丰富的图形世界
初中数学-丰富的图形世界
正方体的展开图:
(1) (2) (3) (4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
二、点、线、面、体
1、点:线与线相交的地方是点. 2、线:面与面相交的地方是线(直线、曲线、折线).
b a
正视图
b
左视图
c
c
c
b a
Байду номын сангаас
a
俯视图
r
O1 h O2
2r h
左视图
2r h
r
正视图
俯视图
P
l h A r O B
l
左视图
2r
正视图
l
r
2r
俯视图
P
P
c a
P
h
c
左视图
a
正视图 c
a
a
P
俯视图
垒放的几个正方体的三视图:
左视图
正视图 俯视图
例:(2006河南)由一些大小相同的小正方 体组成的几何体三视图如下图所示,那么, 组成这个几何体的小正方体有 【B 】 A.6块 B.5块 C.4块 D.3块
主 视 图 俯 视 图
左 视 图
例:(2006长春)由6个大小相同的正方体搭成的几 何体如图所示,则关于它的视图说法正确的是( C ) (A)正视图的面积最大. (B)左视图的面积最大. (C)俯视图的面积最大. (D)三个视图的面积一样大.
正 视 图 左 视 图
俯 视 图
丰富的图形世界知识点总结
第一章丰富的图形世界1、几何图形从实物中抽象出来的各种图形;包括立体图形和平面图形..立体图形:有些几何图形的各个部分不都在同一平面内;它们是立体图形..平面图形:有些几何图形的各个部分都在同一平面内;它们是平面图形..2、点、线、面、体1几何图形的组成点:线和线相交的地方是点;它是几何图形中最基本的图形..线:面和面相交的地方是线;分为直线和曲线..面:包围着体的是面;分为平面和曲面..体:几何体也简称体..2点动成线;线动成面;面动成体..点、线、面、体都是几何图形..任何一个几何体都由点、线、面构成;点无大小;线有曲直而无粗细;平面是无限延伸的;面有平面和曲面;面面相交得线;线线相交得点..3、生活中的立体图形圆柱柱生活中的立体图形球棱柱:三棱柱、四棱柱长方体、正方体、五棱柱、……按名称分锥圆锥棱锥4、棱柱及其有关概念:棱:在棱柱中;任何相邻两个面的交线;都叫做棱..侧棱:相邻两个侧面的交线叫做侧棱..棱柱的所有侧棱长都相等..n棱柱有两个底面;n个侧面;共n+2个面;3n条棱;n条侧棱;2n个顶点..面:棱柱的上、下底面相同..侧面都是长方形;棱柱的名称与底面多边形的边数有关..将一个图形折叠后能否变成棱柱;一要看有无两个底面;二要看底面的形状;三要看两个底面的位置..要学会自己总结规律..5、正方体的平面展开图:11种一个正方体的表面沿某些棱剪开;可得到十一种不同的平面图形;这些平面图形经过折叠后又能围成一个正方体;圆柱和圆锥的侧面展开图分别是长方形和扇形..任何一个立体图形的表面沿某些棱剪开都可以得到不同的平面图形;必须提高自己的空间想象力..一四一型6二三一型3二二二型1三三型 1种6、截一个正方体:用一个平面去截一个正方体;若这个平面与这个正方体的几个面相交;则截面就是几边形;依次得到三角形、四边形、五边形、六边形;不可能得到七边形..用一个平面去截一个几何体;平面截的位置不同;所得的截面也不同;常见的截面是一个多边形或圆..7、三视图物体的三视图指主视图、俯视图、左视图..主视图:从正面看到的图;叫做主视图..左视图:从左面看到的图;叫做左视图..俯视图:从上面看到的图;叫做俯视图..学会画三视图..知道根据几个小立方块所搭建的几何体的俯视图画出几何体的主视图和左视图;以及根据主视图和俯视图搭几何体;解题时注意观察;确定主视图\左视图的列数;在确定每一列有几层高.8、多边形:由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形;叫做多边形..从一个n边形的同一个顶点出发;分别连接这个顶点与其余各顶点;可以把这个n边形分割成n-2个三角形..弧:圆上A、B两点之间的部分叫做弧..扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形..9、正方体拼图:。
5.1 丰富的图形世界 苏科版数学七年级上册课件
课后总结
课后总结
认识棱柱和棱锥:
1、棱柱的上、下底面是相同的多边形
2、棱柱的侧面都是平行四边形
【补充:直棱柱的侧面都是长方形】
底面 侧面 面
棱锥的侧面都是三角形
n棱柱 2
n n+2
3、任何相邻两个面的交线叫做棱 相邻两个侧面的交线叫做侧棱
苏科版七年级上册第5章走进图形世界
丰富的图形世界
教学目标
01 感受图形世界的多姿多彩,经历从现实世界中抽象出几何体 的过程,发展空间观念,并能识别生活中常见的几何体
02 认识平面与曲面,理解几何图形是由点、线、面构成的 03 能正确识别出棱柱和棱锥,并描绘出它们的特征
认识几何体
01 情境引入
说一说图片里的建筑~
桌面
墙面
但要清楚世界上其实没
有绝对的平平面静哦~的水面
桌面、墙面、平静的水面等都给我们以平面的形象
02 知识精讲 Q2:小水管、易拉罐的侧面、地球仪的表面有什么共同点呢~
小水管
易拉罐
地球仪
小水管、易拉罐的侧面、地球仪的表面等都给我们以曲面面相交得到什么?两条线相交又得到什么?
底面 侧面 面 棱
棱柱的侧棱长相等
n棱锥 1
n n+1 2n
棱 侧棱 顶点
3n
n
2n
侧棱
顶点 (算上底面的顶点)
n
n+1
4、棱柱的棱与棱的交点叫做棱柱的顶点 棱锥的各侧棱的公共点叫做棱锥的顶点 5、棱柱底面是几边形,就称它为几棱柱 棱锥底面是几边形,就称它为几棱锥
欧拉定理: 简单多面体的顶点数V、面数F及棱数E间有关系: V+F-E=2
丰富的图形世界(优秀3篇)
丰富的图形世界(优秀3篇)丰富的图形世界篇一〖教学目标〗1.观察生活中的大量实物,认识基本的几何体。
2.通过比较不同的物体学会观察物体间的不同特征,体会几何体的联系和区别。
〖教材分析〗本节课的主要内容是感受丰富多彩的图形世界,并在具体情境中认识圆柱、圆锥、正方体、长方体、棱柱和球。
本节课的重点是:通过具体情境认识一些基本的几何体;能用自己的语言描述几何体的特征。
本节课的难点是:观察身边的事物,用数学的眼光来评价它们;借助所了解的图形,归纳出几何体的分类。
〖教学设计〗(一)情境引入1.让学生回忆小学学过的几何图形(立体图形):圆柱、圆锥、正方体、长方体、棱柱、球等,并展示实物教具和模型,让学生回忆这些几何体的形状。
2.请学生自己画一些立体实物(比如杯子等)。
3.组织学生观察校园里哪些物体与我们学习过的几何图形形状类似,然后鼓励学生将自己观察到的结果说出来(例如,学校里的垃圾桶是圆柱体,花池是六棱柱),由此让学生感觉到,正是这些基本图形构成了我们生活的空间,从而引出新课――生活中的立体图形(板书)。
(二)观察室1.课件展示一些建筑物照片(如埃及金字塔、桂林香江饭店、英国白金汉宫等),让学生观察每幅图,找到与自己熟悉的几何体形状类似的物体(让学生上台说明,看谁找得最多最准,让学生说说哪些建筑物好看,以培养学生认真观察、大胆发言的良好习惯)。
2.展示课本第2页各图(课件),让学生仔细观察,并回答又有哪些与熟悉的几何体形状类似的物体。
3.展示课本第3页上图,让学生认真观察,然后分小组讨论,并回答下列问题:(1)图中哪些物体的形状与长方体、正方体类似?(2)图中哪些物体的形状与圆柱、圆锥类似?(3)请找出图中与笔筒形状类似的物体。
(4)请找出图中与地球形状类似的物体。
(三)活动室1.说一说:课件展示正方体、长方体、圆柱、圆锥、棱柱、棱台、球的几何透视图,让学生用自己的语言描述这些图形的特征。
2.议一议:课件展示棱柱和圆柱,分组讨论这两种几何体具有哪些相同点和不同点,在分组讨论交流中形成对棱柱比较全面的认识。
苏科版七年级上册课件5.1-丰富的图形世界(共23张PPT)
10、阅读一切好书如同和过去最杰出 的人谈 话。2021/8/82021/8/82021/8/88/8/2021 1:12:27 AM
11、越是没有本领的就越加自命不凡 。2021/8/82021/8/82021/8/8Aug-218-Aug-21
12、越是无能的人,越喜欢挑剔别人 的错儿 。2021/8/82021/8/82021/8/8Sunday, August 08, 2021
初中数学 七年级(上册)
5.1 丰富的图形世界
5.1 丰富的图形世界
图形世界是多姿多彩的,根据图中的信息, 请说出图形中你熟悉的几何体。
如果只考虑物体的大 小和形状,而不考虑其他 属性,我们就可以将物体 抽象成几何体.
认识几何体
试一试:把图1中的物体与图2中的相应 的几何体用线连接起来.
13、知人者智,自知者明。胜人者有 力,自 胜者强 。2021/8/82021/8/82021/8/82021/8/88/8/2021
14、意志坚强的人能把世界放在手中 像泥块 一样任 意揉捏 。2021年8月8日星期 日2021/8/82021/8/82021/8/8
15、最具挑战性的挑战莫过于提升自 我。。2021年8月2021/8/82021/8/82021/8/88/8/2021
16、业余生活要有意义,不要越轨。2021/8/82021/8/8August 8, 2021
17、一个人即使已登上顶峰,也仍要 自强不 息。2021/8/82021/8/82021/8/82021/8/8
谢谢观赏
You made my day!
我们,还在路上……
数学 实验室
将图①的正方体切去一块,可得以下 几种不同的几何体。
①
《丰富的图形世界》教案
《丰富的图形世界》教案一、教学目标1. 让学生了解和认识各种基本的二维图形和三维图形。
2. 培养学生观察、描述和分类图形的能力。
3. 培养学生运用图形进行创新和解决问题的能力。
二、教学内容1. 基本二维图形:三角形、四边形、五边形、六边形等。
2. 基本三维图形:立方体、长方体、圆柱体、圆锥体等。
3. 图形分类和归纳。
三、教学重点与难点1. 重点:让学生掌握基本二维图形和三维图形的特征。
2. 难点:培养学生对图形的创新思维和解决问题的能力。
四、教学方法1. 采用直观演示法,让学生通过观察、触摸和操作实物图形,加深对图形的认识。
2. 采用分组讨论法,培养学生团队合作精神,提高学生描述和分类图形的能力。
3. 采用案例分析法,引导学生运用图形解决实际问题。
五、教学准备1. 实物图形:三角形、四边形、五边形、六边形、立方体、长方体、圆柱体、圆锥体等。
2. 教学课件:图形世界的相关图片和动画。
3. 练习题:关于二维图形和三维图形的识别和分类。
六、教学过程1. 导入新课:通过展示一个丰富的图形世界图片,引发学生的好奇心,激发学习兴趣。
2. 知识讲解:介绍基本二维图形和三维图形的特征,通过实物展示和课件动画相结合的方式,让学生直观地了解图形的性质。
3. 实践操作:让学生分组讨论,每组选择一种图形进行观察和研究,描述图形的特征,并归纳出图形的性质。
4. 案例分析:教师展示一些实际问题,引导学生运用图形知识解决问题,培养学生的实践能力。
5. 课堂小结:对本节课的主要内容进行总结,强调二维图形和三维图形的特征及应用。
七、作业布置1. 请学生绘制一幅包含多种图形的画,并描述这些图形的特征。
2. 选择一个实际问题,运用图形知识解决,并将解题过程和答案写下来。
八、课后反思教师在课后对课堂教学进行反思,分析教学过程中的优点和不足,针对性地调整教学方法,以提高教学效果。
九、章节测试设计一份关于二维图形和三维图形的测试题,测试学生对本章节知识的掌握程度。
七年级数学上册第一章丰富的图形世界ppt课件(打包5套)北师大版
7.仔细观察下列图形,用一个平面截一个正方体,试写出这些截面形状的名称:
截面形状是长__方__形__,三__角__形__,_梯__形___,六__边__形__,三__角__形__. 想一想:用一个平面截一个正方体,截面的形状可能是多于六边的多边形吗?为 什么?
这个零件从上面看到的形状图是( B )
14.下列几何体是由4个相同的小正方体搭成的,其中从正面看和从左面看的形状图相同的是( C )
15.(2016·绥化)如图,是一个带有方形空洞和圆形空洞的儿童玩具,如果用下列几何体作为塞子,
那么既可以堵住方形空洞,又可以堵住圆形空洞的几何体是(B )
16.如图所示的是由5块完全相同的小正方体所搭成的几何体从上面看到的形状图,小正方形中的数
字表示在该位置小正方体的个数,其从正面看到的形状图是(B )
17.由几个小正方体所搭成的几何体从上面看如图所示,小正方形中的数字表示 该位置的小正方体的个数,请你画出这个几何体从正面、左面看到的形状.
解:
18.如图是一个几何体分别从正面、左面、上面看到的形状图,则这个几何体的 侧面积是_6_π__c_m_2_.
A.5 B.4 C.3 D.2
9.一个棱柱有18条棱,那么它的底面一定是( C ) A.十八边形 B.八边形 C.六边形 D.四边形 10.如图,如果一个六棱柱的一条侧棱长为5 cm,那么所有的侧棱之和_3_0_c_m__. 11.如图所示的是一个棱柱,问: (1)这个棱柱有多少个面?多少条棱? (2)这个棱柱的底面和侧面各是什么形状? (3)该棱柱有几个顶点?
4.用一个平面截长方体、五棱柱、圆柱和圆锥,不能截出三角形的是_圆__柱____. 5.在如图所示的四个图形中,图形②___③__④__可以用平面截长方体得到;图形①__④__可以用
专题01丰富的图形世界(考点串讲)六年级数学上学期期中考点(鲁教版2024五四制)
A.
B.
C.
D.
注意:正方体展开图中,7字、田字、凹字不行.
针对练习1
B 下列图形中,正方体的表面展开图是( )
A.
B.
C.
D.
易错易混 易错2.分类讨论判断几何体形状
有10个面的是什么几何体?
八棱柱或九棱锥
注意:判断几何体形状要考虑是棱柱还是棱锥.
针对练习2
一个多面体有 7 个面,10 个顶点,则它的棱数只能是( C )
押题预测
B 3.下列图形中属于棱柱的有( )
A.3 个
B.4 个
C.5 个
D.6 个
C 4.一个棱柱有12个顶点,所有侧棱长的和是 48cm,则每条侧棱长是( )
A. 6cm
B.12cm
C. 8cm
D. 24cm
押题预测
D 5.如图中的平面展开图与标注的立体图形不相符的是( )
A.长方体
B.正方体
小芳要用硬纸片制作一个几何体,如图是该几何体的展开图.
(1)解:由几何体的展开图可知,该几何体为长方体;
故答案为:长方体
(2)解:由图形可得 x 4cm , y 7cm ,
(1)该几何体为 ; (2)图中 x cm , y cm ; (3)求几何体的体积.
故答案为:4,7;
(3)几何体的体积为 207 4 560 cm3 .
(答案不唯一).
题型剖析 典例十、找展开图的相对面
有 3 块积木,每一块的各面都涂上不同的颜色, 3 块的涂法完全相同.现把它们摆放成不同
的位置(如图),请你根据图形判断涂成黄色一面的对面涂的颜色是(C )
A.白
B.蓝
C.绿
D.黑
举一反三. 将一个正方体的表面沿___C___条棱剪开,得到其展开图如图,则该正方体中与“我”字相对
第一章丰富的图形世界
第一章丰富的图形世界一、知识梳理一.几种常见的几何体1.柱体① 棱柱体:〔如图(1)(2)〕,图中上下两个面称棱柱的底面,周围的面称棱柱的侧面,面与面的交线是棱柱的棱.其中侧面与侧面的交线是侧棱,棱与棱的交点是顶点.点拨:正方体和长方体是特殊的棱柱,它们都是四棱柱.正方体是特殊的长方体.② 圆柱:图(3)中上下两个圆面是圆柱的底面,这两个底面是半径相同的圆,周围是圆柱的侧面.点拨:棱柱和圆柱统称柱体.2.锥体① 圆锥:〔如图(4)〕图中的圆面是圆锥的一个底面,中间曲面是圆锥的侧面,圆锥只有一个顶点.② 棱锥:〔如图(5)〕图中下面多边形面是棱锥的一个底面,其余各三角形面是棱锥的侧面.点拨:棱锥和圆锥统称锥体.3.台体1 圆台:〔如图(6)〕图中上下两个大小不同的圆面是圆台的底面,中间曲面是圆台的侧面.2 棱台:〔如图(7)〕图中上下两个大小不同的多边形是棱台的底面,其余四边形是棱台的侧面.4.球体:〔如图(8)〕图中半圆绕其直径旋转而成的几何体,球体表面是曲面.二.几何体的展开图1. 圆柱、圆锥、正三棱锥、正四棱锥、正五棱锥、正三棱柱的展开图:2. 正方体的平面展开图(有11种):三.用平面截一个几何体出现的截面形状1.用一个平面去截正方体,可能出现下面几种情况:三角形正方形长方形梯形五边形六边形点拨:用平面去截几何体,所得的截面就是这个平面与几何体每个面相交的线所围成的图形.正方体只有六个面,所以截面最多有六条边,即截面边数最多的图形是六边形.2. 几种常见的几何体的截面:几何体截面形状正方体三角形、正方形、长方形、梯形、五边形、六边形圆柱圆、长方形、正方形、……圆锥圆、三角形、……球圆点拨:用平面去截圆柱体,可以与圆柱的三个面(两个底面,一个侧面)同时相交,由于圆柱侧面为曲面,相交得到是曲线,无法截出三角形.四.识别物体的三视图1.主视图、左视图、俯视图的定义从不同方向观察同一物体,从正面看图叫主视图,从左面看图叫左视图,从上面看图叫做俯视图.2.几种几何体的三视图(1)正方体:三视图都是正方形.(2)球体:三视图都是圆.(3)圆柱体:(4)圆锥体:点拨:圆锥的主视图、左视图都是三角形,而俯视图的图中有一个点表示圆锥的顶点,因为从上往下看圆锥时先看到圆锥的顶点,再看到底面的圆.3.用若干个小正方体搭成几何体的三视图如图:从正面看2列每列1层;从左面看2列每列1层;从上面看2列左列2层右列1层.则三视图是:点拨:①主视图与俯视图列数相同,俯视图中每列的方框内的最大数字即为主视图本列的层数.②左视图的列数与俯视图的行数相同,俯视图每一横行的方框内的最大数字即为左视图中的列的层数.二、课堂精讲例题例1常见几何体的特征(1)列说法中,正确的个数是().①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体一定是柱体;⑤正棱柱的侧面一定是长方形.(A)2个(B)3个(C)4个(D)5个【难度分级】A【试题来源】经典试题【解析】n棱柱的数量特征如下:它有3n条棱,(n+2)个面,侧面一定是长方形.对于完全相同的面则需注意.棱柱的侧棱都是相等的但底面边长不一定相等,因此以底面边长和侧棱为长和宽的侧面的大小不一定相同。
丰富的图形世界(共59张PPT)
左图棱柱中 的侧面都是长方 形吗?
棱柱的侧面 可能是长方形, 也有可能是 平行 四边形。
侧面
底面
侧棱
顶点
侧面
棱柱
你能描述出棱柱的上下底面的关系吗? 棱柱的各侧棱的关系呢?
图片中棱柱的侧面是什么图形?
看一看
三棱柱
四棱柱
五棱柱
六棱柱
棱柱的顶点、棱、侧棱、侧面的数量关系
你发现规律了吗 ? ?
丰富的图形世界
初一备课组
请欣赏这些图片,
里面有你熟悉的图形吗?
下面这些基本图形你熟悉吗?能说 出它们的名称吗?
棱柱 圆柱 棱锥 圆锥
球
下图是机器狗的模型,你能看到 哪些立体图形?
·
请你观察桌面、黑板面、
平静的水面等,它们有什么 共同点呢?
观察易拉罐、水管、 地球仪等,它们的表面 有什么共同点呢?
(1)
6
12
8
(2)
7
15
10
(3)
7
14
9
(4)
7
13
8
(5)
7
12
7
练习1 1、下列说法正确的是( )D
A、棱柱的所有侧面都相等 B、棱柱的侧面都是长方形 C、棱柱的所有棱长都相等 D、棱柱的两个底面都平行
2、填空:
(1)底面是三角形的棱柱有___5个面,有___
条9棱,有___个顶6 点;
通过刚才的学习,你一定提高了
对点、线、面的认识,线与线相交得到 点,面与面相交得到线,图形是由点
、线、面构成的。
底面
顶点
顶点
侧面
侧棱
侧面
侧棱
棱柱
北师大版七年级数学上册第一章 丰富的图形世界 从三个方向看物体的形状
1.4 从三个方向看物体的形状
导入新知 想一想 每台摄像机拍到的分别是下面哪张照片?
每台摄像机拍到的 分别是下面的哪张照片?
B A CD
素养目标
3.能在与他人交流的过程中,合理清晰地表达自己的思维 过程. 2.能识别从三个方向看到的物体的形状图,会画立方体 及其简单组合体从三个方向看到的形状图.
课后作业
作业 内容
教材作业 从课后习题中选取
自主安排 配套练习册练习
从上面看
探究新知
做一做 画出从正 面、左面 和上面看 球体得到 什么图形?
从正面看
从左面看
从上面看
探究新知
做一做 用6个小立方块搭成不同的几何体,画出从正面、左 面、上面看到的几何体的形状图.
从正面看
从左面看
从上面看
探究新知 素养考点
画从三个方向看几何体得到的形状图
例 一个几何体由几个大小相同的小立方块搭成,从上面观察这 个几何体,看到的形状如图,其中小正方形中的数字表示在该 位置的小立方块的个数.请画出从正面、左面看到的这个几何 体的形状图.
从上面看
圆柱
探究新知 练一练 由各形状图判断几何体的形状? 从正面看 从左面看
从上面看
三棱柱
探究新知 素养考点 由形状图判断几何体的形状
例 由从不同方向看到的物体形状图确定实物形状.
从正面看 从左面看 从上面看
探究新知
长方体
归纳总结:由从不同方向看到的物体形状图确定实物形状: 在想象立体图形时,先分别根据从前面看到的图形、从上面 看到的图形和从左面看到的图形想象立体图形的前面、正面 和左侧面的局部形状,然后再综合起来考虑整体图形.
探究新知
七年级数学上册第一章丰富的图形世界ppt课件(打包4套)北师大版
5.一个棱柱有12个顶点,所有的侧棱长的和是48 cm, 每条侧棱的长为_8_c_m_.
6.如图所示的棱柱有( D) A.4个面 B.6个面 C.12条棱 D.15条棱
7.一个直棱柱有12个顶点,那么它的面的个数是( C ) A.10个 B.9个 C.8个 D.7个
8.一个棱柱有18条棱,那么它的底面一定是(C ) A.十八边形 B.八边形 C.六边形 D.四边形
(1)这个多面体是什么常见的几何体? (2)如果D是多面体的底部,那么哪一面在上面? (3)如果B在前面,C在左面,那么哪一面在上面? (4)如果E在右面,F在后面,那么哪一面在上面?
解:(1)这个多面体是一个长方体 (2)B面 (3)E面 (4)D面
19.(阿凡题:1070802)把立方体的六个面分别涂上六种不同颜色,并画上朵 数不等的花,各面上的颜色与花的朵数情况见下表: 现将上述大小相同,颜色、花朵分布也完全相同的四个立方体拼成一个水平放 置的长方体,如图所示.问长方体的下底面共有多少朵花?
14.(2016·衢州)如图,是由两个相同的小正方体和一个圆锥体组成的立 体图形,从上面看的形状是( C )
15.(2017·陕西模拟)左下图是一个正方体被截去一个直三棱柱得到的几何体, 则该几何体从左面看到的图形是( ) A
16.如图是一个由多个相同的小正方体堆积而成的几何体从上面看到的 图形,图中所示数字为该位置小正方体的个数,则这个几何体从正面看到 的图形是( C )
17.请你将图中的几何体按两种不同的方法分类,并说明理由.
解:按立体图形形状分:①柱体(1)(2)(4)(5)(7);②锥体(6);③球体(3) 按面分:由平面组成(1)(2)(4)(7);由曲面组成(3)(5)(6)
18.如图,正方形ABCD的边长为3 cm,以直线AB为轴,将正方形旋转一 周,得到一几何体.
北师大版(2024)七年级上册第1章丰富的图形世界章节小结
A.
B.
C.
D.
能力提升
3.一正方体截去一角后,剩下的几何体有12或13或14或15 个 棱?
能力提升
4.某学校设计了如图所示的一个雕塑,取名“阶
梯”.现在工人师傅打算用油漆喷刷所有的暴露面.
经测量,已知每个小立方块的棱长都为0.5 m,请
你帮助工人师傅算一下,需喷刷油漆的总面积是 从正面看
多少?
几何体 名称
圆柱 棱柱 圆锥
球
基本特征
由大小相同且互相平行的两个底面(圆)和一个侧 面(曲面)围成 底面是多边形,侧面是长方形,n棱柱有n个侧面, 有两个底面,底面互相平行且形状相同.
由一个底面(圆)和一个侧面(曲面)围成
由一个曲面围成,没有底面、侧面、顶点
知识回顾
二、简单几何体的分类
(一)按柱体、锥体、球体分: 柱体
(3)截面是五角形
(4)截面是六角形
知识回顾
2.用一个平面去截其他几何体,截面形状如下:
几何体名称
截面形状
圆柱
圆锥
球
知识回顾 七、从三个方向看物体的形状 1.从三个方向看简单几何体得到的形状图
几何体 从正面看 从左面看 从上面看
知识回顾
2.从三个方向看小立方块组合体得到的图形 (1)画从正面和左面看所得图形的方法:先确定看到的面 左右共有几列,每一列共有几层. (2)画从上面看所得图形:看几何体的最上面的小正方形 前后共有几行,左右共有几列以及每个面的位置关系.
重难剖析 2 .将下面的平面图形绕轴旋转一周,得到的立体图形是( C )
旋转轴
A
B
C
D
重难剖析
3.如图,它需再添一个面,折叠后才能围 成一个正方体,下图中ቤተ መጻሕፍቲ ባይዱ黑色小正方形分 别由四位同学补画,其中正确的是( C )
北师大版七年级上册(新)第一章《丰富的图形世界》优秀教学案例
1.通过生活情境的创设,激发学生的学习兴趣,引导学生主动参与课堂讨论,培养学生的自主学习能力。
2.利用多媒体资源、实物模型等教学手段,直观地展示图形的特点和关系,帮助学生建立空间想象能力。
3.组织学生进行动手操作、小组合作等活动,培养学生的团队协作能力和解决问题的能力。
4.引导学生运用观察、分析、归纳等方法,发现和总结图形之间的内在联系和规律,提高学生的几何思维能力。
3.教师对学生的学习情况进行总结和评价,给予肯定和鼓励。教师通过评价,了解学生的学习状况,为下一步的教学提供参考。同时,教师要关注每一个学生的个体差异,给予有针对性的指导和帮助,使学生在几何学科的学习中取得更好的成绩。
四、教学内容与过程
(一)导入新课
1.利用生活情境导入:教师通过展示一些生活中的几何图形,如建筑物的设计、家具的形状等,激发学生的学习兴趣,引导学生关注几何图形在现实生活中的应用。
2.教师对学生的作业进行批改和评价,给予学生反馈和建议。同时,教师要关注每一个学生的个体差异,给予有针对性的指导和帮助,使学生在几何学科的学习中取得更好的成绩。
五、案例亮点
1.生活情境的创设:本案例通过引入与学生生活密切相关的几何图形,如建筑物的设计、家具的形状等,激发了学生的学习兴趣,使学生感受到几何学科在现实生活中的重要性。这种生活情境的创设,不仅能够激发学生的学习兴趣,还能够帮助学生建立空间想象能力,提高学生的几何思维能力。
北师大版七年级上册(新)第一章《丰富的图形世界》优秀教学案例
一、案例背景
北师大版七年级上册(新)第一章《丰富的图形世界》优秀教学案例,是基于对我国基础教育课程改革的理解和实施,结合学生的实际情况,以提高学生对几何图形认知和理解为出发点,设计的教学活动。本案例以课程标准为指导,深入分析教材内容,将教学目标、内容、方法和评价等方面进行整合,旨在激发学生的学习兴趣,培养学生的几何思维能力,提高学生的空间想象能力。
【数学竞赛】七年级数学思维探究(20)丰富的图形世界(含答案)
空间与图形欧拉1707 1783 ,是18世纪最优秀的数学家之一,他不只在数学上作出了伟大贡献,并且把数学成功地应用到其余领域,在数论中,欧拉首选引进了欧拉函数n ,用多种方法证了然花费小定理,对著名的哥尼斯堡大桥问题的解答创始了图论的研究,别的,欧拉还在物理、天文、建筑以及音乐、哲学等方面获得了绚烂的成就.20.丰富的图形世界解读课标20 世纪初,伟大的法国建筑家列·柯尔伯齐曾说:“我想,到当前为止,我们从没有生活在这样的几何时期,四周的全部都是几何学.”生活中包含着丰富的几何图形,圆的月亮,平的湖面,直的树干,造型奇异的建筑,不停挪动、反转、放大减小的电视画面,, 图形有的是立体的,有的是平面的,立体图形与平面图形之间的联系,从以方面得以表现:1.立体图形的睁开与折叠;2.从各个角度察看立体图形;3.用平面去截立体图形.察看概括、操作实验、睁开想象、推理论证是探究图形世界的基本方法.问题解决例 1如图是一个正方体表面睁开图,假如正方体相对的面上标明的值相等那么x y_____.试一试睁开与折叠是两个步骤相反的过程,从折叠复原成正方体人手.82x y88 10例 2 如图,是由一些完整相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立方块的个数是()主视图左视图俯视图A.5个 B 6个C.7个D.8个试一试依据三视图和几何体的关系。
分别确立该几何体的列数和每一列的层数.例 3由一些大小相同的小正方体构成的简单几何体的主视图和俯视图如图.( 1)请你画出这个几何体的一种左视图;( 2)若构成这个几何体的小正方体的块数为n ,求n 的值.俯视图主视图试一试本例能够在“脑子”中想象达成,也能够用实物摆一摆,从操作实验人手,从俯视图可推测左视图只好有两列,由主视图剖析出俯视图每一列小正方形的块数状况是解本例的重点,而有序思虑、分类议论,则可防止重复与遗漏.例 4 如图是由若干个正方体形状木块堆成的,平放于桌面上,此中,上边正方体的下底面四个极点正是下边相邻正方体的上底面各边的中点,假如最下边的正方体的棱长为 1,且这些正方体露在外面的面积和超出8 ,那么正方体的个数起码是多少?按此规律堆下去,这些正方体露在外面的面积和的最大值是多少?试一试全部正方体侧面面积和再加上全部正方体上边露出的面积和,就是需求的面积.从简单人手,归纳规律.例 5 要把一个正方体切割成 49 个小正方体(小正方体大小能够不等) ,绘图表示. 剖析与解本例是一道图形切割问题, 解答本例需要较强的空间想象能力和推理论证能力, 需要把图形性 质与计算适合联合.为方便起见, 设正方体的棱长为 6 个单位, 第一不可以切出棱长为 5 的立方体, 不然不行能切割成49 个小 正方体. 设切出棱长为 1的正方体有 a 个,棱长为 2的正方体有 b 个,假如能切出 1个棱长为 4 的正方体,则有 a 8b 64 216 6 4 的正方体.a b 49 ,解之得 b 14 ,不合题意,因此切不出棱长为1 7设切出棱长为 1的正方体有 a个,棱长为 2的正方体有 b 个,棱长为 3 的正方体有 c个,a 8b 27c 216, c 4 ,故可切割棱长分别为1、 2 、 3 的正方体各有 36个、9a b,解得 a 36 , b 9 c 49 个、 4 个,分法如下图.欧拉公式例 6 成立模型18 世纪瑞士数学家欧拉证了然简单多面体中极点数(V )、面数(F)、棱数(E )之间存在的一个有趣的关系式,被称为欧拉公式,请你察看以下几种简单多面体模型,解答以下问题.四周体 长方体 正八面体 正十二面体( 1)依据上边多面体模型,达成表格中的空格多面体 极点数( V ) 面数( F ) 棱数( E )四周体 44长方体 8 6 12 正八面体812正十二面体201230你发现极点数( V )、面数( F )、棱数( E )之间存在的关系式是 _____. ( 2)一个多面体的面数比极点数大 8 ,且有 30 条棱,则这个多面体的面数是_____. ( 3)某个玻璃饰品的外形是简单多面体, 它的表面面是由三角形和八边形两种多边形拼接而成, 且有 24 个极点,每个极点处都有 3 条棱,设该多面体表面面三角形的个数为 x 个,八边形的个数为 y 个,求 x y 的值.解(1)6;6;V FE 2( 2) 20( 3)这个多面体的面数为x y,棱数为24 3 36 (条)2依据 V F E 2,可得24 x y 36 2 ,∴ x y 14 .模型应用如图,有一种足球是由数块黑白相间的牛皮缝制而成,黑皮为正五边形,白皮为正六边形,且边长都相等,求正五边形、正六边形个数.解设足球表面的正五边形有x 个,正六边形有y个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
丰富的图形世界
一、选择题(本大题共15小题,每小题3分,共45分)
1.下列图形不是立体图形的是( )
A.球B.圆柱C.圆锥D.圆
2.如图,在下面四个物体中,最接近圆柱的是( )
A.烟囱B.弯管C.玩具硬币D.某种饮料瓶3.直棱柱的侧面都是( )
A.正方形 B.长方形 C.五边形 D.以上都不对4.下列几何体没有曲面的是( )
A.圆锥 B.圆柱 C.球 D.棱柱
5.(芦溪县期末)如图所示,用一个平面去截一个圆柱,则截得的形状应为( )
A B C D
6.一个几何体的展开图如图所示,这个几何体是( )
A.圆锥
B.圆柱
C.四棱柱
D.无法确定
7.如图中几何体从正面看得到的平面图形是( )
A B C D 8.(长沙一模)如图,直角三角形绕直线l旋转一周,得到的立体图形是( )
A B C D
9.下列图形中,能通过折叠围成一个三棱柱的是( )
10.如图的四个几何体,它们各自从正面,上面看得到的形状图不相同的几何体的个数是( )
A.1 B.2 C.3 D.4
11.下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方体包装盒的是( )
12.下列说法不正确的是( )
A.球的截面一定是圆
B.组成长方体的各个面中不可能有正方形
C.从三个不同的方向看正方体,得到的平面图形都是正方形
D.圆锥的截面可能是圆
13.将四个棱长为1的正方体如图摆放,则这个几何体的表面积是( )
A.3 B.9 C.12 D.18
14.(深圳期末)用平面去截如图所示的三棱柱,截面形状不可能是( )
A.三角形 B.四边形 C.五边形 D.六边形
15.明明用纸(如图)折成了一个正方体的盒子,里面装了一瓶墨水,与其他空盒子混放在一起,只凭观察,选出墨水在哪个盒子中( )
A B C D
二、填空题(本大题共5小题,每小题5分,共25分)
16.飞机表演的“飞机拉线”用数学知识解释为:________________.
17.下列图形中,是柱体的有________ .(填序号)
18.从正面、左面、上面看一个几何体得到的形状图完全相同,该几何体可以是________.(写出一个即可) 19.一个棱柱有12个顶点,所有侧棱长的和是48 cm,则每条侧棱长是________cm.
20.一个正方体盒子的展开图如图所示,如果要把它粘成一个正方体,那么与点A重合的点是________.
三、解答题(本大题共7小题,共80分)
21.(12分)将下列几何体与它的名称连接起来.
22.(6分)如图,求这个棱柱共有多少个面?多少个顶点?有多少条棱?
23.(10分)若要使图中平面图形折叠成正方体后,相对面上的数字相等,求x+y+z的值.
24.(10分)如图是一个由若干个小正方体搭成的几何体从上面看到的形状图,其中小正方形内的数字是该位置小正方体的个数,请你画出它从正面和从左面看到的形状图.
25.(12分)如图所示的正方体被竖直截去了一部分,求被截去的那一部分的体积.(棱柱的体积等于底面积乘以高)
26.(14分)如图所示,长方形ABCD的长AB为10 cm,宽AD为6 cm,把长方形ABCD绕AB边所在的直线旋转一周,
然后用平面沿AB方向去截所得的几何体,求截面的最大面积.
27.(16分)根据如图所给出的几何体从三个方向看得到的形状图,试确定几何体中小正方体的数目的范围.
参考答案
1.D 2.C 3.B 4.D 5.B 6.A 7.D 8.C 9.C 10.C
11.C 12.B 13.D 14.D 15.B 16.点动成线17.②③⑥18.答案不唯一,如:球、正方体等19.8 20.C.E 21.略.
22.这个棱柱共有7个面,10个顶点,15条棱.
23.“2”与“y”相对,“3”与“z”相对,“1”与“x”相对.则x+y+z=1+2+3=6.
24.从正面和从左面看到的形状图如图所示.
25.V =1
2×(5-4)×(5-3)×5=5(cm3).
答:被截去的那一部分体积为5 cm3.
26.由题意得:把长方形ABCD 绕AB 边所在的直线旋转一周,得到的几何体为圆柱,且圆柱的底面半径为6 cm ,高为10 cm.所以截面的最大面积为:6×2×10=120(cm2).
27.根据题意,从上面看,构成几何体所需小正方体最多情况如图1所示,所需小正方体最少情况如图2所示:
所以最多需要11个小正方体,最少需要9个小正方体.。