高考数学模拟复习试卷试题模拟卷第八章 直线与圆0064146

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考模拟复习试卷试题模拟卷第八章 直线与圆

一.基础题组

1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )

A .1

B .13-

C .2

3

-

D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.

3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线

)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.

4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线

0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.

二.能力题组

1.(五校协作体高三上学期期初考试数学、文、9)曲线2

1y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22

430x y x +++=上的任意点Q 之间的最近距离是( )

A.

4515- B.25

15

- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2

2

14x y +-=。若过点11,2P ⎛⎫

⎪⎝⎭

的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。

3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.

三.拔高题组

1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆

0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )

A .3-a

B .2

3<

a C .13<<-a 或2

3

>

a D .3-

2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆

22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )

A .53-

或35-B .32-或23-C .54-或45-D .43-或3

4

- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,

PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=

k ( )

A. 3

B.

2

21

C. 22

D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :

222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是

( )

A.(1,3)

B. (1,4)

C. (2, 3)

D. (2, 4)

5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线

30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是

高考模拟复习试卷试题模拟卷

【高频考点解读】

1.理解同角三角函数的基本关系式:s in2α+cos2α=1,sin α

cos α=tanα;

2.能利用单位圆中的三角函数线推导出π

2±α,π±α,-α的正弦、余弦、正切的诱导公式. 【热点题型】

题型一 同角三角函数基本关系式及应用

【例1】 (1)已知tan α=2,则2sin α-3cos α

4sin α-9cos α=_______________.

(2)已知tan θ=2,则sin2θ+sin θcos θ-2cos2θ=( ) A .-43 B.54C .-34 D.45

【提分秘籍】

若已知正切值,求一个关于正弦和余弦的齐次分式的值,则可以通过分子、分母同时除以一个余弦的齐次幂将其转化为一个关于正切的分式,代入正切值就可以求出这个分式的值,这是同角三角函数关系中的一类基本题型.

【举一反三】

若3sin α+cos α=0,则1

cos2α+2sin αcos α的值为( )

A.103

B.53

C.2

3 D .-2

解析 3sin α+cos α=0⇒cos α≠0⇒tan α=-1

3, 1

cos2α+2sin αcos α=cos2α+sin2αcos2α+2sin αcos α=1+tan2α1+2tan α

1+⎝⎛⎭

⎫-1321-23

=103.

答案 A

题型二 利用诱导公式化简三角函数式

【例2】 (1)sin(-1 200°)cos 1 290°+cos(-1 020°)·sin(-1 050°) =________.

(2)设f(α)=2sin (π+α)cos (π-α)-cos (π+α)1+sin2α+cos ⎝⎛⎭⎫3π2+α-sin2⎝⎛⎭

⎫π2+α

(1+2sin α≠0),则 f

⎝⎛⎭⎫-23π6=________.

解析 (1)原式=-sin 1 200°cos 1 290°-cos 1 020°sin 1 050° =-sin(3×360°+120°)cos(3×360°+210°)-cos(2×360°+300°) sin(2×360°+330°)

=-sin 120°cos 210°-cos 300°sin 330°

=-sin(180°-60°)cos(180°+30°)-cos(360°-60°)·sin(360°-30°)=sin 60°cos 30°+cos 60°sin 30°=3

2×32+12×1

2=1.

(2)∵f(α)=(-2sin α)(-cos α)+cos α

1+sin2α+sin α-cos2α

2sin αcos α+cos α2sin2α+sin α=cos α(1+2sin α)sin α(1+2sin α)

=1

tan α,

∴f ⎝⎛⎭⎫-23π6=1tan ⎝⎛⎭⎫-23π6=1tan ⎝⎛⎭

⎫-4π+π6

1

tan π6

= 3. 答案 (1)1 (2)3 【提分秘籍】

利用诱导公式化简三角函数的基本思路和化简要求:(1)基本思路:①分析结构特点,选择恰当公式;②利用公式化成单角三角函数;③整理得最简形式.(2)化简要求:①化简过程是恒等变形;②结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值.

【举一反三】

(1)s in(-1 071°)sin 99°+sin(-171°)sin(-261°)+ tan(-1 089°)tan(-540°)=________.

相关文档
最新文档