1.3解直角三角形同步练习3
2022-2023学年浙教版九年级数学下册《1-3解直角三角形》同步达标测试题(附答案)
2022-2023学年浙教版九年级数学下册《1.3解直角三角形》同步达标测试题(附答案)一.选择题(共8小题,满分32分)1.某人沿着坡度为1:2的山坡前进了100米,则此人所在的位置升高了()A.100米B.50米C.50米D.2.如图,一块矩形薄木板ABCD斜靠在墙角MON处(OM⊥ON,点A,B,C,D,O,M,N在同一平面内),已知AB=m,AD=n,∠ADO=α.则点B到ON的距离等于()A.m•cosα+n•cosαB.m•sinα+n•cosαC.m•cosα+n•sinαD.m•sinα+n•sinα3.上午9时,一条船从A处出发,以每小时40海里的速度向正东方向航行,10时到达B 处(如图).从A,B两处分别测得小岛M在北偏东45°和北偏东15°方向,那么船在B处时与小岛M的距离为()A.海里B.海里C.40海里D.海里4.某公司准备从大楼点G处挂一块大型条幅到点E,公司进行实地测量,工作人员从大楼底部F点沿水平直线步行40米到达自动扶梯底端A点,在A点用仪器测得条幅下端点E 的仰角为36°;然后他再沿着坡度i=1:0.75长度为50米的自动扶梯到达扶梯顶端D 点,又沿水平直线行走了80米到达C点,在C点测得条幅上端点G的仰角为50°(A,B,C,D,E,F,G在同一个平面内,且C,D和A,B,F分别在同一水平线上),则GE的高度约为()(结果精确到0.1,参考数据sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,sin50°≈0.77,tan50°≈1.19)A.189.3米B.178.5米C.167.3米D.188.5米5.一艘货轮从小岛A正南方向的点B处向西航行30km到达点C处,然后沿北偏西60°方向航行20km到达点D处,此时观测到小岛A在北偏东60°方向,则小岛A与出发点B 之间的距离为()A.20km B.km C.km D.km 6.如图,某校教学楼AB与CD的水平间距BD=am,在教学楼CD的顶部C点测得教学楼AB的顶部A点的仰角为α,测得教学楼AB的底部B点的俯角为β,则教学楼AB的高度是()A.(a tanα+a tanβ)m B.C.(a sinα+a sinβ)m D.(a cosα+a cosβ)m7.如图,一条船从灯塔C南偏东42°的A处出发,向正北航行8海里到达B处,此时灯塔C在船的北偏西84°方向,则船与灯塔C距离为()海里.A.4B.8C.16D.248.如图是某地滑雪运动场大跳台简化成的示意图.其中AB段是助滑坡,倾斜角∠1=37°,BC段是水平起跳台,CD段是着陆坡,倾斜角∠2=30°,sin37°≈0.6,cos37°=0.8.若整个赛道长度(包括AB、BC、CD段)为270m,平台BC的长度是60m,整个赛道的垂直落差AN是114m.则AB段的长度大约是()A.80m B.85m C.90m D.95m二.填空题(共8小题,满分32分)9.如图,某无人机兴趣小组在操场上开展活动,此时无人机在离地面30米的D处,无人机测得操控者A的俯角为30°,测得点C处的俯角为45°.又经过人工测量操控者A 和教学楼BC距离为57米,则教学楼BC的高度为.(点A,B,C,D都在同一平面上,结果保留根号)10.如图,小明在骑行过程中发现山上有一建筑物,他测得仰角为15°;沿水平笔直的公路向建筑物的方向行驶4千米后,测得该建筑物的仰角为30°,若小明的眼睛与地面的距离忽略不计,则该建筑物离地面的高度为千米.11.为了对一棵倾斜的古杉树AB进行保护,需测量其长度.如图,在地面上选取一点C,测得∠ACB=45°,AC=24m,∠BAC=66.5°,则这棵古杉树AB的长为m.(结果取整数)(参考数据:=1.414,sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30)12.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.则该电线杆PQ的高度是(结果可保留根号)13.如图是某路灯在铅垂面内的示意图,灯柱BC的高为10.8米,灯杆AB的长为2.4米,灯柱BC与灯杆AB的夹角为120°.路灯采用锥形灯罩,灯亮时其投射角α满足cosα=,灯罩上装有自动控制旋钮用以调整灯罩方位,初始状态下,灯的投射区域为DE,D 处测得路灯A的仰角为β,且tanβ=6,若调整灯罩旋钮使点D沿DE方向移动2米,则点E移动的距离为米.14.如图,某梯子长10米,斜靠在竖直的墙面上,当梯子与水平地面所成角为α时,梯子顶端靠在墙面上的点B处,底端落在水平地面的点A处,如果将梯子底端向墙面靠近,使梯子与地面所成角为β,且sinα=cosβ=,则梯子顶端上升了米.15.如图1是一种手机平板支架,图2是其侧面结构示意图.托板AB固定在支撑板顶端的点C处,托板AB可绕点C转动,支撑板CD可绕点D转动.如图2,若量得支撑板长CD=8cm,∠CDE=60°,则点C到底座DE的距离为cm.(结果保留根号)16.平放在地面上的三角形铁板ABC的一部分被沙堆掩埋,其示意图如图所示,量得∠A 为54°,∠B为36°,边AB的长为2.1m,BC边上露出部分BD的长为0.9m,则铁板BC边被掩埋部分CD的长是m.(结果精确到0.1m.参考数据:sin54°≈0.81,cos54°≈0.59,tan54°≈1.38).三.解答题(共6小题,满分56分)17.某初中数学兴趣小组想测量学校旗杆CD的高度,他们在地面上选取了一个测量点A 测得点D的仰角为26.6°,然后他们沿AC方向移动43.7m到达测量点B,在B点测得(参考数据:sin37°点D的仰角为37°,如图所示.求旗杆CD的高度.(结果精确到0.1m)≈0.60,cos37°≈0.80,tan37°≈0.75,sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50)18.如图,一艘轮船位于灯塔P东偏南25°方向,与灯塔距离为80nmile的A处,它沿正南方向航行一段时间后,到达位于灯塔P南偏东30°方向的B处,求此时轮船所在B处与灯塔P的距离(结果取整数).(参考数据:sin25°≈0.423,cos25°≈0.906,tan25°≈0.466,sin35°≈0.574,cos35°≈0.819,tan35°≈0.700,≈1.732)19.如图,△ABC中,AB=AC=3cm,BC=4cm,点P从点B出发,沿线段BC以2cm/s 的速度向终点C运动,点Q从点C出发,沿着C→A→B的方向以3cm/s的速度向终点B 运动,P,Q同时出发,设点P运动的时间为t(s),△CPQ的面积为S(cm2).(1)求sin B;(2)求S关于t的函数关系式,并直接写出自变量t的取值范围.20.在数学实践与综合课上,某兴趣小组同学用航拍无人机对某居民小区的1、2号楼进行测高实践,如图为实践时绘制的截面图.无人机从地面点B垂直起飞到达点A处,测得1号楼顶部E的俯角为67°,测得2号楼顶部F的俯角为40°,此时航拍无人机的高度为60米,已知1号楼的高度为20米,且EC和FD分别垂直地面于点C和D,点B为CD的中点,求2号楼的高度.(结果精确到0.1)(参考数据sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin67°≈0.92,cos67°≈0.39,tan67°≈2.36)21.如图,某大楼的顶部竖有一块广告牌CD,小明与同学们在山坡的坡脚A处测得广告牌底部D的仰角为53°,沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=10米,AE=21米.(测角器的高度忽略不计,结果精确到0.1米,参考数据:≈1.41,≈1.73,sin53°≈,cos53°≈,tan53°≈)(1)求点B距水平地面AE的高度;(2)求广告牌CD的高度.(结果精确到0.1米)22.如图,小谢想测某楼的高度,她站在B点从A处望向三楼的老田(D),测得仰角∠DAG 为30°,接着她向高楼方向前进1m,从E处仰望楼顶F,测得仰角∠FEG为45°,已知小谢身高(AB)1.7m,DF=6m.(参考数据:≈1.7,≈1.4)(1)求GE的距离(结果保留根号);(2)求高楼CF的高度(结果保留一位小数).参考答案一.选择题(共8小题,满分32分)1.解:设此人所在的位置升高了x米,∵斜坡的坡度为1:2,∴此人前进的水平距离为2x米,由勾股定理得:x2+(2x)2=(100)2,解得:x=100(负值舍去),∴此人所在的位置升高了100米,故选:A.2.解:如图,作BE⊥OA交OA的延长线于点E,∵OD⊥OA,∴∠AEB=∠AOD=90°,∵四边形ABCD是矩形,∴BC=AD=n,∠BAD=90°,∴∠BAE=90°﹣∠OAD=∠ADO=α,∵=cos∠BAE=cosα,∴AE=AB•cosα=m•cosα,∵=sin∠ADO=sinα,∴OA=AD•sinα=n•sinα,∴OE=AE+OA=m•cosα+n•sinα,∵BE∥ON,∴点B、点E到ON的距离相等,∴点B到ON的距离等于m•cosα+n•sinα,故选:C.3.解:如图,过点B作BN⊥AM于点N,由题意得,AB=40×1=40海里,∠ABM=105°,在直角三角形ABN中,BN=AB•sin45°=20(海里),在直角△BNM中,∠MBN=105°﹣45°=60°,∴∠M=30°,∴BM=2BN=40(海里).故选:D.4.解:过D作DM⊥AB于M,DN⊥GE于N,如图所示:则四边形DMFN是矩形,∴NF=DM,DN=FM,∵AD的坡度i=1:0.75,AD=50米,∴NF=DM=AD=40(米),AM=AD=30(米),∴DN=FM=AF+AM=40+30=70(米),∴CN=CD+DN=80+70=150(米),在Rt△CGN中,∠GCN=50°,tan∠GCN==tan50°≈1.19,∴GN≈1.19CN=1.19×150=178.5(米),∴GF=GN+NF=178.5+40=218.5(米),在Rt△AEF中,∠EAF=36°,tan∠EAF==tan36°≈0.73,∴EF≈0.73×40=29.2(米),∴GE=GF﹣EF=218.5﹣29.2≈189.3(米),故选:A.5.解:过点D作DE⊥AB于点E,过点C作CF⊥DE于点F,如图所示:∵∠ABC=90°,∴四边形BCFE是矩形,∴EF=BC=30km,CF=BE,由题意得:∠DCF=60°,∠ADE=90°﹣60°=30°,∴∠CDF=90°﹣60°=30°,∴CF=CD=×20=10(km),∴BE=10km,DF=sin60°×CD=×20=10(km),∴DE=DF+EF=(10+30)(km),∴AE=tan∠ADE•DE=tan30°×DE=×(10+30)=(10+10)(km),∴AB=AE+BE=10+10+10=(10+20)(km),故选:B.6.解:过点C作CE⊥AB,垂足为E,由题意得:CE=BD=a米,在Rt△BEC中,∠BCE=β,∴BE=CE•tan∠BCE=a tanβ米,在Rt△AEC中,∠ACE=α,∴AE=CE•tan∠ACE=a tanα米,∴AB=AE+BE=(a tanα+a tanβ)米,故选:A.7.解:由题意得,∠BAC=42°,∠BCA=84°﹣42°=42°,AB=8海里,∴∠BAC=∠BCA,∴BC=AB=8海里,即船与灯塔C距离为8海里.故选:B.8.解:过点C作CH⊥DN于H,设AB=xm,则CD=270﹣60﹣x=(210﹣x)m,在Rt△CDH中,∠2=30°,则CH=CD=(210﹣x)m,在Rt△ABM中,sin∠1=,则AM=AB•sin∠1≈0.6xm,由题意得:(210﹣x)+0.6x=114,解得:x=90,即AB=90m,故选:C.二.填空题(共8小题,满分32分)9.解:过点D作DE⊥AB于点E,过点C作CF⊥DE于点F.由题意得,AB=57米,DE=30米,∠A=30°,∠DCF=45°.在Rt△ADE中,∠AED=90°,∴tan30°=,即=,∴AE=30米,∵AB=57米,∴BE=AB﹣AE=57﹣30米,∵四边形BCFE是矩形,∴CF=BE=57﹣30米.在Rt△DCF中,∠DFC=90°,∴∠CDF=∠DCF=45°.∴DF=CF=(57﹣30)米,∴BC=EF=30﹣57+30=(30﹣27)米.答:教学楼BC高约(30﹣27)米.故答案为:(30﹣27)米.10.解:如图,过该建筑物的顶端C点作CD⊥AB,交AB的延长线于点D,由题意得,∠CAB=15°,∠CBD=30°,AB=4千米,∴∠ACB=∠CBD﹣∠CAB=15°,∴∠ACB=∠CAB,∴BC=AB=4千米,在Rt△BCD中,sin30°=,解得CD=2,∴该建筑物离地面的高度为2千米.故答案为:2.11.解:过B点作BD⊥AC于D.∵∠ACB=45°,∠BAC=66.5°,∴在Rt△ADB中,AD=,在Rt△CDB中,CD=BD,∵AC=AD+CD=24m,∴+BD=24,解得BD≈17m.AB=≈18m.答:这棵古杉树AB的长度大约为18m.故答案为:18.12.解:延长PQ交直线AB于点E,设PE=x米.在直角△APE中,∠A=45°,则AE=PE=x米;∵∠PBE=60°∴∠BPE=30°在直角△BPE中,BE=PE=x米,∵AB=AE﹣BE=6米,则x﹣x=6,解得:x=9+3.则BE=(3+3)米.在直角△BEQ中,QE=BE=(3+3)=(3+)米.∴PQ=PE﹣QE=9+3﹣(3+)=6+2≈9(米).答:电线杆PQ的高度约9米.13.解:如上图所示,灯罩调整后,灯光在地面的落点E移动到E′的位置,过A点做AD′⊥CE,过B点做BM⊥AD′,易求出AM=AB•sin30°=1.2,则AD′=10.8+1.2=12(米),DD′=AD′÷tanβ=12÷6=2,有题意得点D沿DE方向移动2米,即AD′⊥CE,同时D′点也是D点移动后的位置,则AD2=AD′2+DD′2=122+22=148,AD=2,在△ADE中,过E点做EH⊥AD,设DE的长度为x,则:x•cosβ+x•sinβ÷tanα=AD(由tanβ=6,可得cosβ=,sinβ=;由cosα=知tanα=)解得:x==DE,灯罩移动后,投射角α=∠D′AE′,在RT△AD′E′中,D′E′=AD′•tanα=12•=16,EE′=DE′﹣DE=DD′+D′E﹣DE=2+16﹣=(米),故答案是.14.解:如图,由题意可知,∠ACB=90°,AB=ED=10,由=sinα==cosβ=,设BC=3m,则AB=5m,则5m=10,解得m=2,∴BC=3×2=6,设EC=3n,则ED=5n,∴5n=10,解得n=2,∴EC=3×2=6,∴DC===8,∴BD=DC﹣BC=8﹣6=2(米),∴梯子顶端上升了2米,故答案为:2.15.解:作CH⊥DE于H,∵CD=8cm,∠CDE=60°,∴CH=CD•sin∠CDE=8×sin60°=4(cm),故答案为:4.16.解:在直角三角形中,sin A=,则BC=AB•sin A=2.1sin54°≈2.1×0.81=1.701m,则CD=BC﹣BD=1.701﹣0.9,=0.801≈0.8(m),故答案为:0.8.三.解答题(共6小题,满分56分)17.解:设BC=xm,在Rt△BCD中,∠DBC=37°,∴DC=BC•tan37°≈0.75x(m),∵AB=43.7m,∴AC=BC+AB=(x+43.7)m,在Rt△ADC中,∠DAC=26.6°,∴tan26.6°==≈0.50,∴x=87.4,经检验:x=87.4是原方程的根,∴CD=0.75x≈65.6(m),∴旗杆CD的高度约为65.6m.18.解:延长BA交灯塔P正东方向于C,如图所示:则∠BCP=90°,∠BPC=90°﹣30°=60°,∴∠PBC=90°﹣60°=30°,在Rt△ACP中,∠APC=25°,cos∠APC=,即cos25°=,∴PC=80×cos25°≈80×0.906=72.48(nmile),在Rt△BCP中,∠PBC=30°,∴BP=2PC=2×72.48≈145(nmile),答:此时轮船所在B处与灯塔P的距离约为145nmile.19.解:(1)过点A作AD⊥BC,垂足为D,∵AB=AC=3cm,AD⊥BC,∴BD=BC=2cm,在Rt△ABD中,AB=3cm,BD=2cm,∴AD===,∴sin B==;(2)过点Q作QE⊥BC,垂足为E,∵AB=AC,∴∠B=∠C,∴sin B=sin C=,分两种情况:当0<t≤1时,由题意得:CQ=3t,BP=2t,∴CP=BC﹣BP=4﹣2t,在Rt△CQE中,QE=CQ sin C=3t•=t,∴S=CP•QE=•(4﹣2t)•t=2t﹣t2=﹣t2+2t,当1<t<2时,由题意得:CA+AQ=3t,BP=2t,∴CP=BC﹣BP=4﹣2t,BQ=AB+AC﹣(CA+AQ)=6﹣3t,在Rt△BQE中,QE=BQ sin B=(6﹣3t)•=2﹣t,∴S=CP•QE=•(4﹣2t)•(2﹣t)=t2﹣4t+4,∴S=.20.解:过点E、F分别作EM⊥AB,FN⊥AB,垂足分别为M、N,由题意得,EC=20,∠AEM=67°,∠AFN=40°,CB=DB=EM=FN,AB=60,∴AM=AB﹣MB=60﹣20=40,在Rt△AEM中,∵tan∠AEM=,∴EM==≈16.9,在Rt△AFN中,∵tan∠AFN=,∴AN=tan40°×16.9≈14.2,∴FD=NB=AB﹣AN=60﹣14.2=45.8,答:2号楼的高度约为45.8米.21.解:(1)如图,过点B作BM⊥AE,BN⊥CE,垂足分别为M、N,由题意可知,∠CBN=45°,∠DAE=53°,i=1:,AB=10米,AE=21米.∵i=1:==tan∠BAM,∴∠BAM=30°,∴BM=AB=5(米),即点B距水平地面AE的高度为5米;(2)在Rt△ABM中,∠BAM=30°,∴BM=AB=5(米)=NE,AM=AB=5(米),∴ME=AM+AE=(5+21)米=BN,∵∠CBN=45°,∴CN=BN=ME=(5+21)米,∴CE=CN+NE=(5+26)米,在Rt△ADE中,∠DAE=53°,AE=21米,∴DE=AE•tan53°≈21×=28(米),∴CD=CE﹣DE=5+26﹣28=5﹣2≈6.7(米),即广告牌CD的高度约为6.7米.22.解:(1)设GE=xm,∵∠EGF=90°,∠FEG=45°,∴△EFG是等腰直角三角形,∴FG=EG=xm,在Rt△ADG中,∠DAG=30°,AG=EG+AE=(x+1)m,∵tan∠DAG==tan30°=,∴DG=AG=(x+1)m,∵FG﹣DG=DF,∴x﹣(x+1)=6,解得:x=,答:GE的距离为m;(2)由(1)得:FG=GE=m,∵GC=AB=1.7m,∴CF=FG+GC=+1.7≈17.2(m),答:高楼CF的高度约为17.2m.。
2022-2023学年北师大版九年级数学下册《1-4解直角三角形》同步练习题(附答案)
2022-2023学年北师大版九年级数学下册《1.4解直角三角形》同步练习题(附答案)一.选择题1.在Rt△ABC中,∠C=90°,BC=2,,则AC的长是()A.B.3C.D.2.在△ABC中,∠A和∠C都是锐角,且sin A=,tan C=,则△ABC是()A.直角三角形B.钝角三角形C.等边三角形D.不能确定3.在平面直角坐标系xOy中,已知点P(1,3)与原点O的连线与x轴的正半轴的夹角为α(0°<α<90°),那么cosα的值是()A.3B.C.D.4.如图,在Rt△ABC中,∠C=90°,sin A=,BC=,则AC的长为()A.B.3C.D.25.在Rt△ABC中,∠B=90°,如果∠A=α,BC=a,那么AC的长是()A.a•tanαB.a•cotαC.D.6.等腰三角形底边与底边上的高的比是2:,则它的顶角为()A.30°B.45°C.60°D.120°7.阅读理解:为计算tan15°三角函数值,我们可以构建Rt△ACB(如图),使得∠C=90°,∠ABC=30°,延长CB使BD=AB,连接AD,可得到∠D=15°,所以tan15°====2﹣.类比这种方法,请你计算tan22.5°的值为()A.+1B.﹣1C.D.8.如图,在△ABC中,AD⊥BC于点D.若BD=9,DC=5,cos B=,E为边AC的中点,则cos∠ADE的值为()A.B.C.D.9.如图,在△ABC中,AB=AC=10,BC=12,点D为BC的中点,DE⊥AB于点E,则tan∠BDE的值等于()A.B.C.D.10.如图,在△ABC中,∠BAC=120°,AC=8,AB=4,则BC的长是()A.B.C.6D.8二.填空题11.如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A,若AC=4,cos A=,则BD的长度为.12.已知等腰三角形两条边的长分别是4,6,底角为α,则cosα=.13.如图,在△ABC中,∠ACB=90°,点D在AB的延长线上,连接CD,若AB=2BD,tan∠BCD=,则的值为.14.如图,已知点A(4,3),点B为直线y=﹣2上的一动点,点C(0,n),﹣2<n<3,AC⊥BC于点C,连接AB.若直线AB与x轴正半轴所夹的锐角为α,当n=2时,则tanα=;当tanα的值最大时,n的值为.15.如图,在△ABC中,AD⊥BC于D,点E在AC上,∠ABE=45°,tan∠CBE=,若AD=BC,AC=2,则线段BC的长是.三.解答题16.根据下列条件解直角三角形:(1)在Rt△ABC中,∠C=90°,c=8,∠A=60°;(2)在Rt△ABC中,∠C=90°,a=3,b=9.17.如图,在平面直角坐标系中,OB=4,sin∠AOB=,点A的坐标为(,0).(1)求点B的坐标;(2)求sin∠OAB的值.18.如图,点C在线段AB上,点D,E在直线AB的同侧,∠A=∠DCE=∠CBE=90°,∠ADC=∠ABD,AC=3,BC=,求tan∠CDB的值.19.如图,在Rt△ABC中,∠ACB=90°,D是边AB的中点,过B作BE⊥CD,交CD的延长线于点E,AC=30,sin B=,求:(1)线段CD的长.(2)cos∠BDE的值.20.如图(1),在Rt△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,以下是某同学推理证明的过程:证明:∵sin A=,sin B=∴c=,c=∴根据你掌握的三角函数知识,请在图(2)中的锐角△ABC中,求证:.参考答案一.选择题1.解:如图,在Rt△ABC中,∠C=90°,BC=2,∴sin A===,∴AB=3,∴AC===.故选:A.2.解:∵sin A=,∴∠A=60°,∵tan C=,∴∠C=60°,∴∠B=180°﹣∠A﹣∠C=180°﹣60°﹣60°=60°.∴△ABC是等边三角形.故选:C.3.解:如图,过P点作P A⊥x轴于A,则∠POA=α,∵点P的坐标为(1,3),∴OA=1,P A=3,∴tan∠POA===3,即tanα=3.故选:D.4.解:∵∠C=90°,sin A==,BC=,∴AB=BC=×=2,∴AC====.故选:C.5.解:如图:在Rt△ABC中,AC==.故选:D.6.解:如图,AB=AC,AD⊥BC,∴BD=CD,∵BC:AD=2:,∴tan B==,∴∠B=60°,∵AB=AC,∴△ABC是等边三角形,∴∠BAC=60°,故选:C.7.解:如图:在Rt△ACB中,∠C=90°,∠ABC=45°,延长CB使BD=AB,连接AD,∴∠BAD=∠D=22.5°,设AC=BC=1,则AB=BD=AC=,∴CD=BC+BD=1+,在Rt△ADC中,tan22.5°===﹣1,故选:B.8.解:∵AD⊥BC,BD=9,cos B=,∴AB==15,AD==12,∵DC=5,∴AC==13,∵E为边AC的中点,∴ED=,∴∠EDA=∠DAE,∴cos∠EDA=cos∠DAE=,故选:D.9.解:连接AD,∵△ABC中,AB=AC=10,BC=12,D为BC中点,∴AD⊥BC,BD=BC=6,∴AD=,∴tan∠BAD=.∵AD⊥BC,DE⊥AB,∴∠BDE+∠ADE=90°,∠BAD+∠ADE=90°,∴∠BDE=∠BAD,∴tan∠BDE=tan∠BAD=,故选:C.10.解:如图,过点C作CE⊥BA交BA的延长线于E.∵∠BAC=120°,∴∠CAE=180°﹣120°=60°,∴AE=AC•cos60°=4,EC=AC•sin60°=4,∵AB=4,∴BE=AB+AE=8,∴BC===4,故选:B.二.填空题11.解:∵∠C=90°,AC=4,cos A=,∴AB=5,∴BC===3,∵∠DBC=∠A.∴cos∠DBC=cos∠A==,∴BD=3×=,故答案为:.12.解:分两种情况:当等腰三角形的腰长为4,底边长为6时,如图:过点A作AD⊥BC,垂足为D,∵AB=AC=4,AD⊥BC,∴BD=DC=BC=3,在Rt△ABD中,cos B==,当等腰三角形的腰长为6,底边长为4时,如图:过点A作AD⊥BC,垂足为D,∵AB=AC=6,AD⊥BC,∴BD=DC=BC=2,在Rt△ABD中,cos B===,综上所述:cosα=或,故答案为:或.13.解:过点D作DM⊥BC,交CB的延长线于点M,∵∠ACB=∠DMB=90°,∠ABC=∠DBM,∴△ABC∽△DBM,∴==,∵AB=2BD,∴===,在Rt△CDM中,由于tan∠MCD==,设DM=2k,则CM=3k,又∵==,∴BC=2k,AC=4k,∴==2,故答案为:2.14.解:过点A作AM⊥y轴于点M,作AN⊥BG于点N,如图所示:则∠AMC=90°,∠ANB=90°,∵直线y=﹣2与x轴平行,∴∠ABN=α,∠CGB=90°,∵AC⊥BC,∴∠ACB=90°,∵∠ACM+∠MAC=90°,∠ACM+∠BCG=90°,∴∠CAM=∠BCG,∵∠AMC=∠CGB=90°,∴△AMC∽△CGB,∴,设BG=m,∵点A坐标为(4,3),点C坐标为(0,n),∴AM=4,GC=n+2,CM=3﹣n,∴=,当n=2时,可得,解得m=1,∴GB=1,BN=3,∴tanα==;∵tanα=,当BN最小,即BG最大时,tanα最大,∵=,∴m=﹣(n﹣3)(n+2)=﹣(n﹣)2+,∵﹣<0,∴当n=时,m取得最大值,即tanα最大,故答案为:,.15.解:如图,过点A作AF⊥BE于点F,设AD与BF交于点G,∵∠ABE=45°,∴△ABF是等腰直角三角形,∴AF=BF,∵∠GDB=∠AFG=90°,∠BGD=∠AGE,∴∠GBD=∠F AG,∴tan∠GBD=tan∠F AG,∴==,设DG=x,则BD=2x,∴BG==x,设FG=a,则AF=2a,∴BF=AF=2a,AG==a,∴BG=BF﹣FG=a,∴a=x,∴AD=AG+DG=a+x=6x,∵DC=BC﹣BD=AD﹣BD=a+x﹣2x=a﹣x=4x,在Rt△ADC中,根据勾股定理得AD2+DC2=AC2,∴(6x)2+(4x)2=(2)2,∴x=1(负值舍去),∴BC=AD=6x=6.故答案为:6.三.解答题16.解:(1)∵∠C=90°,∠A=60°,∴∠B=90°﹣∠A=30°,∴b=c=4,∴a=b=12,∴∠B=30°,b=4,a=12;(2)在Rt△ABC中,∠C=90°,a=3,b=9,∴tan A===,∴∠A=30°,∴∠B=90°﹣∠A=60°,c=2a=6,∴∠A=30°,∠B=60°,c=6.17.解:(1)过点B作BC⊥OA于点C,在Rt△BOC中,OB=4,sin∠AOB=,∴BC=OB•sin∠AOB=4×=3,∴,∴点B的坐标为(,3);(2)∵点A的坐标为(,0),∴OA=,∴AC=OA﹣OC==,∵∠ACB=90°,∴,∴,∴sin∠OAB的值为.18.解:如图,设CE交BD于G.∵∠A=∠A=90°,∠ADC=∠ABD,∴△ADC∽△ABD,∴,,解得AD=5,∴DC==,DB==,∵∠A=∠ECD=∠CBE=90°,∴∠ACD+∠ECB=90°,∠ACD+∠ADC=90°,∴∠ADC=∠ECB,设∠DBA=∠CDA=α,则∠ECB=α,∴∠GCB=∠GBC=α,∴CG=GB,设CG=GB=x,∴DG=﹣x,∴()2+x2=(﹣x)2,解得x=,∴tan∠CDB==.19.解:(1)∵∠ACB=90°,AC=30,sin B==,∴AB=50,∵D为直角三角形ABC斜边上的中点,∴CD=AB=25;(2)∵AB=50,D为AB的中点,∴AD=BD=25,∵BE⊥CD,∴∠E=90°,由勾股定理得:BC===40,由勾股定理得:BE2=BD2﹣DE2=BC2﹣CE2,即252﹣DE2=402﹣(25+DE)2,解得:DE=7,∴cos∠BDE==.20.解:过C点作CD⊥AB于D,过B点作BE⊥AC于E,∴sin A=,sin B=,∴CD=b sin∠A=a sin B,∴,同理,∴.。
2019-2020学年度最新浙教版九年级数学下册单元考点练习《解直角三角形》及答案解析三
1.3 解直角三角形同步练习一、单选题1、如图,菱形ABCD的周长为20cm,DE⊥AB,垂足为E,cosA=,则下列结论中正确的个数为()①DE=3cm;②EB=1cm;③S菱形ABCD=15cm2A、3个B、2个C、1个D、0个2、如图,在菱形ABCD中,∠ABC=60°,AC=4,则BD的长为()A、2B、4C、8D、83、如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB、CD分别表示一楼、二楼地面的水平线,∠ABC=150°,BC的长是8 m,则乘电梯从点B到点C上升的高度h是()A、mB、4 mC、mD、8 m4、如图,在菱形ABCD中,DE⊥AB,cosA=, BE=2,则tan∠DBE的值()A、B、2C、D、5、如图,直线y=x+3交x轴于A点,将一块等腰直角三角形纸板的直角顶点置于原点O,另两个顶点M、N恰落在直线y=x+3上,若N点在第二象限内,则tan∠AON的值为()A、B、C、D、6、在等腰△ABC中,AB=AC=4,BC=6,那么cosB的值是A、B、C、D、7、某水坝的坡度i=1:,坡长AB=20米,则坝的高度为( )A、10米B、20米C、40米D、20米8、一斜坡长为米,高度为1米,那么坡比为()A、1:3B、1:C、1:D、1:9、如图,已知A点坐标为(5,0),直线与y轴交于点B,连接AB,若∠a=75°,则b的值为 ( )A、3B、C、D、10、如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,),点C的坐标为(,0),点P为斜边OB 上的一动点,则PA+PC的最小值为A、B、C、D、211、在△ABC中,∠A,∠B均为锐角,且sinA=, cosB=, AC=40,则△ABC的面积是()A、800B、800C、400D、40012、如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC互补,则弦BC的长为()A、3B、4C、5D、613、小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA的高度与拉绳PB的长度相等.小明将PB拉到PB′的位置,测得∠PB′C=α(B′C为水平线),测角仪B′D的高度为1米,则旗杆PA的高度为()A、B、C、D、14、一副三角板按图1所示的位置摆放.将△DEF绕点A(F)逆时针旋转60°后(图2),测得CG=10cm,则两个三角形重叠(阴影)部分的面积为()A、75cm2B、(25+25)cm2C、(25+)cm2D、(25+)cm215、如图,将等腰直角三角形ABC绕点A逆时针旋转15°后得到△AB′C′,若AC=1,则图中阴影部分的面积为()A、B、C、D、3二、填空题16、在Rt△ABC中,∠A=90°,AB=2,若sinC=,则BC的长度为________17、已知∠AOB=60°,点P是∠AOB的平分线OC上的动点,点M在边OA上,且OM=4,则点P到点M与到边OA的距离之和的最小值是________.18、如图,在平行四边形ABCD中,AD=5cm, AP=8cm, AP平分∠DAB,交DC于点P,过点B作BE⊥AD于点E,BE交AP于点F,则tan∠BFP =________19、如图,在四边形ABCD中,∠B=∠D=90°,AB=3,BC=2,tanA=,则CD=________20、如图,在矩形ABCD中,AD=10,CD=6,E是CD边上一点,沿AE折叠△ADE,使点D恰好落在BC边上的F处,M是AF的中点,连接BM,则sin∠ABM=________.三、解答题21、如图,矩形ABCD的对角线AC.BD相交于点O ,过点O作OE⊥AC交AD于E ,若AB=6,AD=8,求sin∠OEA的值.22、如图的斜边AB=5,cosA=(1)用尺规作图作线段AC的垂直平分线(保留作图痕迹,不要求写作法、证明);(2)若直线与AB,AC分别相交于D,E两点,求DE的长23、如图是一座人行天桥的示意图,天桥的高度是10米,CB⊥DB ,坡面AC的倾斜角为45°.为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面DC的坡度为i= :3 .若新坡角下需留3米宽的人行道,问离原坡角(A点处)10米的建筑物是否需要拆除?(参考数据:≈1.414,≈1.732)24、如图,在△ABC中,∠ACB=90°,D为AC上一点,DE⊥AB于点E,AC=12,BC=5.(1)求cos∠ADE的值;(2)当DE=DC时,求AD的长.25、如图,已知抛物线与x轴交于A、B两点,点C是抛物线在第一象限内部分的一个动点,点D是OC的中点,连接BD并延长,交AC于点E.(1)说明:;(2)当点C、点A到y轴距离相等时,求点E坐标. (3)当的面积为时,求的值.答案部分一、单选题1、【答案】A2、【答案】B3、【答案】B4、【答案】B5、【答案】A6、【答案】C7、【答案】A8、【答案】A 9、【答案】C 10、【答案】B 11、【答案】D 12、【答案】B 13、【答案】A 14、【答案】C 15、【答案】B二、填空题16、【答案】10 17、【答案】18、【答案】19、【答案】20、【答案】三、解答题21、【答案】解:连接EC ,∵四边形ABCD为矩形,∴OA=OC ,∠ABC=90°,利用勾股定理得:AC= =10,即OA=5,∵OE⊥AC ,∴AE=CE ,在Rt△EDC中,设EC=AE=x ,则有ED=AD-AE=8-x , DC=AB=6,根据勾股定理得:x2=(8-x)2+62,解得:x= ,∴AE= ,在Rt△AOE中,sin∠OEA= .22、【答案】解:(1)作图(2)因为直线垂直平分线段AC,所以CE=AE,又因为BC AC,所以DE//BC,所以DE=BC.因为在中,AB=5,cosA=,所以AC=ABcosA=,BC=4得DE=2.23、【答案】解:需要拆除,理由为:∵CB⊥AB ,∠CAB=45°,∴△ABC为等腰直角三角形,∴AB=BC=10米,在Rt△BCD中,新坡面DC的坡度为i= :3,即∠CDB=30°,∴DC=2BC=20米,BD= 米,∴AD=BD-AB=(10 -10)米≈7.32米,∵3+7.32=10.32>10,∴需要拆除.24、【答案】解:(1)∵DE⊥AB,∴∠DEA=90°,∴∠A+∠ADE=90°,∵∠ACB=90°,∴∠A+∠B=90°,∴∠ADE=∠B,在Rt△ABC中,∵AC=12,BC=5,∴AB=13,∴,∴;(2)由(1)得,设AD为x,则,∵AC=AD+CD=12,∴,解得,∴.25、【答案】解:(1)令y=0,则有-x2+2x+8=0. 解得:x1=-2,x2=4∴OA=2,OB=4.过点O作OG∥AC交BE于G∴△CEG∽△OGD∴∵DC=DO∴CE=0G∵OG∥AC∴△BOG∽△BAE∴∵OB=4,OA=2∴;(2)由(1)知A(-2,0),且点C、点A到y轴的距离相等,∴C(2,8)设AC所在直线解析式为:y=kx+b把 A 、C两点坐标代入求得k=2,b=4所以y=2x+4分别过E、C作EF⊥x轴,CH⊥x轴,垂足分别为F、H由△AEF∽△ACH可求EF=,OF=, ∴E点坐标为(,)(3)连接OE∵D是OC的中点,∴S△OCE=2S△CED∵S△OCE:S△AOC=CE:CA=2:5∴S△CED:S△AOC=1:5.∴S△AOC=5S△CED=8∴∴CH=8。
解直角三角形练习题(带答案)
解直角三角形—题集1.如图,在地面上的点处测得树顶的仰角为度,米,则树高为( ).A.米B.米C.米D.米【答案】A【解析】米.【标注】【知识点】仰角与俯角2.如图,斜坡,坡顶到水平地面的距离为米,坡底为米,在处,处分别测得顶部点的仰角为,,求的长度.(结果保留根号).【答案】的长度为米.【解析】设米,则米,由题意得,四边形为矩形,∴,在中,∴ ,在中,,∴,∴,解得,,∴.答:的长度为米.【标注】【知识点】仰角与俯角A.的值越小,梯子越陡B.的值越小,梯子越陡C.的值越小,梯子越陡D.陡缓程度与的函数值无关3.如图,梯子跟地面的夹角为,关于的三角函数值与梯子的倾斜程度之间,叙述正确的是().【答案】B【标注】【知识点】坡度4.某地的一座人行天桥如图所示,天桥高为米,坡面的坡度为,文化墙在天桥底部正前方米处(的长),为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为.(1)(2)若新坡面坡角为,求坡角度数.有关部门规定,文化墙距天桥底部小于米时应拆除,天桥改造后,该文化墙是否需要拆除?请说明理由.(参考数据:,)【答案】(1)(2).该文化墙需要拆除,证明见解析.【解析】(1)(2)∵新坡面坡角为,新坡面的坡度为,∴,∴.作于点,则米,∵新坡面的坡度为,∴,解得,米,∵坡面的坡度为,米,∴米,∴米,又∵米,∴米米,故该文化墙需要拆除.【标注】【知识点】坡度游船港口海警船北(1)(2)5.一艘观光游船从港口以北偏东的方向出港观光,航行海里至处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东方向,马上以海里每小时的速度前往救援.求点到直线的距离.求海警船到达事故船处所需的大约时间.(温馨提示:,)【答案】(1)(2)海里.小时.【解析】游船港口海警船北(1)(2)如图,过点作交延长线于.在中,∵,,海里,∴点到直线距离海里.在中,∵,,∴(海里),∴海警船到达事故船处所需的时间大约为:(小时).【标注】【知识点】方位角在锐角三角函数中的应用6.一副直角三角板按如图所示放置,点在的延长线上,,,,,,则的长为 .【答案】【解析】过点作于点,在中,,,,∴.∵,∴.,在中,,,∴,∴,∴.【标注】【知识点】三角板拼接问题7.如图,是一辆小汽车与墙平行停放的平面示意图,汽车靠墙一侧与墙平行且距离为米,一辆小汽车车门宽为米,当车门打开角度为时,车门是否会碰到墙? .(填“是”或“否”)请简述你的理由 .(参考数据:,,).【答案】否 ; 点到的距离小于与墙的距离【解析】过点作,垂足为点,如图.在中,∵,米,∴米,∵汽车靠墙一侧与墙平行且距离为米,∴车门不会碰到墙(点到的距离小于与墙的距离).故答案为:否;点到的距离小于与墙的距离.【标注】【知识点】测量物体之间的距离8.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图,此时测得地面上的影长为米,坡面上的影长为米.已知斜坡的坡角为,同一时刻,一根长为米、垂直于地面放置的标杆在地面上的影长为米,求树的高度.【答案】米.【解析】延长交延长线于点,则,作于,在中,,,∴(米),(米),在中,∵同一时刻,一根长为米、垂直于地面放置的标杆在地面上的影长为米,(米),,∴(米),∴(米),在中,(米),故答案为:米.【标注】【知识点】影子问题(1)(2)9.如图,在中,,点是边的中点,,.求和的长.求的值.【答案】(1)(2),..【解析】(1)(2)∵点是边的中点,且∴.∵,∴.∵在中,,,∴.在中,,,∴.故,.如图,作交于点.∵在中,,,∴设,,由勾股定理可得,解得,∴.在中,∵,,∴.即.【标注】【知识点】解直角三角形的综合应用10.如图,在四边形中,,于点,已知,,,求的长.【答案】.【解析】过点作于.∵在中,,,∴,.∵,,∴,∵,∴.∴在中,,,∴,.又∵在中,,,.∴.【标注】【知识点】解直角三角形的综合应用11.如图,在中,,,=, ,求.【答案】.【解析】 在中,,,,,,由勾股定理得:,∵,∴,∵∴,,∴.【标注】【知识点】解直角三角形的综合应用。
1.3解直角三角形(3)学案 2021—2022学年浙教版数学九年级下册
1.3 解直角三角形(3)课题 1.3 解直角三角形(3)单元第一单元学科数学年级九年级下册学习目标1.理解方位角、仰角与俯角的概念;2.运用解直角三角形来解决方位角问题;3.运用解直角三角形来解决仰角、俯角问题.重点解直角三角形的运用.难点例5,例6均需化归为解两个直角三角形问题.但例6涉及的两个直角三角形交叠在一起,图形和计算都较例5复杂,是本节教学的难点.教学过程导入新课【引入思考】引例:灯塔上发现在它的南偏东30°,距离500m的A处有一艘船,该船向正西方向航行,经过3分钟到达灯塔西北方向的B处,求这船的航速是每时多少千米(3取1.7新知讲解提炼概念如图,在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角.典例精讲【例5】某海防哨所O发现在它的北偏西30°,距离哨所500m的A处有一艘船向正东方向航行,经过3分钟后到达哨所东北方向的B处.求船从A处到B处的航速(精确到1km/h).【例6】如图,测得两楼之间的距离为32.6m,从楼顶点A观测点D的俯角为35°12ʹ,点C的俯角为43°24ʹ.求这两幢楼的高度(精确到0.1m).课堂练习巩固训练1.王英同学从A地沿北偏西60°方向走100 m到B地,再从B地向正南方向走200 m到C地,此时王英同学离A地 ( )2.如图所示,两建筑物AB和CD的水平距离为30 m,从A点测得D点的俯角为30°,测得C点的俯角为60°,则建筑物CD的高为_______m(用根号表示).3.热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为66 m,这栋高楼有多高?(结果精确到0.1 m,参考数据:3≈1.73)4.在地面上的A点测得树顶端C的仰角为30°,沿着向树的方向前进6m到达B点,在B点测得树顶端C的仰角为45°.请画出示意图,并求出树高(精确到0.1m).5.海中有一个小岛A,它的周围8海里范围内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上,如果渔船不改变航线继续向东航行,有没有触礁的危险?答案引入思考提炼概念根据问题的描述画出船的位置和航行路线,借助图形的直观加以分析,用数形结合的方法将实际问题转化为解直角三角形问题,这是解决问题的关键,也是教学中要让学生重点体验和积累的经验之处.典例精讲例5 解:根据题意画出示意图,如图在Rt △AOC 中,OA =500m ,∠AOC =30°,∴AC =OA sin ∠AOC =500×sin30°=500×12=250(m ), OC =OA ×c os ∠AOC =500×cos30°=500×32=2503(m ) 在Rt △BOC 中,∠BOC =45°,∴BC =OC =2503(m ),∴AB =AC +BC =250+2503=250(1+3)(m ).∴船的航速为250(1+3)÷3×60≈14000(m/h )=14(km/h ). 答:船从A 处到B 处的航速约为14km/h . 例6解:如图,作DE ⊥AB 于点E , 在Rt △ABC 中,∠ACB =∠FAC =43°24ʹ,∴AB =BC ×tan ∠ACB =32.6×tan43°24ʹ≈30.83≈30.8(m ). 在Rt △ADE 中,∠ADE =∠DAF =35°12ʹ,DE =BC =32.6(m ).∴AE =DE ×tan ∠ADE =32.6×tan35°12'≈23.00(m ). ∴CD =AB -AE ≈30.83-23.00=7.83≈7.8(m ). 答:两幢楼高分别约为30.8m 和7.8m .巩固训练1.D2.2033.解: 过点A 作AD ⊥BC ,垂足为D ,根据题意,可得∠BAD =30°,∠CAD =60°,AD =66 m.在Rt △ADB 中,由tan ∠BAD =BD AD,得BD =AD ·tan ∠BAD =66×tan 30°=66×33=22 3. 在Rt △AD C 中,由tan ∠CAD =CD AD,得CD =AD ·tan ∠CAD =66×tan 60°=66×3=663,∴BC =BD +CD =223+663=883≈152.2(m). 答:这栋楼高约为152.2 m. 4.解:如图.解法一:设树高CD 为x (m ),则(6+x )2+x 2=4x 2, 解得x 1=3-33(舍去),x 2=3+33≈8.2. 答:树高约为8.2m .解法二:设树高CD 为x (m ),在Rt △ACD 中,tan30°=CD AD =x AD ,则AD =xtan30°. 同理,在Rt △BCD 中,BD =xtan45°.由AB =AD -BD =6,得x tan30°-xtan45°=6,解得x ≈8.2. 答:树高约为8.2m . 5.解:由点A 作BD 的垂线交BD 的延长线于点F ,垂足为F ,∠AFD=90° 由题意图示可知∠DAF=30° 设DF= x , AD=2x则在Rt △ADF 中,根据勾股定理()222223AF AD DF x x x=-=-=在Rt △ABF 中,tanAFABFBF∠=3tan3012xx=+解得x=666310.4AF x==≈10.4 > 8没有触礁危险课堂小结。
1.3 解直角三角形 第1课时 解直角三角形练习题 2020——2021学年浙教版九年级数学下册
1.3解直角三角形第1课时解直角三角形【基础练习】知识点已知一边一角或两边解直角三角形,BC=6,则AB的长为()1.在Rt△ABC中,△C=90°,sin A=35A.4B.6C.8D.102.如图1,在Rt△ABC中,△C=90°,△B=30°,AB=8,则BC的长为()图1A.4√3B.4C.8√3D.4√333.在Rt△ABC中,已知△C=90°,△A=40°,BC=3,则AC等于()A.3sin40°B.3sin50°C.3tan40°D.3tan50°4.在Rt△ABC中,△C=90°,a,b,c分别为△A,△B,△C的对边,c=10,△A=45°,则a=,b=,△B=°.5.在Rt△ABC中,△C=90°,a,b,c分别为△A,△B,△C的对边,a=6,b=2√3,则△B的度数为.6.如图2,在Rt△ABC中,△C=90°,△B=37°,BC=32,则AC的长约为.(结果保留整数,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)图27.如图3所示,AB是伸缩式的遮阳棚,CD是窗户,要想在夏至的正午时刻阳光刚好不能射入窗户,则AB的长度是米(假设夏至的正午时刻阳光与地平面的夹角为60°).图38.如图4,在Rt△ABC 中,△C=90°,a ,b ,c 分别为△A ,△B ,△C 的对边,由下列条件解直角三角形. (1)△A=60°,b=4; (2)a=13,c=√23;(3)c=2√2,△B=30°;(4)a=8,sin B=√22.图49.如图5,在△ABC 中,△ABC=90°,△A=30°,D 是边AB 上一点,△BDC=45°,AD=4,求BC 的长.(结果保留根号)图5【能力提升】10.某简易房的示意图如图6所示,它是一个轴对称图形,则AC的长为()图6A.511sinα米B.511cosα米C.115sinα米D.115cosα米11.等腰三角形的腰长为2√3,底边长为6,则底角等于()A.30°B.45°C.60°D.120°12.[2019·杭州]如图7,一块矩形木板ABCD斜靠在墙边(OC△OB,点A,B,C,D,O在同一平面内).已知AB=a,AD=b,△BCO=x,则点A到OC的距离等于()图7A.a sin x+b sin xB.a cos x+b cos xC.a sin x+b cos xD.a cos x+b sin x13.如图8,已知在Rt△ABC中,△ABC=90°,点D沿BC边从点B向点C运动(点D与点B,C不重合),作BE△AD于点E,CF△AD,交AD的延长线于点F,则在点D运动的过程中,BE+CF的值()图8A.不变B.逐渐增大C.逐渐减小D.先增大后减小14.如图9,小明将一张矩形纸片ABCD沿CE折叠,点B恰好落在AD边上,设此点为F.若AB∶BC=4∶5,则tan△ECB的值为.图915.在学习《解直角三角形》一章时,小明同学对一个角的倍角的三角函数值是否具有关系产生了浓厚的兴趣,进行了一些研究.(1)初步尝试:我们知道:tan60°=,tan30°=,发现结论:tan A2tan A2(填“=”或“≠”).(2)实践探究:如图10△,在Rt△ABC中,△C=90°,AC=2,BC=1,求tan A2的值.小明想构造包含12△A的直角三角形:延长CA至点D,使得DA=AB,连结BD,可得到△D=12△BAC,即转化为求△D的正切值.请按小明的思路进行余下的求解.(3)拓展延伸:如图△,在Rt△ABC中,△C=90°,AC=3,tan A=13.△tan2A=;△求tan3A的值.图10答案1.D2.D3.D4.5√2 5√2 455.30° [解析] ∵tan B=ba ,b=2√3,a=6, ∴tan B=2√36=√33,∴∠B=30°. 6.24 [解析] 因为在Rt △ABC 中,∠C=90°, 所以tan B=ACBC ,即tan37°=AC32, 所以AC=32·tan37°≈32×0.75=24. 7.√38.解:(1)∵∠A=60°,∠C=90°,∴∠B=30°. ∵b=4,cos A=bc,∴4c=12,解得c=8,∴a=√82-42=4√3.(2)∵a=13,c=√23,∴b=√c 2-a 2=13. ∵sin A=a c =13÷√23=√22, ∴∠A=45°,∴∠B=45°. (3)∵∠B=30°,c=2√2,sin B=bc , ∴12=2√2,∠A=60°,∴b=√2,∴a=√c 2-b 2=√(2√2)2-(√2)2=√6. (4)∵sin B=√22,∴∠B=45°, ∴∠A=45°,∴b=a=8, ∴c=√a 2+b 2=8√2.9.解:∵∠ABC=90°,∠BDC=45°, ∴BD=BC.∵∠ABC=90°,∠A=30°, ∴AB=√3BC ,∴AD+BD=√3BC ,即AD+BC=√3BC. 又∵AD=4,∴4+BC=√3BC , 解得BC=2√3+2.10.D [解析] 如图,过点A 作AH ⊥BC 于点H.由题意,得AB=AC ,BC=4+0.2+0.2=4.4(米). ∵AH ⊥BC , ∴BH=CH=2.2米. 在Rt △ABH 中,cos α=BH AB,∴AB=BHcosα=2.2cosα=115cosα(米),即AC=115cosα米. 故选D . 11.A [解析] 如图所示,在△ABC 中,AB=AC=2√3,BC=6,过点A 作AD ⊥BC 于点D , 则BD=12BC=12×6=3.在Rt △ABD 中,cos B=BDAB =2√3=√32,∴∠B=30°.故选A .12.D [解析] 如图,过点A 分别作AE ⊥OC 于点E ,AF ⊥OB 于点F .∵四边形ABCD 是矩形, ∴∠ABC=90°.∵∠ABC=∠AEC ,∠BCO=x ,∴∠EAB=x,∴∠FBA=x.∵AB=a,AD=b,∴AE=FO=FB+BO=a cos x+b sin x.故选D.13.C[解析] ∵BE⊥AD,CF⊥AD,∴CF∥BE,∴∠DCF=∠DBE.设∠DCF=∠DBE=α,则CF=CD·cosα,BE=DB·cosα,∴BE+CF=(DB+CD)cosα=BC·cosα.∵∠ABC=90°,∴0°<α<90°,当点D从点B向点C运动时,α是逐渐增大的,∴cosα的值是逐渐减小的,∴BE+CF=BC·cosα的值是逐渐减小的.故选C.14.12[解析] 设AB=4k,则BC=5k.在△DFC中,FC=BC=5k,CD=AB=4k,∴DF=3k,∴AF=2k.由折叠的性质可知∠CFE=∠B=90°,∴∠CFD+∠AFE=90°.又∵∠CFD+∠DCF=90°,∴∠AFE=∠DCF.又∵∠D=∠A=90°,∴△DFC∽△AEF,∴DFAE =FCEF,即3kAE=5k4k-AE,解得AE=1.5k,∴BE=2.5k,∴tan∠ECB=2.5k5k =1 2 .15.解:(1)√3√33≠(2)在Rt△ABC中,∵∠C=90°,AC=2,BC=1,∴AB=√AC 2+BC 2=√5. ∵DA=AB ,∴∠D=∠ABD ,CD=DA+AC=√5+2, ∴∠BAC=2∠D , ∴tan A2=tan D=BCCD =√5+2=√5-2.(3)①34 [解析] 如图ⓐ,作AB 的垂直平分线交AC 于点E ,连结BE ,则AE=BE ,∠A=∠ABE ,∴∠BEC=2∠A. ∵在Rt △ABC 中,∠C=90°,AC=3,tan A=13, ∴BC=1,则AB=√AC 2+BC 2=√10. 设AE=x ,则BE=x ,EC=3-x.在Rt △EBC 中,由勾股定理,得BE 2=EC 2+BC 2,即x 2=(3-x )2+1, 解得x=53,即AE=BE=53,∴EC=43,∴tan2A=tan ∠BEC=BC EC=34.故答案为34.②如图ⓑ,作AB 的垂直平分线交AC 于点E ,连结CE ,作BM 交AC 于点M , 使∠MBE=∠ABE ,则∠BMC=∠A+∠MBA=3∠A. 设EM=y ,则CM=EC -EM=43-y. ∵∠MBE=∠ABE ,∠A=∠ABE ,∴∠A=∠MBE ,∠ABM=2∠A=∠BEC , ∴△ABM ∽△BEM , ∴AB BE =BM EM,即√1053=BM y,∴BM=3√105y. 在Rt △MBC 中,BM 2=CM 2+BC 2, 即3√105y 2=43-y 2+1,整理得117y 2+120y -125=0, 解得y 1=2539,y 2=-53(不合题意,舍去), 即EM=2539,则CM=43-2539=913,∴tan3A=tan ∠BMC=BCCM=1913=139.。
1.3 解直角三角形
在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边
分别是a,b,c.除了直角C外,你会用含有这些字母
的等式把5个元素之间的关系表示出来吗?
(1)角之间的关系:∠A+∠B=90°
(2)边之间的关系: a²+b²=c² (3)角与边之间的关系: a a b cosA= tanA= sinA= b c c 由直角三角形中已知的元素求出未知
元素的过程,叫做解直角三角形。
在Rt△ABC中,如果已知其中两边的长,你能求出 这个三角形的其他元素吗? 例1 在Rt△ABC中,∠C=90°,∠A,∠B,∠C 所对的边分别为a,b,c,且a= 15,b= 5 ,求 这个三角形的其他元素. 分析: 1.直角三角形中已知两边可以利用 定 理求出第三条边. 2.直角三角形中,已知两边可以求∠A(或 ∠B)的度数. 3.再 求∠B(或∠A)的度数.
已知直角三角形一条边和一个锐角求其他元素的方法: ①已知一个锐角的度数,→ 另外一个锐角的度数; 又知道一条边的长度 →另外两条边的长度; ②已知一个锐角的度数→ 其中一条边的长度 →第三条边的长度.
解直角三角形需要满足的条件: 在直角三角形的6个元素中,直角是 已知元素,如果再知道一条边和第三 个元素,那么这个三角形的所有元素 就都可以确定下来.
Rt△ABC的已知条件 一个锐角A + 斜边c
应选公式
一般解法 a=c· sinA
一 边 一 角
a sinA= c
b cosA= c
b=c· cosA
∠B=90°-∠A a=b· tanA
a b= tan A
一个锐角A + 一直角边b(或a)
a tanA= b
∠B=90°-∠A a= 两直角边 两 边 一斜边和一直角边 a² +b² =c² b= c=
浙教版初中数学九年级下册 1.3 解直角三角形课时训练3
浙教版初中数学 重点知识精选
掌握知识点,多做练习题,基础知识很重要! 浙教版初中数学 和你一起共同进步学业有成!
TB:小初高题库
浙教版初中数学
1.3 解直角三角形
◆基础训练 1.如图 1,在地面上用测角仪 DF 测得旗杆顶端 A 的仰角 a=40°42′,已知 F 点到旗杆底
端 C 的距离 FC=17.71 米,测角仪高 DF=1.35 米,则旗杆高 AC 约为(精确到 0.01 米) ()
么开挖点 E 离点 D 的距离是( )
A.500sin55°米
B.500cos55°米
米
C.500tan55°米
500
D.
cos 55
图4
图5
图6
图7
5.如图 5,从某海岛上的观察所 A 测得海上某船 B 的俯角α=8°18′,若观察所 A 距离
TB:小初高题库
浙教版初中数学
海平面的垂直高度 AC=50m,则船 B 到观察所 A 的水平距离 BC 等于________(精确到 1m). 6.如图 6,当太阳光与地面上的树影成 45°角时,树影投射在墙上的影高 CD 等于 2 米,若树根到墙的距离 BC 等于 8 米,则树高 AB 等于______米. 7.如图 7,一根竹竿垂直插在水中,露出水面部分长 0.5 米,若竹竿顶部偏离原地 2 米, 此时竹竿顶恰好与水面齐平,那么水深______米,竹竿偏离角α≈______(精确到 1 度). 8.在△ABO 中,OA=OB=5,OA 边上的高为 4,将△ABO 放在平面 直角坐标系中,使点 O 与 原点重合,点 A 在 x 轴的正半轴上,那么点 B 的坐标是_______. ◆提高训练 9.如图 8,要测量山上石油钻井的井架高 BC,先从山脚 A 处测得 AC=48 米,塔顶 B 的仰 角α=45°,已知山坡的坡角β=30°,则井架高 BC 为______米(精确到 1 米).
春九年级数学下册1.3解直角三角形同步练习(新版)浙教版【含解析】
第 2 页,共 4 页
16. 如图,一扇窗户垂直打开,即 OM ⊥ OP ,AC 是长度不变的滑动支架,其中一端固定在窗户的点 A 处,另一 端在 OP 上滑动,将窗户 OM 按图示方向向内旋转 35◦ 到达 ON 位置,此时,点 A 、C 的对应位置分别是点 B 、D .测量出 ∠ODB 为 25◦ ,点 D 到点 O 的距离为 30 cm .
A. 68 米
B. 70 米
C. 121 米
D. 123 米
第 1 页,共 4 页
8. 如图,直角三角板 ABC 的斜边 AB = 12 cm,∠A = 30◦ ,将三角板 ABC 绕点 C 顺时 针旋转 90◦ 至三角板 A′ B ′ C ′ 的位置后,再沿 CB 方向向左平移,使点 B ′ 落在原三角板 ABC 的斜边 AB 上,则三角板 A′ B ′ C ′ 平移的距离为( ) Ä Ä √ ä √ ä A. 6 cm B. 6 − 2 3 cm C. 3 cm D. 4 3 − 6 cm 二、填空题 3 9. 如图,在 Rt△ABC 中,∠ACB = 90◦ ,CD ⊥ AB ,tan ∠BCD = ,AC = 12, 4 则 BC = .
1.3 解直角三角形 一、选择题 1. 如图,AC 是旗杆 AB 的一根拉线,测得 BC = 6 米,∠ACB = 50◦ ,则拉线 AC 的长为( 6 6 A. 6 sin 50◦ B. 6 cos 50◦ C. D. sin 50◦ cos 50◦ )
2. 将一个有 45◦ 角的三角板的直角顶点放在一张宽为 3 cm 的纸带边沿上.另一个顶点在纸带 的另一边沿上,测得三角板的一边与纸带的一边所在的直线成 30◦ 角,如图,则三角板的最 大边的长为( ) √ √ A. 3 cm B. 6 cm C. 3 2 cm D. 6 2 cm 3. 如图,小敏同学想测量一棵大树的高度.她站在 B 处仰望树顶,测得仰角为 30◦ ,再往大树的方向前进 4 m,测 √ 得仰角为 60◦ ,已知小敏同学身高(AB )为 1.6 m,则这棵树的高度为( )(结果精确到 0.1 m, 3 ≈ 1.73) .
1.4《解直角三角形》同步训练(含答案)
1.4 解直角三角形同步训练学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(本题共计 9 小题,每题 3 分,共计27分,)1. 在中,,,,则等于()A. B. C. D.2. 如图,已知中,,.则的值是()A. B. C. D.3. 等腰三角形底边与底边上的高的比是,则顶角为()A. B. C. D.4. 如图,在菱形中,,,则的长为()A. B. C. D.5. 如图,在中,,,,则的值是()A. B.C. D.以上都不是6. 如图所示,已知是等腰底边上的高,且,上有一点,满足,则的值是()A. B. C. D.7. 已知:如图,在中,是边上的一点,且,,,则边上的高的长为()A. B. C. D.8. 如图,在中,,,垂足为,,,则长为()A. B.C. D.9. 如图,一艘轮船以海里/时的速度在海面上航行,当它行驶到处时,发现它的北偏东方向有一灯塔.轮船继续向北航行小时后到达处,发现灯塔在它的北偏东方向.此时轮船与灯塔的距离为()A.海里B.海里C.海里D.海里二、填空题(本题共计 9 小题,每题 3 分,共计27分,)10. 在中,,如果,,那么________.11. 在中,,,,则________.12. 如图,在中,,,,,垂足为,则的值是________.13. 在中,,,为锐角且,则的正切值等于________.14. 如图,在中,斜边上的高,,则________.15. 如图,在四边形中,,,,连接对角线,则的面积为________.16. 如图,中,,,则________.17. “赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如果小正方形的面积为,大正方形的面积为,直角三角形中较小的锐角为,则的值等于________.18. 如图,如果绕点按逆时针方向旋转后得到,且,那么的长为________.(不取近似值.以下数据供解题使用:,)三、解答题(本题共计 11 小题,每题 6 分,共计66分,)19. 在中,,,,求解直角三角形.20. 如图,中,,,,求的面积.21. 如图,在中,,,.求的长;求的值.22. 如图,矩形中,,求矩形的面积.23. 如图所示,将一副三角尺摆放在一起,连接,求的余切值.24. 如图,在中,,,,求的长和的值.25. 如图,,,,,求的四个三角函数值.26. 如图,在中,于,,,,求的长.27. 如图,在中,,,点为边上一动点(不与点、重合),过点作射线交于点,使.求证:;当为直角时,求线段.28. 如图,在中,,,,动点以每秒个单位长度的速度从点开始,沿边向点移动,于,于、设点运动时间为秒,和的面积分别为,,当时,求的值;在点移动的过程中,是否存在值,使得?若存在,求出这个值;若不存在,请说明理由.参考答案1. B2. B3. A4. B5. D6. B7. D8. D9. B10.11.12.13.14.15.16.17.18.19. 解:∵在中,,,,∴,,.20. 解:过作于,则,∵,,∴,,,∵,∴,∴,∴,∴,∴的面积是,即的面积是.21. 解:∵在中,,,,∴,由勾股定理得:;(2).22. 解:由矩形的性质知:,在中,∴,∴矩形.23. 解:过点作的延长线的垂线’,垂足为’,在等腰中,,设,则,在中,,则,在’中,’,则’’,在’中,’’,则.24. 解:∵在中,,,,,∴设,则,∴,解得,或(舍去),∴,∴,即的长为,.25. 解:∵,,,∴设,,∴在中,,即,解得:,故,,∵,,,∴,∴,,,.26. 解:∵在中,于,,∴在中,,,在中,,∴,∴.27. 证明:∵,∴,∵,∴,∵,,∴,∴;解:设,作于.∵,∴,∵,∴,∴,∴,∵,,∴,又∵,∴,∴,即,解得:,即.28. 解:动点以每秒个单位长度的速度从点开始,沿边向点移动,当时,,∵,,∴,∴∴故当时,;假设存在值,使得,则:,,由题意得,,,∴,∴,,,∵,∴解得∴存在秒,使得.11。
浙教版九年级数学下册全书各章节同步测验(共75页,附答案)
浙教版九年级数学下册全书各章节同步测验(共75页,附答案)第1章解直角三角形1.1 锐角三角函数(第1课时)1.如图所示,在△ABC中,∠C=90°,AB=5,BC=3,则sinA的值是( )第1题图A.34B.43C.35D.452.如图,已知一商场自动扶梯的长l为10m,该自动扶梯到达的高度h为5m,自动扶梯与地面所成的角为θ,则tanθ的值等于( )A.33B.43C.12D.45第2题图3.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是( )第3题图A.2 B.255C.55D.124.在△ABC中,若三边BC,CA,AB满足BC∶CA∶AB=5∶12∶13,则cosB=( )A.512B.125C.513D.12135.如图,若点A的坐标为(1,3),则sin∠1=________.第5题图6.如图,在菱形ABCD 中,DE ⊥AB ,垂足是E ,DE =6,sinA =35,则菱形ABCD 的周长是________.第6题图7.在Rt △ABC 中,∠C =90°,cosA =1213,则tanB =________.8.等腰三角形底边长是10,周长是40,则其底角的正弦值是________. 9.在Rt △ABC 中,∠C =90°,AB =13,BC =5. (1)求∠A ,∠B 的正弦、余弦值;(2)求∠A ,∠B 的正切的值,你发现了什么?10.在Rt △ABC 中,∠C =90°,sinA =23,求cosA ,tanA 的值.11.如图,在Rt △ABC 中,∠ACB =90°,CD⊥AB 于点D ,AC =3,BC =4,求sin ∠DCB 和sin ∠ACD.第11题图12.如图,直径为10的⊙A 经过点C (0,5)和点O (0,0),点B 是y 轴右侧⊙A 优弧上一点,则∠OBC 的余弦值为( )第12题图A.12B.34C.32D.45 13.如图,直线y =12x -2交x 轴于点A ,交y 轴于点B ,且与x 轴的夹角为α,求:第13题图(1)OA ,OB 的长; (2)tan α与sin α的值.14.如图,在△ABC 中,边AC ,BC 上的高BE ,AD 交于点H.若AH =3,AE =2,求tanC 的值.第14题图15.如图,定义:在直角三角形ABC 中,锐角α的邻边与对边的比叫做角α的余切,记作cot α,即cot α=角α的邻边角α的对边=ACBC,根据上述角的余切定义,解下列问题:(1)cot30°=________;(2)如图,已知tanA =34,其中∠A 为锐角,试求cotA 的值.第15题图参考答案 1-4.CADC 5.32 6.40 7.125 8.2239.(1)∵∠C=90°,∴AC =AB 2-BC 2=12,∴sin A =513,cos A =1213,sin B =1213,cos B =513; (2)tan A =512,tan B =125.发现tan A ×tan B =1.10. cos A =53,tan A =255. 11. ∵∠ACB=90°,CD ⊥AB ,∴∠DCB =∠A,∠ACD =∠B,AB =AC 2+BC 2=5,∴sin ∠DCB =sin ∠A =BC AB =45,sin ∠ACD =sin ∠B =AC AB =35.12.C13.(1)OA =4,OB =2; (2)tan α=tan ∠BAO =OB OA =12,sin α=sin ∠BAO =OB AB =225=55.14.∵BE⊥AC,∴∠EAH +∠AHE=90°.∵AD ⊥BC ,∴∠HAE +∠C=90°.∴∠AHE =∠C.∵在Rt △AHE 中,AH =3,AE =2,∴HE =AH 2-AE 2=32-22= 5.∴tan ∠AHE =AEHE=25=255.∴tan C =255.15. (1) 3 (2)∵tan A =BC AC =34,∴cot A =AC BC =43.第1章 解直角三角形1.1 锐角三角函数(第2课时)1.tan30°的值等于( )A.12B.32C.33 D .-3 2.已知α为锐角,且tan (90°-α)=3,则α的度数为( )A .30°B .60°C .45°D .75° 3.若∠A 为锐角,cosA<32,则∠A 的取值范围是( ) A .30°<∠A<90° B .0°<∠A<30° C .0°<∠A<60° D .60°<∠A<90° 4.在△ABC 中,若sinA =cosB =22,则下列最确切的结论是( ) A .△ABC 是直角三角形 B .△ABC 是等腰三角形 C .△ABC 是等腰直角三角形 D .△ABC 是锐角三角形5.在Rt △ABC 中,∠C =90°,若∠A =60°,则sinA +sinB 的值等于________. 6.如图,沿倾斜角为30°的山坡植树,要求相邻两棵树的水平距离AC =2m ,那么相邻两棵树的斜坡距离AB 为________m.第6题图7.如图,将三角尺的直角顶点放置在直线AB 上的点O 处,使斜边CD∥AB ,那么∠α的余弦值为________.第7题图8.(sin45°-1)2+|1-tan60°|=__________. 9.求下列各式的值: (1)2-2sin30°×cos30°; (2)3sin60°-2cos45°+38; (3)sin30°+cos 230°×tan45°;(4)(4sin30°-tan60°)(tan60°+4cos60°).10.如图,在△ABC 中,∠B =45°,∠C =30°,AC =6,求BC 、AB 的长.第10题图11.若规定sin (α-β)=sin α·cos β-cos α·sin β,则sin15°=________. 12.小聪想在一个矩形材料中剪出如图中阴影所示的梯形,作为要制作的风筝的一个翅膀.请你根据图中的数据帮他计算出BE ,CD 的长度(结果保留根号).第12题图13.通过书P9课内练习第3题知道:对于任意锐角α,都有tan α=sin αcos α.运用此结论,解答下题:已知锐角α,且tan α=3,求sin α+cos αsin α-cos α的值.14.如图,根据图中数据完成填空,再按要求答题:第14题图sin 2A 1+sin 2B 1=________;sin 2A 2+sin 2B 2=________;sin 2A 3+sin 2B 3=________. (1)观察上述等式,猜想:在Rt △ABC 中,∠C =90°,都有sin 2A +sin 2B =________; (2)如图4,在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,利用三角函数的定义和勾股定理,证明你的猜想;(3)已知:∠A +∠B =90°,且sinA =513,求sinB.参考答案1-4.CADC 5.32 6.40 7.125 8.2231.2 锐角三角函数的计算(第1课时)1.如图,用含38°的三角函数值表示AC ,可得AC 为( )第1题图A .10sin38°B .10cos38°C .10tan38°D .无法确定 2.cos55°和sin36°的大小关系是( )A .cos55°>sin36°B .cos55°<sin36°C .cos55°=sin36°D .不能确定3.下列各式:①sin20°-cos20°<0;②2sin20°=sin40°;③sin10°+sin20°=sin30°;④tan20°=sin20°cos20°.其中正确的有( )A .1个B .2个C .3个D .4个4.如图,梯子跟地面所成的锐角为α,关于α的三角函数值与梯子的倾斜程度之间的关系叙述正确的是( )第4题图A.sinα的值越小,梯子越陡B.cosα的值越小,梯子越陡C.tanα的值越小,梯子越陡D.陡缓程度与α的函数值无关5.如图,A,B两点在河的两岸,要测量这两点之间的距离,测量者在与A同侧的河岸边选定一点C,测出AC=a米,∠A=90°,∠C=40°,则AB等于__________.(用含40°的三角函数表示)第5题图6.如图,在△ABC中,∠C=90°,AC=10,∠B=α,则AB=________,BC=________.(结果用含α的三角函数表示)第6题图7.如图,在矩形ABCD中,点E在AB边上,沿CE折叠矩形ABCD,使点B落在AD边上的点F处.若AB=4,BC=5,则tan∠AFE=________.第7题图8.不用计算器求下列各式的值.(1)sin225°+cos225°=________;(2)(sin32°48′23″+tan47°18′)0=________;(3)tan39°×tan51 °=________;(4)tan1°·tan2°·tan3°·tan4°…tan89°=________.9.如图,某地某时刻太阳光线与水平线的夹角为31°,此时在该地测得一幢楼房在水平地面上的影长为30m,求这幢楼房的高AB(结果精确到1m,参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60).第9题图10.如图,沿AC 方向开修一条公路,为了加快施工进度,要在小山的另一边寻找点E 同时施工,从AC 上的一点B 取∠ABD =127°,沿BD 的方向前进,取∠BDE =37°,测得BD =520m ,并且AC ,BD 和DE 在同一平面内.(1)施工点E 离D 点多远正好能使A ,C ,E 成一条直线?(结果保留整数)(2)在(1)的条件下,若BC =80m ,求公路CE 段的长.(结果保留整数,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)第10题图11.已知α为锐角,下列结论:①sin α+cos α=1;②如果α>45°,那么sin α>cos α;③如果cos α>12,那么0°<α<60°;④(sin α-1)2=1-sin α,其中正确的个数是( )A .1个B .2个C .3个D .4个12.如图,已知AC⊥BC ,CD ⊥AB ,AB =c ,∠A =α,则AC =________,BC =________,CD =____________(用含c 和α的三角函数表示).第12题图13.如图,在平行四边形ABCD 中,AE 平分∠BAD ,交BC 于点E ,BF 平分∠ABC ,交AD 于点F ,AE 与BF 交于点O ,连结EF ,OD.(1)求证:四边形ABEF 是菱形;(2)若AB =4,AD =5,∠BCD =120°,求tan ∠ADO 的值.第13题图14.如图,伞不论张开还是收紧,伞柄AM 始终平分同一平面内两条伞架所成的角∠BAC ,当伞收紧时,动点D 与点M 重合,且点A ,E ,D 在同一条直线上.已知部分伞架的长度如下(单位:cm ):(1)求AM 的长;(2)当∠BAC =104°时,求AD 的长(精确到1cm ).备用数据:sin52°≈0.7880,cos52°≈0.6157,tan52°≈1.2799.第14题图参考答案1-4.ABBB 5.a tan 40°米 6.10sin α 10tan α 7. 348.(1)1 (2)1 (3)1 (4)19.∵tan ∠ACB =ABBC,∴AB =BC·tan ∠ACB =30×tan 31°≈18m .10.(1)∵∠ABD=127°,∠BDE =37°,∴∠DEB =127°-37°=90°.在Rt △BDE 中,cos D =DEBD ,∴DE =BD·cos D =520×cos 37°≈520×0.80=416(m ),即施工点E 离D 点416m 正好能使A ,C ,E 成一条直线; (2)在(1)的条件下可得BE =BD·sin D =520×sin 37°≈520×0.60=312(m ),∴CE =BE -BC≈312-80=232(m ). 11.C12.c cos α c sin α c sin αcos α13.(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC.∴∠DAE =∠AEB.∵AE 是角平分线,∴∠DAE =∠BAE.∴∠BAE=∠AEB.∴AB=BE.同理AB =AF.∴AF=BE.∴四边形ABEF 是平行四边形. ∵AB=BE ,∴四边形ABEF 是菱形;第13题图(2) 作OH⊥AD 于H ,如图所示.∵四边形ABEF 是菱形,∠BCD =120°,AB =4,∴AB =AF =4,∠ABC =60°,AO ⊥BF ,∴∠ABF =∠AFB=30°,∴AO =12AB =2,∴OH =3,AH =1,DH =AD -AH=4,∴tan ∠ADO =OH DH =34.14.(1)当伞收紧时,动点D 与点M 重合,∴AM =AE +DE =36+36=72(cm ); (2)AD =2×36cos 52°≈2×36×0.6157≈44(cm )1.2 锐角三角函数的计算(第2课时)1.计算器显示结果为sin -10.9816=78.9918的意思正确的是( ) A .计算已知正弦值的对应角度 B .计算已知余弦值的对应角度 C .计算一个角的正弦值 D .计算一个角的余弦值2.在△ABC 中,∠A ,∠B 都是锐角,且sinA =12,cosB =22,则△ABC 三个角的大小关系是( )A .∠C >∠A >∠B B .∠B <∠C <∠A C .∠A >∠B >∠CD .∠C >∠B >∠A 3.若∠A 是锐角,且cosA =tan30°,则( ) A .0°<∠A <30° B .30°<∠A <45° C .45°<∠A <60° D .60°<∠A <90°4.如图所示是一张简易活动餐桌,测得OA =OB =30cm ,OC =OD =50cm ,现要求桌面离地面的高度为40cm ,那么两条桌脚的张角∠COD 的度数大小应为( )第4题图A .100°B .120°C .135°D .150°5.如图,在矩形ABCD 中,若AD =1,AB =3,则该矩形的两条对角线所成的锐角是( )第5题图A .30°B .45°C .60°D .75°6.已知sin α·sin45°=12,则锐角α为________. 7.若θ为三角形的一个锐角,且2sin θ-3=0,则θ=________.8.等腰三角形的底边长为20cm ,面积为10033cm 2,则顶角为________度. 9.若用三根长度分别为8,8,6的木条做成一个等腰三角形,则这个等腰三角形的各个角的大小分别为多少?(结果精确到1′,参考数据:cos67°59′≈0.375)10.已知:如图,在△ABC 中,AB =8,AC =62,∠A =45°.求:(1)AB 边上的高;(2)∠B 的正切值.第10题图11.关于x 的一元二次方程x 2-2x +sin α=0有两个相等的实数根,则锐角α等于( )A .15°B .30°C .45°D .60°12.如图,在Rt △ABC 中,∠ACB =90°,点D 是AB 的中点,tan ∠BCD =3,则sinA =______.第12题图13.某校为了解决学生停车难的问题,打算新建一个自行车棚.如图,图1是车棚的示意图(尺寸如图所示),车棚顶部是圆柱侧面的一部分,其展开图是矩形.图2是车棚顶部的截面示意图,弧AB 所在圆的圆心为O ,半径OA 为3m.(1)求∠AOB 的度数(结果精确到1°);(2)学校准备用某种材料制作车棚顶部,请你算一算:需该种材料多少平方米(不考虑接缝等因素,结果精确到1m 2)?(参考数据:sin53.1°≈0.80,cos53.1°≈0.60,π取3.14)第13题图14.数学老师布置了这样一个问题:如果α,β都为锐角,且tan α=13,tan β=12.求α+β的度数. 甲、乙两位同学想利用正方形网格构图来解决问题.他们分别设计了图1和图2.(1)请你分别利用图1,图2求出α+β的度数,并说明理由;(2)请参考以上思考问题的方法,选择一种方法解决下面问题:如果α,β都为锐角,当tan α=5,tan β=23时,在图3的正方形网格中,利用已作出的锐角α,画出∠MON ,使得∠MON =α-β.求出α-β的度数,并说明理由.第14题图参考答案1-5.ADCBC 6.45° 7.60° 8.120第9题图9.根据题意可画图如右(AB =AC =8,BC =6).过点A 作AD⊥BC 于点D ,则BD =CD =3,∴cos B =BD BA =38,∴∠B ≈67°59′,∴∠C ≈67°59′,∠A ≈44°2′. 10.(1)作CD⊥AB 于点D ,CD =AC·sin A =62·sin 45°=6; (2)∵AD=AC·cos A =62·cos 45°=6,∴BD =AB -AD =8-6=2,∴tan B =CD BD =62=3. 11.B 12.101013.(1)过点O 作OC⊥AB,垂足为C ,则AC =2.4.∵OA=3,∴sin ∠AOC =2.43=0.8,第13题图∴∠AOC ≈53.1°.∴∠AOB =106.2°≈106°; (2)lAB ︵=106×π180×3≈5.5(m ),∴所需材料面积为5.5×15≈83(m 2).即需该种材料约83m 2.14.(1)①如图1中,只要证明△AMC≌△CNB,即可证明△ACB 是等腰直角三角形,∠BAC =α+β=45°.②如图2中,只要证明△CEB∽△BEA,即可证明∠BED=α+β=45°. (2)如图3中,∠MOE =α,∠NOH =β,∠MON =α-β,只要证明△MFN≌△NHO 即可解决问题.∠MON=α-β=45°.第14题图1.3 解直角三角形(第1课时)1.在直角三角形ABC 中,已知∠C =90°,∠A =40°,BC =3,则AC =( )A .3sin40°B .3sin50°C .3tan40°D .3tan50°2.已知:在△ABC 中,AB =AC ,∠BAC =120°,AD 为BC 边上的高,则下列结论中,正确的是( )A .AD =32AB B .AD =12ABC .AD =BD D .AD =22BD 3.身高相同的甲、乙、丙三人放风筝,各人放出线长分别为300m ,250m 和200m ,线与地面所成的角度分别为30°,45°和60°,假设风筝线是拉直的,那么三人所放的风筝中( )A .甲的最高B .乙的最高C .丙的最高D .丙的最低4.一个等腰三角形的腰长为13cm ,底边长为10cm ,则它的底角的正切值为( )A.310B.512C.125D.12135.在△ABC 为,∠C =90°,tanA =12,AB =10,则△ABC 的面积为________. 6.在△ABC 中,∠C =90°,a =35,c =352,则∠A =________,b =________.7.在Rt △ABC 中,∠C 为直角,∠A =30°,b =4,则a =________,c =________.8.如图所示,AB 是伸缩式的遮阳棚,CD 是窗户,要想在夏至的正午时刻阳光刚好不能射入窗户,则AB 的长度是________米(假设夏至的正午时刻阳光与地平面的夹角为60°).第8题图9.如图,在Rt △ABC 中,∠C =90°,sinA =45,AB =15,求△ABC 的周长.第9题图10.如图,小明将一张矩形纸片ABCD 沿CE 折叠,B 恰好落在AD 边上,设此点为F.若AB∶BC =4∶5,求tan ∠ECB 的值.第10题图11.如图,已知△ABC 内接于⊙O ,sinB =35,AC =2cm ,则⊙O 的面积是( )第11题图A.259πcm 2B.1009πcm 2C.925πcm 2D.9100πcm 2 12.如图,矩形ABCD 是供一辆机动车停放的车位示意图,已知BC =2m ,CD =5.4m ,∠DCF =30°,则车位所占的宽度EF 约为多少米?(3≈1.73,结果精确到0.1m )第12题图13.如图,在△ABC 中,AD 是BC 边上的高,AE 是BC 边上的中线,∠C =45°,sinB =13,AD =1.(1)求BC 的长;(2)求tan ∠DAE 的值.第13题图14.如图1是一副创意卡通圆规,图2是其平面示意图,OA 是支撑臂,OB 是旋转臂,使用时,以点A 为支撑点,铅笔芯端点B 可绕点A 旋转作出圆.已知OA =OB =10cm.(1)当∠AOB =18°时,求所作圆的半径;(结果精确到0.01cm )(2)保持∠AOB =18°不变,在旋转臂OB 末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度.(结果精确到0.01cm )(参考数据:sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511)第14题图参考答案1-4.DBBC 5.2 6.45° 35 7.43 3 833 8. 3 9.∵sin A =BC AB =45,∴BC =AB×45=12.∴AC=AB 2-BC 2=9.∴△ABC 周长为36.10.设AB =4,则BC =5,在△DFC 中,FC =BC =5,CD =AB =4,∴DF =3,∴AF =2,又可证△DFC∽△AEF,得EF =2.5=BE ,∴tan ∠BCE =2.55=12. 11.A12.∵∠DCF=30°,CD =5.4m ,∴在Rt △CDF 中,DF =12CD =2.7m .又∵四边形ABCD 为矩形,∴AD =BC =2,∠ADC =90°,∴∠ADE +∠CDF=90°.∵∠DCF+∠CDF=90°,∴∠ADE =∠DCF =30°,∴在Rt △AED 中,DE =AD×cos ∠ADE =2×32=3(m ),∴EF =2.7+3≈4.4(m ).答:车位所占的宽度EF 约为4.4m .13.(1)在△ABC 中,∵AD 是BC 边上的高,∴∠ADB =∠ADC=90°,在△ADC 中,∵∠ADC =90°,∠C =45°,AD =1,∴DC =AD =1,在△ADB 中,∵∠ADB =90°,sin B =13,AD =1,∴AB =AD sin B=3,∴BD =AB 2-AD 2=22,∴BC =BD +DC =22+1; (2)∵AE 是BC 边上的中线,∴CE =12BC =2+12,∴DE =CE -CD =2-12,∴tan ∠DAE =DE AD =2-12. 14.(1)作OC⊥AB 于点C ,如图1所示,由题意可得,OA =OB =10cm ,∠OCB =90°,∠AOB =18°,∴∠BOC =9°,∴AB =2BC =2OB·sin 9°≈2×10×0.1564≈3.13cm ,即所作圆的半径约为3.13cm .第14题图(2)作AD⊥OB 于点D ,作AE =AB ,如图2所示,∵保持∠AOB=18°不变,在旋转臂OB 末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,∴折断的部分为BE ,∵∠AOB =18°,OA =OB ,∠ODA =90°,∴∠OAB =81°,∠OAD =72°,∴∠BAD =9°,∴BE =2BD =2AB·sin 9°≈2×3.13×0.1564≈0.98cm ,即铅笔芯折断部分的长度是0.98cm .1.3 解直角三角形(第2课时)1.如图,斜坡AB 与水平面的夹角为α,下列命题中,不正确的是( )第1题图A .斜坡AB 的坡角为α B .斜坡AB 的坡度为BC ABC .斜坡AB 的坡度为tan αD .斜坡AB 的坡度为BC AC2.如图,C 、D 是以AB 为直径的半圆上两个点(不与A 、B 重合).连DC 、AC 、DB ,AC 与BD 交于点P.若∠APD =α,则CD AB=( ) A .sin α B .cos α C .tan α D.1tan α第2题图3.如图,已知AB 是⊙O 的直径,CD 是弦,且CD⊥AB ,BC =6,AC =8,则sin ∠ABD 的值为( )第3题图 A.43 B.34 C.35 D.454.如图,铁路路基横断面为一个等腰梯形,若腰的坡度为i =2∶1,顶宽是3米,路基高是4米,则路基的下底宽是( )第4题图A .7米B .9米C .12米D .15米5.如图,B ,C 是河岸两点,A 是河岸岸边一点,测得∠ABC =45°,∠ACB =45°,BC =200米,则点A 到岸边BC 的距离是________米.第5题图6.如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A滑行至B,已知AB=500米,则这名滑雪运动员的高度下降了________米.(参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67)第6题图7.等腰三角形的周长为2+3,腰长为1,则顶角为________.8.若三角形两边长为6和8,这两边的夹角为60°,则其面积为________.9.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E, AB=20,CD=16.(1)求sin∠OCE与sin∠CAD的值;(2)求弧CD的长.(结果精确到0.1cm,参考数据:sin53°≈0.8)第9题图10.如图,有一段斜坡BC长10米,坡角∠CBD=12°,为方便残疾人的轮椅车通行,现准备把坡角降为5°.(1)求坡高CD;(2)求斜坡新起点A到原起点B的距离(精确到0.1米,参考数据:sin12°≈0.21,cos12°≈0.98,tan5°≈0.09)第10题图11.如图,四边形ABCD的对角线AC、BD的长分别为m、n,当AC与BD所夹的锐角为θ时,则四边形ABCD的面积S=____________.(用含m,n,θ的式子表示)第11题图12.如图,一个长方体木箱沿斜面下滑,当木箱滑至如图位置时,AB=3m.已知木箱高BE=3m,斜面坡角为30°,求木箱端点E距地面AC的高度EF.第12题图13.如图,一棵树AB的顶端A的影子落在教学楼前的坪地C处,小明分别测得坪地、台阶和地面上的三段影长CE=1m,DE=2m,BD=8m,DE与地面的夹角α=30°.在同一时刻,已知一根1m 长的直立竹竿在地面上的影长恰好为2m,请你帮助小明根据以上数据求出树AB的高.(结果精确到0.1m,参考数据:2≈1.41,3≈1.73)第13题图14.为了缓解停车难的问题,某单位拟建地下停车库,建筑设计师提供的该地下停车库的设计示意图如图所示.按照规定,地下停车库坡道上方要张贴限高标志,以便告知停车人车辆能否安全驶入,为标明限高,请你根据该图计算CE的长度(精确到0.1m,参考数据:tan18°≈0.3249,cos18°≈0.9511).第14题图参考答案1-4.BBDA 5.100 6.280 7.120°8.12 39.(1)sin ∠OCE =0.6,sin ∠CAD =sin ∠COE =0.8; (2)弧CD 的长=106×3.14×10180≈18.5cm . 10.(1)在Rt △BCD 中,CD =BC sin 12°≈10×0.21=2.1(米).答:坡高2.1米; (2)在Rt△BCD 中,BD =BC cos 12°≈10×0.98=9.8(米).在Rt △ACD 中,AD =CD tan 5°≈2.10.09≈23.33(米),∴AB =AD -BD≈23.33-9.8=13.53≈13.5(米).答:斜坡新起点与原起点的距离为13.5米.11.12mn sin θ第12题图12.设EF 与AB 交点为G ,在Rt △BEG 中,∵∠EGB =∠AGF=60°,∴EG =BE sin 60°=2,GB =12EG =1,在Rt △AGF 中,GF =AG·sin 30°=2×12=1,∴EF =EG +GF =2+1=3(m ). 13.如图,延长CE 交AB 于F ,∵α=30°,DE =2m ,BD =8m ,∴EF =BD +DE cos 30°=8+2×32=(8+3)m ,点E 到底面的距离=DE sin 30°=2×12=1m ,即BF =1m ,∴CF =EF +CE =8+3+1=(9+3)m ,根据同时同地物高与影长成正比得,AF CF =12,∴AF =12CF =12(9+3)=12×10.73≈5.4m ,∴树AB 的高为5.4+1=6.4m .第13题图14.∵∠BAD=∠AFG=18°,∴在Rt △ABD 中,BD AB=tan 18°,∴BD =AB·tan 18°=9×tan 18°≈2.9(m ).∵BC =0.5m ,∴CD =2.9-0.5=2.4(m ).在Rt △CED 中,∠DCE =18°,∴CE CD =cos 18°.∴CE =CD·cos 18°=2.4×cos 18°≈2.3(m ).答:CE 长约为2.3m .1.3 解直角三角形(第3课时)1.如图,某飞机在空中A 点处测得飞行高度h =1000m ,从飞机上看到地面指挥站B 的俯角α=30°,则地面指挥站与飞机的水平距离BC 为( )A .500mB .2000mC .1000mD .10003m第1题图2.如图,王英同学从A 地沿北偏西60°方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地( )第2题图 A .503m B .100m C .150m D .1003m3.如图,已知“人字梯”的5个踩档把梯子等分成6份,从上往下的第二个踩档与第三个踩档的正中间处有一条60cm 长的绑绳EF ,tan α=52,则“人字梯”的顶端离地面的高度AD 是( ) A .144cm B .180cm C .240cm D .360cm4.如图,港口A 在观测站O 的正东方向,OA =4km ,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达B 处,此时从观测站O 处测得该船位于北偏东60°的方向,则该船航行的距离(即AB 的长)为( )第4题图A .4kmB .23kmC .22kmD .(3+1)km5.在一次夏令营活动中,小明同学从营地A 出发,要到A 地的北偏东60°方向的C 处,他先沿正东方向走了200m 到达B 地,再沿北偏东30°方向走,恰能到达目的地C (如图所示),由此可知,B ,C 两地相距________m.第5题图6.如图,在高度是21米的小山A 处测得建筑物CD 顶部C 处的仰角为30°,底部D 处的俯角为45°,则这个建筑物的高度CD=______米(结果可保留根号).第6题图7.南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向20(1+3)海里的C处,为了防止某国海巡警干扰,就请求我A 处的鱼监船前往C处护航,已知C位于A处的北偏东45°方向上,A位于B的北偏西30°的方向上,求A、C之间的距离.第7题图8.如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数;(2)求教学楼的高BD.(结果精确到0.1m,参考数据:tan20°≈0.36,tan18°≈0.32)第8题图9.如图,电线杆CD的高度为h,两根拉线AC与BC相互垂直,∠CAB=α,则拉线BC的长度为(A、D、B在同一条直线上)( )第9题图A.hsinαB.hcosαC.htanαD.h·cosα10.如图所示,两条宽度都为2cm的纸条交叉重叠放在一起,且它们的交角为α,则它们重叠部分(图中阴影部分)的面积为________.第10题图11.如图,在大楼AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A、C、E在同一直线上.(1)求斜坡CD的高度DE;(2)求大楼AB的高度(结果保留根号).第11题图C组综合运用12.如图,公路AB为东西走向,在点A北偏东36.5°方向上,距离5km处是村庄M;在点A北偏东53.5°方向上,距离10km处是村庄N.(参考数据:sin36.5°≈0.6,cos36.5°≈0.8,tan36.5°≈0.75)(1)求M,N两村之间的距离;(2)要在公路AB旁修建一个土特产收购站P,使得M,N两村到P的距离之和最短,求这个最短距离.第12题图参考答案1-4.DDBC 5.200 6.(73+21)7.如图,作AD⊥BC,垂足为D ,第7题图由题意得,∠ACD =45°,∠ABD =30°.设CD =x ,在Rt △ACD 中,可得AD =x ,在Rt △ABD 中,可得BD =3x ,又∵BC=20(1+3),CD +BD =BC ,即x +3x =20(1+3),解得:x =20,∴AC =2x =202(海里).答:A 、C 之间的距离为202海里.第8题图8.(1)过点C 作CE⊥BD,则有∠DCE=18°,∠BCE =20°,∴∠BCD =∠DCE+∠BCE=18°+20°=38°; (2)由题意得:CE =AB =30m ,在Rt △CBE 中,BE =CE·tan 20°≈10.80m ,在Rt △CDE 中,DE =CE·tan 18°≈9.60m ,∴教学楼的高BD =BE +DE =10.80+9.60≈20.4m ,则教学楼的高约为20.4m .9.B10.4sin αcm 211.(1)在Rt △DCE 中,DC =4米,∠DCE =30°,∠DEC =90°,∴DE =12DC =2米; (2)过D 作DF⊥AB,交AB 于点F ,∵∠BFD =90°,∠BDF =45°,∴∠DBF =45°,即△BFD 为等腰直角三角形,设BF =DF =x 米,∵四边形DEAF 为矩形,∴AF =DE =2米,即AB =(x +2)米,在Rt △ABC 中,∠ABC =30°,第11题图∴BC =AB cos 30°=x +232=2x +43=3(2x +4)3米,BD =2BF =2x 米,DC =4米,∵∠DCE =30°,∠ACB =60°,∴∠DCB =90°,在Rt △BCD 中,根据勾股定理得:2x 2=(2x +4)23+16,解得:x =4+43(负值舍去),则AB =(6+43)米.12.(1)过点M 作CD∥AB,过点N 作NE⊥AB 于点E ,如图.第12题图在Rt △ACM 中,∠CAM =36.5°,AM =5km ,∵sin 36.5°=CM 5≈0.6,∴CM =3(km ),AC =AM 2-CM 2=4(km ).在Rt △ANE 中,∠NAE =90°-53.5°=36.5°,AN =10km ,∵sin 36.5°=NE 10≈0.6,∴NE =6(km ),AE =AN 2-NE 2=8(km ),∴MD =CD -CM =AE -CM =5(km ),ND =NE -DE =NE -AC =2(km ),在Rt △MND 中,MN =MD 2+ND 2=29(km ); (2)作点N 关于AB 的对称点G ,连结MG 交AB 于点P ,点P 即为站点,此时PM +PN =PM +PG =MG ,在Rt △MDG 中,MG =52+102=125=55(km ).答:最短距离为55km .第2章 直线与圆的位置关系1.如果一个圆的半径是8cm ,圆心到一条直线的距离也是8cm ,那么这条直线和这个圆的位置关系是( )A .相交B .相切C .相离D .无法确定2.已知⊙O 的半径为3,直线l 上有一点P 满足PO =3,则直线l 与⊙O 的位置关系是( )A .相切B .相离C .相离或相切D .相切或相交3.已知点P (3,4),以点P 为圆心,r 为半径的圆P 与坐标轴有四个交点,则r 的取值范围是( )A .r >4B .r >4且r≠5C .r >3D .r >3且r≠54.如图,以点O 为圆心的两个同心圆,半径分别为5和3,若大圆的弦AB 与小圆相交,则弦长AB的取值范围是( )第4题图A.8≤AB≤10 B.AB≥8 C.8<AB≤10 D.8<AB<105.已知圆的直径为10cm,若圆心到三条直线的距离分别为:①4cm;②5cm;③10cm,则这三条直线和圆的位置关系分别是①________;②________;③________.6.在Rt△ABC中,∠C=90°,AC=12cm,BC=5cm,以点C为圆心、6cm长为半径作圆,则圆与直线AB的位置关系是________.7.如图,已知∠AOB=30°,C是射线OB上的一点,且OC=4.若以C为圆心,r为半径的圆与射线OA有两个不同的交点,则r的取值范围是____________.第7题图8.在△ABO中,若OA=OB=2,⊙O的半径为1,当∠AOB满足____________时,直线AB与⊙O相切;当∠AOB满足____________时,直线AB与⊙O相交;当∠AOB满足____________时,直线AB与⊙O相离.9.如图,在Rt△ABC中,∠C=90°,斜边AB=8cm,AC=4cm.(1)以点C为圆心作圆,半径为多少时,AB与⊙C相切?(2)以点C为圆心,分别作半径为2cm和4cm的圆,这两个圆与AB有怎样的位置关系?第9题图10.如图,在以点O为圆心的两个同心圆中,大圆的弦AB=CD,且AB与小圆相切.求证:CD与小圆也相切.第10题图11.已知等边三角形ABC 的边长为23m.下列图形中,以A 为圆心,半径是3cm 的圆是( )11.如图,P 为正比例函数y =32x 图象上的一个动点,⊙P 的半径为3,设点P 的坐标为(x ,y ).第12题图(1)当⊙P 与直线x =2相切时,则点P 的坐标为______________________;(2)当⊙P 与直线x =2相交时x 的取值范围为____________.13.在平行四边形ABCD 中,AB =10,AD =m ,∠D =60°,以AB 为直径作⊙O.(1)求圆心O 到CD 的距离(用含m 的代数式表示);(2)当m 取何值时,CD 与⊙O 相切?第13题图14.如图,MN 表示某引水工程的一段设计路线,从M 到N 的走向为南偏东30°,M 的南偏东60°方向上有一点A ,以A 为圆心,500m 为半径的圆形区域为居民区,取MN 上另一点B ,测得BA 方向为南偏东75°,已知MB =400m ,通过计算回答,如果不改变方向,输水路线是否会穿过居民区?第14题图参考答案1-4.BDBC 5. ①相交 ②相切 ③相离 6.相交 7.2<r≤48.∠AOB=120° 120°<∠AOB<180° 0°<∠AOB<120°9.(1)作CD⊥AB 于点D ,在Rt △ACD 中,CD =AC·sin 60°=23cm ,所以当半径r 为23cm 时,AB 与⊙C 相切; (2)r =2<CD 时,⊙C 与AB 相离,r =4>CD 时,⊙C 与AB 相交.10.证明:过点O 分别作AB ,CD 的垂线段OE ,OF.设小圆的半径为r.∵AB 与小圆相切,∴OE =r ,∵AB =CD ,且AB ,CD 为大圆的弦,∴OE =OF ,∴OF =r ,∴CD 与小圆也相切. 11.B12.(1)⎝⎛⎭⎪⎫5,152或⎝ ⎛⎭⎪⎫-1,-32 (2)-1<x <5 13.(1)作AH⊥CD 于点H.因为∠D =60°,则∠DAH=30°,DH =AD 2=m 2,所以AH =AD 2-DH 2=m 2-(m 2)2=32m ,即圆心O 到CD 的距离为32m ; (2)当32m =5,即m =1033时,CD 与⊙O 相切.第14题图14.作AC⊥MN 于点C ,∵∠AMC =60°-30°=30°,∠ABC =75°-30°=45°,∴设AC为x m ,则AC =BC =x ,在Rt △ACM 中,MC =400+x ,∴tan ∠AMC =AC MC ,即13=x 400+x,解得x =200+2003>500,∴如果不改变方向,输水路线不会穿过居民区.第2章直线与圆的位置关系2.1 直线与圆的位置关系(第2课时)1.下列命题错误的是( )A.垂直于半径的直线是圆的切线B.如果圆心到一条直线的距离等于半径,那么这条直线是圆的切线C.如果一条直线与圆只有唯一一个公共点,那么这条直线是圆的切线D.经过半径的外端并且垂直这条半径的直线是圆的切线2.如图,点A在⊙O上,下列条件不能说明PA是⊙O的切线的是( )A.OA2+PA2=OP2 B.PA⊥OAC.∠P=30°,∠O=60° D.OP=2OA第2题图3.如图,AB是⊙O的直径,根据下列条件,不能判定直线AT是⊙O的切线的是( )第3题图A.AB=2,AT=1.5,BT=2.5 B.∠B=45°,AB=ATC.∠B=36°,∠TAC=36°D.∠ATC=∠B4.如图,P为圆O外一点,OP交圆O于A点,且OA=2AP.甲、乙两人想作一条通过P点且与圆O相切的直线,其作法如下:第4题图(甲)以P为圆心,OP长为半径画弧,交圆O于B点,则直线PB即为所求;(乙)作OP的中垂线,交圆O于B点,则直线PB即为所求.对于甲、乙两人的作法,下列判断何者正确?( )A.两人皆正确 B.两人皆错误C.甲正确,乙错误 D.甲错误,乙正确5.如图,点Q在⊙O上,若OQ=3cm,OP=5cm,PQ=4cm,则直线PQ与⊙O________(填“相交”、“相切”或“相离”).第5题图6.如图,△ABC的一边AB是⊙O的直径,请你添加一个条件,使BC是⊙O的切线,你所添加的条件为____________.第6题图7.如图,点A,B,D在⊙O上,∠A=25°,OD的延长线交直线BC于点C,且∠OCB=40°,则直线BC与⊙O的位置关系为________.第7题图8.如图,CD是⊙O的直径,BD是弦,延长DC到A,使∠ABD=120°,若添加一个条件,使AB是⊙O的切线,则下列四个条件:①AC=BC;②AC=OC;③AB=BD中,能使命题成立的有________(只要填序号即可).第8题图9.如图,已知点A在⊙O上,根据下列条件,能否判定直线AB和⊙O相切?请说明理由.第9题图(1)OA =6,AB =8,OB =10; (2)tanB =34.10.如图,AB 为⊙O 的直径,弦CD⊥AB ,垂足为点P ,直线BF 与AD 的延长线交于点F ,且∠AFB =∠ABC.(1)求证:直线BF 是⊙O 的切线. (2)若CD =23,OP =1,求线段BF 的长.第10题图11.在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定( )A .与x 轴相离,与y 轴相切B .与x 轴,y 轴都相离C .与x 轴相切,与y 轴相离D .与x 轴,y 轴都相切12.如图,在△ABC 中,AB =AC ,∠B =30°,以点A 为圆心,以3cm 为半径作⊙A ,当AB =________cm 时,BC 与⊙A 相切.第12题图13.如图,已知P 是⊙O 外一点,PO 交⊙O 于点C ,OC =CP =2,弦AB⊥OC ,劣弧AB 的度数为120°,连结PB.(1)求BC 的长;(2)求证:PB 是⊙O 的切线.第13题图14.如图,已知AB 是⊙O 的直径,BC ⊥AB ,连结OC ,弦AD∥OC ,直线CD 交BA 的延长线于点E.(1)求证:直线CD 是⊙O 的切线; (2)若DE =2BC ,求AD∶OC 的值.第14题图参考答案1-4.ADDB 5.相切 6.AB⊥BC(不唯一) 7.相切 8.①②③9.(1)能判定;∵OA 2+AB 2=BO 2,∴∠BAO =90°.即AB⊥AO,∴AB 是⊙O 的切线; (2)不能判定;△ABO 中,tan B =34,无法证明∠BAO=90°,所以不能判定.10.(1)证明:∵∠AFB=∠ABC,∠ABC =∠ADC,∴∠AFB =∠ADC,∴CD ∥BF ,∴∠APD =∠ABF,∵CD ⊥AB ,∴AB ⊥BF ,∴直线BF 是⊙O 的切线;第10题图(2)连结OD ,∵CD ⊥AB ,∴PD =CP =3,∵OP =1,∴OD =2,∵∠PAD =∠BAF,∠APD =∠ABF,∴△APD ∽△ABF ,∴AP AB =PD BF ,∴34=3BF ,∴BF =433.11.A 12.613.(1)连结OB ,∵弦AB⊥OC,劣弧AB 的度数为120°,∴∠COB =60°,又∵OC=OB.∴△OBC 是正三角形,∴BC =OC =2; (2)证明:∵BC=OC =CP ,∴∠CBP =∠CPB,∵△OBC 是正三角形,∴∠OBC =∠OCB=60°.∴∠CBP =30°,∴∠OBP =∠CBP+∠OBC=90°,∴OB ⊥BP ,∵点B 在⊙O 上,∴PB 是⊙O 的切线.14.(1)证明:连结DO.∵AD∥OC,∴∠DAO =∠COB,∠ADO=∠COD,又∵OA=OD ,∴∠DAO =∠ADO,∴∠COD =∠COB.在△COD 和△COB 中,⎩⎪⎨⎪⎧CO =CO ,∠COD =∠COB,OD =OB ,∴△COD ≌△COB(SAS),∴∠CDO =∠CBO=90°.又∵点D 在⊙O 上,∴CD 是⊙O 的切线; (2)∵△COD≌△COB,∴CD =CB.∵DE=2BC ,∴ED =2CD.∵AD∥OC,∴△EDA ∽△ECO.∴AD OC =DE CE =23.2.1 直线与圆的位置关系(第3课时)1.下列说法中,正确的是( )A.圆的切线垂直于经过切点的半径B.垂直于切线的直线必经过切点C.垂直于切线的直线必经过圆心D.垂直于半径的直线是圆的切线2.如图,AB与⊙O相切于点B,AO=6cm,AB=4cm.则⊙O的半径为( )A.45cm B.25cm C.213cm D.13cm第2题图3.如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于( )第3题图A.20° B.25° C.40° D.50°4.如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是( )第4题图A.点(0,3) B.点(2,3) C.点(5,1) D.点(6,1)5.如图,直线MN与⊙O相切于点M,ME=EF且EF∥MN,则cos∠E=________.第5题图6.如图,AB 是⊙O 的切线,半径OA =2,OB 交⊙O 于点C ,∠B =30°,则AC ︵的长是________(结果保留π).第6题图7.如图,两个同心圆,大圆的弦AB 切小圆于点C ,且AB =10,则图中阴影部分面积为________.第7题图8.如图,已知⊙P 的半径是1,圆心P 在抛物线y =x 2-2x +1上运动,当⊙P 与x 轴相切时,圆心P 的坐标为______________.第8题图9.如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于点D ,且∠D =2∠CAD. (1)求∠D 的度数; (2)若CD =2,求BD 的长.第9题图10.如图,在△ABC 中,AB =AC ,∠BAC =54°,以AB 为直径的⊙O 分别交AC ,BC 于点D ,E ,过点B 作⊙O 的切线,交AC 的延长线于点F.。
浙教版九年级数学下《1.3解直角三角形》同步练习
1.3 第1课时 解直角三角形一、选择题1.在Rt △ABC 中,∠C =90°,a ,b ,c 分别为∠A ,∠B ,∠C 所对的边,则下列关系式中错误的是( )A .b =c ·cosB B .b =a ·tan BC .a =c ·sin AD .a =btan B2.在Rt △ABC 中,∠C =90°,sin A =45,AC =6 cm ,则BC 的长为( )A .6 cmB .7 cmC .8 cmD .9 cm3.如图K -43-1,点A (t ,3)在第一象限,OA 与x 轴所夹的锐角为∠α,tan α=32,则t 的值是( )A .1B .1.5C .2D .3图K -43-14.2017·宜昌△ABC 在网格中的位置如图K -43-2所示(每个小正方形的边长为1),AD ⊥BC 于点D ,则下列选项中错误..的是( )图K -43-2A .sin α=cos αB .tanC =2C .sin β=cos βD .tan α=15.如图K -43-3所示,在矩形ABCD 中,DE ⊥AC 于点E ,设∠ADE =α,且cos α=35,AB =4,则AD 的长为( ) A.125 B.163 C.43 D.643图K -43-36.如图K -43-4,若△ABC 和△DEF 的面积分别为S 1,S 2,则( )图K -43-4A .S 1=12S 2B .S 1=72S 2C .S 1=S 2D .S 1=85S 2二、填空题7.在Rt △ABC 中,∠C =90°,BC =6,cos B =35,则AB =________,tan A =________.8.如图K -43-5,AB 是⊙O 的直径,AB =15,AC =9,则tan ∠ADC =________.图K -43-59.如图K -43-6,折叠矩形ABCD 的一边AD ,使点D 落在BC 边的点F 处,已知折痕AE =5 5 cm ,且tan ∠EFC =34,那么矩形ABCD 的周长为________cm.图K -43-610.2017·义乌以Rt △ABC 的锐角顶点A 为圆心,适当长为半径作弧,与边AB ,AC 各相交于一点,再分别以这两个交点为圆心,适当长为半径作弧,过两弧的交点与点A 作直线,与边BC 交于点D, 若∠ADB =60°,点D 到AC 的距离为2,则AB 的长为________.11.2017·随州如图K -43-7,∠AOB 的边OB 与x 轴正半轴重合,P 是OA 上的一动点,N (3,0)是OB 上的一定点,M 是ON 的中点,∠AOB =30°,要使PM +PN 的值最小,则点P 的坐标为________.图K -43-7三、解答题12.在Rt △ABC 中,∠C =90°,a ,b ,c 分别为∠A ,∠B ,∠C 的对边,b ∶c =3∶2,a =5,求b ,c ,∠A ,∠B .13.2016·上海改编如图K -43-8,在Rt △ABC 中,∠ACB =90°,AC =BC =3,点D 在边AC 上,且AD =2CD ,DE ⊥AB ,垂足为E ,连结CE .求:(1)线段BE 的长;(2)∠ECB的余弦值.图K-43-814.如图K-43-9,这是一把可调节座椅的侧面示意图,已知头枕上的点A到调节器点O处的距离为80 cm,AO与地面垂直,现调整靠背,把OA绕点O旋转35°到OA′处,求调整后点A′比调整前点A的高度降低了多少厘米.(结果取整数.参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)图K-43-915.分类讨论在△ABC中,O为AC的中点,点P在AC上,若OP=52,tan A=12,∠B=120°,BC=2 3,求AP的长.16.分类讨论在△ABC中,AB=12,AC=39,∠B=30°,求△ABC的面积.1.[答案] A2.[解析] C ∵sin A =BC AB =45,∴设BC =4x cm ,AB =5x cm . 又∵AC 2+BC 2=AB 2,∴62+(4x)2=(5x)2, 解得x 1=2,x 2=-2(舍去),则BC =8 cm . 故选C . 3.[答案] C 4.[答案] C5.[解析] B ∵四边形ABCD 为矩形, ∴∠ADE +∠CDE =90°.∵DE ⊥AC ,∴∠CDE +∠DCE =90°, ∴∠DCE =∠ADE =α.又∵DC =AB =4,cos ∠DCE =DCAC ,∴35=4AC ,∴AC =203, ∴AD =AC 2-DC 2=163.故选B . 6.][答案] C 7.[答案] 10 348.[答案] 349.][答案] 36[解析] ∵tan ∠EFC =34,∴设CE =3k cm ,则CF =4k cm , 由勾股定理,得EF =DE =5k cm , ∴DC =AB =8k cm .∵∠AFB +∠BAF =90°,∠AFB +∠EFC =90°,∴∠BAF =∠EFC ,∴tan ∠BAF =tan ∠EFC =34,∴BF =6k cm ,∴AF =BC =AD =10k cm .在Rt △AFE 中,由勾股定理,得AE =AF 2+EF 2=125k 2=5 5, 解得k =1(负值已舍去),故矩形ABCD 的周长=2(AB +BC)=2(8k +10k)=36(cm ). 故答案为36. 10.[答案] 23[解析] 如图,由题意可知AD 是∠BAC 的平分线.过点D 作DE ⊥AC ,垂足为E ,则DE =2,所以DB =DE =2;在Rt △ABD 中,tan ∠ADB =ABBD,所以AB =2×3=2 3.11.[答案] ⎝⎛⎭⎫32,32[解析] 作点N 关于OA 的对称点N′,连结MN′交OA 于点P ,则点P 即为所求.显然ON =ON ′,∠NON ′=2∠AOB =2×30°=60°,∴△ONN ′为等边三角形,MN ′⊥ON.∵OM =32,则PM =OM·tan 30°=32×33=32,∴点P 的坐标为⎝⎛⎭⎫32,32.12.解:∵sin B =b c =32,∴∠B =60°,∴∠A =90°-∠B =30°. ∵sin A =a c ,∴c =a sin A =512=10.又∵b ∶c =3∶2,∴b ∶10=3∶2, ∴b =5 3.13.解:(1)∵AD =2CD ,AC =3,∴AD =2. 在Rt △ABC 中,∠ACB =90°,AC =BC =3, ∴∠A =45°,AB =AC 2+BC 2=3 2. ∵DE ⊥AB ,∴∠AED =90°,∠ADE =∠A =45°, ∴AE =AD·cos 45°=2, ∴BE =AB -AE =2 2. 即线段BE 的长是2 2.(2)如图,过点E 作EH ⊥BC ,垂足为H. 在Rt △BEH 中,∠EHB =90°,∠B =45°,∴EH =BH =EB·cos 45°=2. 又∵BC =3,∴CH =1. 在Rt △ECH 中,CE =CH 2+EH 2=12+22=5, ∴cos ∠ECB =CH CE =55,即∠ECB 的余弦值是55.14.解:如图,过点A′作A′B ⊥AO 于点B , 根据题意知OA =OA′=80 cm ,∠AOA ′=35°, ∴OB =OA′·cos 35°≈80×0.82=65.6(cm ), ∴AB =OA -OB ≈80-65.6≈14(cm ).答:调整后点A′比调整前点A 的高度降低了约14 cm . 1.5解:如图,过点C 作CD ⊥AB ,交AB 的延长线于点D ,∵∠ABC =120°,∴∠CBD =60°.∵BC =2 3,∴CD =BC·sin 60°=23×32=3. ∵tan A =12,∴AD =6,∴AC =AD 2+CD 2=35,∴AO =32 5.∵点P 在AC 上,且OP =52, ∴AP =25或 5.16.解:分两种情况:(1)如图①,过点A 作AD ⊥BC ,垂足为D ,在Rt △ABD 中, ∵AB =12,∠B =30°,∴AD =12AB =6,BD =AB cos B =12×32=6 3. 在Rt △ACD 中,CD =AC 2-AD 2=(39)2-62=3, ∴BC =BD +CD =63+3=73,则S △ABC =12×BC ×AD =12×73×6=213;(2)如图②,过点A 作AD ⊥BC ,交BC 的延长线于点D ,由(1)知,AD =6,BD =63,CD =3, 则BC =BD -CD =53,∴S △ABC =12×BC ×AD =12×53×6=15 3.综上,△ABC 的面积为21 3或15 3.。
解直角三角形1.3 解直角三角形同步练习(含答案)
(参考数据: )
第14题.如图,小鹏准备测量学校旗杆的高度.他发现当斜坡正对着太阳时,旗杆 的影子恰好落在水平地面 和斜坡坡面 上,测得旗杆在水平地面上的影长 米,在斜坡坡面上的影长 米,太阳光线 与水平地面成 角,且太阳光线 与斜坡坡面 互相垂直.请你帮小鹏求出旗杆 的高度(精确到1米).
答案:解:如图,过点 作 于点 .
由已知,得
, .
在 中, .
在 中,由 ,得
,
又 ,
,即 .
,
.
答:小山 的高约为 .
第2题.如图,身高1.6m的小丽用一个两锐角分别为 和 的三角尺测量一棵树的高度,已知她与树之间的距离为6m,那么这棵树高大约为.(结果精确到0.1m,其中 ,小丽眼睛距离地面高度近似为身高)
第19题.如图,山顶建有一座铁塔,塔高 米,测量人员在一个小山坡的 处测得塔的底部 点的仰角为 ,塔顶 点的仰角为 .已测得小山坡的坡角为 ,坡长 米.求山的高度 (精确到 米).(参考数据: , )
参考答案
第1题.如图,在观测点 测得小山上铁塔顶 的仰角为 ,铁塔底部 的仰角为 .已知塔高 ,观测点 到地面的距离 ,求小山 的高(精确到 ).
(1)出发后几小时两船与港口 的距离相等?
(2)出发后几小时乙船在甲船的正东方向?(结果精确到0.1小时)(参考数据: , )
第5题.如图,在一个坡角为 的斜坡上有一棵树,高为 .当太阳光与水平线成 时,测得该树在斜坡上的树影 的长为 ,求树高.(精确到 )
第6题.如图,某市郊外景区内一条笔直的公路 经过三个景点 .景区管委会又开发了风景优美的景点 .经测量景点 位于景点 的北偏东 方向 处,位于景点 的正北方向,还位于景点 的北偏西 方向上.已知 .
九年级数学解直角三角形同步练习题(含答案)
九年级数学解直角三角形同步练习题(含答案)一、选择题(本大题共15小题,共45.0分)1.若角α的余角是30∘,则cosα的值是()A. 12B. √32C. √22D. √332.在Rt▵ABC中,∠C=90∘,sinA=35,则cosB的值是()A. 45B. 35C. 34D. 433.如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A.若AC=4,cosA=45,则BD的长度为()A. 94B. 125C. 154D. 44.已知a,b,c是△ABC的∠A,∠B,∠C的对边,且a:b:c=1:√2:√3,则cos B的值为()A. √63B. √33C. √22D. √245.如图,Rt△ABC中,∠C=90°,AB=5,cosA=45,以点B为圆心,r为半径作⊙B,当r=3时,⊙B与AC的位置关系是()A. 相离B. 相切C. 相交D. 无法确定6.如图,数学活动小组利用测角仪和皮尺测量学校旗杆的高度,在点D处测得旗杆顶端A的仰角∠ADE为55°,测角仪CD的高度为1米,其底端C与旗杆底端B之间的距离为6米,设旗杆AB的高度为x米,则下列关系式正确的是()A. tan55°=B. tan55°=C. sin55°=D. cos55°=7.如图,已知点A、点B是同一幢楼上的两个不同位置,从A点观测标志物C的俯角是65°,从B点观测标志物C的俯角是35°,则∠ACB的度数为()A. 25°B. 30°C. 35°D. 65°8.在Rt△ABC中,已知∠C=90∘.若AC=2BC,则sin∠A的值是()A. 12B. 2 C. √55D. √529.△ABC中,∠C=90°,若∠A=2∠B,则cosB等于()A. √3B. √33C. √32D. 1210.如图,△ABC中,AD⊥BC于点D,AD=2√3,∠B=30°,S△ABC=10√3,则tanC的值为()A. 13B. 12C. √33D. √3211.在Rt△ABC中,∠C=90,AC=12,cosA=1213,则tanA等于()A. 513B. 1312C. 125D. 51212.如图,点A、B、C均在小正方形的顶点上,且每个小正方形的边长均为1,则cos∠BAC的值为()A. 12B. √22C. 1D. √213.从一艘船上测得海岸上高为42米的灯塔顶部的仰角为30°时,船离灯塔的水平距离是()A. 42√3米B. 14√3米C. 21米D. 42米14.如图,在8×4的正方形网格中,若△ABC的三个顶点在图中相应的格点上,则tan∠ACB的值为()A. 13B. √1010C. 12D. √2215.把Rt△ABC三边的长度都扩大为原来的3倍,则锐角A的余弦值()A. 不变B. 缩小为原来的13C. 扩大为原来的3倍D. 扩大为原来的9倍二、填空题(本大题共1小题,共3.0分)16.计算:√27+(13)−2−3tan60°+(π−√2)0=______.三、计算题(本大题共1小题,共6.0分)17.如图,在A的正东方向有一港口B.某巡逻艇从A沿着北偏东55°方向巡逻,到达C时接到命令,立刻从C沿南偏东60°方向以20海里/小时的速度航行,从C到B航行了3小时.求A,B间的距离(结果保留整数).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43,√3≈1.73)四、解答题(本大题共5小题,共40.0分)18.如图,A,B两点被池塘隔开,在AB外选一点C,连接AC,BC.测得BC=221m,∠ACB=45°,∠ABC=58°.根据测得的数据,求AB的长(结果取整数).参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60.19.如图,在平面直角坐标系内,O为原点,点A的坐标为(10,0),点B在第一象限内,BO=5,sin∠BOA=.(1)求点B的坐标;(2)求tan∠BAO的值.)−1+√18−6sin45°.20.计算:(1221.如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(√3取1.7).22.如图,在△ABC中,∠C=90°,点D,E分别在AC,AB上,BD平分∠ABC,DE⊥AB于点E,AE=6,cosA=3.5(1)求CD的长;(2)求tan∠DBC的值.1.【答案】A【解析】【分析】本题考查了特殊角的三角函数值,属于基础题.先根据题意求得α的值,再求它的余弦值.【解答】解:因为角α的余角是30∘,所以α=90°−30°=60°,则.故选A.2.【答案】B【解析】解:在Rt△ABC中,∠C=90°,∴∠A+∠B=90°,∴cosB=sinA=,故选:B.3.【答案】C【解析】解:∵∠C=90°,AC=4,cosA=45,∴AB=ACcosA=5,∴BC=√AB2−AC2=3,∵∠DBC=∠A.∴cos∠DBC=cosA=BCBD =45,∴BD=3×54=154,故选:C.在△ABC中,由三角函数求得AB,再由勾股定理求得BC,最后在△BCD中由三角函数求得BD.本题主要考查了勾股定理,解直角三角形的应用,关键是解直角三角形.4.【答案】B【解析】解:∵,∴△ABC为直角三角形.cosB==.故选:B.5.【答案】B【解析】【分析】本题考查了直线与圆的位置关系的应用,注意:直线和圆有三种位置关系:相切、相交、相离.根据三角函数的定义得到AC,根据勾股定理求得BC,和⊙B的半径比较即可.【解答】解:∵Rt△ABC中,∠C=90°,AB=5,cosA=45,∴ACAB =AC5=45,∴AC=4,∴BC=√AB2−AC2=3,∵r=3,∴⊙B与AC的位置关系是相切,故选:B.6.【答案】B【解析】【解析】解:∵在Rt△ADE中,DE=6,AE=AB−BE=AB−CD=x−1,∠ADE=55°,∴sin55°=,cos55°=,tan55°=,故选:B.7.【答案】B【解析】【解析】解:根据题意可知:∠ACD=65°,∠BCD=35°,∴∠ACB=∠ACD−∠BCD=30°.故选:B.8.【答案】C【解析】【分析】本题主要考查了锐角三角函数的求法,属于基础题.可先求出斜边AB,然后根据正弦的定义求出角A的正弦即可.【答案】解:∵AC=2BC,由勾股定理可得:AB=√AC2+BC2=√(2BC)2+BC2=√5BC,∴sin∠A=BCAB =√5=√55,故选C.9.【答案】C【解析】解:∵∠C=90°,∴∠A+∠B=90°,∵∠A=2∠B,∴∠B=30°,∴cosB=cos30°=√32,故选:C.根据直角三角形的性质求出∠B,根据30°的余弦值是√32解答.本题考查的是特殊角的三角函数值、直角三角形的性质,熟记特殊角的三角函数值是解题的关键.10.【答案】D【解析】解:∵在△ABD中,∠ADB=90°,AD=2√3,∠B=30°,∴BD=ADtanB =√3√33=6.∵S△ABC=12BC⋅AD=10√3,∴12BC⋅2√3=10√3,∴BC=10,∴CD=BC−BD=10−6=4,∴tanC=ADCD =2√34=√32.故选:D.首先解直角△ABD,求得BD,再根据S△ABC=10√3,求出BC,那么CD=BC−BD,然后在直角△ACD中利用正切函数定义即可求得tanC的值.本题考查了解直角三角形,三角形的面积,锐角三角函数定义,解题的关键是求出CD的长.【解析】解:∵cosA=ACAB =1213,AC=12,∴AB=13,BC=√AB2−AC2=5,∴tanA=BCAC =512.故选:D.根据cosA=1213求出第三边长的表达式,求出tanA即可.本题利用了勾股定理和锐角三角函数的定义.12.【答案】B【解析】解:连接BC,∵每个小正方形的边长均为1,∴AB=√5,BC=√5,AC=√10,∵(√5)2+(√5)2=(√10)2,∴△ABC是直角三角形,∴cos∠BAC=ABAC =√5√10=√22,故选:B.根据题目中的数据和勾股定理,可以求得AB、BC、AC的长,然后根据勾股定理逆定理可以判断△ABC的形状,从而可以求得cos∠BAC的值.本题考查解直角三角形、勾股定理与逆定理,解答本题的关键是明确题意,判断出△ABC 的形状,利用锐角三角函数解答.13.【答案】A【解析】解:根据题意可得:船离海岸线的距离为42÷tan30°=42√3(米)故选:A.在直角三角形中,已知角的对边求邻边,可以用正切函数来解决.本题考查解直角三角形的应用−仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.【解析】【分析】本题主要考查正切值的求法,解题的关键是构造直角三角形.作AH⊥CB,交CB延长线于H点,∠ACB的正切值是AH与CH的比值.【解答】解:如图,作AH⊥CB,交CB延长线于H点,则tan∠ACB=AHHC =26=13.故选A.15.【答案】A【解析】【分析】本题考查的是相似三角形的判定和性质、锐角三角函数的定义,掌握相似三角形的对应角相等是解题的关键.根据相似三角形的性质解答.【解答】解:三边的长度都扩大为原来的3倍,则所得的三角形与原三角形相似,∴锐角A的大小不变,∴锐角A的余弦值不变,故选:A.16.【答案】10【解析】解:原式=3√3+9−3√3+1=10.故答案为:10.直接利用零指数幂的性质以及特殊角的三角函数值、负整数指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.17.【答案】解:如图,过点C作CD⊥AB于点D,由题意可知:∠ACD=55°,∠BCD=60°,BC=20×3=60(海里),BC=30(海里),BD=30√3(海里),在Rt△BCD中,CD=12在Rt△ADC中,AD=CD⋅tan55°=30×1.43≈42.90(海里),∴AB=AD+BD=42.90+30√3≈95(海里).答:A,B间的距离为95海里.【解析】过点C作CD⊥AB于点D,根据三角函数分别求出CD、BD、AD的长,进而可求出A、B间的距离.本题考查了解直角三角形的应用−方向角问题,解决本题的关键是掌握方向角的定义.18.【答案】解:如图,过点A作AD⊥BC,垂足为D,∵∠ACB=45°,∴AD=CD,设AB=x,在Rt△ADB中,AD=AB⋅sin58°≈0.85x,BD=AB⋅cos58°≈0.53x,又∵BC=221,即CD+BD=221,∴0.85x+0.53x=221,解得,x≈160,答:AB的长约为160m.【解析】通过作高,构造直角三角形,利用直角三角形的边角关系,列方程求解即可.本题考查直角三角形的边角关系,掌握直角三角形的边角关系,即锐角三角函数,是正确解答的前提,通过作辅助线构造直角三角形是常用的方法.19.【答案】解:(1)如图,过点B作BH⊥OA于点H,∵OB=5,sin∠BOA=,∴BH=3,OH=4,∴点B的坐标为(4,3),(2)∵OA=10,∴AH=OA−OH=10−4=6,∴在Rt△AHB中,tan∠BAO===.【解析】解答案20.【答案】解:(12)−1+√18−6sin45°=2+3√2−6×√2 2=2+3√2−3√2=2.【解析】首先计算负整数指数幂、开方和特殊角的三角函数值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.21.【答案】解:如图,过点B作BE⊥CD于点E,根据题意,∠DBE=45°,∠CBE=30°.∵AB⊥AC,CD⊥AC,∴四边形ABEC为矩形.∴CE=AB=12m.在Rt△CBE中,cot∠CBE=BE,CE∴BE=CE⋅cot30°=12×√3=12√3.在Rt△BDE中,由∠DBE=45°,得DE=BE=12√3.∴CD=CE+DE=12(√3+1)≈32.4.答:楼房CD的高度约为32.4m.【解析】首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造关系式求解.考查了解直角三角形的应用−仰角俯角问题,本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.22.【答案】解:(1)在Rt△ADE中,∠AED=90°,AE=6,cosA=3,5∴AD=AE=10,cosA∴DE=√AD2−AE2=√102−62=8.∵BD平分∠ABC,DE⊥AB,DC⊥BC,∴CD=DE=8;(2)由(1)AD=10,DC=8,∴AC=AD+DC=18,在△ADE与△ABC中,∵∠A=∠A,∠AED=∠ACB,∴△ADE∽△ABC,∴DEBC =AEAC,即8BC=618,BC=24,∴tan∠DBC=CDBC =824=13.【解析】(1)在Rt△ADE中,根据余弦函数的定义求出AD,利用勾股定理求出DE,再由角平分线的性质可得DC=DE=8;(2)由AD=10,DC=8,得AC=AD+DC=18.由∠A=∠A,∠AED=∠ACB,可知△ADE∽△ABC,由相似三角形对应边成比例可求出BC的长,根据三角函数的定义可求出tan∠DBC=13.本题考查了解直角三角形,角平分线的性质、相似三角形的判定与性质,三角函数的定义,求出DE是解第(1)小题的关键;求出BC是解第(2)小题的关键.。
浙教版九年级下1.3解直角三角形(1)同步练习1(通用)
1.3 解直角三角形(1)同步练习◆基础训练1.在Rt△ABC中,∠C=90°,∠A=30°,c=2,则a=______,b=_______.2.在Rt△ABC中,∠C=90°,∠B=60°,a=4,则b=______,c=_______.3.在Rt△ABC中,∠C=90°,a=8,b=6,则c=_______,tanA=______.4.在Rt△ABC中,∠C=90°,c=2,b=1,则a=_______,∠B=______.5.菱形ABCD的对角线AC=6,BD=8,∠ABD=α,则下列结论正确的是()A.sinα=45B.cosα=35C.tanα=43D.sinα=356.如图,钓鱼竿AC长6米,露出水面的鱼线BC长32米,某钓者想看看鱼钓上的情况,把鱼竿AC转动到AC′的位置,此时露出水面的鱼线B′C′长33米,则鱼竿转过的角度是()A.60° B.45° C.15° D.90°7.在Rt△ABC中,∠C=90°,已知a=26,b=62,解这个直角三角形.8.在Rt△ABC中,∠C=90°,sinB=3,AC=4,求∠A,∠B和BC.◆提高训练9.如图,已知直角梯形ABCD中,AD∥BC,∠D=90°,∠B=30°,CD=93,•对角线CA⊥AB,求AD和BC的长度.10.如图,在Rt△ABC中,∠C=90°,AC=8,∠BAC的平分线AD=1633,求∠B•的度数及BC,AB的长度.11.如图,梯形ABCD中,AD∥BC,AB⊥BC,∠BAC=60°,∠ADC=135°,BC=123,•求梯形的面积.12.如图,红星中学数学课外小组在测量学校国旗旗杆的高度时,在地面上选择点D处放置测角仪,测角仪的高CD为1.5米,利用测角仪测得旗杆顶端A•点的仰角为30°,点D到旗杆底端B点的距离为15米,求旗杆的高度.◆拓展训练13.已知在△ABC中,AB=AC,BC=8cm,tanB=34,一动点P•在底边上从点B•向点C•以0.25cm/s的速度移动,当PA与腰垂直时,P点运动了_______s.14.如图,细心观察图形,认真分析各式,然后解答问题.1)2+1=2 S1=1 22)2+1=3 S2=2232+1=4 S33……(1)请用含有n(n是正整数)的等式表示上述变化规律;(2)推算出OA10的长;(3)求出S12+S22+…+S102的值.答案:1.13.38 3.10,434330° 5.D 6.C7.,∠A=30°,∠B=60° 8.∠A=30°,∠B=60°,BC=439.AD=9,BC=36 10.∠B=30°,AB=16 11.7212.(32 13.7或2514.(1)2105511,(2)(3)24n n S OA +=+==。
1.3 解直角三角形(3)(课时3)课件(浙教版九年级下册)
补充1. 一艘轮船在A处观测到东北方向有一小 岛C,已知小岛C周围4.8海里范围内是水产养殖 场.渔船沿北偏东30°方向航行10海里到达B处, 在B处测得小岛C在北偏东60°方向,这时渔船改 变航线向正东(即BD)方向航行,这艘渔船是否有进 入养殖场的危险?
补充2. (2006辽宁) 如图,某人在山坡坡脚A处测得 电视塔尖点C的仰角为60°,沿山坡向上走到P处再 测得点C的仰角为45°,已知OA=100米,山坡坡比 1 1 为 ,(即tan∠PAB= ),且O、A、B在同一 2 2 条直线上。求电视塔OC的高度以及所在位置点P 的铅直高度.(测倾器的高度忽略不计,结果保留 根号形式) C
山坡
60°
O
45°P
A
E
B
水平地面
AE,BF,CD都是南北方向的街道,其与环城路AC的交 叉路口分别是A,B,C.经测量花卉世界D位于点A的北 偏东45°方向、点B的北偏东30°方向上,AB=2km, ∠DAC=15°. (1)求B,D之间的距 60 60 60 60 60 60 45
D
45o
A
A
B
30o
60o
D
C
例2
如图,海岛A四周20海里周围内为暗礁区,一艘 货轮由东向西航行,在B处见岛A在北偏西60˚方 向,航行24海里到C处,见岛A在北偏西30˚方向, 货轮继续向西航行,有无触礁的危险? 解 过点A作AD⊥BC于D,设AD=x
B D C B C D
2、注意可解直角三角形与非可解直角三角形 的基本解题思路;
3、
现实对象
数学抽象
数学模型 逻辑推理
有无解? 实际问题的解
数学问题的解
翻译回去
小提示
1. 应注意锐角三角函数的概念理解及运用。 2. 在解直角三角形时应注意原始数据的使用, 不是直角三角形时,可添辅助线(添加垂线)。 3. 注意数形结合的运用.善于利用方程思想求解 。 4 .使用计算器时,题中没有特别说明,保留4位小 数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3 解直角三角形同步练习
◆基础训练
1.如图1,在地面上用测角仪DF测得旗杆顶端A的仰角a=40°42′,已知F点到旗杆底端C的距离FC=17.71米,测角仪高DF=1.35米,则旗杆高AC约为(精确到0.01米)()
A.16.58米B.15.23米C.12.90米D.21.94米
图1 图2 图3
2.如图2,在山坡上种树,已知∠A=30°,AC=3•米,•则相邻两树的坡面距离AB为()
A.6米B C.D.
3.如图3,在一块三角形空地上种草皮绿化环境.已知AB=20米,AC=30米,••∠A=150°,草皮的售价为a元/米2,则购买草皮至少需要()
A.450a元B.225a元C.150a元D.300a元
4.如图4,沿AC方向开山修隧道,为了加快施工进度,•要在小山的另一边同时施工,从AC上取一点B 使∠ABD=145°,BD=500米,∠D=55°,要使A,B,C,E成一直线,那么开挖点E离点D的距离是()
A.500sin55°米B.500cos55°米C.500tan55°米D.
500 cos55
米
图4 图5 图6 图7
5.如图5,从某海岛上的观察所A测得海上某船B的俯角α=8°18′,•若观察所A距离海平面的垂直高度AC=50m,则船B到观察所A的水平距离BC等于________(•精确到1m).
6.如图6,当太阳光与地面上的树影成45•°角时,•树影投射在墙上的影高CD等于2米,若树根到墙的距离BC等于8米,则树高AB等于______米.
7.如图7,一根竹竿垂直插在水中,露出水面部分长0.5米,若竹竿顶部偏离原地2米,此时竹竿顶恰好与水面齐平,那么水深______米,竹竿偏离角α≈______(精确到1度).
8.在△ABO中,OA=OB=5,OA边上的高为4,将△ABO放在平面直角坐标系中,•使点O与原点重合,
点A在x轴的正半轴上,那么点B的坐标是_______.
◆提高训练
9.如图8,要测量山上石油钻井的井架高BC,先从山脚A处测得AC=48米,•塔顶B的仰角α=45°,已知山坡的坡角β=30°,则井架高BC为______米(精确到1米).
图8 图9 图10
10.如图9,线段AB,CD分别表示甲,乙两幢楼的高,AB⊥BD,CD⊥BD.•从甲楼顶部A测得乙楼顶C 的仰角α=30°,乙楼底部D的俯角β=60°,已知甲楼的高AB=24米,则乙楼高CD为_______米.11.如图10,在高为100米的山顶D上,测得一铁塔的塔顶A与塔基B•的俯角分别为30°和45°,则塔高AB为______米(精确到0.1米).
12.如图,已知测速站P到公路L的距离PO为40米,一辆汽车在公路L上行驶,测得此车从点A行驶到点B的所用的时间为2秒,并测得∠APO=60°,∠BPO=30°,•计算此车从A到B的平均速度,并判断此车是否超过了每小时70千米的限制速度.
◆拓展训练
13.如图,从点A看一高台上的电线杆CD,顶端C的仰角为45°,向前走6•米到B点,测得其顶端C和杆底D的仰角分别是60°和30°,求电线杆CD的高(精确到0.1米).
14.如图,据气象台报告,在某市A 的正南方向,距离A 市100千米的B 处有一台风中心,现正以40千
米/时的速度沿北偏东30°方向往C 处移动,台风中心周围60千米范围内的区域会受到影响,该城市会不会受到台风影响?如果会受台风影响,•那么受台风影响的时间有多长?
答案:
1.A 2.C 3.C 4.B 5.343m 6.10 7.15
4,28°
8.(3,4)或(3,-4)或(-3,4)或(-3,-4) 9.18
10.32 11.42.3 12.约83千米/时 超速
13.9.5米 14.会,小时。