平抛运动专题复习及解题技巧
考点16 平抛运动——2021年高考物理专题复习附真题及解析
考点16 平抛运动考点解读一、平抛运动基本规律的理解 1.飞行时间:由ght 2=知,时间取决于下落高度h ,与初速度v 0无关。
2.水平射程:x =v 0t =vgh2,即水平射程由初速度v 0和下落高度h 共同决定,与其他因素无关。
3.落地速度:gh v v v v x y x 2222+=+=,以θ表示落地速度与x 轴正方向的夹角,有2tan v ghv v xy ==θ,所以落地速度也只与初速度v 0和下落高度h 有关。
4.速度改变量:因为平抛运动的加速度为恒定的重力加速度g ,所以做平抛运动的物体在任意相等时间间隔Δt 内的速度改变量为Δv =g Δt ,相同,方向恒为竖直向下,如图所示。
5.两个重要推论(1)做平抛(或类平抛)运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图中A 点和B 点所示。
(2)做平抛(或类平抛)运动的物体在任意时刻任一位置处,设其末速度方向与水平方向的夹角为α,位移与水平方向的夹角为θ,则tan α=2tan θ。
二、常见平抛运动模型的运动时间的计算方法(1)在水平地面上空h 处平抛: 由221gt h =知ght 2=,即t 由高度h 决定。
(2)在半圆内的平抛运动(如图),由半径和几何关系制约时间t :221gt h =t v h R R 022=-+联立两方程可求t 。
(3)斜面上的平抛问题: ①顺着斜面平抛(如图)方法:分解位移 x =v 0t ,221gt y =,x y =θtan 可求得gv t θtan 20=。
②对着斜面平抛(如图)方法:分解速度 v x =v 0,v y =gt ,0tan v gt v v xy ==θ 可求得gv t θtan 0=。
(4)对着竖直墙壁平抛(如图)水平初速度v 0不同时,虽然落点不同,但水平位移相同,vd t =。
三、类平抛问题模型的分析方法 1.类平抛运动的受力特点物体所受的合外力为恒力,且与初速度的方向垂直。
物理必修2平抛运动常见问题及解题思路
物理必修2平抛运动常见问题及解题思路平抛运动是高中物理一种典型的曲线运动,下面是店铺给大家带来的物理必修2平抛运动常见问题及解题思路,希望对你有帮助。
高中物理平抛运动常见问题及解题思路高中物理学习方法复习有的同学课后总是急着去完成作业,结果是一边做作业,一边翻课本、笔记。
而在这里我要强调我们首先要做的不是做作业,而应该静下心来将当天课堂上所学的内容进行认真思考、回顾,在此基础上再去完成作业会起到事半功倍的效果。
复习的方法我们可以分成以下两个步骤进行:首先不看课本、笔记,对知识进行尝试回忆,这样可以强化我们对知识的记忆。
之后我们再钻研课本、整理笔记,对知识进行梳理,从而使对知识的掌握形成系统。
作业在复习的基础上,我们再做作业。
在这里,我们要纠正一个错误的概念:完成作业是完成老师布置的任务。
我们在课后安排作业的目的有两个:一是巩固课堂所学的内容;二是运用课上所学来解决一些具体的实际问题。
明确这两点是重要的,这就要求我们在做作业时,一方面应该认真对待,独立完成,另一方面就是要积极思考,看知识是如何运用的,注意对知识进行总结。
我们应时刻记着“我们做题的目的是提高对知识掌握水平”,切忌“为了做题而做题”。
质疑在以上几个环节的学习中,我们必然会产生疑难问题和解题错误。
及时消灭这些“学习中的拦路虎”对我们的学习有着重要的影响。
有的同学不注意及时解决学习过程中的疑难问题,对错误也不及时纠正,其结果是越积越多,形成恶性循环,导致学习无法有效地进行下去。
对于疑难问题,我们应该及时想办法(如请教同学、老师或翻阅资料等)解决,对错题则应该注意分析错误原因,搞清究竟是概念混淆致错还是计算粗心致错,是套用公式致错还是题意理解不清致错等等。
另外,我们还应该通过思考,逐步培养自己善于针对所学发现问题、提出问题。
在这里,我建议每位同学都准备一个“疑难、错题本”,专门记录收集自己的疑难问题和典型错误,这也可以为我们今后对知识进行复习提供有效的素材。
探究平抛运动的特点-高考物理复习
目录
CONTENTS
01 夯实必备知识 02 研透核心考点 03 提升素养能力
目录
1
夯实必备知识
目录
夯实必备知识
原理装置图
实验操作
注意事项
1.按实验原理图甲安装实验装置,使斜槽
末端水平。
1.水平:斜槽末端的
2.以斜槽水平部分端口上小球球心位置
切线要水平。
为坐标原点 O,过 O 点画出竖直的 y 轴
2.竖直:木板必须处
和水平的 x 轴。
在竖直平面内。
3.使小球从斜槽上同一位置由静止滚下,
3.原点:坐标原点为
把笔尖放在小球可能经过的位置上,如果
小球在槽口时,球心
使小球做平抛运动,利用描点法描绘出小球的运动 小球运动中碰到笔尖,用铅笔在该位置标
在木板上的投影点。
轨迹,以抛出点为坐标原点,建立坐标系,测出轨 记为一点。用同样的方法,在小球运动轨
4.同一位置:小球每
迹曲线上某一点的坐标 x 和 y,由公式 x=v0t 和 y 迹上描下若干点。
次都从槽中的同一位
=12gt2,得 v0=x 2gy。
4.将白纸从木板上取下,从 O 点开始连接 置由静止释放。
画出的若干点描绘出一条平滑的曲线,如
实验原理图乙所示。
目录
夯实必备知识
1.判断平抛运动的轨迹是不是抛物线
v0=x-d2 2gy1,A、B 错误;根据平抛运动规律有 4x-d2=v0·4T,y4=12g(4T)2,
联立解得 v0=4x-d2 2gy4,C 错误,D 正确。
目录
研透核心考点
考点二 创新拓展实验
例2 (2023·北京卷,16)用频闪照相记录平抛小球在不同时刻的位置,探究平抛运 动的特点。 (1)关于实验,下列做法正确的是________(填选项前的字母)。 A.选择体积小、质量大的小球 B.借助重垂线确定竖直方向 C.先抛出小球,再打开频闪仪 D.水平抛出小球 解析 用频闪照相记录平抛小球在不同时刻的位置,选择体积小质量大的小球 可以减小空气阻力的影响,A正确;本实验需要借助重垂线确定竖直方向,B正 确;实验过程先打开频闪仪,再水平抛出小球,C错误,D正确。 答案 ABD
2024届高考物理复习讲义:专题强化五 有约束条件的平抛运动
专题强化五有约束条件的平抛运动学习目标1.会分析平抛运动与斜面、圆弧面结合的约束条件,并根据约束条件求解相关问题。
2.会处理平抛运动的临界、极值问题。
考点一与斜面或圆弧面有关的平抛运动角度与斜面有关的平抛运动1.顺着斜面平抛(如图1)图1处理方法:分解位移。
x =v 0t ,y =12gt 2tan θ=y x可求得t =2v 0tan θg。
2.对着斜面平抛(垂直打到斜面上,如图2)图2处理方法:分解速度。
v x =v 0,v y =gt tan θ=v x v y =v 0gt 可求得t =v 0g tan θ。
例1(2023·湖南长沙模拟)如图3,在倾角为α的斜面顶端,将小球以v 0的初速度水平向左抛出,经过一定时间小球发生第一次撞击。
自小球抛出至第一次撞击过程中小球水平方向的位移为x ,忽略空气阻力,则下列图像正确的是()图3答案D解析小球落在斜面上时,小球位移方向与水平方向夹角为α,则有tan α=yx=gt 2v 0,则水平位移x =v 0t =2tan αgv 20∝v 20;小球落在水平面上时,小球飞行时间恒定,水平位移正比于v 0,故D 正确,A 、B 、C 错误。
例2如图4所示,斜面倾角为θ=30°,在斜面上方某点处,先让小球(可视为质点)自由下落,从释放到落到斜面上所用时间为t 1,再让小球在该点水平抛出,小球刚好能垂直打在斜面上,运动的时间为t 2,不计空气阻力,则t1t 2为()图4A.21B.32C.32D.53答案D解析设小球水平抛出的初速度为v 0,则打到斜面上时,速度沿竖直方向的分速度v y =v 0tan θ=gt 2,水平位移x =v 0t 2,抛出点离斜面的高度h =v 2y 2g x tan θ=v 202g tan 2θ+v 20g =5v 202g ,又h =12gt 21,解得t 2=3v 0g ,t 1=5v 0g ,则t1t 2=53,D 正确。
平抛运动 一轮复习讲义
平抛物体的运动要点提示:一、平抛运动特点分析:受力特点:只受重力mg ;初速度特点:水平方向初速度0V运动规律:1、水平方向:匀速直线运动;2、竖直方向:自由落体运动;注意以下物理量:瞬时速度、水平分速度、竖直分速度、水平位移、竖直位移、合位移、水平速度与竖直推论 1 速度偏向角的函数值规律:平抛运动任意时刻的速度偏向角的三种函数值分别为:vv y =ϕs in vv v v x 0cos ==ϕ 2/tan x y v v x y ==ϕ 推论2 速度偏向角与位移偏向角的关系:平抛运动速度偏向角的正切函数ϕtan ,等于位移偏向角θ的正切的2倍,即θϕtan 2tan =推论3 速度方向反向延长线规律:平抛运动任意时刻的瞬时速度方向的三、平抛运动扩展:类似平抛运动:带电粒子垂直射入匀强电场,作类似平抛运动。
斜抛运动:初速度方向与水平方向有一定夹角,注意此部分内容也要引起重视,具体分析有例题。
例1、(基本问题分析)如图所示,由A 点以水平速度V 0抛出小球,落在倾角为θ的斜面上的B 点时,速度方向与斜面垂直,不计空气阻力,则此时速度大小V B = 飞行时间t=例2、如图所示,小球自A 点以某一初速做平抛运动,飞行一段时间后垂直打在斜面上的B 点,已知A 、B 两点水平距离为8米,θ=300,求A 、B 间的高度差。
例3、(2012上海)如图,斜面上a 、b 、c 三点等距,小球从a 点正上方O 点抛出,做初速为v 0的平抛运动,恰落在b 点。
若小球初速变为v ,其落点位于c ,则( ) A v 0<v <2v 0 (B )v =2v 0 (C )2v 0<v <3v 0 (D )v >3v 0例4、(平抛性质与斜面的结合,较难)在倾角为θ的斜面上以初速度v 0水平抛出一物体,经多长时间物AABAB体离斜面最远?离斜面的最大距离是多少?例5、物体做平抛运动时,它的速度的方向和水平方向间的夹角α的正切tg α随时间t 变化的图像是图1中的:( )例6.安徽省两地10届高三第一次联考水平抛出的小球,t 秒末的速度方向与水平方向的夹角为θ1,t +t 0秒末速度方向与水平方向的夹角为θ2,忽略空气阻力,则小球初速度的大小为( D ) A .gt 0(cos θ1-cos θ2) B .210cos cos θθ-gtC .gt 0(tan θ1-tan θ2)D .120tan tan θθ-gt例7、两同高度斜面,倾角分别为α、β小球1、2分别由斜面顶端以相同水平速度V 0抛出(如图),假设两球能落在斜面上,求两球的飞行时间之比。
专题23 平抛运动临界问题、相遇问题、类平抛运和斜抛运动(解析版)
2023届高三物理一轮复习多维度导学与分层专练专题23 平抛运动临界问题、相遇问题、类平抛运和斜抛运动导练目标 导练内容目标1 平抛运动临界问题 目标2 平抛运动中的相遇问题目标3 类平抛运动 目标4斜抛运动一、平抛运动临界问题擦网压线既擦网又压线由21122121⎪⎪⎭⎫⎝⎛==-v x g gt h H 得:()h H gx v -=211由222122121⎪⎪⎭⎫⎝⎛+==v x x g gt H 得:()Hg x x v 2212+= 由20122121⎪⎪⎭⎫⎝⎛==-v x g gt h H 和202122121⎪⎪⎭⎫ ⎝⎛+==v x x g gt H 得:()22121x x x H h H +=-【例1】如图排球场,L=9m,球网高度为H=2m ,运动员站在网前s=3m 处,正对球网跳起将球水平击出,球大小不计,取重力加速度为g=10m/s.(1)若击球高度为h=2.5m,为使球既不触网又不出界,求水平击球的速度范围; (2) 当击球点的高度h 为何值时,无论水平击球的速度多大,球不是触网就是出界? 【答案】(1)10m /s <v 2/s (2)2.13m【详解】(1)当球刚好不触网时,根据h 1−h =12gt 12,解得:()()1122 2.521010h h t s g -⨯-===,则平抛运动的最小速度为:11/310/10min x v s m s t ===.当球刚好不越界时,根据h 1=12gt 22,解得:1222 2.5210h t s g ⨯=== ,则平抛运动的最大速度为:22/122/2max x v s m s t ===,则水平击球的速度范围为10/s <v 2/s .(2)设击球点的高度为h .当h 较小时,击球速度过大会出界,击球速度过小又会触网,1222()h h H g g -=,其中x 1=12m ,x 2=3m ,h=2m ,代入数据解得:h=2.13m ,即击球高度不超过此值时,球不是出界就是触网. 二、平抛运动中的相遇问题平抛与自由落体相遇水平位移:l=vt空中相遇:ght 2<平抛与平抛相遇(1)若等高(h 1=h 2),两球同时抛;(2)若不等高(h 1>h 2)两球不同时抛,甲球先抛; (3)位移关系:x 1+x 2=L(1)A 球先抛; (2)t A >t B ; (3)v 0A <v 0B(1)A 、B 两球同时抛; (2)t A =t B ; (3)v 0A >v 0B 平抛与竖直上抛相遇(1)L=v 1t ;(2)22222121v h t h gt t v gt =⇒=-+; (3)若在S 2球上升时两球相遇,临界条件:2v t g<,即:22h v v g<,解得:2v gh >;(4)若在S 2球下降时两球相遇,临界条件:222v v t g g <<,即2222v h vg v g<<, 解得:22ghv gh <<平抛与斜上抛相遇(1)Ltvt v=⋅+θcos21;(2)θθsin21sin212222vhthgttvgt=⇒=-+;(3)若在S2球上升时两球相遇,临界条件:2sinvtgθ<,即:22sinsinh vv gθθ<,解得:2singhvθ>;(4)若在S2球下降时两球相遇,临界条件:22sin2sinv vtg gθθ<<,即222sin2sinsinv h vg v gθθθ<<,解得:22sin singhghvθθ<<【例2】如图,两个弹性球P、Q在距离水平地面一定高度处,若给P水平向右的初速度0(00v≠),同时释放Q,(两球在同一竖直面内运动)两球与地面接触时间可忽略不计,与地面接触前后水平方向速度不变,竖直方向速度大小不变,方向相反。
高考专题复习之斜面上的平抛运动
平抛专题练习一、物体的起点在斜面外,落点在斜面上1.求平抛时间1.以Vo=9.8m/s 的初速水平抛出一小球,小球垂直撞击倾角为30°的斜面,问小球在空中飞行了多少时间。
解:t=3s 2.求平抛初速度2.如图3,在倾角为37°的斜面底端的正上方H 处,平抛一小球,该小球垂直打在斜面上的一点,求小球抛出时的初速度。
解:3.质量为m 的小球以v 0的水平初速度从O 点抛出后,恰好击中斜角为θ的斜面上的A 点.如果A 点距斜面底边(即水平地面)的高度为h ,小球到达A 点时的速度方向恰好与斜面方向垂直,如图5-2-20,则以下正确的叙述为( )ABDA .可以确定小球到达A 点时,重力的功率;B .可以确定小球由O 到A 过程中,动能的改变C .可以确定小球从A 点反弹后落地至水平面的时间D .可以确定小球起抛点O 距斜面端点B 的水平距离 3.求平抛物体的落点4.如图5-14所示,斜面上有a 、b 、c 、d 四个点,ab =bc =cd 点正上方O 点以速度v 水平抛出一个小球,它落在斜面上b 点,若小球从O 点以速度2v 水平抛出,不计空气阻力,则它落在斜面上的( A)A .b 与c 之间某一点B .c 点C .c 与d 之间某一点D .d 点二、物体的起点和落点均在斜面上此类问题的特点是物体的位移与水平方向的夹角即为斜面的倾角。
一般要从位移关系入手,根据位移中分运动和合运动的大小和方向(角度)关系进行求解。
1.求平抛初速度及时间5.如图,倾角为θ的斜面顶端,水平抛出一钢球,落到斜面底端,已知抛出点到落点间斜边长为L ,求抛出的初速度及时间?解:钢球下落高度:,∴飞行时间t =,水平飞行距离 ,初速度v 0==θθsin 2cos gl6.如图所示,从倾角为θ的斜面上的A 点以速度V 0平抛一个小球,小球落在斜面上的B 点.则小球从A 到B 的运动时间为 。
(gv θtan 20) 2.求平抛末速度及位移大小7.如图,从倾角为θ的斜面上的A 点,以初速度v 0,沿水平方向抛出一个小球,落在斜面上B 点。
斜面上的平抛运动模型及类平抛运动模型高三物理一轮复习专题
一.必备知识和方法斜面上的平抛运动问题是一种常见的题型,在解答这类问题时除要运用平抛运动的位移和速度规律,还要充分运用斜面倾角,找出斜面倾角同位移和速度与水平方向夹角的关系,从而使问题得到顺利解决。
1.从斜面上某点水平抛出,又落到斜面上的平抛运动的五个规律〔推论〕 (1)位移方向相同,竖直位移与水平位移之比等于斜面倾斜角的正切值。
(2)刚落到侧面时的末速度方向都平行,竖直分速度与水平分速度(初速度)之比等于斜面倾斜角正切值的2倍。
(3)运动的时间与初速度成正比⎝ ⎛⎭⎪⎫t =2v 0tan θg 。
(4)位移与初速度的二次方成正比⎝ ⎛⎭⎪⎫s =2v 20tan θg cos θ。
(5)当速度与斜面平行时,物体到斜面的距离最远,且从抛出到距斜面最远所用的时间为平抛运动时间的一半。
2.常见的模型模型方法分解速度,构建速度三角形,找到斜面倾角θ与速度方向的关系 分解速度,构建速度的矢量三角形 分解位移,构建位移三角形,隐含条件:斜面倾角θ等于位移与水平方向的夹角 根本 规律水平:v x =v 0竖直:v y =gt 合速度:v =v 2x +v 2y水平:v x =v 0 竖直:v y =gt 合速度:v =v 2x +v 2y水平:x =v 0t 竖直:y =12gt 2 合位移:方向:tan θ=v xv y 方向:tan θ=v yv xs =x 2+y 2 方向:tan θ=yx 运动 时间由tan θ=v 0v y =v 0gt 得t =v 0g tan θ由tan θ=v y v 0=gtv 0得t =v 0tan θg由tan θ=y x =gt2v 0得t=2v 0tan θg3.类平抛运动模型〔1〕模型特点:物体受到的合力恒定,初速度与恒力垂直,这样的运动叫类平抛运动。
如果物体只在重力场中做类平抛运动,那么叫重力场中的类平抛运动。
学好这类模型,可为电场中或复合场中的类平抛运动打根底。
专题22 平抛运动规律、 平抛运动与约束面相结合问题(解析版)
2023届高三物理一轮复习多维度导学与分层专练专题22 平抛运动规律、平抛运动与约束面相结合问题导练目标导练内容目标1平抛运动的基本规律与推论目标2平抛运动与斜面相结合目标3平抛运动与圆面相结合目标4平抛运动与竖直面相结合一、平抛运动的基本规律与推论1.四个基本规律飞行时间由t=2hg知,时间取决于下落高度h,与初速度v0无关水平射程x=v02hg,即水平射程由初速度v0和下落高度h共同决定,与其他因素无关落地速度v=v x2+v y2=v02+2gh,落地速度也只与初速度v0和下落高度h有关速度改变量任意相等时间间隔Δt内的速度改变量Δv=gΔt相同,方向恒为竖直向下,如图所示.两个重要推论(1)做平抛(或类平抛)运动的物体在任意时刻任一位置处,设其速度方向与水平方向的夹角为α,位移方向与水平方向的夹角为θ,则tan α=2tan θ。
(2)做平抛(或类平抛)运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图中A 点为OB 的中点。
【例1】如图所示,某一小球以020m /s v =的速度水平抛出,在落地之前经过空中A 、B 两点。
在A 点小球速度方向与水平方向的夹角为45,在B 点小球速度方向与水平方向的夹角为60(空气阻力忽略不计,g 取10m/2s )。
以下判断中正确的是( )A .小球经过A 点时竖直方向的速度为3B .小球经过A 、B 两点间的时间为231s t =()C .A 、B 两点间的高度差45m h =D .A 、B 两点间的水平位移相差320m 【答案】B【详解】AB .根据平行四边形定则知020m/s Ay v v ==;0tan 60203m/s By v v ==则小球由A 到B 的时间间隔203202(31)s By Ayv v t g--∆==故A 错误,B 正确; C .A 、B 的高度差221200400m 40m 2210By Ayv v h g--===⨯故C 错误;D .A 、B 两点间的水平位移相差0202(31)m=40(31)m x v t ∆=∆=⨯故D 错误。
完整版平抛运动知识点总结及解题方法归类总结
方向直线
合运动大小抛物线
与
方向
ɑ
的夹角
4.平抛运动的结论:
2h,由h,g决定,与v0没关。
V0
△V
①运行时间:t
V1
g
V2
△V
②水平射程:x v0
2h
,由h,g,v0
共同决定。
V3
△V
g
③任何相等的时间
t内,速度改变量
v =g t相等,且v
g t,方向竖直向下。
④以不同样的初速度,从倾角为θ的斜面上沿水平方向抛出的物体,再次落到斜面上时速
三、平抛运动及其推论
一、 知 点牢固:
1.定 :①物体以必然的初速度沿 水平方向 抛出,②物体 在重力 作用下、加速度 重力加速度g, 的运 叫做平抛运 。
2.特点:①受力特点:只碰到重力作用。
②运 特点:初速度沿水平方向,加速度方向 直向下,大小g, 迹 抛物 。③运 性 :是加速度g的匀 速曲 运 。
知物体完成这段翱翔的时间是〔〕
A.B.C.
D.
解析:先将物体的末速度分解为水均分速度和竖直分速度〔如图乙所示〕。依照
平抛运动的分解可知物体水平方向的初速度是向来不变的,因此;又由于与斜面垂
直、与水平面垂直,因此与间的夹角等于斜面的倾角。再依照平抛运动的分解可知
物体在竖直方向做自由落体运动,那么我们
依照即可以求出时间
推论1:任意时辰的两个分速度与合速度构成一个矢量直角三角形。
[例1]从空中同一点沿水平方向同时抛出两个小球,它们的初速度大小分别为 和 ,初速度方向相反, 求经过多长时间两小球速度之间的
夹角为?
解析:设两小球抛出后经过时间,它
们速度之间的夹角为,与竖直方向的
平抛运动专题复习
平抛运动一、平抛运动 1.基本规律 (1)位移关系(2)速度关系2.两个重要推论(1)做平抛运动的物体在任意时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,即x B =x A2.推导:⎭⎪⎬⎪⎫tan θ=y Ax A -x Btan θ=v y v 0=2yAx A→x B=x A2 (2)做平抛运动的物体在任意时刻任意位置处,有tan θ=2tan α. 推导:⎭⎪⎬⎪⎫tan θ=v y v 0=gtv 0tan α=y x =gt2v 0→tan θ=2tan α 总结:共9个基本物理量,知二求其他。
已知v 0与v ,求t 已知v 0与а,求t 已知v 与а,求v 0、t 已知v 与x ,求v 0、t 已知v 与y ,求v 0、t 已知v 与θ,求v 0、t 已知а与x ,求v 0、t已知а与y ,求v 0、t已知x 与y ,求v 0、t 已知x 与θ,求v 0、t 已知v 0与θ,求t1、抛体+地面【答案】BC 2、2、【答案】3、抛体+墙(靶、飞镖)(2018·河南部分重点中学联考)某同学玩飞镖游戏,先后将两只飞镖a 、b 由同一位置水平投出,已知飞镖投出时的初速度v a >v b ,不计空气阻力,则两支飞镖插在竖直靶上的状态(俯视图)可能是( )解析 两只飞镖a 、b 都做平抛运动,在水平方向上做匀速直线运动,则有x =v 0t ,它们的水平位移大小相等,由于v a >v b ,所以运动时间关系为t a <t b ,由h =12gt 2知h a <h b ,所以插在竖直靶上时a 在b 的上面,选项C 、D 错误;设飞镖插在竖直靶上前瞬间速度与水平方向的夹角为α,则tan α=gt v 0,因为v a >v b ,t a <t b ,所以有αa <αb ,选项A 正确,B 错误。
答案 A 4.(1)顺着斜面平抛(如图12)图12已知v 0与θ,求t 方法:分解位移.x =v 0t , y =12gt 2,tan θ=y x, 可求得t =2v 0tan θg. (2)对着斜面平抛(垂直打到斜面,如图13)图13已知v 0与θ,求t 方法:分解速度.v x =v 0, v y =gt ,tan θ=v x v y =v 0gt, 可求得t =v 0g tan θ.3.在倾角为θ的斜面顶端,以初速度v0水平抛出一小球,不计空气阻力,则小球与斜面相距最远时速度的大小为( )A.v0cos θ B.v0 cos θC.v0sin θ D.v0 sin θ答案 B解析当小球速度方向与斜面平行时离斜面最远,速度的水平分量不变,故v cos θ=v0,解得:v=v0cos θ,故B正确.平抛+半圆如图15所示,半径和几何关系制约平抛运动时间t :图15h =12gt 2,R±R2-h2=v0t,联立两方程可求t.例7(2020·福建泉州市第一次质量检查)某游戏装置如图18所示,安装在竖直轨道AB 上的弹射器可上下移动,能水平射出速度大小可调节的小弹丸.圆心为O的圆弧槽BCD上开有小孔P,弹丸落到小孔时,速度只有沿OP方向才能通过小孔,游戏过关,则弹射器在轨道上( )图18A.位于B点时,只要弹丸射出速度合适就能过关B.只要高于B点,弹丸射出速度合适都能过关C.只有一个位置,且弹丸以某一速度射出才能过关D .有两个位置,只要弹丸射出速度合适都能过关 答案 C解析 根据平抛运动速度反向延长线过水平位移的中点可知,位于B 点时,不管速度多大,弹丸都不可能沿OP 方向从P 点射出,故A 错误;如图所示,根据平抛运动速度反向延长线过水平位移的中点可得:EN =12R (1+cos α),则竖直位移PN=EN ·tan α=12R (1+cos α)tan α,弹射器离B 点的高度为y =PN -R sin α=12R (tanα-sin α),所以只有一个位置,且弹丸以某一速度射出才能过关,故B 、D 错误,C 正确.抛体+自由落体/比较两个平抛的物理量(2019·陕西汉中市下学期模拟)如图7所示,x 轴在水平地面上,y 轴在竖直方向.图中画出了从y 轴上沿x 轴正方向水平抛出的三个小球a 、b 和c 的运动轨迹.不计空气阻力,下列说法正确的是( )图7A .a 和b 的初速度大小之比为2∶1B .a 和b 在空中运动的时间之比为2∶1C .a 和c 在空中运动的时间之比为2∶1D .a 和c 的初速度大小之比为2∶1 答案 C 解析 根据t =2h g 可知a 和b 在空中运动的时间之比为2∶1;根据v =xt可知a 和b 的初速度大小之比为1∶2,选项A 、B 错误.根据t =2hg可知a 和c 在空中运动的时间之比为2∶1;根据v =x t可知a 和c 的初速度大小之比为2∶1,选项C 正确,D 错误. 2019·福建宁德市5月质检)某同学在练习投篮时将篮球从同一位置斜向上抛出,其中有两次篮球垂直撞在竖直放置的篮板上,运动轨迹如图6所示,不计空气阻力,关于这两次篮球从抛出到撞击篮板的过程( )图6A .两次在空中运动的时间相等B .两次抛出时的速度相等C .第1次抛出时速度的水平分量小D .第2次抛出时速度的竖直分量大 答案 C解析 将篮球的运动反向处理,即为平抛运动.由题图可知,第2次运动过程中的高度较小,所以运动时间较短,故A 错误.平抛运动在竖直方向上是自由落体运动,第2次运动过程中的高度较小,故第2次抛出时速度的竖直分量较小,故D 错误.平抛运动在水平方向是匀速直线运动,水平射程相等,由x =v 0t 可知,第2次抛出时水平分速度较大,第1次抛出时水平分速度较小,故C 正确.水平分速度第2次大,竖直分速度第1次大,根据速度的合成可知,两次抛出时的速度大小关系不能确定,故B 错误.)从竖直墙的前方A 处,沿AO 方向水平发射三颗弹丸a 、b 、c ,在墙上留下的弹痕如图11所示,已知Oa =ab =bc ,则a 、b 、c 三颗弹丸(不计空气阻力)( )图11A .初速度大小之比是6∶3∶ 2B .初速度大小之比是1∶2∶ 3C .从射出至打到墙上过程速度增量之比是1∶2∶ 3D .从射出至打到墙上过程速度增量之比是6∶3∶ 2 答案 AC解析 水平发射的弹丸做平抛运动,竖直方向上是自由落体运动,水平方向上是匀速直线运动,又因为竖直方向上Oa =ab =bc ,即Oa ∶Ob ∶Oc =1∶2∶3,由h =12gt 2可知t a ∶t b ∶t c=1∶2∶3,由水平方向x =v 0t 可得v a ∶v b ∶v c =1∶12∶13=6∶3∶2,故选项A正确,B 错误;由Δv =gt ,可知从射出至打到墙上过程速度增量之比是1∶2∶3,故选项C 正确,D 错误.4.(2020·山西晋城市模拟)如图3所示,斜面体ABC 固定在水平地面上,斜面的高AB 为 2 m ,倾角为θ=37°,且D 是斜面的中点,在A 点和D 点分别以相同的初速度水平抛出一个小球,结果两个小球恰能落在地面上的同一点,则落地点到C 点的水平距离为(sin 37°=0.6,cos 37°=0.8,g =10 m/s 2,不计空气阻力)( )图3A.34 mB.23 mC.22 mD.43 m 答案 D7.(2019·河南洛阳市期末调研)如图6所示,位于同一高度的小球A 、B 分别以v 1和v 2的速度水平抛出,都落在了倾角为30°的斜面上的C 点,小球B 恰好垂直打到斜面上,则v 1、v 2之比为( )图6A .1∶1 B.2∶1 C.3∶2 D.2∶3 答案 C解析 小球A 、B 下落高度相同,则两小球从飞出到落在C 点用时相同,均设为t ,对A 球:x =v 1t ① y =12gt 2②又tan 30°=y x③ 联立①②③得:v 1=32gt ④ 小球B 恰好垂直打到斜面上,则有:tan 30°=v 2v y =v 2gt⑤则得:v 2=33gt ⑥ 由④⑥得:v 1∶v 2=3∶2,所以C 正确.(2019·湖南永州市第二次模拟)如图14所示,在斜面顶端a 处以速度v a 水平抛出一小球,经过时间t a 恰好落在斜面底端c 处.今在c 点正上方与a 等高的b 处以速度v b 水平抛出另一小球,经过时间t b 恰好落在斜面的三等分点d 处.若不计空气阻力,下列关系式正确的是( )图14A .t a =32t b B .t a =3t b C .v a =32v b D .v a =32v b答案 C解析 a 、b 两球下降的高度之比为3∶1,根据h =12gt 2可知,t =2hg,则a 、b 两球运动的时间关系为t a =3t b ,故A 、B 错误;因为a 、b 两球水平位移之比为3∶2,由v 0=x t得:v a =32v b ,故C 正确,D 错误.如图16,从O点分别以水平初速度v1、v2抛出两个小球(未画出,可视为质点),最终它们分别落在圆弧上的A点和B点,已知OA与OB互相垂直,且OA与竖直方向成α角,不计空气阻力,则两小球初速度大小之比v1∶v2为 ( )图16A.tan αB.cos αC .tan αtan αD .cos αtan α答案 C解析 设圆弧半径为R ,两小球运动时间分别为t 1、t 2.对球1:R sin α=v 1t 1,R cos α=12gt 12;对球2:R cos α=v 2t 2,R sin α=12gt 22,联立解得:v 1v 2=tan αtan α,C 正确.变式4 (多选)(2020·山东济宁市第一次模拟)如图17所示,在竖直平面内固定一半圆形轨道,O 为圆心,AB 为水平直径,有一可视为质点的小球从A 点以不同的初速度向右水平抛出,不计空气阻力,下列说法正确的是( )图17A .初速度越大,小球运动时间越长B .初速度不同,小球运动时间可能相同C .小球落到轨道的瞬间,速度方向可能沿半径方向D .小球落到轨道的瞬间,速度方向一定不沿半径方向 答案 BD临界类平抛(4)速度改变量因为平抛运动的加速度为恒定的重力加速度g,所以做平抛运动的物体在任意相等时间间隔Δt内的速度改变量Δv=gΔt是相同的,方向恒为竖直向下,如图4所示.图41.定义:将物体以一定的初速度沿水平方向抛出,物体只在重力作用下的运动.2.性质:平抛运动是加速度为g的匀变速曲线运动,运动轨迹是抛物线.3.研究方法:运动的合成与分解(1)水平方向:匀速直线运动;(2)竖直方向:自由落体运动.平抛的相遇问题运动的合成与分解关键词:分解、合成、思想、观念、曲线、直线 1、曲线运动的条件和特征下列关于运动和力的叙述中,正确的是( ) A .做曲线运动的物体,其加速度方向一定是变化的 B .物体做圆周运动,所受的合力一定是向心力 C .物体所受合力恒定,该物体速率随时间一定均匀变化 D .物体运动的速率在增加,所受合力一定做正功 答案 D解析 做曲线运动的物体,其加速度方向不一定是变化的,例如平抛运动,选项A 错误;物体做匀速圆周运动时,所受的合力一定是向心力,选项B 错误;物体所受合力恒定,该物体速率随时间不一定均匀变化,例如平抛运动,选项C 错误;根据动能定理可知,物体运动的速率在增加,所受合力一定做正功,选项D 正确.一质点做匀速直线运动。
高考物理复习---《平抛运动的临界、极值问题》基础知识梳理与专项练习题
高考物理复习---《平抛运动的临界、极值问题》基础知识梳理与专项练习题基础知识梳理1.平抛运动的临界问题有两种常见情形:(1)物体的最大位移、最小位移、最大初速度、最小初速度;(2)物体的速度方向恰好达到某一方向.2.解题技巧:在题中找出有关临界问题的关键字,如“恰好不出界”、“刚好飞过壕沟”、“速度方向恰好与斜面平行”、“速度方向与圆周相切”等,然后利用平抛运动对应的位移规律或速度规律进行解题.例2如图8所示,窗子上、下沿间的高度H=1.6 m,竖直墙的厚度d=0.4 m,某人在距离墙壁L=1.4 m、距窗子上沿h=0.2 m 处的P点,将可视为质点的小物件以垂直于墙壁的速度v水平抛出,要求小物件能直接穿过窗口并落在水平地面上,不计空气阻力,g=10 m/s2.则可以实现上述要求的速度大小是( )图8A.2 m/s B.4 m/sC.8 m/s D.10 m/s答案 B解析小物件做平抛运动,恰好擦着窗子上沿右侧墙边缘穿过时速度v最大.此时有:L=v max t1,h=12gt12代入数据解得:v max=7 m/s小物件恰好擦着窗口下沿左侧墙边缘穿过时速度v最小,则有:L +d =v min t 2,H +h =12gt 22, 代入数据解得:v min =3 m/s ,故v 的取值范围是 3 m/s ≤v ≤7 m/s ,故B 正确,A 、C 、D 错误.专项练习题1、(平抛运动的极值问题)(2019·广东五校一联)某科技比赛中,参赛者设计了一个轨道模型,如图9所示.模型放到0.8 m 高的水平桌子上,最高点距离水平地面2 m ,右端出口水平.现让小球由最高点静止释放,忽略阻力作用,为使小球飞得最远,右端出口距离桌面的高度应设计为( )图9A .0B .0.1 mC .0.2 mD .0.3 m 答案 C解析 小球从最高点到右端出口,满足机械能守恒,有mg (H -h )=12mv 2,从右端出口飞出后小球做平抛运动,有x =vt ,h =12gt 2,联立解得x =2H -h h ,根据数学知识知,当H -h =h 时,x 最大,即h =1 m 时,小球飞得最远,此时右端出口距离桌面高度为Δh =1 m -0.8 m =0.2 m ,故C 正确.本课结束。
高考物理二轮复习专题归纳—抛体运动(全国版)
高考物理二轮复习专题归纳—抛体运动(全国版)考点一运动的合成与分解例1(2022·辽宁卷·1)如图所示,桥式起重机主要由可移动“桥架”“小车”和固定“轨道”三部分组成.在某次作业中桥架沿轨道单向移动了8m,小车在桥架上单向移动了6m.该次作业中小车相对地面的位移大小为()A.6m B.8mC.10m D.14m答案C解析根据位移概念可知,该次作业中小车相对地面的位移大小为x=x12+x22=82+62m=10m,故选C.例2(多选)(2022·广东省高三检测)如图所示,A、B两球分别套在两光滑无限长的水平直杆上,两球通过一轻绳绕过一定滑轮(轴心固定不动)相连,某时刻连接两球的轻绳与水平方向的夹角分别为α、β,A球向左的速度大小为v,下列说法正确的是()A.此时B球的速度大小为v cosαcosβB.此时B球的速度大小为v cosβcosαC.当β增大到等于90°时,B球的速度达到最大D.在β增大到90°的过程中,绳对B球的拉力一直做正功答案ACD解析将A球的速度分解为沿轻绳方向和垂直于轻绳的方向,在沿轻绳方向的分速度等于B球沿轻绳方向的分速度.A球在沿轻绳方向的分速度为v绳=v cosα,所以v B=v绳cosβ=v cosαcosβ,A正确,B错误;当β增大到等于90°时,B球的速度在沿轻绳方向的分速度等于0,所以A沿绳子方向的分速度也是0,而cosα′不等于0,所以A球的速度为0;此时A的动能全部转化为B的动能,所以B球的速度达到最大,C正确;在β增大到90°的过程中,轻绳的方向与B球运动的方向之间的夹角始终是锐角,所以轻绳对B球的拉力一直做正功,D正确.把物体的实际速度分解为垂直于绳(杆)和平行于绳(杆)两个分量,根据沿绳(杆)方向的分速度大小相等求解.常见的模型如图所示.考点二平抛运动1.平抛运动问题的求解方法已知条件情景示例解题策略已知速度方向从斜面外平抛,垂直落在斜面上,如图所示,已知速度的方向垂直于斜面.分解速度tan θ=v 0v y =v 0gt从圆弧形轨道外平抛,恰好无碰撞地进入圆弧形轨道,如图所示,已知速度方向沿该点圆弧的切线方向.分解速度tan θ=v y v 0=gt v 0已知位移方向从斜面上平抛又落到斜面上,如图所示,已知位移的方向沿斜面向下.分解位移tan θ=y x =12gt 2v 0t =gt 2v 0在斜面外平抛,落在斜面上位移最小,如图所示,已知位移方向垂直斜面.分解位移tan θ=x y =v 0t 12gt 2=2v 0gt2.平抛运动的两个推论(1)设做平抛运动的物体在任意时刻的速度方向与水平方向的夹角为θ,位移方向与水平方向的夹角为φ,则有tanθ=2tanφ,如图甲所示.(2)做平抛运动的物体任意时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图乙所示.例3(多选)(2022·湖南省高三学业质量第二次联合检测)投壶是从先秦延续至清末的中国传统礼仪和宴饮游戏,《礼记传》中提到:“投壶,射之细也.宴饮有射以乐宾,以习容而讲艺也.”如图所示,甲、乙两人在不同位置沿水平方向各射出一支箭,箭尖插入壶中时与水平面的夹角分别为37°和53°.已知两支箭的质量、竖直方向下落高度均相等,忽略空气阻力、箭长、壶口大小等因素的影响(sin37°=0.6,cos37°=0.8,sin53°=0.8,cos53°=0.6),下列说法正确的是()A.甲、乙两人所射箭的初速度大小之比为16∶9B.甲、乙两人所射箭落入壶口时的速度大小之比为3∶4C.甲、乙两人投射位置与壶口的水平距离之比为9∶16D .甲、乙两人所射箭落入壶口时的动能之比为16∶9答案AD 解析由题知甲、乙两人射箭高度相同,则两支箭在空中的运动时间相同,落入壶口时竖直方向的速度v y 相同.设箭尖插入壶中时与水平面的夹角为θ,箭射出时的初速度为v 0,则tan θ=v y v 0,即v 0=v y tan θ,故两支箭射出时的初速度大小之比为tan 53°∶tan 37°=16∶9,A 正确;设箭尖插入壶中时的速度大小为v ,则v =v y sin θ,故两支箭落入壶口时的速度大小之比为sin 53°∶sin 37°=4∶3,B 错误;因两支箭在空中的运动时间相同,甲、乙两人投射位置与壶口的水平距离之比等于初速度大小之比,为16∶9,C 错误;由E k =12mv 2可知,两支箭落入壶口时的动能之比为16∶9,D 正确.例4(2022·全国甲卷·24)将一小球水平抛出,使用频闪仪和照相机对运动的小球进行拍摄,频闪仪每隔0.05s 发出一次闪光.某次拍摄时,小球在抛出瞬间频闪仪恰好闪光,拍摄的照片编辑后如图所示.图中的第一个小球为抛出瞬间的影像,每相邻两个球之间被删去了3个影像,所标出的两个线段的长度s 1和s 2之比为3∶7.重力加速度大小取g =10m/s 2,忽略空气阻力.求在抛出瞬间小球速度的大小.答案255m/s 解析频闪仪每隔0.05s 发出一次闪光,每相邻两个球之间被删去3个影像,故相邻两球的时间间隔为t=4T=4×0.05s=0.2s设抛出瞬间小球的速度大小为v0,每相邻两球间的水平方向上位移为x,竖直方向上的位移分别为y1、y2,根据平抛运动位移公式有x=v0ty1=12gt2=12×10×0.22m=0.2my2=12g(2t)2-12gt2=12×10×(0.42-0.22)m=0.6m令y1=y,则有y2=3y1=3y已标注的线段s1、s2分别为s1=x2+y2 s2=x2+3y2=x2+9y2则有x2+y2∶x2+9y2=3∶7整理得x=255y,故在抛出瞬间小球的速度大小为v0=xt=255m/s.例5(2022·浙江省名校协作体模拟)第24届冬季奥运会于2022年2月在北京召开,如图甲所示为运动员跳台滑雪运动瞬间,运动示意图如图乙所示,运动员从助滑雪道AB上由静止开始滑下,到达C点后水平飞出,落到滑道上的D点,运动轨迹上的E点的速度方向与轨道CD平行,设运动员从C到E与从E到D的运动时间分别为t1与t2,(忽略空气阻力,运动员可视为质点)下列说法正确的是()A.t1<t2B.t1>t2C .若运动员离开C 点时的速度加倍,则落在斜面上的速度方向不变D .若运动员离开C 点时的速度加倍,则落在斜面上距C 的距离也加倍答案C 解析以C 点为原点,以CD 为x 轴,以CD 垂直向上方向为y 轴,建立坐标系如图所示.对运动员的运动进行分解,y 轴方向上的运动类似竖直上拋运动,x 轴方向做匀加速直线运动.当运动员速度方向与轨道平行时,在y 轴方向上到达最高点,根据竖直上拋运动的对称性,知t 1=t 2,A 、B 错误;将初速度沿x 、y 方向分解为v 1、v 2,将加速度沿x 、y 方向分解为a 1、a 2,则运动员的运动时间为t =2v 2a 2,落在斜面上的距离s =v 1t +12a 1t 2,离开C 点时的速度加倍,则v 1、v 2加倍,t 加倍,由位移公式得s 不是加倍关系,D 错误;设运动员落在斜面上的速度方向与水平方向的夹角为α,斜面的倾角为θ,则有:tan α=v y v 0,tan θ=y x =v y 2t v 0t =v y 2v 0,得tan α=2tan θ,θ一定,则α一定,可知运动员落在斜面上的速度方向与从C 点飞出时的速度大小无关,C正确.考点三斜抛运动例6(2022·广东茂名市模拟)铅球运动员采用原地推和滑步推两种推铅球方式,如图为滑步推铅球.推力相同时,滑步推铅球比原地推铅球增加几米的成绩.两种方式铅球出手时相对地面的位置和速度方向都相同,忽略空气阻力,则()A.两种方式推出的铅球在空中运动的时间可能相同B.采用原地推铅球方式推出的铅球上升的高度更高C.两种方式推出的铅球在空中运动到最高点时的速度都相同D.滑步推铅球可以增加成绩,可能是延长了运动员对铅球的作用时间答案D解析两种方式铅球出手时相对地面的位置和速度方向都相同,滑步推铅球成绩更好,所以滑步推铅球初速度更大,竖直和水平方向的分速度更大,到达最高点的时间更长,故根据斜抛的对称性,铅球在空中运动的时间更长,上升的高度更高,在最高点速度更大,A、B、C错误;初速度都是0,滑步推时末速度大,根据动量定理有Ft=mv-0,可知推力相同时,动量变化大的推力作用时间长,D 正确.例7(2022·山东潍坊市一模)在2月8日举行的北京2022年冬奥会自由式滑雪女子大跳台的比赛中,18岁的中国选手谷爱凌顶住压力,在关键的第三跳以超高难度动作锁定金牌,这也是中国女子雪上项目第一个冬奥会冠军.滑雪大跳台的赛道主要由助滑道、起跳台、着陆坡、停止区组成,如图所示.在某次训练中,运动员经助滑道加速后自起跳点C以大小为v C=20m/s、与水平方向成α=37°的速度飞起,完成空中动作后,落在着陆坡上,后沿半径为R=40m的圆弧轨道EF自由滑行通过最低点F,进入水平停止区后调整姿势做匀减速滑行直到静止.已知运动员着陆时的速度方向与竖直方向的夹角为α=37°,在F点运动员对地面的压力大小为所受重力(含装备)的2倍,运动员在水平停止区受到的阻力大小为所受重力(含装备)的二分之一,g 取10m/s 2,sin 37°=0.6,忽略运动过程中的空气阻力.求:(1)水平停止区FG 的最小长度L ;(2)运动员完成空中动作的时间t (结果保留两位有效数字).答案(1)40m (2)3.3s 解析(1)将运动员与装备看成一个质点,总质量为m 总,在F 点时,运动员对地面的压力大小为所受重力(含装备)的2倍,由牛顿第三定律知地面对该运动员整体的支持力大小F N =2m 总g此时支持力与总重力的合力为圆周运动提供向心力,则有F N -m 总g =m 总v 2R解得v =20m/s运动员到达F 点后,在水平停止区有F 阻=0.5m 总g =m 总a ,做加速度大小为a 的匀减速直线运动,水平停止区FG 的最小长度L =v 22a=40m (2)对运动员由C 点起跳的速度进行正交分解,水平方向做匀速直线运动,竖直方向做匀减速直线运动,水平方向速度v x =v C cos α竖直方向速度v y =v C sin α-gt着陆时竖直方向分速度与C 点的竖直方向分速度方向相反,由于运动员着陆时的速度方向与竖直方向的夹角为α,则有tan α=v x -v y =v C cos αgt -v C sin α代入数值得t ≈3.3s.1.斜抛运动是匀变速曲线运动,可分解为水平方向上的匀速直线运动和竖直方向上的加速度为g 的匀变速直线运动,以斜上抛为例(如图所示)速度:v x =v 0cos θ,v y =v 0sin θ-gt位移:x =v 0cos θ·t ,y =v 0sin θ·t -12gt 22.当物体做斜上抛运动至最高点时,运用逆向思维,可转化为平抛运动.1.(2022·江苏省高考考前打靶卷)如图所示,一男孩欲拿石子击打苹果,第一次以抛射角(抛出时速度与水平方向的夹角)θ1抛出石子,第2次以θ2(图中未画出)抛出(θ2>θ1),假设两次抛出时的位置相同,且初速度v 0大小相等,两次均击中苹果.不计空气阻力,则()A .第一次石子在空中运动的时间比第二次长B .若仅减小v 0,欲击中苹果,则抛射角θ1、θ2均变大C .改变v 0大小和抛射角,石子不可能水平击中苹果D .两次击中苹果前瞬间的速度大小相等答案D解析石子做斜抛运动,水平方向做匀速运动,则有v x=v0cosθ,故石子在空中的运动时间t=xv x=xv0cosθ,所以t1t2=cosθ2cosθ1,因为θ2>θ1,故cosθ2<cosθ1,所以t1<t2,第一次运动时间较短,A错误;石子竖直方向做竖直上抛运动,则有v y=v0sinθ,竖直方向上升的高度为h=v y t-12gt2,联立可得h=x tanθ-gx22v02cos2θ,故只需要v0大小和抛射角满足上式即可击中苹果,C错误;由h=x tanθ-gx22v02cos2θ可知,v0减小时,θ不一定增大,B错误;由动能定理有-mgh=12mv2-12mv02,故两次击中苹果前瞬间的速度大小相等,D正确.2.(2022·北京市昌平区高三期末)运动的合成与分解是我们研究复杂运动时常用的方法.如图所示,一高度为h、内壁光滑的圆筒竖直放置,将一个小滑块在圆筒上端O点以水平初速度v0沿圆筒内壁切线方向抛出.小滑块沿圆筒内壁运动了一周后恰好从O′点离开圆筒.已知重力加速度为g,不计空气阻力.(1)求小滑块从抛出到离开圆筒所用的时间t.(2)如果沿虚线OO′将圆筒展开,以小滑块初始位置为坐标原点O,初速度v0方向为x轴正方向,竖直向下为y轴正方向,建立直角坐标系xOy,请在图中定性地画出小滑块在圆筒内表面的运动轨迹.答案(1)2h g(2)见解析图解析(1)由题意可知,小滑块竖直方向做自由落体运动,可得小滑块从抛出到离开圆筒所用的时间为h =12gt 2,解得t =2h g;(2)由题意可知,小滑块在圆筒内表面的运动轨迹如图所示.专题强化练[保分基础练]1.(2022·广东省模拟)《西游记》中,一只大龟浮水作舟,驮着唐僧师徒四人和白龙马渡过了通天河.已知大龟在静水中游动的速度大小与河水的流速大小之比为2∶1,出发点A 到正对岸B 点的距离为d ,河岸平直.若大家以最短的时间渡河,则大家上岸的地点与B 点的距离为()A.d 4B.d 2C .2dD .4d答案B解析要使渡河时间最短,大龟游动的速度方向应垂直河岸,渡河时间为t =dv 1,大家上岸的地点与B 点的距离x =v 2t ,又v 1∶v 2=2∶1,联立解得x =d2,故B 正确.2.(2022·广东卷·6)如图所示,在竖直平面内,截面为三角形的小积木悬挂在离地足够高处,一玩具枪的枪口与小积木上P 点等高且相距为L .当玩具子弹以水平速度v 从枪口向P 点射出时,小积木恰好由静止释放,子弹从射出至击中积木所用时间为t .不计空气阻力.下列关于子弹的说法正确的是()A .将击中P 点,t 大于L vB .将击中P 点,t 等于L vC .将击中P 点上方,t 大于L v D .将击中P 点下方,t 等于L v答案B解析由题意知枪口与P 点等高,子弹和小积木在竖直方向上均做自由落体运动,当子弹击中积木时子弹和积木的运动时间相同,根据h =12gt 2,可知下落高度相同,所以将击中P 点;又由于初始状态子弹到P 点的水平距离为L ,子弹在水平方向上做匀速直线运动,故有t =Lv,故选B.3.(2022·江苏扬州市高三期末)如图所示,滑板爱好者先后两次从坡道A 点滑出,均落至B 点,第二次的滞空时间比第一次长,则()A.两次滑出速度方向相同B.两次腾空最大高度相同C.第二次滑出速度一定大D.第二次在最高点速度小答案D解析对滑板爱好者运动分析可知,从坡道A点滑出后,水平方向做匀速直线运动,竖直方向做竖直上抛运动,根据竖直上抛运动的对称性,即上升时间等于下降时间,由题知第二次的滞空时间比第一次长,所以第二次下降时间大于第一次,由h=12gt2知,第二次腾空最大高度大于第一次,又因为两次水平位移相等,所以两次位移与水平方向的夹角不同,即两次滑出速度方向不相同,故A、B错误;因为第二次下降时间大于第一次,且两次水平位移相等,由x=v x t知,第二次滑出后水平分速度小于第一次,即第二次在最高点速度小,又由v y=gt可知,第二次滑出后竖直分速度大于第一次,所以第二次滑出速度不一定大,故C错误,D 正确.4.(多选)(2022·广西北海市一模)如图所示,直杆AB斜靠在墙角,∠ABO=53°,∠AOB=90°,AO=5m.现从距A点正下方1.8m的C点以初速度v0水平抛出一小球(可视为质点).已知重力加速度g取10m/s2,sin53°=0.8,cos53°=0.6,空气阻力不计.若使小球不能碰到杆AB,则v0的值可能为()A.4m/s B.4.4m/s C.5m/s D.6m/s答案AB解析若小球刚与杆接触时的末速度与水平方向夹角为53°,即小球运动轨迹与杆相切,设此时小球竖直方向下落高度为h,水平位移为x,则根据平抛运动相关推论有tan53°=2hx,由几何关系可得tan53°=h+h ACx,联立解得h=1.8m,x=2.7m,则由v0<xt,t=2hg,联立解得v0<4.5m/s,C、D错误,A、B正确.5.(2022·安徽合肥市质检)某校秋季运动会分为竞技组和健身组,健身组设置了定点投篮项目.某同学正在进行定点投篮,篮球在空中划出了一道漂亮的弧线.在篮球运动所在的竖直平面内建立坐标系xOy,如图所示,篮球由A点投出,A、B、C、D是篮球运动轨迹上的四点,C为篮球运动的最高点,A、B、D三点的坐标已在图中标出,重力加速度为g,空气阻力忽略不计.则下列说法正确的是()A.篮球经过C点时速度大小为gLB.篮球经过B点和D点的动量相同C.篮球由A到B和由B到C过程,动量的变化量相同D.篮球由B到C和由C到D过程,重力做功相同答案C解析依题意可知篮球抛出后做斜抛运动,利用逆向思维,将篮球从A到C的轨迹看作从C到A的平抛运动,设C点坐标为(0,y C),C点到B点时间为t,由题图可得L=v C t,y C=12gt2,3L-y C=gt2,联立解得y C=L,v C=gL2,故A错误;由题图知B点和D点在同一水平线上,则可知篮球在两点处的速度大小相等,但方向不同,所以两点处的动量不相同,故B错误;由题图知篮球由A到B和由B 到C过程水平方向上发生的位移相等,则所用时间相等,根据动量定理可得mgt =-Δp,所以动量的变化量相同,故C正确;篮球由B到C过程重力做负功,由C到D过程重力做正功,二者不相同,故D错误.6.(2022·广东梅州市一模)如图甲所示是网球发球机,某次室内训练时将发球机在距地面一定的高度的地方放置,然后向竖直墙面发射网球.假定网球水平射出,某两次射出的网球碰到墙面时与水平方向夹角分别为30°和60°,如图乙所示.若不考虑网球在空中受到的阻力,则()A.两次发射的初速度之比为3∶1B.碰到墙面前空中运动时间之比为1∶3C.下降高度之比为1∶3D.碰到墙面时动能之比为3∶1答案C解析在平抛运动过程中,有h =12gt 2,x =v 0t ,位移与水平方向夹角的正切值tanα=h x =gt 2v 0,速度与水平方向夹角的正切值tan β=v y v 0=gtv 0,则tan β=2tan α.在平抛运动中,h =xtan β2,所以h 1h 2=tan 30°tan 60°=13;由h =12gt 2可知,t 1t 2=h 1h 2=33;水平速度v =x t ,可得v 1v 2=t 2t 1=31;由v t =v 0cos β可知,v t 1v t 2=v 1cos 60°v 2cos 30°=11,所以碰到墙面时动能之比E k1E k2=v t 12v t 22=11,故A 、B 、D 错误,C 正确.[争分提能练]7.(2022·湖北武汉市高三期末)活塞带动飞轮转动可简化为如图所示的模型:图中A 、B 、O 三处都是转轴,当活塞在水平方向上移动时,带动连杆AB 运动,进而带动OB 杆以O 点为轴转动.若某时刻活塞的水平速度大小为v ,连杆AB 与水平方向夹角为α,AB 杆与OB 杆的夹角为β,此时B 点做圆周运动的线速度大小为()A.v sin αsin βB.v cos αsin βC.v cos αcos βD.v sin αcos β答案B解析设B 点做圆周运动的线速度大小为v ′,此速度为B 点的实际速度,根据运动合成与分解,可以分解为沿杆方向的分速度和垂直杆方向的分速度,如图,沿杆方向的分速度大小为v B =v ′cos(β-π2)=v ′sin β,A 点速度为水平方向的v ,根据运动合成与分解,可以分解为沿杆方向的分速度和垂直杆方向的分速度,如图,沿杆方向的分速度为v A =v cos α,又有二者沿杆方向的分速度相等,即v ′sin β=v cos α,则v ′=v cos αsin β,故选B.8.(多选)(2022·山东卷·11)如图所示,某同学将离地1.25m 的网球以13m/s 的速度斜向上击出,击球点到竖直墙壁的距离4.8m .当网球竖直分速度为零时,击中墙壁上离地高度为8.45m 的P 点.网球与墙壁碰撞后,垂直墙面速度分量大小变为碰前的0.75倍.平行墙面的速度分量不变.重力加速度g 取10m/s 2,网球碰墙后的速度大小v 和着地点到墙壁的距离d 分别为()A .v =5m/sB .v =32m/sC .d =3.6mD .d =3.9m答案BD解析设网球飞出时的速度为v 0,竖直方向v 0竖直2=2g (H -h ),代入数据得v 0竖直=2×10×8.45-1.25m/s =12m/s ,则v 0水平=132-122m/s =5m/s ,网球击出点到P 点水平方向的距离x 水平=v 0水平t =v 0水平·v 0竖直g =6m ,根据几何关系可得打在墙面上时,垂直墙面的速度分量v 0水平⊥=v 0水平·45=4m/s ,平行墙面的速度分量v0水平∥=v0水平·35=3m/s,反弹后,垂直墙面的速度分量v水平⊥′=0.75·v0水平⊥=3m/s,则反弹后的网球速度大小为v=v水平=v水平⊥′2+v0水平∥2=32m/s,网球落到地面的时间t′=2Hg=2×8.4510s=1.3s,着地点到墙壁的距离d=v水平⊥′t′=3.9m,故B、D正确,A、C错误.9.(2022·安徽蚌埠市高三期末)如图为弹球游戏装置的简化示意图,两块平行挡板竖直固定在水平面上,右侧挡板下端有一小孔B,小亮将弹性小球自右侧挡板顶端A点以一定的水平速度向左抛出,小球经两个挡板多次碰撞最终恰好从B飞出,游戏获胜.已知两挡板的间距为L,A、B的高度差为h,小球直径略小于小孔的内径,小球与挡板碰撞前后的水平和竖直分速度大小均不变,且不与水平面相碰,重力加速度为g.则小球抛出时的速度v和它与两挡板碰撞总次数N分别为()A.v=(N+1)L2gh,N=2n(n=1,2,3,…)B.v=(N+1)L2gh,N=2n-1(n=1,2,3,…)C.v=(N+1)L g2h,N=2n(n=1,2,3,…)D.v=(N+1)L g2h,N=2n-1(n=1,2,3,…)答案B解析小球在两平行挡板间的运动可分解为水平方向的匀速直线运动和竖直方向的自由落体运动.设运动总时间为t,则水平方向、竖直方向分别有(N+1)L=vt,N=2n-1(n=1,2,3,…),h=12gt2,联立可得v=(N+1)L2gh,N=2n-1(n=1,2,3,…),故A、C、D错误,B正确.10.(2022·山东日照市一模)跳台滑雪是冬奥会的重要项目之一.如图所示,某次比赛中,质量为m的运动员(包括滑雪板)以速度v0从跳台顶端水平飞出,经过一段时间后落在倾斜赛道上,赛道的倾角为θ,重力加速度为g,空气阻力忽略不计,运动员(包括滑雪板)视为质点.则运动员在空中运动的过程中()A.动量变化量的大小为mv0tanθB.位移的大小为v02tanθgC.距离赛道最远时的速度大小为v0tanθD.距离赛道最远时的竖直位移为总竖直位移的14答案D解析根据动量定理,动量变化量等于重力的冲量,即为竖直方向的动量变化,当运动员落至斜面时,分解其位移得tanθ=hx=12gt2v0t=gt2v0,则落至斜面时的竖直分速度为v y=gt=2v0tanθ,因此动量变化量为Δp=mΔv=2mv0tanθ,故A错误;由A得运动员运动的时间为t=2v0tanθg,则水平位移为x=v0t=2v02tanθg,则运动员实际位移大小为x实际=xcosθ=2v02tanθg cosθ,故B错误;将运动分解为沿斜面和垂直斜面两个方向,则垂直斜面方向的初速度方向垂直斜面向上,加速度方向垂直斜面向下,则垂直斜面的速度分量减小为零时运动员离斜面最远,即当运动员的速度方向与斜面平行时,距离赛道最远,在最远处分解其速度得cosθ=v0v,则v=v0cosθ,故C错误;垂直斜面方向的分运动类似于竖直上抛运动,根据竖直上抛运动的对称性,垂直斜面的速度分量减小为零时的运动时间为总时间的一半,再根据自由落体的公式h=12gt2得,距离赛道最远时的竖直位移为总竖直位移的14,故D正确.11.(2022·河北保定市七校联考)如图所示,两人各自用吸管吹黄豆,甲黄豆从吸管末端P点水平射出的同时乙黄豆从另一吸管末端M点斜向上射出.经过一段时间后两黄豆在N点相遇,曲线1和2分别为甲、乙黄豆的运动轨迹.若M点在P 点正下方,M点与N点位于同一水平线上,且PM长度等于MN的长度,不计空气阻力,可将黄豆看成质点,则()A.两黄豆相遇时甲的速度与水平方向的夹角的正切值为乙的两倍B.甲黄豆在P点的速度与乙黄豆在最高点的速度不相等C.两黄豆相遇时甲的速度大小为乙的两倍D.乙黄豆相对于M点上升的最大高度为PM长度的一半答案A解析设甲黄豆做平抛运动的时间为t,那么乙黄豆做斜抛运动的时间也为t,根据斜抛运动的对称性可知,乙黄豆从M点运动至最高点的时间为t2,乙黄豆从M点运动至最高点的水平位移为MN的一半,设PM=MN=L,甲黄豆在P点的速度为v1,乙黄豆到达最高点的速度为v′,在水平方向上由运动学规律:对甲黄豆有L=v1t,对乙黄豆从M点运动至最高点水平方向上有L2=v′·t2,联立解得v1=v′=Lt,故B错误;对甲黄豆到达N点时,在竖直方向上有L=12gt2,v1y=gt=2gL,在水平方向有v1=Lt=gL2,甲黄豆到达N点时的速度为v甲=v12+v1y2=5gL2,对乙黄豆在从M点运动至最高点的过程中,由逆向思维得上升的最大高度为h=12g(t2)2=14·12gt2=14L,所以乙黄豆相对于M点上升的最大高度为PM长度的14,乙黄豆在M点的竖直方向分速度为v2y2=2g·L4,则v2y=gL2,由运动的合成与分解得乙黄豆在N点的速度为v乙=v′2+v2y2=gL,所以两黄豆相遇时甲的速度大小不是乙的两倍,故C、D错误;两黄豆相遇时甲的速度与水平方向的夹角正切值为tanα=v1yv1=2gLgL2=2,乙的速度与水平方向的夹角正切值为tanβ=v2yv′=v2yv1=gL2gL2=1,所以两黄豆相遇时甲的速度与水平方向的夹角不是乙的两倍,甲的速度与水平方向的夹角的正切值为乙的两倍,故A正确.12.(2022·广东开平市模拟)2022年2月8日,18岁的中国选手谷爱凌在北京冬奥会自由式滑雪女子大跳台比赛中以绝对优势夺得金牌,这是中国代表团在北京冬奥会上的第三枚金牌,被誉为“雪上公主”的她赛后喜极而泣.现将比赛某段过程视为如图所示的质点小球的运动,小球从倾角为α=30°的斜面顶端O 点以速度v 0飞出,已知v 0=20m/s ,且与斜面夹角为θ=60°.图中虚线为小球在空中的运动轨迹,且A 为轨迹上离斜面最远的点,B 为小球在斜面上的落点,C 是过A 作竖直线与斜面的交点,不计空气阻力,重力加速度取g =10m/s 2.求:(1)小球从O 点运动到A 点所用时间t ;(2)小球离斜面最远的距离L ;(3)O 、C 两点间距离x .答案(1)2s (2)103m (3)40m 解析(1)将小球在O 点的速度沿斜面和垂直斜面分解,如图所示,垂直斜面方向有v 1=v 0sin θ,a 1=g cos α,t =v 1a 1,联立解得t =2s(2)垂直斜面方向的速度匀减速至0时,有L =v 122a 1,代入数据得L =103m (3)解法1:由垂直斜面方向运动对称性可得,小球从O 到A 与从A 到B 所用时间相等,平行斜面方向有v 2=v 0cos θ,a 2=g sin α,则平行斜面方向有x OB =v 2·2t +12a 2(2t )2,小球在水平方向做匀速直线运动,C 为OB 中点,则x =12x OB。
《平抛运动》专题复习
《平抛运动》平抛运动和匀速圆周运动,是高中阶段最典型的两种曲线运动,是用初等数学知识就可以研究透彻的两种曲线运动,所以高考是每年都必考的内容。
(1)平抛运动的物体在水平方向不受力,所以做匀速直线运动;在竖直方向只受重力且竖直方向的初速度为零,所以做自由落体运动。
平抛运动的物体只受重力作用且初速度方向垂直。
(2)会画运动过程示意图(如图1所示)。
(两个矩形:位移矩形、速度矩形)(3)水平方向的速度大小保持不变:0xv v =。
(4)竖直方向的速度大小有三种计算方法:yv gt =;y v =θtan 0v v y =。
会识别会画y v t -图(如图2所示)。
(5)合速度的大小:tv =θcos 0v v t=。
(6)偏转角(即合速度的方向与水平初速度的方向的夹角为θ):0tan y xv gt v v θ==,会识别会画tan t θ-图(如图3所示)。
(7)水平方向的位移:0xv t =。
可以推出:gyv x 20=。
(8)竖直方向的位移: 221gt y =。
可以求出飞行时间:gy t 2=(只与y 有关,与初速度0v 无关)。
(9)飞行时间:t=y 和当地的重力加速度g 决定,与0v 无关。
(10)合位移的大小: 22y x s+=。
(11)合位移的方向与水平初速度方向的夹角: 20012tan 2gt y gt x v t v φ===。
会识别会画tan tφ-图(如图4所示)。
(12)tg θ与tg φ的关系:tan 2tan θφ=。
会用这个公式巧解题。
(13)末速度的反向延长线交于水平位移的中点。
即θtan 2xy =。
(14)平均速度的大小:ty x tsv 22+==。
(总位移与时间的比值)(15)相等的时间内速度的变化量均相等。
因为gt v =∆。
(16)相等的时间内竖直位移之差恒相等。
即2gt y=∆。
(17)从抛出点开始,相等的时间内的竖直位移之比等于奇数比。
即:5:3:1:::321=y y y 。
2025高考物理总复习实验探究平抛运动的特点
考点一 实验技能储备
4.数据处理 (1)判断平抛运动的轨迹是不是抛物线 如图所示,在x轴上找出等距离的几个点A1、A2、 A3…,把线段OA1的长度记为l,则OA2=2l,OA3 =3l,由A1、A2、A3…向下作垂线,与轨迹交点 分别记为M1、M2、M3…,若轨迹是一条抛物线, 则各点的y坐标和x坐标之间应该满足关系式y=ax2(a是待定常量),用刻度尺测 量某点的x、y两个坐标值代入y=ax2求出a,再测量其他几个点的x、y坐标值, 代入y=ax2,若在误差范围内都满足这个关系式,则这条曲线是一条抛物线。
T=
25.0-15.0×10-2 10
s=0.1 s,
钢球在水平方向上做匀速直线运动,
所以钢球平抛的初速度为 v=Tx=00..21 m/s=2 m/s。
考点二 探索创新实验
(3)图甲装置中,木板上悬挂一条铅垂线,其作用是_方__便__调__整__木__板__,__使__其_ _保__持__在__竖__直__平__面__上__。
考点一 实验技能储备
O1 O2 O3 O4 O5 O6 y/cm 2.95 6.52 9.27 13.20 16.61 19.90 x/cm 5.95 8.81 10.74 12.49 14.05 15.28 x2/cm2 35.4 77.6 115.3 156.0 197.4 233.5 (1)根据上表数据,在图(b)给出的坐标纸上补上 O4数据点,并绘制“y-x2”图线。 答案 见解析图
悬挂铅垂线的目的是方便调整木板,使其保持在竖直平面上。
考点二 探索创新实验
例4 (2023·江苏南通市二模改编)图甲为某种瓶装水电动取水器,某实验 小组利用平抛运动规律测量该取水器取水时的流量(单位时间流出水的体 积)。实验方案如下:
考向07 曲线运动 平抛运动-备战2023年高考物理一轮复习考点微专题(全国通用)(解析版)
考向07曲线运动平抛运动【重点知识点目录】1.物体做曲线运动的条件与轨迹分析2.小船渡河模型3.绳(杆)端速度分解模型4.平抛运动的基本规律5.多体平抛运动6.落点有约束条件的平抛运动1.(2022•广东)如图所示,在竖直平面内,截面为三角形的小积木悬挂在离地足够高处,一玩具枪的枪口与小积木上P点等高且相距为L。
当玩具子弹以水平速度v从枪口向P点射出时,小积木恰好由静止释放,子弹从射出至击中积木所用时间为t。
不计空气阻力。
下列关于子弹的说法正确的是()A.将击中P点,t大于B.将击中P点,t等于C.将击中P点上方,t大于D.将击中P点下方,t等于【答案】B。
【解析】解:当玩具子弹以水平速度v从枪口向P点射出时,小积木恰好由静止释放,子弹和小积木在竖直方向上都做自由落体,在竖直方向上保持相对静止,因此子弹将击中P点,子弹在水平方向上做匀速直线运动,故击中的时间为t=,故B正确,ACD错误;(多选)2.(2019•新课标Ⅱ)如图(a),在跳台滑雪比赛中,运动员在空中滑翔时身体的姿态会影响下落的速度和滑翔的距离。
某运动员先后两次从同一跳台起跳,每次都从离开跳台开始计时,用v表示他在竖直方向的速度,其v﹣t图象如图(b)所示,t1和t2是他落在倾斜雪道上的时刻。
则()A.第二次滑翔过程中在竖直方向上的位移比第一次的小B.第二次滑翔过程中在水平方向上的位移比第一次的大C.第二次滑翔过程中在竖直方向上的平均加速度比第一次的大D.竖直方向速度大小为v1时,第二次滑翔在竖直方向上所受阻力比第一次的大【答案】BD。
【解析】解:A、根据图象与时间轴所围图形的面积表示竖直方向上位移的大小可知,第二次滑翔过程中的位移比第一次的位移大,故A错误;B、由图象知,第二次的运动时间大于第一次运动的时间,由于第二次竖直方向下落距离大,合位移方向不变,所以第二次滑翔过程中在水平方向上的位移比第一次的大,故B正确;C、由图象知,第二次滑翔时的竖直方向末速度小,运动时间长,据加速度的定义式可知其平均加速度小,故C错误;D、当竖直方向速度大小为v1时,第一次滑翔时图象的斜率大于第二次滑翔时图象的斜率,而图象的斜率表示加速度的大小,故第一次滑翔时速度达到v1时加速度大于第二次时的加速度,据mg﹣f=ma可得阻力大的加速度小,故第二次滑翔时的加速度小,故其所受阻力大,故D正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平抛运动专题复习与解题技巧
一、平抛运动的基础知识
1.定义:水平抛出的物体只在重力作用下的运动。
2.特点:
(1)平抛运动是一个同时经历水平方向的匀速直线运动和竖直方向的自由落体运动的合运动。
(2)平抛运动的轨迹是一条抛物线,其一般表达式为。
(3)平抛运动在竖直方向上是自由落体运动,加速度恒定,所以竖直方向上在相等的时间相邻的位移的高度之比为…,竖直方向上在相等的时间相邻的位移之差是一个恒量。
(4)在同一时刻,平抛运动的速度(与水平方向之间的夹角为)方向和位移方向(与水平方向之间的夹角是)是不相同的,其关系式(即任意一点的速度延长线必交于此时物体位移的水平分量的中点)。
3.平抛运动的规律:描绘平抛运动的物理量有、、、、、、、,已知这八个物理量中的任意两个,可以求出其它六个。
运动分类加速度速度位移轨迹
分运动方向0 直线
方向直线合运动大小抛物线
与方向
的夹角
二、平抛运动解题的常见技巧
1.巧用分运动方法求水平速度
求解一个平抛运动的水平速度的时候,我们首先想到的方法,就应该是从竖直方向上的自由落体运动中求出时间,然后,根据水平方向做匀速直线运动,求出速度。
例1.如图所示,某人骑摩托车在水平道路上行驶,要在A处越过的壕沟,沟面对面比A处低,摩托车的速度至少要有多大?
解析:在竖直方向上,摩托车越过壕沟经历的时间:,在水平方向上,摩托车能越过壕沟的速度至少为:。
2.巧用分解合速度方法求时间
对于一个做平抛运动的物体来说,如果知道了某一时刻的速度方向,则我们常常是“从分解速度”的角度来研究问题。
例2.如图甲所示,以9.8m/s的初速度水平抛出的物体,飞行一段时间后,垂直地撞在倾角为
的斜面上。
可知物体完成这段飞行的时间是()
A.B.C.D.
解析:先将物体的末速度分解为水平分速度和竖直分速度(如图2乙所示)。
根据平抛运动的分解可知物体水平方向的初速度是始终不变的,所以;又因为与斜面垂直、与水平面垂直,所以与间的夹角等于斜面的倾角。
再根据平抛运动的分解可知物体在竖直方向做自由落体运动,那么我们根据就可以求出时间了。
则:,所以
,根据平抛运动竖直方向是自由落体运动可以写出:,所以,所以答案为C。
3.巧用分解位移方法求时间比
对于一个做平抛运动的物体来说,如果知道了某一时刻的位移方向(如物体从已知倾角的斜面上水平抛出,这个倾角也等于位移与水平方向之间的夹角),则我们可以把位移分解成水平方向和竖直方向,然后运用平抛运动的运动规律来进行研究问题(这种方法,暂且叫做“分解位移法”)
例3.如图所示,在坡度一定的斜面顶点以大小相同的速度同时水平向左与水平向右抛出两个小球A和B,两侧斜坡的倾角分别为和,小球均落在坡面上,若不计空气阻力,则A和B两小球的运动时间之比为多少?
解析:和都是物体落在斜面上后,位移与水平方向的夹角,则运用分解位移的方法可以得到:,所以有,同理,则。
4.巧用竖直方向运动性质方法求解
在研究平抛运动的实验中,由于实验的不规,有许多同学作出的平抛运动的轨迹,常常不能直接找到运动的起点(这种轨迹,我们暂且叫做“残缺轨迹”),这给求平抛运动的初速度带来了很大的困难。
为此,我们可以运用竖直方向是自由落体的规律来进行分析。
例4.某一平抛的部分轨迹如图所示,已知,,,求。
解析:A与B、B与C的水平距离相等,且平抛运动的水平方向是匀速直线运动,可设A到B、B 到C的时间为T,则:,又竖直方向是自由落体运动,则:,代入已知量,联立可得:,。
5.巧用平抛运动最值方法求距离
例5.如图所示,在倾角为的斜面上以速度水平抛出一小球,该斜面足够长,则从抛出开始计时,经过多长时间小球离开斜面的距离的达到最大,最大距离为多少?
解析:将平抛运动分解为沿斜面向下和垂直斜面向上的分运动,虽然分运动比较复杂一些,但易将物体离斜面距离达到最大的物理本质凸显出来。
取沿斜面向下为轴的正方向,垂直斜面向上为
轴的正方向,如图所示,在轴上,小球做初速度为、加速度为的匀变速直线运动,所以有:
①
②
当时,小球在轴上运动到最高点,即小球离开斜面的距离达到最大。
由①式可得小球离开斜面的最大距离:。
当时,小球在轴上运动到最高点,它所用的时间就是小球从抛出运动到离开斜面最大距离的时间。
由②式可得小球运动的时间为。
6.巧用正切角两倍关系
平抛运动的物体经时间后,其速度与水平方向的夹角为,位移与水平方向的夹角为,则有。
例6.(08年全国I卷)如图所示,一物体自倾角为θ的固定斜面顶端沿水平方向抛出后落在斜面上.物体与斜面接触时速度与水平方向的夹角φ满足()
A.tanφ=sinθB.tanφ=cosθC.tanφ=tanθD.tanφ=2tanθ
解析:竖直速度与水平速度之比,竖直位移与水平位移之比为,故,D正确。
点评:若应用解决本题,直接可以选出答案。
结语:平抛运动是较为复杂的匀变速曲线运动,在高考中经常考,有关平抛运动的命题也层出不穷。
若能切实掌握其基本处理方法和这些有用的推论,就不难解决平抛问题。
因此在复习时应注意对平抛运动规律的总结,从而提高自己解题的能力。