AB),AC=2BC,BC边上的中线AD把△ABC的周长分成60和40两部分,求AC和AB的长.21.如图所示,△ABC≌△ADE,AB=AD,AC=AE,BC的延长线交DA于点F,交DE于点G,∠AED=105°,∠CAD=15°,∠B=30°,求∠1的度数.22.如图,AB=CD,DE⊥AC,BF⊥AC,E、F是垂足,DE=BF.求证:△ABF≌△CDE.23.已知:如图,∠AOB及M、N两点.请你在∠AOB内部找一点P,使它到角的两边和到点M、N的距离分别相等(保留作图痕迹).24.已知:如图,在△ABC中,AB=AC=6,BC=4,AB的垂直平分线交AB于点E,交BC的延长线于点D.(1)求CD的长;(2)求点C到ED的距离.25.对数运算是高中常用的一种重要运算,它的定义为:如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作:x=log a N,例如:32=9,则log39=2,其中a=10的对数叫做常用对数,此时log10N可记为lgN.当a>0,且a≠1,M>0,N>0时,log a(M•N)=log a M+log a N.(I)解方程:log x4=2;(Ⅱ)求值:log48;(Ⅲ)计算:(lg2)2+lg2•1g5+1g5﹣2018.26.x2•(﹣x)2•(﹣x)2+(﹣x2)327.我们知道,假分数可以化为整数与真分数的和的形式,例如:=1+.在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.例如:像,,…,这样的分式是假分式;像,,…,这样的分式是真分式,类似的,假分式也可以化为整式与真分式的和的形式.例如:==1+;==x﹣2+.解决下列问题:(1)将分式化为整式与真分式的和的形式为:.(直接写出结果即可)(2)如果分式的值为整数,求x的整数值.2020-2021上学期人教版八年级数学期末试卷参考答案与试题解析一.选择题(共12小题)1.【分析】根据三角形的分类、三角形的三边关系进行判断.【解答】解:(1)等边三角形是一特殊的等腰三角形,正确;(2)三角形按边分类可以分为不等边三角形和等腰三角形,错误;(3)三角形按角分类应分为锐角三角形、直角三角形和钝角三角形,正确.综上所述,正确的结论2个.故选:B.2.【分析】根据三角形的高的概念,通过具体作高.发现:锐角三角形的三条高都在三角形的内部;直角三角形有两条高即三角形的两条直角边,一条在内部;钝角三角形有两条高在三角形的外部,一条在内部.【解答】解:有两条高在三角形外部的是钝角三角形.故选:C.3.【分析】根据三角形具有稳定性,四边形不具有稳定性即可判断.【解答】解:因为三角形具有稳定性,四边形不具有稳定性,故选:D.4.【分析】标注字母,然后利用“边角边”求出△ABC和△DEA全等,根据全等三角形对应角相等可得∠2=∠3,再根据直角三角形两锐角互余求解.【解答】解:如图,在△ABC和△DEA中,,∴△ABC≌△DEA(SAS),∴∠2=∠3,在Rt△ABC中,∠1+∠3=90°,∴∠1+∠2=90°.故选:B.5.【分析】利用等腰三角形的性质以及三角形的内角和定理求解即可.【解答】解:∵△ABC≌△DEC,∴∠B=∠DEC=75°,CE=CB,∴∠CEB=∠B=75°,∠B=∠CEB,∴∠BCE=180°﹣2×75°=30°,故选:B.6.【分析】根据全等三角形的判定方法一一判断即可.【解答】解:A、根据SAS可以判定两个三角形全等,本选项不符合题意.B、根据SAS可以判定两个三角形全等,本选项不符合题意.C、SSA不可以判定两个三角形全等,本选项符合题意.D、根据ASA可以判定两个三角形全等,本选项不符合题意.故选:C.7.【分析】根据线段垂直平分线的性质得出AE=BE,求出BE长即可.【解答】解:∵ED垂直平分AB,∴BE=AE,∵AC=12,EC=5,且△ACE的周长为30,∴12+5+AE=30,∴AE=13,∴BE=AE=13,故选:D.8.【分析】要使△ABC是等腰三角形,可分三种情况(①若AC=AB,②若BC=BA,③若CA=CB)讨论,通过画图就可解决问题.【解答】解:①若AC=AB,则以点A为圆心,AB为半径画圆,与坐标轴有4个交点;②若BC=BA,则以点B为圆心,BA为半径画圆,与坐标轴有2个交点(A点除外);③若CA=CB,则点C在AB的垂直平分线上,∵A(0,0),B(2,2),∴AB的垂直平分线与坐标轴有2个交点.综上所述:符合条件的点C的个数有8个.故选:D.9.【分析】已知关于与x,y的方程组,则下列结论中正确的是(①②③)①当x,y的值互为相反数时,a=20;解方程组得,根据互为相反数的两个数和为0,可得结论.②当2x•2y=16时,a=18;根据同底数幂的乘法法则得x+y=4,可得结论.③当不存在一个实数a,使得x=y.当x=y时,等式不成立,可得结论.【解答】解:已知关于与x,y的方程组,则下列结论中正确的是(①②③)①当x,y的值互为相反数时,a=20;解得:∵x,y的值互为相反数,∴x+y=0∴25﹣a+15﹣a=0解得:a=20故①正确;②当2x•2y=16时,a=18;∵2x•2y=2 x+y=24∴x+y=25﹣a+15﹣a=4解得:a=18故②正确;③当不存在一个实数a,使得x=y.若x=y,得25﹣a=15﹣a此方程无解.∴不存在一个实数a,使得x=y.故③正确.故选:D.10.【分析】①利用合并同类项来做;②③都是利用同底数幂的乘法公式做(注意一个负数的偶次幂是正数,奇次幂是负数);④利用乘法分配律的逆运算.【解答】解:①∵a5+a5=2a5,故①的答案不正确;②∵(﹣a)6•(﹣a)3•a=﹣a10故②的答案不正确;③∵﹣a4•(﹣a)5=a9,故③的答案不正确;④25+25=2×25=26.所以正确的个数是1,故选:B.11.【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000005=5×10﹣9.故选:D.12.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:这1个式子分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.故选:A.二.填空题(共6小题)13.【分析】由于AD⊥BC于D,图中共有6个三角形,它们都有一边在直线CB上,由此即可确定以AD为高的三角形的个数.【解答】解:∵AD⊥BC于D,而图中有一边在直线CB上,且以A为顶点的三角形有6个,∴以AD为高的三角形有6个.故答案为:614.【分析】根据三角形的中线得出AD=CD,根据三角形的周长求出即可.【解答】解:∵BD是△ABC的中线,∴AD=CD,∴△ABD和△BCD的周长的差是:(AB+BD+AD)﹣(BC+BD+CD)=AB﹣BC=6﹣4=2cm.故答案为:2.15.【分析】连接AC,利用全等三角形的性质解答即可.【解答】解:如图所示:由图可知△ACE与△ABD与△ACF全等,∴AB=AC,∠1=∠CAE=∠ACF,∵∠CAE+∠DAC=90°,∴∠1+∠DAC=∠BAC=90°,∴△ABC是等腰直角三角形,∴∠2+∠ACF=45°,∴∠1+∠2=45°,故答案为:45.16.【分析】根据线段的垂直平分线得出AD=BD,AE=CE,推出∠B=∠BAD,∠C=∠CAE,求出∠BAD+∠CAE的度数即可得到答案.【解答】解:∵点D、E分别是AB、AC边的垂直平分线与BC的交点,∴AD=BD,AE=CE,∴∠B=∠BAD,∠C=∠CAE,∵∠B=40°,∠C=45°,∴∠B+∠C=85°,∠BAC=95°,∴∠BAD+∠CAE=85°,∴∠DAE=∠BAC﹣(∠BAD+∠CAE)=95°﹣85°=10°,故答案为:10°17.【分析】先把x m+2n变形为x m(x n)2,再把x m=2,x n=3代入计算即可.【解答】解:∵x m=2,x n=3,∴x m+2n=x m x2n=x m(x n)2=2×32=2×9=18;故答案为:18.18.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:用科学记数法表示0.0000025为2.5×10﹣6,故答案为:2.5×10﹣6.三.解答题(共9小题)19.【分析】(1)根据观察可得:图②有3个三角形;图③有5个三角形;图④有7个三角形;由此可以猜测第七个图形中共有13个三角形(2)按照(1)中规律如此画下去,三角形的个数等于图形序号的2倍减去1,据此求得第n个图形中的三角形的个数.【解答】解:(1)图②有3个三角形;图③有5个三角形;图④有7个三角形;…猜测第七个图形中共有13个三角形.(2)∵图②有3个三角形,3=2×2﹣1;图③有5个三角形,5=2×3﹣1;图④有7个三角形,7=2×4﹣1;∴第n个图形中有(2n﹣1)个三角形.故答案为3,5,7,13,(2n﹣1).20.【分析】先根据AD是BC边上的中线得出BD=CD,设BD=CD=x,AB=y,则AC=4x,根据题意得出方程组,求出方程组的解,再根据三角形的三边关系定理判断即可.【解答】解:设BD=CD=x,AB=y,则AC=2BC=4x,∵BC边上的中线AD把△ABC的周长分成60和40两部分,AC>AB,∴AC+CD=60,AB+BD=40,即,解得:,当AB=28,BC=24,AC=48时,符合三角形三边关系定理,能组成三角形,所以AC=48,AB=28.21.【分析】根据全等三角形对应角相等可得∠AED=∠ACB,∠D=∠B,再根据邻补角的定义求出∠ACF,然后根据三角形的内角和定理列出方程求解即可.【解答】解:∵△ABC≌△ADE,∴∠AED=∠ACB=105°,∠D=∠B=30°,∴∠ACF=180°﹣∠ACB=180°﹣105°=75°,由三角形的内角和定理得,∠1+∠D=∠CAD+∠ACF,∴∠1+30°=15°+75°,解得∠1=60°.22.【分析】求出∠DEC=∠BF A=90°,根据HL定理推出即可.【解答】证明:∵DE⊥AC,BF⊥AC,∴∠DEC=∠BF A=90°,在Rt△ABF和Rt△CDE中,,∴Rt△ABF≌Rt△CDE(HL).23.【分析】点P是∠AOB的平分线与线段MN的中垂线的交点.【解答】解:点P就是所求的点.(2分)如果能正确画出角平分线和中垂线的给满分24.【分析】(1)过A点作AF⊥BC于点F.根据AB=AC=6,BC=4,AF⊥BC,可得BF =FC=2,∠BF A=90°,再根据三角函数即可求出CD的长;(2)过C点作CH⊥ED于点H,根据CH⊥ED,AB⊥ED,可得∠DEB=∠DHC=90°,即CH∥AB,对应边成比例即可求出CH的长.【解答】解:如图,(1)过A点作AF⊥BC于点F.∵AB=AC=6,BC=4,AF⊥BC,∴BF=FC=2,∠BF A=90°,∴在Rt△ABF中,,∵AB的垂直平分线交AB于点E,AB=6,∴AE=BE=3,∠DEB=90°,在Rt△DEB中,,∴BD=9,∴CD=5.(2)过C点作CH⊥ED于点H,∵CH⊥ED,AB⊥ED,∴∠DEB=∠DHC=90°,∴CH∥AB,∴,∵BE=3,BD=9,CD=5,∴.∴点C到ED的距离CH为.25.【分析】(I)根据题中的新定义化简为:x2=4,解方程即可得到结果;(II)解法一:利用对数的公式:log a(M•N)=log a M+log a N,把8=4×2代入公式,即可得到结果;解法二:设log48=x,根据对数的定义得4x=8,化为底数为2的式子,可得结果;(II)(lg2)2+lg2•1g5+1g5﹣2018,=lg2(lg2+1g5)+lg5﹣2018,=lg2•1g10+lg5﹣2018(III)知道lg2+1g5=1g10=1,提公因式后利用已知的新定义化简即可得到结果.【解答】解:(I)log x4=2;∴x2=4,∵x>0,∴x=2;(II)解法一:log48=log4(4×2)=log44+log42=1+=;解法二:设log48=x,则4x=8,∴(22)x=23,∴2x=3,x=,即log48=;(II)(lg2)2+lg2•1g5+1g5﹣2018,=lg2(lg2+1g5)+lg5﹣2018,=lg2•1g10+lg5﹣2018,=lg2+1g5﹣2018,=1g10﹣2018,=1﹣2018,=﹣2017.26.【分析】根据幂的乘方和积的乘方的计算方法进行计算即可.【解答】解:原式=x2•x2•x2﹣x6=x6﹣x6=0.27.【分析】(1)由“真分式”的定义,可仿照例题得结论;(2)先把分式化为真分式,再根据分式的值为整数确定x的值.【解答】解:(1)==﹣=1﹣故答案为:1﹣(2)原式===x﹣1+因为x的值是整数,分式的值也是整数,所以x+3=±1或x+3=±3,所以x=﹣4、﹣2、0、﹣6.所以分式的值为整数,x的值可以是:﹣4、﹣2、0、﹣6.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020—2021学年度第一学期期末考试八年级数学试题(考试时间:110分钟试卷满分:150分考试形式:闭卷)一、选择题(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上.) 1.下列图形中,不是轴对称图形的是( )A. B. C. D.2.有5cm ,13cm 两根木条,再找一根木条组成直角三角形,下列木条长度适合的是( ) A.8cmB.12cmC.18cmD.20cm3.下列实数是无理数的是( )A.0.5B.13C.14.下列数据不能确定物体位置的是( ) A.电影票5排8号 B.东经118°,北纬40° C.希望路25号D.北偏东30°5.下列所给的四组条件,能作出唯一三角形的是( ) A.4cm AB =,3cm BC =,5cm AC = B.2cm AB =,6cm BC =,4cm AC = C.60A B C ∠=∠=∠=︒D.30A ∠=︒,60B ∠=︒,90C ∠=︒6.如图,在ABC △中,AB AC =,42A ∠=︒,DE 垂直平分AC ,则BCD ∠的度数为( )A.23°B.25°C.27°D.29°7.如图,OP 平分AOB ∠,PD OA ⊥于点D ,点E 是射线OB 上的一个动点,若3PD =,则PE 的最小值( )A.等于3B.大于3C.小于3D.无法确定8.2020年10月1日,小明乘大客车到大丰“荷兰花海”看郁金香花海,早上,大客车从滨海出发到大丰,匀速行驶一段时间后,途中遇到堵车原地等待一会儿,然后大客车加快速度行驶,按时到达“荷兰花海”.参观结束后,大客车匀速返回.其中x 表示小明所乘客车从滨海出发后至回到滨海所用的时间,y 表示客车离滨海的距离,下面能反映y 与x 的函数关系的大致图像是( )A. B. C. D.二、填空题(本大题共10小题,每小题3分,共30分.请把答案填写在答题卡相应位置.)=__________.10.一个三角形的三边为6、10、x ,另一个三角形的三边为y 、6、12,如果这两个三角形全等,则x y += __________.11.一个等腰三角形有两边分别为4和8,则周长是__________.12.在Rt ABC △中,斜边2AB =,则222AB BC AC ++=__________. 13.已知点(),3M a ,点()2,N b 关于y 轴对称,则()2021a b +=__________.14.如图,直线l 是一次函数y kx b =+(0k ≠)的图像,则b = __________.15.如图,AD 是等边ABC △的中线,E 是AC 上一点,且AD AE =,则EDC ∠=__________°.16.如图,已知方格纸中是4个相同的小正方形,则12∠+∠的度数为__________°.17.小明从家跑步到学校,接着立即原路步行回家.如图是小明离家的路程y (米)与时间x (分)之间的函数关系的图像,则小明步行回家的平均速度是__________米/分.18.某汽车生产厂对其生产的A 型汽车进行油耗试验,试验中汽车为匀速行驶,在行驶过程中,油箱的余油量y (升)与行驶时间t (小时)之间的关系如下表:由表格中y 与t 的关系可知,当汽车行驶__________小时,油箱的余油量为0.三、解答题(本大题共9小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(1))11(2142⎛⎫⨯-⎪⎝⎭20.若x y +是9的算术平方根,x y -的立方根是2-,求22x y -的值. 21.如图,AB AC =,AD AE =,BD CE =.求证:BAC DAE ∠=∠22.如图,己知一次函数3y kx =+的图像经过点()4,0.(1)求k 的值;(2)画出该函数的图像;(3)点P 是该函数图像上一个动点,连接OP ,求OP 的最小值.23.如图,在平面直角坐标系中,已知()10,0A ,()10,6B ,BC y ⊥轴,垂足为C ,点D 在线段BC 上,且AD AO =.(1)试说明:DO 平分CDA ∠; (2)求点D 的坐标.24.定义:如图,点M 、N 把线段AB 分割成AM 、MN 和BN ,若以AM 、MN 、BN 为边的三角形是一个直角三角形,则称点M 、N 是线段AB 的勾股分割点。

已知点M 、N 是线段AB 的勾股分割点,若2AM =,3MN =,求BN 的长.25.某县在创建省文明卫生城市中,绿化档次不断提升.某校计划购进A 、B 两种树木共100棵进行校园绿化升级,经市场调查:购买A 种树木2棵,B 种树木5棵,共需600元;购买A 种树木3棵,B 种树木1棵,共需380元(1)求A 种、B 种树木每棵各多少元?(2)因布局需要,购买A 种树木的数量不少于B 种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价八折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.26.设一次函数11y k x b =+(10k ≠)的图像为直线1l ,一次函数22y k x b =+(20k ≠)的图像为直线2l ,若12k k =,且12b b ≠,我们就称直线1l 与直线2l 互相平行.解答下面的问题:(1)求过点()1,4P 且与已知直线21y x =--平行的直线l 的函数表达式;(2)设(1)中的直线l 分别与x 轴、y 轴交于A 、B 两点,直线21y x =--分别与x 轴、y 轴交于C 、D 两点,求四边形ABCD 的面积.27.如图,直线y kx b =+(0k ≠)与坐标轴分别交于A 、B 两点,8OA =,6OB =.动点P 从O 点出发,沿路线O A B O →→→以每秒2个单位长度的速度运动,回到O 点时运动停止.(1)则A 点的坐标为________,B 点的坐标为________;(2)当点P 在OA 上,且BP 平分OBA ∠时,求此时点P 的坐标;(3)设点P 的运动时间为t 秒,BPA △的面积为S ,求S 与t 之间的函数关系式,并直接写出当8S =时,点P 的坐标.2020—2021学年度第一学期期末考试 八年级数学试题参考答案及评分标准一、选择题(每小题3分,共24分)二、填空题(每小题3分,共30分)9.3 10.22 11.20 12.8 13.1 14.1 15.15 16.90 17.80 18.15 三、解答题(本大题共有9小题,共96分) 19.解:(1)原式221=-31=-2=(2)原式()223=+--3=-20.解:∵x y +是9的算术平方根 ∴3x y +=∵x y -的立方根是2- ∴8x y -=-∴()()22x y x y x y -=+-()38=⨯-24=-21.证明:在ADB △和AEC △中,AB ACAD AE BD CE =⎧⎪=⎨⎪=⎩∴()SSS ADB AEC ≌△△ ∴BAD CAE ∠=∠∴BAD DAC CAE DAC ∠-∠=∠-∠ 即BAC DAE ∠=∠ED CBA22.解:(1)∵一次函数3y kx =+的图象经过点()4,0 ∴430k += ∴34k =-(2)由函数3y kx =+可知直线与y 轴的交点为()0,3(3)作OP AB ⊥于P ,此时OP 是最小值 ∵()4,0A ,()0,3B ∴5AB = ∵1212OA OB AB OP ⋅=⋅ ∴345OP ⨯= ∴125OP =∴OP 的最小值是12523.解:(1)∵BC y ⊥轴 ∴//BC OA ∴ODC AOD ∠=∠ ∵AD AO = ∴AOD ADO ∠=∠ ∴ODC ADO ∠=∠ ∴OD 平分CDA ∠(2)∵()10,0A ,()10,6B ∴10BC OA AD ===,6AB =∴8BD ==∴1082CD BC BD =-=-= ∴()2,6D24.解:分两种情况:①当MN 为最大线段时,∵点M 、N 是线段AB 的勾股分割点,∴BN ==②当BN 为最大线段时,∵点M 、N 是线段AB 的勾股分割点,∴BN ==综上所述:BN25.解:(1)设A 种树每棵x 元,B 种树每棵y 元依题意得:256003380x y x y +=⎧⎨+=⎩解得10080x y =⎧⎨=⎩答:A 种树每棵100元,B 种树每棵80元(2)设购买A 种树木为a 棵,则购买B 种树木为()100a -棵 则()3100a a ≥-B解得75a ≥设实际付款总金额是w 元,则()0.810080100w a a =+-⎡⎤⎣⎦ 即166400w a =+∵160>,w 随a 的增大而增大 ∴当75a =时,w 最小即当75a =时,167564007600w =⨯+=最小值(元)答:当购买A 种树木75棵,B 种树木25棵时,所需费用最少,最少为7600元. 26.解:(1)∵直线l 与直线21y x =--平行 ∴设直线l 的解析式为2y x b =-+ ∵过点()1,4P ∴421b =-⨯+ 解得:6b =∴直线l 的解析式为:26y x =-+ (2)令210y x =--=,得12x =-,令0x =,得1y =- ∴C 点的坐标为1,02⎛⎫-⎪⎝⎭,D 点的坐标为()0,1- 令260y x =-+=,得3x =, 令0x =,得6y =, ∴点A 的坐标()3,0, 点B 的坐标为()0,6∴ABC DCA ABCD S S S =+四边形△△1717612222=⨯⨯+⨯⨯ 494=27.解:(1)()8,0;()0,6 (2)作PH AB ⊥于H ,由勾股定理得,10AB == 在BOP △和BHP △中BOP BHP OBP HBP BP BP ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS BOP BHP ≌△△ ∴6BH OB ==,OP PH =则4AH AB BH =-=,8AP OP =-在Rt AHP △中,222AP PH AH =+,即()22284OP OP -=+解得,3OP = 则点P 的坐标为()3,0(3)①当点P 在OA 上,由点P 的运动时间为t 秒可知,2OP t = ∴82AP t =-∴BPA △的面积()1182624622S AP OB t t =⨯⨯=⨯-⨯=- 则S 与t 之间的函数关系式为:246S t =-(04t ≤≤) 当8S =时,点P 的坐标为16,03⎛⎫⎪⎝⎭. ②当点P 在OB 上,∴218BP t =-∴BPA △的面积()11218887222S BP OA t t =⨯⨯=⨯-⨯=- 则S 与t 之间的函数关系式为872S t =-(912t ≤≤) 当8S =时,则点P 的坐标为()0,4.。

相关文档
最新文档