数列求和7种方法(方法全~例子多)
数列求和公式七个方法
数列求和公式七个方法数列求和是数学中的一个重要概念,常用于计算数列中各项之和。
数列求和公式有多种方法,下面将介绍七种常见的求和公式方法。
方法一:等差数列求和公式等差数列是指数列中每一项与前一项之差都相等的数列。
等差数列求和公式是通过将数列项数n代入公式中,计算数列中各项之和Sn。
等差数列求和公式为Sn=n(a1+an)/2,其中Sn表示数列的和,a1表示首项,an表示末项,n表示项数。
方法二:等比数列求和公式等比数列是指数列中每一项与前一项之比都相等的数列。
等比数列求和公式是通过将数列项数n代入公式中,计算数列中各项之和Sn。
等比数列求和公式为Sn=a1(1-q^n)/(1-q),其中Sn表示数列的和,a1表示首项,q表示公比,n表示项数。
方法三:斐波那契数列求和公式斐波那契数列是指数列中每一项都是前两项之和的数列。
斐波那契数列求和公式是通过将数列项数n代入公式中,计算数列中各项之和Sn。
斐波那契数列求和公式为Sn=f(n+2)-1,其中Sn表示数列的和,f表示斐波那契数列。
方法四:调和数列求和公式调和数列是指数列中每一项的倒数是一个调和级数的一项。
调和数列求和公式是通过将数列项数n代入公式中,计算数列中各项之和Sn。
调和数列求和公式为Sn=1+1/2+1/3+...+1/n,即Sn=Hn,其中Hn表示调和级数的n项和。
方法五:等差数列求和差分公式通过差分公式,我们可以得到等差数列的求和公式。
差分公式是指数列中相邻两项之差等于同一个常数d。
等差数列求和差分公式为Sn=[(a1+an)/2]n,其中Sn表示数列的和,a1表示首项,an表示末项,n表示项数。
方法六:等比数列求和差分公式通过差分公式,我们可以得到等比数列的求和公式。
差分公式是指数列中相邻两项之比等于同一个常数q。
等比数列求和差分公式为Sn=a1(1-q^n)/(1-q),其中Sn表示数列的和,a1表示首项,q表示公比,n表示项数。
方法七:等差数列求和公式(倍差法)倍差法是一种基于等差数列的求和方法。
求数列前N项和的七种方法(含例题和答案)
求数列前N 项和的七种方法1. 公式法等差数列前n 项和:特别的,当前n 项的个数为奇数时,211(21)k k S k a ++=+,即前n 项和为中间项乘以项数。
这个公式在很多时候可以简化运算。
等比数列前n 项和: q=1时,1n S na =()1111n n a q q S q-≠=-,,特别要注意对公比的讨论。
其他公式: 1、)1(211+==∑=n n k S nk n 2、)12)(1(6112++==∑=n n n k S nk n3、213)]1(21[+==∑=n n k S nk n[例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n项和.[例2] 设S n =1+2+3+…+n,n ∈N *,求1)32()(++=n nS n S n f 的最大值.2. 错位相减法这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. [例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n 前n 项的和.练习: 求:S n=1+5x+9x 2+······+(4n -3)xn-13. 分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例5] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa a n ,…[例6] 求数列{n(n+1)(2n+1)}的前n 项和.解:设kk k k k k a k ++=++=2332)12)(1(∴∑=++=nk n k k k S 1)12)(1(=)32(231k k k n k ++∑=将其每一项拆开再重新组合得S n=kk k nk nk nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n(分组求和)=2)2()1(2++n n n练习:求数列∙∙∙+∙∙∙),21(,,813,412,211n n 的前n 项和。
求数列前n项和的七种方法
求数列前N 项和的七种方法1. 公式法等差数列前n 项和:11()(1)22n n n a a n n S na d ++==+ 特别的,当前n 项的个数为奇数时,211(21)k k S k a ++=+ ,即前n 项和为中间项乘以项数。
这个公式在很多时候可以简化运算。
等比数列前n 项和: q=1时,1n S na =()1111n n a q q S q-≠=-,,特别要注意对公比的讨论。
其他公式:1、)1(211+==∑=n n k S nk n 2、)12)(1(6112++==∑=n n n k S nk n3、213)]1(21[+==∑=n n kS nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 n n x x x x S +⋅⋅⋅+++=32 (利用常用公式)=xx x n--1)1(=211)211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(211++=+n n S n (利用常用公式) ∴ 1)32()(++=n nS n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当88-n ,即n =8时,501)(max =n f2. 错位相减法这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积设n n x n x x x x xS )12(7531432-+⋅⋅⋅++++=……………………….②(设制错位)①-②得 n n n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=--(错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+ [例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ……………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S练习:求:S n =1+5x+9x 2+······+(4n-3)x n-1 解:S n =1+5x+9x 2+······+(4n-3)x n-1 ① ①两边同乘以x ,得 x S n =x+5 x 2+9x 3+······+(4n-3)x n ② ①-②得,(1-x )S n =1+4(x+ x 2+x 3+······+n x )-(4n-3)x n当x=1时,S n =1+5+9+······+(4n-3)=2n 2-n当x ≠1时,S n =1 1-x [ 4x(1-x n ) 1-x +1-(4n-3)xn]3. 反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1s i n 2s i n 3s i n 88sin 89sin 22222+++⋅⋅⋅++=S …② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x ①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.54. 分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例6] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S n n -+--==2)13(11n n a a a n -+---[例7] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1( ∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得3211123n n nn k k k S k k k ====++∑∑∑ (分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++22(1)(1)(21)(1)222n n n n n n n ++++=++ (分组求和) =2)2()1(2++n n n练习:求数列∙∙∙+∙∙∙),21(,,813,412,211n n 的前n 项和。
求数列前N项和的七种方法(含例题和答案)
求数列前N 项和的七种方法点拨:1. 公式法等差数列前n 项和:11()(1)22n n n a a n n S na d ++==+ 特别的,当前n 项的个数为奇数时,211(21)k k S k a ++=+,即前n 项和为中间项乘以项数。
这个公式在很多时候可以简化运算。
等比数列前n 项和: q=1时,1n S na =()1111n n a q q S q-≠=-,,特别要注意对公比的讨论。
其他公式:1、)1(211+==∑=n n k S nk n 2、)12)(1(6112++==∑=n n n k S nk n3、213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n --1)1(=211)211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(211++=+n n S n (利用常用公式)∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 nn 8=,即n =8时,501)(max =n f2. 错位相减法这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=--(错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+ [例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和.解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n21}的通项之积 设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位)①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS(错位相减)1122212+---=n n n∴ 1224-+-=n n n S练习:求:S n =1+5x+9x 2+······+(4n-3)x n-1解:S n =1+5x+9x 2+······+(4n-3)x n-1 ①①两边同乘以x ,得 x S n =x+5 x 2+9x 3+······+(4n-3)x n ②①-②得,(1-x )S n =1+4(x+ x 2+x 3+······+ nx )-(4n-3)x n当x=1时,S n =1+5+9+······+(4n-3)=2n 2-n当x ≠1时,S n = 1 1-x [ 4x(1-x n) 1-x+1-(4n-3)x n] 3. 反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..②(反序)又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得(反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.54. 分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例6] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n(分组)当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S n n -+--==2)13(11n n a a a n -+---[例7] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和)=2)2()1(2++n n n练习:求数列•••+•••),21(,,813,412,211n n 的前n 项和。
数列求和7种方法
1、2、3、5、一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法n(a1 a n) “ n(n - 1)dna1 d2等差数列求和公式:等比数列求和公式:S nS n=^n(n 1)2nS n 八k3k 4[例1]已知log 3 x解:由log3x* a1 (1 -q.1-qa i —^n qi -q(q =1)、& 八k2n(n 1)(2n 1)-1 2 3,求x x x 'I Xn项和.log 23-1=log 3 -log3 2 =log 2 31x =—2由等比数列求和公式得S n = x x2x3(利用常用公式)[例2]设S= 1+2+3+…+n, n€ N,求f (n)解: 由等差数列求和公式得S n•••当题1.等比数列S nf(n) ,n 32)S n 1x(1 x n)1 -xSn1 1齐-班)_ 1丄1一1 —歹2(n 32)Sm的最大值.1」n(n1), S22n 34n 641= -(n 1)( n 2)2(利用常用公式)1n 34 64(、n 8 )250n J n— 8、n ——,即 n= 8 时,f (n)(8max1502 2J 的前n项和 S n= 2n- 1,则Ll'i 〔4—1练习题1 已知 1 f ,求数列{ a n }的前n 项和S. 答案爲二〃2" _ 1$ _ 22心二泌-2"+1 答案: -1 3 5 加-1■ ■ ' '■■'・' ______ ■ ■ ■练习题2 221V2"的前n 项和为 ____题 2.若 12+22+…+(n -1) 2=an 3+bn 2+cn ,贝H a = , b = , c = __________(卑T)用•(沏-1) 2h-划+罔 1 1J 解: 原式= •」 . 答案:_ _ 1 二、错位相减法求和 这种方法是在推导等比数列的前 n 项和公式时所用的方法, 这种方法主要用于求数列{a n • b n }的前n项和,其中{ a n }、{ b n }分别是等差数列和等比数列 • [例 3]求和:S n =1 3x 5x 2 7x 3(2n -1)x nJL.............. ①解:由题可知,{ (2 n-L )x n J }的通项是等差数列{2n — 1}的通项与等比数列{x n」}的通项之积设xS n =1x 3x 2 5x 3 • 7x 4心……爲(2n- 1)x n..................... .②(设制错位) ①—②得(1 -x )^ =1 2x 2x 2 2x 3 • 2x 4「一 2x nJ -(2 n-1)x n(错位相减)再利用等比数列的求和公式得:n J1 — X(1 _x)S n=1 2x(2n _ 1)x nS n =(2n - 1)x n 1 -(2n 1)x n (1 x)(1-x)2[例4]求数列2, 42 , 63 ,,前n 项的和.2 2 2 2解:由题可知,出}的通项是等差数列{2n }的通项与等比数列{2n}的通项之积设S nWn2n①•②1 2 2 ①-②得(一評匸歹F IF-/n(设制错位) (错位相减)S n 1^_2nJ2n-4 -答案:— 、反序相加法求和 这是推导等差数列的前 n 项和公式时所用的方法,就是将一个数列倒过来排列(反序) 数列相加,就可以得到 n 个(a 1 a n ). [例 5]求证:c : 3C : 5C ; (2n 1)C : =(n 1)2n ,再把它与原证明:设 S n =C n ■ 3C 15C^. . (2n . 1)C : .............. ..①把①式右边倒转过来得S n =(2n 1)C : (2 n-1)C :「3C : C :又由o m 二可得1n 1 nS n -(2n 1)C n (2n- 1)C n 3C n - C n .......... . ……..②① + ②得 2S n =(2n+2)(C : +C : + …y +C :) = 2(n +1) 2n5 =(n 1) 2n[例 6]求 sin 1 sin 2 sin 3 飞in 88 sin 89 的值 (反序)(反序相加)(2) 2 ' 2 ' 2 ' 2 ••• 2 " 解:设 S = sin 1 sin 2 sin 3 亠 亠 sin 88 sin 89 .................... ① 将①式右边反序得 2 0 2。
数列求和7种方法(方法全_例子多)84179
百度文库-让每个人平等地提升自我数列求和的基本方法和技巧(配以相应的练习)一、总论:数列求和7种方法:利用等差、等比数列求和公式错位相减法求和反序相加法求和分组相加法求和裂项消去法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。
1、2、3、5、一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法n(a1 a n)等差数列求和公式:等比数列求和公式:S nS nnk3k 1S nS n1)1)]2na13d1[例1]已知x ,求xx2解:由等比数列求和公式得na1印(11(q 1) x3a.qS n[例2]设S n= 1+2+3+ …+n, n€ N*,求f(n)4、S n的前(q 1)nk2k 1n项和.2x3x(1 x n)1 x2(1S n(n 32)S n 1」n(n 1)(2 n 1)6x nJ2L =1 _ 丄11 2n2的最大值.(利用常用公式)百度文库-让每个人平等地提升自我2解:由等差数列求和公式得1Sn2n(n 1),S n1-(n 1)( n 2) 2(利用常用公式)S n…f(n) (n 32)S n 1n ~2n 34n 641 ""“ 64n 34•••当 n -8•一 n1 I,5050,即 8 时,f (n )max50二、错位相减法求和这种方法是在推导等比数列的前 n 项和公式时所用的方法, 项和,其中{ a n }、{ b n }分别是等差数列和等比数列 2 3[例 3]求和:S n 1 3x 5x 7x(2n 1)x n 1解:由题可知, {(2n 1)x n 1}的通项是等差数列设xS n1x 3x 2 5x 3 7x 4(2n 这种方法主要用于求数列 {2n — 1}的通项与等比数列{ x nn1)x ①一②得 (1 x)S n 1 2x 2x 2 2x 32x 42x n 1(2n 1)x n{a n • b n }的前n}的通项之积 (设制错位)(错位相减)再利用等比数列的求和公式得:(1X )Snn 1c 1 X /c 2x(2n1 xn1)x[例4]求数列2,-62 2 解:由题可知,设S n2 ' '2n4 22 4 戸 2 22 22①一②得(1n 1S (2n 1)x(2nS n2(1 x)贵前n 项的和.1)x n (1 x) }的通项是等差数列{2n }的通项与等比数列{ I }的通项之积2n_6_ 23 6 24 1)S n2S n2 22 1尹n 2 yr....................2n、“ 1 2 2 23 24 2n盯 2 2n 2* 2*1(设制错位) (错位相减)百度文库-让每个人平等地提升自我练习题1 已知,求数列{a n}的前n项和S.答案:练习题的前n项和为百度文库-让每个人平等地提升自我答案:三、逆序相加法求和这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个(a.a n).0 12[例5]求证:C n 3C n 5C n(2n 1)C:(n 1)2n证明:设S n C0 3C1 5C;(2n i)c n把①式右边倒转过来得又由c nmS n (2n 1)C:(2nC:m可得S n (2n 1)C0 (2n①+②得2S n(2nS n (n1)C:1i)c n2)(C°C:1) 2n3c n C0(反序)3C;1C n 1 nC:C n n) 2(n 1) 2n(反序相加)题1 已知函数(1)证明:(2)求的值.解:(1 )先利用指数的相关性质对函数化简,后证明左边=右边(2)利用第(1 )小题已经证明的结论可知, 两式相加得:百度文库-让每个人平等地提升自我所以四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可 .1 1[例7]求数列的前n 项和:1 1,— 4,-y 7,a a 1 1解:设 S n (1 1) (- 4) (-2a a将其每一项拆开再重新组合得1 S n (1 一a3n 2,•-7)(丄 a n 13n 2)1a(3n 1)n2丄 孑(3n 1)n\ 1丄a[例8]求数列{n(n+1)(2n+1)}的前n 项和.当a = 1时, 当a 1时,S n解:设 a k k(k 1)(2k 1)2k 3 )(13k 23n 2)(3n 1)n1a a 1(3n 1)n 2nS n k(k 1)(2kk 11)n(2 k 313k 2 k)将其每一项拆开再重新组合得nS n = 2k 1k 3 k 2=2(13 233\n )3(12 2 (1 2n)(分组)(分组求和)(分组)2 2n (n 1) n(n 1)(2n 1) n(n 1)2 2 22n(n 1) (n 2)2(分组求和)五、裂项法求和 这是分解与组合思想在数列求和中的具体应用 .裂项法的实质是将数列中的每项(通项)分解,然后 重新组合,使之能消去一些项,最终达到求和的目的.通项分解 (裂项)如:(1) a nf(n 1) f(n)(2) sin1 cos n cos(n 1)tan(n 1) tan n(3) a n1 n(n 1)(4) a n(2n )2 (2n 1)(2 n1)1 2n 1(5)a nn(n 1)( n 2) 12[n(n 1) (n 1)(n 2)](7)a na n(8) a n[例9]求数列n 2 1 n(n 1) 2n2(n 1) n n(n 1)1 2n1 n 2n 1,则 S n1(n 1)2n ' n1 (n 1)2n(An B)(A n C)C B (AnAn七)的前 n 项和.(裂项)解:设a n则S n=(.2 .1)(..n 1(3 (裂项求和)[例10]在数列{a n }中,a n、、n )-,求数列{b n }的前n 项的和•a n a n 1解:a n••• b nS n8[(1 =8(1/n 1(2009年广东文)20.(本小题满分n n 1 f nn 12 2}的前n 项和2)(丄1)2 3(14)(-二n n1 =8nn 114分)• 数列{b n (裂项)(裂项求和)1 x已知点(1,一)是函数f (x ) a (a 0,且a 1)的图象上一点,等比数列{a n }的前n 项和为f (n ) 3c ,数列{b n }(b n 0)的首项为 c ,且前 n 项和 S n 满足 S * — S n 1 = ... S n + .. S n1(n2).(1)求数列{a n }和{b n }的通项公式;1(2)若数列{—— bn b n}前n 项和为T n ,问Tn > 1000的最小正整数2009n 是多少?0.【解析】(1)a 1 又数列又公比又b n 数列b n ,a 2a 3f 3a n 成等比数列, a 2 a 12 27S n2n a12a s4 81 2 27所以1,所以3a nS n 1S n 1构成一个首相为 1( n N );1公差为 1的等差数列,1 n , S n n 21 2 2n 1 ;⑵T n1 1b|b2 b2b3b s b4HI ib n b n i7 III 1(2n 1) 2n 1由T n 11 1 1 11 -2 3 2 3 5HI 1 12 2n 112n 11 1丄2 2n 1n2n 1 n2n 11000得n 1000,满足T n2009 9竺0的最小正整数为112.2009练习题1.练习题2。
数列求和7种方法(方法全_例子多)
数列求和7种方法(方法全_例子多)一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求+++++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=?-=?-=x x x由等比数列求和公式得 n n x x x x S ++++=32 (利用常用公式)=xx x n--1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(2 1++=n n S n (利用常用公式)∴ 1)32()(++=n nS n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当88-n ,即n =8时,501)(max =n f题1.等比数列的前n项和S n=2n-1,则=题2.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a = ,b = ,c = .解:原式=答案:二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设n n x n x x x x xS )12(7531432-+++++=……………………….② (设制错位)①-②得 n n n x n x x x x x S x )12(222221)1(1432--++++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----?+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+ [例4] 求数列,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232++++=…………………………………①14322226242221+++++=n n nS ………………………………② (设制错位)①-②得1432222222222222)211(+-+++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S练习题1 已知,求数列{a n }的前n 项和S n .答案:练习题2 的前n 项和为____答案:三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n n n n n n n C n C C C 2)1()12(53210+=+++++证明:设nnn n n n C n C C C S )12(53210+++++=…………………………..① 把①式右边倒转过来得113)12()12(nn n n n n n C C C n C n S +++-++=- (反序)又由mn nm n C C -=可得 n nn n n n n C C C n C n S +++-++=-1103)12()12(…………..……..② ①+②得n n n n n n n n n C C C C n S2)1(2))(22(2110?+=+++++=- (反序相加)∴ n n n S 2)1(?+=[例6] 求89sin 88sin 3sin 2sin 1sin 22222+++++的值解:设89sin 88sin 3sin 2sin 1sin 22222+++++=S …………. ①将①式右边反序得1s i n 2s i n 3s i n 88sin 89sin 22222+++++=S …………..② (反序)又因为 1cos sin ),90cos(sin22=+-=x x x x①+②得(反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++++++=S =89∴ S =44.5题1 已知函数(1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边(2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例7] 求数列的前n 项和:231,,71,41,1112-++++-n a a a n ,… 解:设)231()71()41()11(12-++++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+++++++++=-n aa a S n n (分组)当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1( ∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +++++++++++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和)=2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n(5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) n nn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-?=?+-+=?++=-则(7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列++++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++++++=n n S n (裂项求和)=)1()23()12(n n -+++-+- =11-+n[例10] 在数列{a n }中,11211++++++=n n n n a n ,又12+?=n n n a a b ,求数列{b n }的前n 项的和. 解:∵ 211211n n n n n a n =++++++=∴ )111(82122+-=+?=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-++-+-+-=n n S n (裂项求和)=)1 11(8+-n = 18+n n[例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+++ 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+++=S∵n n n n tan )1tan()1cos(cos 1sin -+=+ (裂项)∴ 89cos 88cos 12cos 1cos 11cos 0cos 1+++=S (裂项求和)=]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1?= 1sin 1cos 2 ∴ 原等式成立练习题1.答案:.练习题2。
数列求和的七种方法及例题
数列求和的七种方法及例题
1、直接求和法:将数列中所有的项都加起来,累加求和。
例如:求 1+2+3+4+5=15
2、等差数列求和法:只适用于等差数列,将首项和末项相加,乘以项数,再除以2。
例如:求 1+3+5+7+9=25
3、等比数列求和法:只适用于等比数列,求出公比,然后用求和公式求和。
例如:求 3+6+12+24=45
4、分而治之法:将大的问题分解成小的问题,再求出小的问题的答案之和为大的问题的答案。
例如:求
1+2+3+4+5=15
5、求差法:将数列中连续的相邻两项差值求出,然后把差值相加求和。
例如:求 1+2+3+4+5=15
6、高阶法:当数列中有多项时,可以把它们分成高阶和低阶两组,先求高阶项和低阶项的和,在相加求和。
例如:求 1+2+3+4+5=15
7、循环求和法:将数列中的每一项都分别相加,然后把结果累加求和。
例如:求 1+2+3+4+5=15。
数列求和7种方法(方法全-例子多)
一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 n n x x x x S +⋅⋅⋅+++=32 (利用常用公式)=xx x n --1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n nS n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当88-n ,即n =8时,501)(max =n f题1.等比数列的前n项和S n=2n-1,则=题2.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a = ,b = ,c = .解: 原式=答案:二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设n n x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 n n n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+ [例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S练习题1 已知 ,求数列{a n }的前n 项和S n .答案:练习题2 的前n 项和为____答案:三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n n n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++证明: 设nnn n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ① 把①式右边倒转过来得113)12()12(nn n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序) 又由mn nm n C C -=可得 n nn n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ② ①+②得 n n n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加)∴ n n n S 2)1(⋅+=[例6] 求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1s i n 2s i n 3s i n 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5题1 已知函数 (1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边(2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1( ∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n(5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) n nn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n n n n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解: ∵ 211211n n n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) =)111(8+-n = 18+n n[例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S∵n n n n tan )1tan()1cos(cos 1sin -+=+ (裂项) ∴ 89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和)=]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2 ∴ 原等式成立练习题1.答案:.练习题2。
iwwAAA数列求和7种方法(方法全-例子多)
一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 n n x x x x S +⋅⋅⋅+++=32 (利用常用公式)=xx x n--1)1(=211)211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式)∴ 1)32()(++=n nS n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当88-n ,即n =8时,501)(max =n f题1.等比数列的前n项和S n=2n-1,则=题2.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a = ,b = ,c = .解: 原式=答案:二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ②(设制错位)①-②得 n n n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=--(错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n n S ………………………………② (设制错位)①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS(错位相减)∴ 1224-+-=n n n S 练习题1 已知 ,求数列{a n }的前n 项和S n .答案:练习题2 的前n 项和为____答案:三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n n n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++证明: 设nnn n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ① 把①式右边倒转过来得113)12()12(nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-(反序)又由mn nm n C C -=可得 n nn n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ② ①+②得n nn n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=-(反序相加)∴ n n n S 2)1(⋅+=[例6] 求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..②(反序)又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得(反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5题1 已知函数 (1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明的结论可知, 两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n(分组)当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S n n -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1( ∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和)=2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n(5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6)nn n n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则11321211+++⋅⋅⋅++++=n n S n(裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n [例10] 在数列{a n }中,11211++⋅⋅⋅++++=n n n n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.解: ∵ 211211n n n n n a n =++⋅⋅⋅++++=∴)111(82122+-=+⋅=n n n n b n(裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和)=)111(8+-n = 18+n n [例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+ (裂项)∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和)=]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2 ∴ 原等式成立练习题1.答案:.练习题2。
数列求和常见的7种方法
数列求和常见的7种方法数列求和是数学中比较常见的问题之一,它在各个领域中都有广泛的应用。
在数学中,我们常常使用不同的方法来求解数列求和问题,以下将介绍一些常见的数列求和方法。
一、公式法:公式法是求解数列求和中最常用的方法之一、对于一些特定的数列,我们可以通过找到它们的通项公式,从而直接计算出数列的和。
例如,对于等差数列an = a1 + (n-1)d,其前n项和Sn =[n(a1+an)]/2,其中a1为首项,an为末项,d为公差。
同样地,对于等比数列an = a1 * r^(n-1),其前n项和Sn = a1 *(1 - r^n)/(1 - r),其中a1为首项,r为公比。
二、递推法:递推法是另一种求解数列求和问题的常用方法。
通过推导出数列的递推关系式,我们可以通过逐项求和的方式来求解数列求和问题。
例如,对于斐波那契数列Fn=Fn-1+Fn-2(其中n>2),我们可以通过递推的方式来求得前n项和。
三、画图法:画图法是一种直观的方法,通过画图可以更清楚地理解数列求和问题,并帮助我们找到解题思路。
例如,对于等差数列Sn = a1 + (a1+d) + (a1+2d) + ... +(a1+nd),我们可以将其表示为一个由等差数列首项、末项组成的矩形,然后通过计算矩形的面积来求解数列的和。
四、换元法:换元法是将数列中的变量进行换元,从而将原始数列转化为另一种形式,从而更容易求出数列的和。
例如,对于等差数列Sn = a1 + (a1+d) + (a1+2d) + ... +(a1+nd),我们可以将其表示为Sn = (n+1)a1 + d(1+2+3+...+n),然后再利用等差数列的求和公式来求解。
五、差分法:差分法是一种将数列进行相邻项之间的差分操作,从而得到一个新的数列,通过对新数列进行求和的方式来求解原始数列的和。
例如,对于等差数列an = a1 + (n-1)d,我们可以计算得到数列bn = a2 - a1,然后求出bn的和,再通过一些变换得到原始数列的和。
数列求和常见方法
数列求和常见方法1、公式法例1、求和:n x x x x ++++ 322、分组求和所谓分组法求和就是:对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并。
例2、已知函数132)(--=x x f x ,点),(n a n 在)(x f 的图象上,n a 的前n 项和为n S ,求n S3、并项求和例3、在等差数列}{n a ,已知2=d ,2a 是1a 与4a 的等比中项。
(1)求数列}{n a 的通项公式(2)设2)1(+=n n n a b ,记n n n b b b b T )1(321-++-+-= ,求n T4、错位相减形如:若}{n a 是等差数列, }{n b 是等比数列,求数列}{n n b a ∙或}{nn b a 的前n 项和,用错位相减法和。
例4、数列}{n a 的通项公式为n n n a 4)12(∙-=,求数列}{n a 的前n 项和n S例5、数列}{n a 的通项公式为n n n a 212-=,求数列}{n a 的前n 项和n S5、裂项求和把数列的通项拆为两项之差、正负相消剩下首尾若干项。
常见拆项公式: 111)1(1+-=+n n n n )211(21)2(1+-=+n n n n )121121(21)12)(12(1+--=+-n n n n )(11n k n k n k n -+=++ 例6:、数列}{n a 的通项公式为)12)(12(1+-=n n a n ,求数列}{n a 的前n 项和n S例7、数列}{n a 的通项公式为)2(1+=n n a n ,求数列}{n a 的前n 项和n S例8、求和:n+++++++++++3211321121116、倒序相加 例9、求和:︒++︒+︒+︒89cos 3cos 2cos 1cos 2222例10、求和:︒+︒++︒+︒+︒179cos 178cos 3cos 2cos 1cos7、带绝对值求和例11、若数列}{n a 的通项公式为123-=n a n ,求数列|}{|n a 的前n 项和n S例12、在等比数列}{n a 中,若311=a ,94-=a ,求数列|}{|n a 的前n 项和n S 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列求和的基本方法和技巧一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法(合并法求和) 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。
一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n--1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f题1.等比数列的前n项和S n=2n-1,则=题2.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a = ,b = ,c = .解: 原式= 答案:二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=--∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S练习题1 已知 ,求数列{a n }的前n 项和S n .答案:练习题2 的前n 项和为____ 答案:三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n nn n n nn C n C C C 2)1()12(53210+=++⋅⋅⋅+++证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加) ∴ nn n S 2)1(⋅+=[例6] 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5 题1 已知函数 (1)证明:; (2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n(5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) =)111(8+-n = 18+n n [例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S。