11映射与函数
映射与函数知识点总结
映射与函数知识点总结一、映射与函数的概念1.映射的定义:将一个集合中的每个元素都对应到另一个集合中的一些元素的规律称为映射。
对于给定的两个集合A和B,如果每个元素a∈A都有一个元素b∈B与之对应,那么就称集合A到集合B的映射。
记作f:A→B。
2.函数的定义:函数是一种特殊的映射,它满足每个元素a∈A只能对应一个元素b∈B的规律。
对于给定的两个集合A和B,如果每个元素a∈A都有唯一的元素b∈B与之对应,那么就称集合A到集合B的函数。
记作f:A→B。
3.定义域和值域:函数f的定义域是指所有可能作为函数输入的数的集合,通常用符号D(f)表示;函数f的值域是指函数所有可能的输出的数的集合,通常用符号R(f)表示。
二、映射与函数的性质1.单射:也称为一一对应,指当对于集合A中的不同元素a1和a2,它们在集合B中的对应元素f(a1)和f(a2)也不相同。
换句话说,每个元素a∈A都对应着集合B中唯一的元素。
2.满射:也称为映满函数,指函数的值域与集合B相同,即函数的所有可能的输出都在集合B中。
3.双射:即同时满足单射和满射的函数,也称为一一映射。
4.奇函数和偶函数:如果对于函数f的定义域中的每一个实数x,都有f(-x)=-f(x)成立,则称函数f是奇函数;如果对于函数f的定义域中的每一个实数x,都有f(-x)=f(x)成立,则称函数f是偶函数。
5.反函数:如果函数f的定义域和值域都是实数集,且对于函数f中的每一对实数(x,y),都有y=f(x),则存在一个函数g,使得对于函数g中的每一对实数(y,x),都有x=g(y)。
这样的函数g称为函数f的反函数。
三、映射与函数的应用1.函数关系式:映射与函数可以描述实际问题中的各种关系,如线性函数、二次函数、指数函数、对数函数等。
通过分析函数关系式,我们可以了解函数的性质和特点,从而应用到各种实际问题中。
2.函数的图像:通过绘制函数的图像,可以直观地表达函数的变化规律,了解函数的增减性、奇偶性、周期性等。
映射与函数
1 ≤2}, x (3)A={x|0≤y ≤2},对应法则f :x→y= 3
(4)A={1,2,3},B={2,4,8}, (4)A={1,2,3},B={2,4,8},对应法则 f :x→y=2x (5)A={平面 内的圆} B={平面 (5)A={平面α内的圆},B={平面α内的 矩形} 对应法则“作圆的内接矩形” 矩形},对应法则“作圆的内接矩形”
四种有界区间: 四种有界区间: 表示{x|a≤x≤b} 叫闭区间; {x|a≤x≤b}, 1)[a,b] 表示{x|a≤x≤b},叫闭区间; 表示{x|a {x|a< b},叫开区间; 2)(a,b) 表示{x|a<x<b},叫开区间; 表示{x|a x≤b},叫左开右闭区间; {x|a< 3)(a,b] 表示{x|a<x≤b},叫左开右闭区间; 表示{x|a≤x b},叫左闭右开区间。 {x|a≤x< 4)[a,b) 表示{x|a≤x<b},叫左闭右开区间。 五种无界区间: 五种无界区间: 表示{x|x≥a} {x|x≥a}; 1)[a,+∞) 表示{x|x≥a}; 表示{x|x a}; {x|x> 2)(a,+∞) 表示{x|x>a}; )(表示{x|x≤a} {x|x≤a}; 3)(-∞,a] 表示{x|x≤a}; )(表示{x|x a}; {x|x< 4)(-∞,a) 表示{x|x<a}; )(表示实数集R 5)(-∞,+∞) 表示实数集R;
• 如果函数中含有分式,那么函数的分母必须不 如果函数中含有分式, 分式 为零。 为零。 • 如果函数中含有偶次根式,那么根号内的式 如果函数中含有偶次根式, 偶次根式 子必须不小于零。 子必须不小于零。 • 零的零次幂没有意义。 零的零次幂没有意义。 零次幂没有意义
练习 1、函数 f ( x ) =
高中数学人教B版必修1课件2.1.1 第二课时 映射与函数精选ppt课件
[精解详析] (1)是映射,且满足一一映射的条件,是 一一映射.
(2)对于x=1∈A,在f作用下的象是0,而0 ∉B, ∴(2)不是映射. (3)是映射,且满足一一映射的条件,是一一映射. (4)对于x=±1∈A,在f作用下的象都是1,故f是映射, 但不符合一一映射的条件,故不是一一映射.
[一点通] 判断某种对应法则是否为集合A到集合B的 映射的方法:
3.下列集合 A 到集合 B 的对应中是一一映射的个数为( )
①A=N,B=Z,f:x→y=-x.
②A=R+,B=R+,f:x→y=1x. ③A=N*,B={0,1},f:除以 2 所得的余数.
④A={-4,-1,1,4},B={-2,-1,1,2},f:x→y=± |x|.
⑤A={平面内边长不同的等边三角形},B={平面内半径
[精解详析] x= 2代入对应关系,可求出其在 B 中的象为 ( 2+1,3).
由x+1=32, x2+1=54,
得 x=12.
所以 2在 B 中的为( 2+1,3),32,54在 A 中的原象为12.
[一点通] 在求象和原象时要分清象和原象,特别 注意原象到象的对应关系.对于A中元素求象,只需将原 象代入对应关系即可.对于B中元素求原象,可先设出 它的原象,然后利用对应关系列出方程(组)求解.
∴xy==1232.,
答案:B
5.已知映射f:A→B,其中集合A={-3,-2,-1,1,2,
3,4},集合B中的元素都是A中的元素在映射f作用下的
象, 且对任意的a∈A,在B中和它对应的元素是|a|,则
集合B中元素的个数是
()
A.4
B.5
C.6
D.7
解析:∵a∈A,∴|a|=1,2,3,4,即B={1,2,3,4}.
第一节 映射与函数课件
第一节 映射与函数
两点说明
(1) 函数两要素:定义域、对应法则 例如:函数 f (x) = x2 ,自然定义域为 (- , + ),
若它表示正方形的面积 则其定义域为(0 , + ).
表达式有意义的全体实数的集合,称之为自然定义域.
y
1 (x , y)
-1 O x 1 x -1 (x , -y)
第一节 映射与函数
例3
设
f
:
π 2
,
π 2
[1
,
1]
,
定义域
Df
π 2
,
π 2
,
值域 Rf = [ -1 , 1 ] . y
1
π 2
f (x) = sin x
O
πx
2
-1
第一节 映射与函数
2、常见映射类型
(1)若 f ( X ) Y , 则称 f 为满射.
映射 g 为 f 的逆映射,记作 f -1 , 其定义域 D f 1 R f ,
值域 R f 1 X .
Rf
只有单射才存在逆映射
第一节 映射与函数
(2)定义 设有两个映射 g : X Y 1 , f : Y 2 Z ,
其中 Y1 Y2 , 则由映射 g 和 f 可以定义一个从 X 到 Z 的对应法则,它将每个 x X 映成 f [g(x)] Z . 这个法 则确定了一个从 X 到 Z 的映射,称之为映射 g 和 f 构成
X
Rg Df
Z
第一节 映射与函数
例4.
第一节 映射与函数
二、函数
高数上D11映射与函数课件
如果对于任意x1<x2,有f(x1)<f(x2),则称函数在区间内单调递增;如果对于任意x1<x2,有f(x1)>f(x2) ,则称函数在区间内单调递减。单调性是函数的一个重要性质,它可以帮助我们判断函数的趋势和变化 规律。
函数的表示方法
解析表示法
通过数学表达式来表示函数,如f(x)=x^2+2x+1。解析表示法能够 精确地描述函数的对应关系,但有时难以理解和操作。
定积分的定义
定积分是积分的一种,是函数在某个区间上的积分和 的极限。
定积分的性质
定积分具有线性性质、可加性、区间可加性、积分中 值定理等性质。
定积分的几何意义
定积分的值等于函数图像与x轴所夹的面积,即曲线 下方的面积。
微积分基本定理
微积分基本定理的内容
01
如果函数f(x)在闭区间[a,b]上连续,则定积分∫(上限b,下限
函数极限的精确定义
对于任意小的正数$epsilon$,存在 一个正数$delta$,当自变量满足$0 < |x - x_0| < delta$时,函数值的差 的绝对值小于$epsilon$,即$|f(x) L| < epsilon$。
函数极限的性质
唯一性
若函数在某点的极限存在,则该极限值是唯 一的。
表格表示法
通过表格的形式来表示函数,将输入值和对应的输出值列出。表格 表示法直观易懂,但难以表示复杂的函数关系。
图象表示法
通过绘制函数图象来表示函数。图象表示法直观地展示了函数的形态 和变化规律,但有时难以精确描述复杂的函数关系。
03
函数的极限与连续性
函数极限的定义
函数极限的描述性定义
高等数学映射与函数PPT课件
y
反函数 x f 1( y)
y0
W
o
y0
W
x0
x
o
D
第33页/共52页
x0
x
D
34
映射与函数
说明
反函数的习惯表示法 若直接函数 y=f (x),x∈D, 则反函数记为 y f 1( x), x f (D).
A
B I
A B I
AB
AB
2
第2页/共52页
映射与函数
差,
} A\B={x|xA且xB
补, AC I \ A ( A I );
I
A B
B A
I
A\B
B = AC(或A)
直积或笛卡儿乘积:
A B {(x, y) x A and y B}.
3
第3页/共52页
4
映射与函数
(2)运算法则
交换律: A B B A, A B B A ; 结合律: ( A B) C A (B C ) ,
补例2 设A、B两地之间的长途电话费在最初的3分 钟是6.60(元), 以后的每分钟(不足一分钟按一分钟 计)另加1.20(元).
显然长途电话费C(单位:元)是通话时间t(单位: 分钟)的函数.试写出函数的公式表示,并描绘它的
图形。
解:记长途电话费为C(t).由于t>0,于是函数 的定义域为(0, +).从给出的信息,我们有
(1)定义 设X、Y是两个非空集合,若存在一个法则 f,使得对X中每个元素x,按照法则f,在Y 中有唯一确定的元素y与之对应,则称f为 从X到Y的映射,记作
f:X→Y
如,X={三角形},Y={圆},f:X → Y,对每个 xX,有唯一确定的y(x的外接圆)Y与之对应.
映射和函数的分类与性质
映射和函数的分类与性质一、映射的概念与性质1.映射:从集合A到集合B的一种规则,使得A中任意一个元素x,在B中都有唯一的元素y与之对应。
2.映射的性质:a)单射性(一一对应):对于A中的任意两个不同元素x1、x2,在B中对应的元素y1、y2也不同,即y1 ≠ y2。
b)满射性(覆盖):对于B中的任意元素y,存在A中的元素x与之对应。
c)域和值域:映射的定义域为集合A,值域为集合B中所有可能的输出值。
二、函数的分类1.线性函数:形如y = kx + b(k、b为常数)的函数,其中k≠0。
2.非线性函数:不包括线性函数的函数,如二次函数、指数函数、对数函数等。
3.单调函数:a)单调递增函数:对于定义域内的任意两个不同元素x1、x2,若x1 < x2,则f(x1) ≤ f(x2)。
b)单调递减函数:对于定义域内的任意两个不同元素x1、x2,若x1 < x2,则f(x1) ≥ f(x2)。
4.奇函数与偶函数:a)奇函数:满足f(-x) = -f(x)的函数。
b)偶函数:满足f(-x) = f(x)的函数。
三、函数的性质1.连续性:函数在每一点上都存在极限,且极限值等于函数值。
2.可导性:函数在某一点可导,意味着在该点处存在切线,且切线斜率等于函数导数值。
3.周期性:函数满足f(x + T) = f(x),其中T为函数的周期。
4.奇偶性:根据奇函数和偶函数的定义,函数的奇偶性决定了其在y轴对称或关于原点对称。
四、映射与函数的关系1.函数是特殊的映射:函数是一种映射,具有单射性、满射性和域值域的概念。
2.函数的定义域和值域:函数的定义域为映射的输入集合,值域为映射的输出集合。
五、映射和函数的应用1.数学领域:在数学分析、线性代数、概率论等领域中,映射和函数是基本概念,用于描述变量之间的关系。
2.物理学:在物理学中,函数用于描述物理量随另一物理量的变化规律,如速度与时间的关系。
3.计算机科学:在计算机科学中,函数用于实现算法,映射概念用于哈希表等数据结构的设计。
映射与函数的概念与性质
映射与函数的概念与性质随着数学领域的不断发展,映射与函数的概念与性质也逐渐被人所熟知。
那么,什么是映射与函数呢?它们又有哪些特性呢?让我们一起来探讨一下。
一、映射的概念和性质映射是指将集合A中的每一个元素都对应唯一的集合B中的一个元素的规律。
我们也可以将其称之为映照、映像或者变换。
关于映射,我们可以了解以下几点性质:(1)如果A中的每一个元素都有对应B中的元素,则我们称之为映射f:A→B。
其中A称之为“定义域”,B称之为“到达域”。
(2)如果集合A中有两个元素x和y,在B中它们分别对应了f(x)和f(y),那么就表示f(x)和f(y)具有重合的情况。
(3)如果B中存在一个元素y,使得在A中有多个元素x1、x2、……、xn,它们对应的f(x1)、f(x2)、……、f(xn)均为y,则我们称f(x1)、f(x2)、……、f(xn)在B中具有重合的情况。
(4)我们可以将映射看作是一种相对关系,即若A与B中仅有x和y两个元素,则我们可以有以下三种类型的映射:①单射:若x和y在B中的形式不同,则我们称此时的映射是“单射”。
②满射:若映射中每个元素都被映射到了B中,则我们称此时的映射是“满射”。
③一一映射:如果一个映射既是单射,又是满射,则我们称之为“一一映射”。
二、函数的概念和性质函数也是映射的一种,它实际上是将一个集合映射到另一个集合的过程中,其中定义域和到达域都是实数集。
对于函数,我们可以了解以下几点性质:(1)如果函数y=f(x)既有定义域又有到达域,则可以认为f(x)是一个函数。
(2)函数的定义域和到达域都必须是实数集,同时,函数的定义域中的每一个元素都必须在函数的定义范围内。
(3)函数的定义域中两个元素x1和x2必须是不同的。
如果它们是相同的,则我们认为f(x1)和f(x2)也是相同的。
(4)每一个实数,都必须有且只有一个对应的函数值。
(5)如果函数y=f(x)中所有的函数值都大于零,则我们称f(x)是正函数。
高中数学知识点:函数、映射的概念
高中数学知识点:函数、映射的概念1、映射:(1)设A,B是两个非空集合,如果按照某一个确定的对应关系f,使对于集合A中的任何一个元素x,在集合B中都有唯一确定的元素y与之对应,那么,就称对应f:A→B为从集合A到集合B的映射,记作:f:A→B。
(2)像与原像:如果给定一个集合A到集合B的映射,那么,和集合A中的a对应的集合B中的b叫做a的像,a叫做b的原像。
2、函数:(1)定义(传统):如果在某变化过程中有两个变量x,y并且对于x在某个范围内的每一个确定的值,按照某个对应法则,y都有唯一确定的值和它对应,那么y就是x的函数,x叫做自变量,x的取值范围叫做函数的定义域,和x的值对应的y的值叫做函数值,函数值的集合叫做函数的值域。
(2)函数的集合定义:设A,B都是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任何一个元素x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:x→y为从集合A到集合B的一个函数,记作y=f(x),x∈A,其中,x叫做自变量,x的取值范围A叫做函数f(x)的定义域,与x 的值相对应的y值叫做函数值,函数值的集合{ f(x)|x∈A}叫做函数f (x)的值域。
显然值域是集合B的子集。
3、构成函数的三要素:定义域,值域,对应法则。
值域可由定义域唯一确定,因此当两个函数的定义域和对应法则相同时,值域一定相同,它们可以视为同一函数。
4、函数的表示方法:(1)解析法:如果在函数y=f(x)(x∈A)中,f(x)是用代数式(或解析式)来表达的,则这种表示函数的方法叫做解析式法;(2)列表法:用表格的形式表示两个量之间函数关系的方法,称为列表法;(3)图象法:就是用函数图象表示两个变量之间的关系。
注意:函数的图象可以是一个点,或一群孤立的点,或直线,或直线的一部分,或若干曲线组成。
映射f:A→B的特征:(1)存在性:集合A中任一a在集合B中都有像;(2)惟一性:集合A中的任一a在集合B中的像只有一个;(3)方向性:从A到B的映射与从B到A的映射一般是不一样的;(4)集合B中的元素在集合A中不一定有原象,若集合B中元素在集合A中有原像,原像不一定惟一。
映射与函数的关系
映射与函数的关系
映射与函数的关系:
相同点: (1)函数与映射都是两个非空集合中元素的对应关系; (2)函数与映射的对应都具有方向性; (3)A中元素具有任意性,B 中元素具有唯一性;
区别:函数是一种特殊的映射,它要求两个集合中的元素必须是数,而映射中两个集合的元素是任意的数学对象。
注意:有时函数和映射的对应法则可以用含有两个变量的等式来表示,在函数中这个式子叫解析式映射是特殊的对应即由集合 ,集合和对应法则f三者构成的一个整体,映射的特殊之处在于必须是多对一和一对一的对应;
映射的定义: 设X,Y 是两个非空集合,若对X 中的任意一个元素x ,按照一定的法则总有确定的 Y中元素y 与之对应,则称这个对应是集合X到Y 的一个映射. 若映射定义中的一般集合X,Y 为数集,我们称映射f 为函数,所以函数是一种特殊的映射,函数也可用如下定义。
函数的定义:设在某一变化过程中有两个变量x和y,如果当变量x在其变化范围内任意取定一个数值时,变量y按照一定的法则总有确定的数值和它对应,则称y是x函数,记作 y=f(x)。
高等数学PPT课件:映射与函数
描述法
{ x x2 2 x 3 0 }.
4
映射与函数
注 对几个常用的数集规定记号如下
自然数的集合 N {0,1,2, ,n, };
正整数的集合 N+ {1,2, ,n, };
整数的集合 Z { , n, , 2, 1,0,1,2, ,n, };
5
映射与函数
有理数的集合
Q
p q
p Z, q N+ 且p与q互质 ;
33
映射与函数
例 取整函数 y [ x]表示不超过x的最大整数
y [x] n, 当 n x n 1 , n Z
y
阶
3•
梯
2•
曲
线
1•
o • •
21
•
•
•
•
123 4
x
• 1
• 2
定义域 D (,), 值域 Rf {整数}.
34
映射与函数
例 狄利克雷(Dirichlet)函数
y
D(
(A∩B)C = AC ∪ BC ;
13
映射与函数
直积 (乘积集或笛卡儿乘积)
设 A,B 是两个集合, 则称 A B { ( x, y) x A 且y B } 为 A, B 的 直积.
y
B AB
O
A
x
14
映射与函数
如, A (1,1), B [0,1], 则A B {( x, y) 1 x 1, 0 y 1}
有界.
36
映射与函数
函
数f
(
x)
1
x x
2
在
定
义
域
内
为(
C
).
高数课件-映射与函数
2.逆映射与复合映射
设∱是X到Y的单射,则由定义,对每个y∈Rf,有唯一的χ∈X,适合∱(χ)=y。于是, 我们可定义一个从Rf到X的新映射ℊ,即
ℊ:Rf→X, 对每个y∈Rf,规定ℊ(y)=χ,这χ满足∱(χ)=y。这个映射 ℊ称为∱的逆映射,记作∱-1, 其定义域Df-1=Rf,值域Rf-1=X。
义的一切实数组成的合集,这种定义域称为函数的自ቤተ መጻሕፍቲ ባይዱ定义域。在这种约定之下,一
般的用算是表达的函数可用“y=∱(x)”表达,而不必再出Df。
例如,函数y=
1- x 2 的定义域是封闭间 -1,1 ,函数y=
1 的定义域是开区间 1- x2
(-1,1)。
表示函数的主要方法有三种:表格法、图形法、解析法(公 式法)。其中,用图形法表示函数是基于函数图形的概念,
(3)函数的奇偶性 设函数∱(x)的定义域D关于原点对称。如果对于任一x∈D, ∱(-x)= ∱(x)
恒成立,那么称∱(x)为偶函数,如果对于任一x∈D, ∱(-x)= - ∱(x)
恒成立,那么称∱(x)为奇函数 。 偶函数的图形是关于y轴对称的。因为若是 ∱(x)为偶函数,则 ∱(-x)= ∱(x)。 所以如果A是图形上的点,那么与它关于远点对称的点A’也在图形上。 奇函数的图形是关于远点对称的。因为若 ∱(x)是奇函数,则 ∱(-x)= - ∱(x), 所以如果A是图形上的点,那么关于与它y轴对称的点A’’也在图形上。幻灯片 14
Rf=∱(D)= yIy=∱(x),x∈D
需要指出,按照上述定义,记号∱和∱(x)的含义是有区别的:前者表示自变量x 和因变量y之间的对应法则,而后者表示与自变量对应的函数值。但为了叙述方便, 习惯上常用记号“∱(x),x∈D”或“y=∱(x),x∈D”来表示定义在D 上的函数, 这时应理解为由它所确定的函数∱。
映射与函数
例2、已知集合A {a,b,c},
B {1,0,1},从A到B的映射f:
满足f (a) f (b) f (c),则这样
的映射f有 _____ 个。
分析:分为三类情况考虑:
1f(a) -1 2f(a) 0 3f(a) 1
答案:2 3 2 7个。
例3、已知集合A {1,2,3,4,5},B {6,7,8},
x
x [1,),求f (x)的最小值.
法七、不等式法:用a b 2 ab, 求值域时,要注意“一正二定三相等”
例6、求函数y log 3 x log x 3 1的值域。
法八、数形结合法:利用函数所表示的 几何意义借助于几何方法来求函数的值域。 形如y | x a | | x b |, y | x a | | x b |的 函数求值域就可利用数轴。
则其值域是 ______________________ .
法四:二次函数法(图象法)
(1)求y cos2 x 4sin x 6的值域。 (2)求y 2x2 4x 10, x [5,2]的值域。 (3)求y 2x2 4x 10, x [3,6]的值域。
法五:换元法
例8、求函数y x 2 1 x 2的值域。
2
2 3 10 4
y sin x
答案:3
例5、设f (x)表示 x 6和 2x2 4x 6中 的较小者,则f (x)的最大值为______
画图: 6
6
答案:6
3、图象的变换问题:
例8、设f(x)定义域为R,则下列命题中: 1若y=f(x)为偶函数,则y=f(x+2)图象关于 y轴对称; 2y=f(x)为偶函数,则y=f(x)关于x=2对称; 3若f(x-2)=f(2-x),则y=f(x)关于x=2对称; 4y=f(x-2)与y=f(2-x)关于x=2对称;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4. 区间(interval)和邻域
区间是指介于某两个实数之间的全体实数. 这两个实数叫做区间的端点.
设a和b都是实数 , 且ab.
{xaxb}称为开区间, 记作 (a,b)
Oa
bx
{xaxb}称为 闭区间,记作 [a,b]
Oa
bx
两端点间的距离(线段的长度)称为区间的长度.
{xaxb}记作 [a,b) {xaxb}记作 (a,b]
(A∩B)∪C=(A∪C)∩(B∪C); 对偶律:(A∪B)C=AC∩BC,
(A∩B)C=AC∪BC;
3. 集合之间的关系
定义2 . 设有集合 A,B,若 xA必有 xB, 则称 A
是 B 的子集 , 或称 B 包含 A , 记作 AB.
若
且
则称 A 与 B 相等, 记作 AB.
例如 ,
,
,
显然有下列关系 :
的集合
按一定规则入座
定义4. 设 X , Y 是两个非空集合, 若存在一个对应规
则 f , 使得
有唯一确定的
与之对应 , 则
称 f 为从 X 到 Y 的映射, 记作 f :XY.
X
f
Y
元素 y 称为元素 x 在映射 f 下的 像 , 记作 y f(x).
元素 x 称为元素 y 在映射 f 下的 原像 . 集合 X 称为映射 f 的定义域 ;
一 一 映射(或双射).
2. 逆映射与复合映射 (1) 逆映射的定义 定义: 若映射
使
为单射, 则存在一新映射 其中
称此映射 f 1 为 f 的逆映射 .
f
习惯上 , yf(x),x D D
f 1
f (D)
的逆映射记成
yf 1(x),x f(D )
例如, 映射
其逆映射为
(2) 复合映射 引例.
D1
、.
“” 表示 “任取 ”, 或“任意给定
“ ” ” 表.示 “存在 ”,“至少存在一个或“能够找到
”,
”.
符号 “ ” 表示 “蕴含 ”,或 “推
符号 “ ”出表”示. “等价 ”,或 “充分必
要”.
二、 映射
1. 映射的概念 引例1.
某校学生的集合
学号的集合
按一定规则查号
某教室座位
某班学生的集合
2. 函数概念
定义 设数集 DR,则称映射 f:DR 为定义在D上的函数,通常简记为
y f ( x), x D, 记Df D
因变量 自变量 定义域(domain) 定义中, 如果对x D, 按对应法则f , 确定的值y与之对应,
函数值,记作 y f ( x), 函数关系
函数值 f (x)全体组成的集合称为 函数f 的值域, 记作 R f 或f (D),即
Rf f(D){yyf(x )x , D }.
注
记f号 和 f(x)含义的区别: f : 自变量x和因变量y之间的对应法则; f (x):与自变量x对应的函数值; f( x )x ,D 或 y f( x )x ,D : 定义在D上的函数,
(2) 函数的记号: 除常用的f 外, 可任意选取,
g、 F、 等, 相应地, 函数可记作: yg(x),
余集或补集,记作AC。
B AB
• 直积:A B(x,y)xA,yB
A
特例: RR 记 R 2 为平面上的全体点集
集合的并、交、补运算满足下列法则:
交换律: A∪B=B∪A,A∩B=B∩A; 结合律:(A∪B)∪C=A∪(B∪C),
(A∩B)∩C=A∩(B∩C); 分配律:(A∪B)∩C=(A∩C)∪(B∩C),
Y 的子集 f(X)f(x)x X称为 f 的 值域 .
注意: 1) 映射的三要素— 定义域 , 对应规则 , 值域 . 2) 元素 x 的像 y 是唯一的, 但 y 的原像不一定唯一 .
2. 几类重要映射
设映射 f : X Y. 若Rf Y,即Y 中任一元素y 都是X中某 元素的像, 则称f 是满射. 若 x1,x2X,x1x2,必有 f(x1)f(x2), 则称f 是 单射. 若映射f 既是满射, 又是单射, 则称f 是
两个闭区间的直积表示xOy平面上的矩形
区域.如, [a,b][c,d] ( x ,y ) x [ a , b ] y , [ c , d ]
即为xOy平面上的矩形区域, 这个区域在x轴与y 轴上的投影分别为闭区间 [a,b]和闭区间 [c,d].
常用的逻辑符号
ห้องสมุดไป่ตู้
在逻辑推理过程中最常用的两个逻辑记号
2. 集合的运算
A B
基本运算:
• 并集:由所有属于A或者属于B的元 素组成的集合,记作A∪B。
• 交集:由即属于A又属于B的元素组 成的集合,记作A∩B。
• 差集:所有属于A而不属于B的元素 组成的集合,记作A\B。
B A
A\ B AB
A AA c
• 补集:称集合I为全集,称I\A或为A的
即 U(a,){ xa x a } .
U(a,)表示 :与 a 距 点离 的 小 一 x 的 于 切 .全
几何表示
O a
a
a x
U(a,)有时简记为 U(a).
点a的 去心(空心) 的邻域,记作U(a, ), 即
U (a, ) {x0 xa}.
开区间 (a,a)称为 a的左邻域, 开区间 (a,a)称为 a的右邻域.
D
手电筒
D2
复合映射 D
三、函数(function)
1.常量(constant quantity)与变量(variable) 在某过程中数值保持不变的量称为常量;
而在过程中数值变化的量称为 变量.
注 一个量是常量还是变量,不是绝对的, 而是相对“过程”而言的.
常量与变量的表示方法:
在高等数学中,通常用字母 a, b, c等表示常量, 用字母 x, y, t 等表示变量.
y F (x )y ,(x )等,也可记作: yy(x).
(3) 对x D, 对应的函数值y总是唯一的, 这种函数称为单值函数,否则称为多值函数.
如 y x是多值函数, 约定:
它的两个单值支是: y x , y x.
今后无特别说明时, 函数是指单值函数.
(4) 构成函数的 两个要素: 定义域 D f 与对应法则f .
称为
半开半闭区间. 有限区间
[a,) {xax}
Oa (,b ){xxb }
x
无限区间
O
bx
全体实数的集合R 也可记作 ( ,), 是无限区间.
邻域(neighbourhood)
设 a与 是两个 , 且 实 0.数
数集{x|xa|}称为a点 的邻域,记作
U (a, ). 它是以 点a中心, 为半径的开区间.