平抛和类平抛运动

合集下载

平抛运动与类平抛运动

平抛运动与类平抛运动

2014届高一物理校本课程
平抛运动与类平抛运动
1.类平抛运动:一般来说,质点受恒力作用具有恒定的加速度,初速度与恒力垂直,质点的运动就与平抛运动类似,通常我们把物体的这类运动称做类平抛运动.例如带电粒子在电场中的偏转运动等.
2.由平抛运动可推广得到物体做类平抛运动的条件
(1)有初速度;
(2)受恒力作用,且与初速度方向垂直。

3.解决此类问题要正确理解合运动与分运动的关系
(1)等时性:合运动与分运动经历的时间相等,即同时开始,同时进行,同时停止;
(2)独立性:一个物体同时参与几个分运动,各分运动独立进行,不受其他分运动的影响;
(3)等效性:各分运动的规律叠加起来与合运动的规律有完全相同的效果。

1.如图所示,A、B 两质点以相同的水平速度v0抛出,A 在竖直面内运动,落地点为P1,
B 沿光滑斜面运动,落地点为P2,不计空气阻力,比较P1、P2在x 轴方向上距抛出点的远近关系及落地瞬时速度的大小关系,则有
A.P1较近
B.P1、P2一样远
C.A 落地时,速率大
D.A、B 落地时,速率一样大
2.甲、乙、丙三个小球分别位于如图所示的竖直平面内,甲、乙在同一条竖直线上,甲、丙在同一条水平线上,水平面上的P点在丙的正下方.在同一时刻甲、乙、丙开始运动,甲以初速度v0做平抛运动,乙以水平速度v0沿光滑水平面向右做匀速直线运动,丙做自由落体运动.则
A.若甲、丙两球在空中相遇,此时乙球还没有到达P点
B.若甲、乙、丙三球同时相遇,则一定发生在P点
C.若只有甲、乙两球在水平面上相遇,此时丙球还未着地
D.无论初速度v0大小如何,甲、乙、丙三球一定会同时在P点相遇
2022-2-21。

类平抛运动知识点总结笔记

类平抛运动知识点总结笔记

类平抛运动知识点总结笔记一、基本概念1. 平抛运动的定义平抛运动是指一个物体在水平方向上做匀速直线运动的过程。

在平抛运动中,物体的运动轨迹是一个抛物线,而竖直方向上的运动是受到重力的影响而做匀变速直线运动。

2. 平抛运动的特点(1)水平速度恒定:在平抛运动中,物体在水平方向上的速度是恒定的,不受外力的影响;(2)竖直加速度恒定:在竖直方向上,物体受到重力的作用,因而竖直方向上的加速度恒定;(3)运动轨迹为抛物线:由于水平方向速度恒定、竖直方向加速度恒定,物体的运动轨迹为一个抛物线。

二、运动规律1. 水平方向的运动规律(1)速度:物体在水平方向上的速度是恒定的,可用以下公式表示:v = v0其中v表示物体的水平速度,v0表示物体的初始速度。

(2)位移:物体在水平方向上的位移可以用以下公式表示:x = v0t + 0.5at^2其中x表示物体在水平方向上的位移,t表示时间,a表示物体的水平加速度。

2. 竖直方向的运动规律(1)速度:物体在竖直方向上的速度可以用以下公式表示:v = v0 + gt其中v表示物体的竖直速度,v0表示物体的初始竖直速度,g表示重力加速度,t表示时间。

(2)位移:物体在竖直方向上的位移可以用以下公式表示:y = v0t + 0.5gt^2其中y表示物体在竖直方向上的位移。

3. 平抛运动轨迹方程由于平抛运动是在水平和竖直方向上同时进行的,所以物体的轨迹可以用以下方程表示:y = xtanθ - (gx^2) / (2v0^2cos^2θ)其中y表示物体在竖直方向上的位移,x表示物体在水平方向上的位移,θ表示抛出角度,v0表示初始速度,g表示重力加速度。

三、应用实例1. 投掷运动当我们往前抛一个物体时,它会在空中做平抛运动。

我们可以利用平抛运动的规律来分析物体的飞行轨迹和落点位置,从而提高投掷的准确性。

2. 炮弹射击在军事领域,炮弹的射击轨迹是一个重要的考量因素。

利用平抛运动的规律,可以精确计算炮弹的射击角度和发射速度,从而达到精确打击目标的目的。

专题23 平抛运动临界问题、相遇问题、类平抛运和斜抛运动(解析版)

专题23 平抛运动临界问题、相遇问题、类平抛运和斜抛运动(解析版)

2023届高三物理一轮复习多维度导学与分层专练专题23 平抛运动临界问题、相遇问题、类平抛运和斜抛运动导练目标 导练内容目标1 平抛运动临界问题 目标2 平抛运动中的相遇问题目标3 类平抛运动 目标4斜抛运动一、平抛运动临界问题擦网压线既擦网又压线由21122121⎪⎪⎭⎫⎝⎛==-v x g gt h H 得:()h H gx v -=211由222122121⎪⎪⎭⎫⎝⎛+==v x x g gt H 得:()Hg x x v 2212+= 由20122121⎪⎪⎭⎫⎝⎛==-v x g gt h H 和202122121⎪⎪⎭⎫ ⎝⎛+==v x x g gt H 得:()22121x x x H h H +=-【例1】如图排球场,L=9m,球网高度为H=2m ,运动员站在网前s=3m 处,正对球网跳起将球水平击出,球大小不计,取重力加速度为g=10m/s.(1)若击球高度为h=2.5m,为使球既不触网又不出界,求水平击球的速度范围; (2) 当击球点的高度h 为何值时,无论水平击球的速度多大,球不是触网就是出界? 【答案】(1)10m /s <v 2/s (2)2.13m【详解】(1)当球刚好不触网时,根据h 1−h =12gt 12,解得:()()1122 2.521010h h t s g -⨯-===,则平抛运动的最小速度为:11/310/10min x v s m s t ===.当球刚好不越界时,根据h 1=12gt 22,解得:1222 2.5210h t s g ⨯=== ,则平抛运动的最大速度为:22/122/2max x v s m s t ===,则水平击球的速度范围为10/s <v 2/s .(2)设击球点的高度为h .当h 较小时,击球速度过大会出界,击球速度过小又会触网,1222()h h H g g -=,其中x 1=12m ,x 2=3m ,h=2m ,代入数据解得:h=2.13m ,即击球高度不超过此值时,球不是出界就是触网. 二、平抛运动中的相遇问题平抛与自由落体相遇水平位移:l=vt空中相遇:ght 2<平抛与平抛相遇(1)若等高(h 1=h 2),两球同时抛;(2)若不等高(h 1>h 2)两球不同时抛,甲球先抛; (3)位移关系:x 1+x 2=L(1)A 球先抛; (2)t A >t B ; (3)v 0A <v 0B(1)A 、B 两球同时抛; (2)t A =t B ; (3)v 0A >v 0B 平抛与竖直上抛相遇(1)L=v 1t ;(2)22222121v h t h gt t v gt =⇒=-+; (3)若在S 2球上升时两球相遇,临界条件:2v t g<,即:22h v v g<,解得:2v gh >;(4)若在S 2球下降时两球相遇,临界条件:222v v t g g <<,即2222v h vg v g<<, 解得:22ghv gh <<平抛与斜上抛相遇(1)Ltvt v=⋅+θcos21;(2)θθsin21sin212222vhthgttvgt=⇒=-+;(3)若在S2球上升时两球相遇,临界条件:2sinvtgθ<,即:22sinsinh vv gθθ<,解得:2singhvθ>;(4)若在S2球下降时两球相遇,临界条件:22sin2sinv vtg gθθ<<,即222sin2sinsinv h vg v gθθθ<<,解得:22sin singhghvθθ<<【例2】如图,两个弹性球P、Q在距离水平地面一定高度处,若给P水平向右的初速度0(00v≠),同时释放Q,(两球在同一竖直面内运动)两球与地面接触时间可忽略不计,与地面接触前后水平方向速度不变,竖直方向速度大小不变,方向相反。

2023届高考物理一轮复习学案 4.2 抛体运动

2023届高考物理一轮复习学案 4.2 抛体运动

第2节抛体运动学案基础知识:一、平抛运动1.定义将物体以一定的初速度沿水平方向抛出,物体只在重力作用下所做的运动。

2.性质加速度为g的匀变速曲线运动,运动轨迹是抛物线。

3.条件:v0≠0,沿水平方向;只受重力作用。

二、平抛运动的基本规律1.研究方法平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动。

2.基本规律(1)位移关系(2)速度关系三、斜抛运动1.定义:将物体以初速度v0斜向上方或斜向下方抛出,物体只在重力作用下的运动。

2.性质:斜抛运动是加速度为g的匀变速曲线运动,运动轨迹是抛物线。

3.研究方法:运动的合成与分解(1)水平方向:匀速直线运动;(2)竖直方向:匀变速直线运动。

4.基本规律(以斜上抛运动为例,如图所示)(1)水平方向:v0x=v0cos θ,F合x=0;(2)竖直方向:v0y=v0sin θ,F合y=mg。

考点一平抛运动的规律及应用[典例1]在地面上方某点将一小球以一定的初速度沿水平方向抛出,不计空气阻力,则小球在随后的运动中()A.速度和加速度的方向都在不断改变B.速度与加速度方向之间的夹角一直减小C.在相等的时间间隔内,速率的改变量相等D.在相等的时间间隔内,动能的改变量相等[典例2](多选)如图所示,从某高度处水平抛出一小球,经过时间t到达地面时,速度方向与水平方向的夹角为θ,不计空气阻力,重力加速度为g。

下列说法正确的是()A.小球水平抛出时的初速度大小为gt tan θB.小球在t时间内的位移方向与水平方向的夹角为θ2C.若小球初速度增大,则平抛运动的时间变长D.若小球初速度增大,则θ减小分解思想在平抛运动中的应用(1)解答平抛运动问题时,一般的方法是将平抛运动位移沿水平和竖直两个方向分解,这样分解的优点是不用分解初速度也不用分解加速度。

(2)画出速度(或位移)分解图,通过几何知识建立合速度(合位移)、分速度(分位移)及其方向间的关系,通过速度(位移)的矢量三角形求解未知量。

4-03-1-考点强化:平抛(类平抛)运动基本规律的理解及应用

4-03-1-考点强化:平抛(类平抛)运动基本规律的理解及应用
解析
此点的坐标 值能提供什 么信息?
h= gt = × 10× 1 m = 5 m, A正 g 2 2 图象可得 =1,v0=10 m/s,D v0 2、tan θ=vy=gt= 2gh,此推导公式对解 确,B 错误. vx v0 v 0 正确,C 错误; 答案 AD 题有何启发? 解析显隐
第11页
第19页
返回目录
结束放映
第3页
v=?
结束放映
数字媒体资源库
4.速度改变量:因为平抛运动的加速度为恒定的重力加速度g, 所以做平抛运动的物体在任意相等时间间隔Δt内的速度改变量
Δv=gΔt相同,方向恒为竖直向下,如图所示.
第4页
返回目录
结束放映
数字媒体资源库
二、类平抛问题的分析 1.类平抛运动的特点:物体所受合力为恒力,且与初速度的方向 垂直;在初速度v0方向做匀速直线运动,在合力方向做初速度为 零的匀加速直线运动,加速度a=F合/m. 2.类平抛运动的求解方法 (1)常规分解法 将类平抛运动分解为沿初速度方向的匀速直线 运动和垂直于初速度方向(即沿合力的方向)的匀加速直线运动, 两分运动彼此独立,互不影响,且与合运动具有等时性. (2)特殊分解法 对于有些问题,可以过抛出点建立适当的直角坐标系,将加速度 a分解为ax、ay,初速度v0分解为vx、vy,然后分别在x、y方向列 方程求解.
解析
设物块水平抛出的初速度为 v0,高度为 h,由机械能守恒定
1 2 律得 mv0=mgh,即 v0= 2gh。物块在竖直方向上的运动是自由 2 落体运动,故落地时的竖直分速度 vy= 2gh=vx=v0,则该物块落 π 地时的速度方向与水平方向的夹角θ = ,故选项 B 正确,选项 4 A、C、D 错误。 解析显隐 答案 B

人教版物理必修2 5.2平抛运动和类平抛运动 讲义

人教版物理必修2 5.2平抛运动和类平抛运动 讲义

§5-2 平抛运动 & 类平抛运动一、抛体运动1.定义:以一定的速度将物体抛出,在空气阻力可以忽略的情况下,物体只受重力的作用,它的运动即为抛体运动。

2.条件:①物体具有初速度;②运动过程中只受G。

二、平抛运动1.定义:如果物体运动的初速度是沿水平方向的,这个运动就叫做平抛运动。

2.条件:①物体具有水平方向的初速度;②运动过程中只受G。

3.处理方法:平抛运动可以看作两个分运动的合运动:一个是水平方向的匀速直线运动,一个是竖直方向的自由落体运动。

4.规律:五.平抛运动基本规律的理解1.飞行时间:由t=2hg知,时间取决于下落高度h,与初速度v0无关.α(1)位移:.2tan,)21()(,21,22220vgtgtt vsgty t vx=+===ϕ(2)速度:vvx=,gtvy=,22)(gtvv+=,tanvgt=θ(3)推论:①从抛出点开始,任意时刻速度偏向角θ的正切值等于位移偏向角φ的正切值的两倍。

②从抛出点开始,任意时刻速度的反向延长线对应的水平位移的交点为此水平位移的中点,即.2tanxy=θ如果物体落在斜面上,则位移偏向角与斜面倾斜角相等。

2.水平射程:x =v 0t =v 0 2hg,即水平射程由初速度v 0和下落高度h 共同决定,与其他因素无关.3.落地速度:v t =v 2x +v 2y =v 20+2gh ,以θ表示落地速度与x 轴正方向的夹角,有tanθ=v y v x =2gh v 0,所以落地速度也只与初速度v 0和下落高度h 有关.4.速度改变量:因为平抛运动的加速度为恒定的重力加速度g ,所以 做平抛运动的物体在任意相等时间间隔Δt 内的速度改变量Δv =g Δt 相同,方向恒为竖直向下,如图所示.1.物体做平抛运动,下列说法正确的是( )A. 加速度的方向时刻改变B. 速度的变化率不断增大C. 任意一段时间内速度变化量的方向均竖直向下D. 相同时间内速率变化量相同 【答案】C 【解析】物体做平抛运动,加速度的方向始终竖直向下,A 不符合题意;速度的变化率等于加速度,则速度的变化率恒定不变,B 不符合题意;任意一段时间内速度变化量∆v=g ∆t ,方向竖直向下,C 符合题意;相同时间内竖直速度变化相同,水平速度不变,则相同时间内速率变化量不相同,D 不符合题意;2.如图所示,小球从斜面的顶端A 处以大小为 的初速度水平抛出,恰好落到斜面底部的B 点,且此时的速度大小,空气阻力不计,该斜面的倾角为( )A. 60°B. 45°C. 37°D. 30° 【答案】B【解析】根据平行四边形定则知,落到底端时竖直分速度为: ,则运动的时间为:,设斜面的倾角为 ,则有 ,解得,B 符合题意.3.在水平地面上M 点的正上方某一高度处,将球S 1以初速度v 1水平向右抛出,同时在M 点右方地面上N 点处,将球S 2以初速度v 2斜向左上方抛出,两球恰在M 、N 连线的中点正上方相遇,不计空气阻力,则两球从抛出到相遇过程中( )A.初速度大小关系为v 1=v 2B.速度变化量相等C.水平位移相同D.都不是匀变速运动【答案】B 由于两球恰在M 、N 连线的中点正上方相遇,说明它们的水平位移大小相等,又由于运动的时间相同,所以它们在水平方向上的分速度大小相同,即,所以,A 不符合题意;由于两个球都只受到重力的作用,加速度都是重力加速度g ,由 知,知它们速度的变化量相同,B 符合题意;在水平方向上,水平位移大小相等,但方向相反,所以位移不同,C 不符合题意;由于两个球都只受到重力的作用,加速度都是重力加速度g ,加速度恒定,都是匀变速运动,D 不符合题意.4.如图所示,从斜面上的A 点以速度 水平抛出一个物体,飞行一段时间后,落到斜面上的B 点;若仍从A 点抛出物体,抛出速度为,不计空气阻力,下列说法正确的是( )A. 物体的飞行时间不变B. 物体的位移变为原来的 21C. 物体落到斜面上的速度变为原来的41D. 物体落到斜面上时速度方向不变 【答案】D【解析】根据 可知,当初速度减半时,飞行的时间减半,A 不符合题意;根据x=v 0t 可知,物体的水平位移变为原来的1/4,竖直位移也变为原来的1/4,则物体的位移变为原来的1/4,B 不符合题意;水平初速度减半时,根据v y =gt 可知,落到斜面上的竖直速度变为原来的一半,可知物体落到斜面上的速度变为原来的1/2,C 不符合题意;根据 为定值,则物体落到斜面上时速度方向不变,D 符合题意;5.如图所示,以9.8m/s 的水平初速度抛出的物体,飞行一段时间后,垂直地撞在倾角为30°的斜面上,则物体飞行时间为( )A. 1sB.2s C. 3s D. 2s【答案】C 【解析】【解答】小球撞在斜面上的速度与斜面垂直,将该速度分解,如图。

高中物理必修二--5.8类平抛运动 斜抛运动

高中物理必修二--5.8类平抛运动 斜抛运动

sm

v02 g
例题3:在一次投篮游戏中,小明同学调整好力 度和方向,将球从A点向篮筐B投去,结果球 投到了篮筐的后面,如图所示。要使球投入篮 筐B中,小明同学可做的调整为:(ABCD)
A、减小初速度,投球的方向不变。
B、初速度大小不变,增大抛射角。
C、减小初速度,增大抛射角。
D、增大初速度,减小抛射角。
tanφ=2tanθ ,速度反向延长线与x轴相交x/2处。
例题1:如图所示,长方形光滑斜面的长为l, 高为h,倾角为θ 。现有一小球从斜面左上方
顶点P处沿水平方向射入,从右下方顶点Q离 开斜面。求小球入射的初速度v0。
v0 l
g sin 2
2h
例题2:在光滑的水平面内,一质量m=1 kg 的质 点以速度v0=10 m/s沿x轴正方向运动,经过原点 后受一沿y轴正方向(竖直方向)的恒力F=15 N作 用,直线OA与x轴成α=370, 如图所示曲线为质 点的轨迹图,如果质点的运动轨迹与直线OA相 交于P点。(g取10 m/s2).求: ⑴从O到P经历的时间以及P点的坐标. ⑵经过P点速度大小.
5.8类平抛运动、斜抛运动
一、类平抛运动
1、定义:物体具有一定的初速度,受到一个与 初速度垂直的恒定的合外力作用。
2、类平抛运动的性质:类平抛运动与平抛运动 的规律完全相同,处理方法也完全一样。只是v0 不一定在水平方向,合外力不是重力,加速度不 是重力加速度。即:沿初速度方向做匀速直线运 动,沿合外力方向做初速度为零的匀加速直线运 动。
t;y v0 sin
t 1 gt2;s 2
x2 y2
⑵速度公式:
vx v0 cos;vy v0 sin gt;v vx2 vy2

平抛运动的性质与基本规律(公式)(含答案)

平抛运动的性质与基本规律(公式)(含答案)

平抛运动的性质与基本规律(公式)一、基础知识 (一)平抛运动1、定义:将物体以一定的初速度沿水平方向抛出,不考虑空气阻力,物体只在重力作用下所做的运动.2、性质:加速度为重力加速度g 的匀变速曲线运动,运动轨迹是抛物线.3、基本规律:以抛出点为原点,水平方向(初速度v 0方向)为x 轴,竖直向下方向为y 轴,建立平面直角坐标系,则:(1)水平方向:做匀速直线运动,速度v x =v 0,位移x =v 0t . (2)竖直方向:做自由落体运动,速度v y =gt ,位移y =12gt 2.(3)合速度:v =v 2x +v 2y,方向与水平方向的夹角为θ,则tan θ=v y v x =gt v 0. (4)合位移:s =x 2+y 2,方向与水平方向的夹角为α,tan α=y x =gt2v 0.(二)平抛运动基本规律的理解 1、飞行时间:由t = 2hg知,时间取决于下落高度h ,与初速度v 0无关. 2、水平射程:x =v 0t =v 0 2hg,即水平射程由初速度v 0和下落高度h 共同决定,与其他因素无关. 3、落地速度:v t =v 2x +v 2y =v 20+2gh ,以θ表示落地速度与x 轴正方向的夹角,有tan θ=v y v x =2gh v 0,所以落地速度也只与初速度v 0和下落高度h 有关. 4、速度改变量:因为平抛运动的加速度为恒定的重力加速度g ,所以 做平抛运动的物体在任意相等时间间隔Δt 内的速度改变量Δv =g Δt 相同,方向恒为竖直向下,如图所示. 5、两个重要推论(1)做平抛(或类平抛)运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图中A 点和B 点所示.(2)做平抛(或类平抛)运动的物体在任意时刻任一位置处,设其末速度方向与水平方向的夹角为α,位移与水平方向的夹角为θ,则tan α=2tan θ.二、练习1、关于平抛运动,下列说法不正确的是( )A .平抛运动是一种在恒力作用下的曲线运动B .平抛运动的速度方向与恒力方向的夹角保持不变C .平抛运动的速度大小是时刻变化的D .平抛运动的速度方向与加速度方向的夹角一定越来越小 答案 B解析 平抛运动物体只受重力作用,故A 正确;平抛运动是曲线运动,速度时刻变化,由v =v 20+(gt )2知合速度v 在增大,故C 正确;对平抛物体的速度方向与加速度方向的夹角,有tan θ=v 0v y =v 0gt ,因t 一直增大,所以tan θ变小,θ变小.故D 正确,B 错误.本题应选B.2、对平抛运动,下列说法正确的是( )A .平抛运动是加速度大小、方向不变的曲线运动B .做平抛运动的物体,在任何相等的时间内位移的增量都是相等的C .平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动D .落地时间和落地时的速度只与抛出点的高度有关 答案 AC解析 平抛运动的物体只受重力作用,其加速度为重力加速度,故A 项正确;做平抛运动的物体,在任何相等的时间内,其竖直方向位移增量Δy =gt 2,水平方向位移不变,故B 项错误.平抛运动可分解为水平方向的匀速直线运动和竖直方向的自由落体运动,且落地时间t =2hg,落地速度为v =v 2x +v 2y =v 20+2gh ,所以C 项正确,D 项错误.3、质点从同一高度水平抛出,不计空气阻力,下列说法正确的是 ( )A .质量越大,水平位移越大B .初速度越大,落地时竖直方向速度越大C .初速度越大,空中运动时间越长D .初速度越大,落地速度越大 答案 D解析 物体做平抛运动时,h =12gt 2,x =v 0t ,则t =2hg,所以x =v 0 2hg,故A 、C 错误.由v y =gt =2gh ,故B 错误. 由v =v 20+v 2y =v 20+2gh ,则v 0越大,落地速度越大,故D 正确. 4、关于做平抛运动的物体,说法正确的是( )A .速度始终不变B .加速度始终不变C .受力始终与运动方向垂直D .受力始终与运动方向平行 答案 B解析 物体做平抛运动的条件是物体只受重力作用,且初速度沿水平方向,故物体的加速度始终不变,大小为g ,B 正确;物体的平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动,其合运动是曲线运动,速度的大小和方向时刻变化,A 错误;运动过程中,物体所受的力与运动方向既不垂直也不平行,C 、D 错误. 5、某人用细线系一个小球在竖直面内做圆周运动,不计空气阻力,若在小球运动到最高点时刻,细线突然断了,则小球随后将做( )A .自由落体运动B .竖直下抛运动C .竖直上抛运动D .平抛运动答案 D6、(2012·课标全国·15)如图,x 轴在水平地面内,y 轴沿竖直方向. 图中画出了从y 轴上沿x 轴正向抛出的三个小球a 、b 和c 的运动 轨迹,其中b 和c 是从同一点抛出的.不计空气阻力,则( ) A .a 的飞行时间比b 的长 B .b 和c 的飞行时间相同C .a 的水平初速度比b 的小D .b 的水平初速度比c 的大 答案 BD解析 根据平抛运动的规律h =12gt 2,得t =2hg,因此平抛运动的时间只由高度决定,因为h b =h c >h a ,所以b 与c 的飞行时间相同,大于a 的飞行时间,因此选项A 错误,选项B 正确;又因为x a >x b ,而t a <t b ,所以a 的水平初速度比b 的大,选项C 错误;做平抛运动的物体在水平方向上做匀速直线运动,b 的水平位移大于c ,而t b =t c ,所以v b >v c ,即b 的水平初速度比c的大,选项D正确7、如图所示,一战斗机由东向西沿水平方向匀速飞行,发现地面目标P后开始瞄准并投掷炸弹,若炸弹恰好击中目标P,则(假设投弹后,飞机仍以原速度水平匀速飞行且不计空气阻力) ()A.此时飞机正在P点正上方B.此时飞机是否处在P点正上方取决于飞机飞行速度的大小C.飞行员听到爆炸声时,飞机正处在P点正上方D.飞行员听到爆炸声时,飞机正处在P点偏西一些的位置答案AD8、为了探究影响平抛运动水平射程的因素,某同学通过改变抛出点的高度及初速度的方法做了6次实验,实验数据记录如下表所示.以下探究方案符合控制变量法的是() 序号抛出点的高度(m)水平初速度(m/s)水平射程(m)10.20 2.00.4020.20 3.00.6030.45 2.00.6040.45 4.0 1.2050.80 2.00.8060.80 6.0 2.40A.若探究水平射程与初速度的关系,可用表中序号为1、3、5的实验数据B.若探究水平射程与高度的关系,可用表中序号为1、3、5的实验数据C.若探究水平射程与高度的关系,可用表中序号为2、4、6的实验数据D.若探究水平射程与初速度的关系,可用表中序号为2、4、6的实验数据答案 B解析本题采用控制变量法分析,选B.9、将一小球从高处水平抛出,最初2 s内小球动能E k随时间t变化的图象如图21所示,不计空气阻力,取g=10 m/s2.根据图象信息,不能确定的物理量是()A.小球的质量薄B.小球的初速度C.最初2 s内重力对小球做功的平均功率D .小球抛出时的高度 答案 D解析 小球水平抛出,最初2 s 内下落的高度为h =12gt 2=20 m .由题图知在0时刻(开始抛时)的动能为5 J ,即12m v 20=5 J .2 s 内由动能定理得:mgh =E k2-E k0=(30-5) J =25 J ,求得m =18 kg ,进而求出v 0.因为P =W t =mght ,可求出P ;只有D 项不能求解,故选D.10、如图所示,P 是水平地面上的一点,A 、B 、C 、D 在一条竖直线上, 且AB =BC =CD .从A 、B 、C 三点分别水平抛出一个物体,这三个物 体都落在水平地面上的P 点.则三个物体抛出时速度大小之比v A ∶v B ∶v C 为( )A.2∶3∶ 6 B .1∶2∶ 3 C .1∶2∶3D .1∶1∶1答案 A解析 由题意及题图可知DP =v A t A =v B t B =v C t C ,所以v ∝1t ;又由h =12gt 2,得t ∝h ,因此有v ∝1h,由此得v A ∶v B ∶v C =2∶3∶ 6. 11、将一只苹果(可看成质点)水平抛出,苹果在空中依次飞过三个完全相同的窗户1、2、3,图中曲线为苹果在空中运行的轨迹.若不计空气阻力的影响,则( )A .苹果通过第1个窗户的竖直方向上的平均速度最大B .苹果通过第1个窗户克服重力做功的平均功率最小C .苹果通过第3个窗户所用的时间最短D .苹果通过第3个窗户重力所做的功最多 答案 BC解析 苹果在空中做平抛运动,在竖直方向经过相同的位移,用时越来越少,重力做功相同,由v =h t 及P =mgh t 知A 、D 错,B 、C 对12、(2011·广东·17)如图所示,在网球的网前截击练习中,若练习者在 球网正上方距地面H 处,将球以速度v 沿垂直球网的方向击出,球 刚好落在底线上.已知底线到网的距离为L ,重力加速度为g ,将 球的运动视作平抛运动,下列叙述正确的是( )A .球被击出时的速度v 等于L g2H B .球从击出至落地所用时间为2H gC .球从击球点至落地点的位移等于LD .球从击球点至落地点的位移与球的质量有关 答案 AB解析 由平抛运动规律知,H =12gt 2得,t =2Hg,B 正确.球在水平方向做匀速直线运动,由s =v t 得,v =st=L2H g=L g2H,A 正确.击球点到落地点的位移大于L ,且与球的质量无关,C 、D 错误.13、在水平路面上做匀速直线运动的小车上有一固定的竖直杆,其上的三个水平支架上有三个完全相同的小球A 、B 、C ,它们离地面的高度分别为3h 、2h 和h ,当小车遇到障碍物P 时,立即停下来,三个小球同时从支架上水平抛出,先后落到水平路面上,如图所示.则下列说法正确的是( )A .三个小球落地时间差与车速有关B .三个小球落地点的间隔距离L 1=L 2C .三个小球落地点的间隔距离L 1<L 2D .三个小球落地点的间隔距离L 1>L 2 答案 C解析 车停下后,A 、B 、C 均以初速度v 0做平抛运动,且运动时间t 1= 2hg,t 2= 2×2hg=2t 1,t 3= 2×3hg=3t 1 水平方向上有:L 1=v 0t 3-v 0t 2=(3-2)v 0t 1L2=v0t2-v0t1=(2-1)v0t1可知L1<L2,选项C正确.14、(2012·江苏·6)如图所示,相距l的两小球A、B位于同一高度h(l、h均为定值).将A向B水平抛出的同时,B自由下落.A、B与地面碰撞前后,水平分速度不变,竖直分速度大小不变、方向相反.不计空气阻力及小球与地面碰撞的时间,则()A.A、B在第一次落地前能否相碰,取决于A的初速度B.A、B在第一次落地前若不碰,此后就不会相碰C.A、B不可能运动到最高处相碰D.A、B一定能相碰答案AD解析由题意知A做平抛运动,即水平方向做匀速直线运动,竖直方向为自由落体运动;B为自由落体运动,A、B竖直方向的运动相同,二者与地面碰撞前运动时间t1相同,且t1=2hg,若第一次落地前相碰,只要满足A运动时间t=l v<t1,即v>lt1,所以选项A正确;因为A、B在竖直方向的运动同步,始终处于同一高度,且A与地面相碰后水平速度不变,所以A一定会经过B所在的竖直线与B相碰.碰撞位置由A的初速度决定,故选项B、C错误,选项D正确.。

平抛运动(类平抛和斜抛运动)人教版高中物理必修二

平抛运动(类平抛和斜抛运动)人教版高中物理必修二
A.A点与B点的速度大小相等 B.从A点到B点的时间为v0/g C.在最高点速度为0 D.在最高点速度不为0
课后作业:
完成类平抛和斜抛运动相关练习 预习《5.3实验:研究平抛运动》相关知识
则 l=1at2=1t2gsin 22
α……②,联立①②
得:s=v0
2l .
gsin α
如图所示,两个足够大的倾角分别为30°、45°的光滑斜面放在同
一水平面上,两斜面间距大于小球直径,斜面高度相等,有三个完全相同
的小球a、b、c,开始均静止于斜面同一高度处,其中b小球在两斜面之间。
若同时释放a、b、c小球到达该水平面的时间分别为t1、t2、t3。若同时沿 水平方向抛出,初速度方向如图所示,到达水平面的时间分别为t1′、t2′、
位移公式 x=v0cosθ·t (位置坐标) y=v0sinθ·t-0.5gt2
斜下抛运动
水平方向:vx=v0cos θ 竖直方向:vy=v0sin θ+gt
x=v0cosθ·t y=v0sinθ·t+0.5gt2
典型例题2:从某高处以6 m/s的初速度、30°抛射角斜向上方抛出一石子, 落地时石子的速度方向和水平线的夹角为60°,求石子在空中运动的时间和 抛出点离地面的高度(g取10 m/s2).
5.2平抛运动
(类平抛和斜抛问题)
人教版 高中物理必修二 第五章曲线运动
平抛运动的初速度水平,只受与初速度垂直的竖直向下的重力,a=g; 类平抛运动的初速度不一定水平,但合外力与初速度方向垂直且为恒力, a=F合/m。
一、类平抛运动
定义
物体在某个方向做匀速直线运动,在垂直于该方向的方向做初速度为零的匀 加速直线运动(受恒定的合外力)
方 特殊 对于有些问题,可以过抛出点建立适当的直角坐标系,将加速度分解为ax, 法 分解 ay,速度v分解为vx,vy,然后分别在x、y方向列方程求解

专题六—平抛运动和类平抛运动的处理

专题六—平抛运动和类平抛运动的处理

课后网 专题六:平抛运动和类平抛运动的处理考点梳理 一、平抛运动1.定义:将物体以一定的初速度沿水平方向抛出,不考虑空气阻力,物体只在重力作用下所做的运动.2.性质:加速度为重力加速度g 的匀变速曲线运动,运动轨迹是抛物线.3.根本规律:以抛出点为原点,水平方向(初速度v 0方向)为x 轴,竖直向下方向为y 轴,建立平面直角坐标系,那么:(1)水平方向:做匀速直线运动,速度v x =v 0,位移x =v 0t . (2)竖直方向:做自由落体运动,速度v y =gt ,位移y =12gt 2.(3)合速度:v =v 2x +v 2y ,方向与水平方向的夹角为θ,那么tan θ=v y v x =gtv 0.(4)合位移:s =x 2+y 2,方向与水平方向的夹角为α,tan α=y x =gt2v 0.1.[平抛运动的规律和特点]对平抛运动,以下说法正确的选项是( )A .平抛运动是加速度大小、方向不变的曲线运动B .做平抛运动的物体,在任何相等的时间内位移的增量都是相等的C .平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动D .落地时间和落地时的速度只与抛出点的高度有关解析 平抛运动的物体只受重力作用,其加速度为重力加速度,故A 项正确;做平抛运动的物体,在任何相等的时间内,其竖直方向位移增量Δy =gt 2,水平方向位移不变,故B 项错误.平抛运动可分解为水平方向的匀速直线运动和竖直方向的自由落体运动,且落地时间t = 2h g,落地速度为v =v 2x +v 2y =v 20+2gh ,所以C 项正确,D 项错误.2、[利用分解思想处理平抛运动]质点从同一高度水平抛出,不计空气阻力,以下说法正确的选项是( )A .质量越大,水平位移越大B .初速度越大,落地时竖直方向速度越大C .初速度越大,空中运动时间越长D .初速度越大,落地速度越大解析 物体做平抛运动时,h =12gt 2,x =v 0t ,那么t =2hg,所以x =v 0 2hg,故A 、C 错误. 由v y =gt =2gh ,故B 错误. 由v =v 20+v 2y =v 20+2gh ,那么v 0越大,落地速度越大,故D 正确. 考点一 平抛运动根本规律的理解 1.飞行时间:由t = 2hg知,时间取决于下落高度h ,与初速度v 0无关. 2.水平射程:x =v 0t =v 0 2hg,即水平射程由初速度v 0和下落高度h 共同决定,与其他因素无关.3.落地速度:v t =v 2x +v 2y =v 20+2gh ,以θ表示落地速度与x 轴正方向的夹角,有tan θ=v y v x =2gh v 0,所以落地速度也只与初速度v 0和下落高度h 有关. 4.速度改变量:因为平抛运动的加速度为恒定的重力加速度g ,所以 做平抛运动的物体在任意相等时间间隔Δt 内的速度改变量Δv =g Δt 相同,方向恒为竖直向下,如图4所示. 5.两个重要推论(1)做平抛(或类平抛)运动的物体任一时刻的瞬时速度的反向延长线一 图4 定通过此时水平位移的中点,如图5中A 点和B 点所示.图5(2)做平抛(或类平抛)运动的物体在任意时刻任一位置处,设其末速度方向与水平方向的夹角为α,位移与水平方向的夹角为θ,那么tan α=2tan θ.3、[用分解思想处理平抛运动问题]某同学前后两次从同一位置水平投出飞镖1和飞镖2到靶盘上,飞镖落到靶盘上的位置如下列图,忽略空气阻力,那么两支飞镖在飞行过程中()A.加速度a1>a2B.飞行时间t1<t2C.初速度v1=v2D.角度θ1>θ2答案BD4、如图,从半径为R=1 m的半圆AB上的A点水平抛出一个可视为质点的小球,经t=0.4 s小球落到半圆上,当地的重力加速度g=10 m/s2,那么小球的初速度v0可能为()A.1 m/s B.2 m/s C.3 m/s D.4 m/s解析由于小球经0.4 s落到半圆上,下落的高度h=12gt2=0.8 m,位置可能有两处,如下列图.第一种可能:小球落在半圆左侧,v0t=R-R2-h2=0.4 m,v0=1 m/s第二种可能:小球落在半圆右侧,v0t=R+R2-h2,v0=4 m/s,选项A、D正确.答案AD5、如图8所示,一名跳台滑雪运发动经过一段加速滑行后从 O 点水平飞出,经过3 s 落到斜坡上的A 点.O 点是斜坡 的起点,斜坡与水平面的夹角θ=37°,运发动的质量m =50 kg. 不计空气阻力(sin 37°=0.6,cos 37°=0.8;g 取10 m/s 2).求: (1)A 点与O 点的距离L ;图8(2)运发动离开O 点时的速度大小;(3)运发动从O 点飞出开始到离斜坡距离最远所用的时间.解析 (1)运发动在竖直方向做自由落体运动,有 L sin 37°=12gt 2,L =gt 22sin 37°=75 m.(2)设运发动离开O 点时的速度为v 0,运发动在水平方向的分运动为匀速直线运动,有L cos 37°=v 0t , 即v 0=L cos 37°t=20 m/s.(3)解法一 运发动的平抛运动可分解为沿斜面方向的匀加速运动(初速度为v 0cos 37°、加速度为g sin 37°)和垂直斜面方向的类竖直上抛运动(初速度为v 0sin 37°、加速度为 g cos 37°).当垂直斜面方向的速度减为零时,运发动离斜坡距离最远,有 v 0sin 37°=g cos 37°·t ,解得t =1.5 s解法二 当运发动的速度方向平行于斜坡或与水平方向成37°角时,运发动与斜坡距离最远,有gtv 0=tan 37°,t =1.5 s.答案 (1)75 m (2)20 m/s (3)1.5 s常见平抛运动模型的运动时间的计算方法1.在水平地面上空h 处平抛: 由h =12gt 2知t =2hg,即t 由高度h 决定. 2.在半圆内的平抛运动(如图9),由半径和几何关系制约时间t : 图9 h =12gt 2 R +R 2-h 2=v 0t 联立两方程可求t .3.斜面上的平抛问题(如图10): (1)顺着斜面平抛 方法:分解位移x =v 0t 图10 y =12gt 2 tan θ=y x可求得t =2v 0tan θg(2)对着斜面平抛(如图11) 方法:分解速度 v x =v 0v y =gt 图11 tan θ=v y v 0=gt v 0可求得t =v 0tan θg4.对着竖直墙壁平抛(如图12)水平初速度v 0不同时,虽然落点不同,但水平位移相同. t =d v 0图126、如下列图是倾角为45°的斜坡,在斜坡底端P 点正上方某一位置Q 处以速度v 0水平向左抛出一个小球A ,小球恰好能垂直落在斜坡上,运动时间为t 1,小球B 从同一点Q 处自由下落,下落至P 点的时间为t 2,不计空气阻力,那么t 1∶t 2= ( ) A .1∶2 B .1∶2 C .1∶3D .1∶ 3答案 D7、 如图14所示,水平屋顶高H =5 m ,围墙高h =3.2 m ,围墙到房子的水平距离L =3 m ,围墙外马路宽x =10 m ,为使小球从屋顶水平飞出落在围墙外的马路上,求小球离开屋顶时的速度v 的大小范围.(g 取10 m/s 2)解析 假设v 太大,小球落在马路外边,因此,要使球落在马路上,v 的最大值v max 为球落在马路最右侧A 点时的平抛初速度,如下列图,小球做平抛运动,设运动时间为t 1. 那么小球的水平位移:L +x =v max t 1,小球的竖直位移:H =12gt 21解以上两式得 v max =(L +x )g2H=13 m/s. 假设v 太小,小球被墙挡住,因此,球不能落在马路上,v 的最小值v min 为球恰好越过围墙的最高点P 落在马路上B 点时的平抛初速度,设小球运动到P 点所需时间为t 2,那么此过程中小球的水平位移:L =v min t 2 小球的竖直方向位移:H -h =12gt 22解以上两式得v min =Lg2(H -h )=5 m/s因此v 0的范围是v min ≤v ≤v max ,即5 m /s ≤v ≤13 m/s. 答案 5 m /s ≤v ≤13 m/s【考点二】类平抛问题模型的分析方法 1.类平抛运动的受力特点物体所受的合外力为恒力,且与初速度的方向垂直. 2.类平抛运动的运动特点在初速度v 0方向上做匀速直线运动,在合外力方向上做初速度为零的匀加速直线运动,加速度a =F 合m .3.类平抛运动的求解方法(1)常规分解法:将类平抛运动分解为沿初速度方向的匀速直线运动和垂直于初速度方向(即沿合外力的方向)的匀加速直线运动.两分运动彼此独立,互不影响,且与合运动具有等时性.(2)特殊分解法:对于有些问题,可以过抛出点建立适当的直角坐标系,将加速度a 分解为a x 、a y ,初速度v 0分解为v x 、v y ,然后分别在x 、y 方向列方程求解. 8、 质量为m 的飞机以水平初速度v 0飞离跑道后逐渐上升,假设飞机 在此过程中水平速度保持不变,同时受到重力和竖直向上的恒定升 力(该升力由其他力的合力提供,不含重力).今测得当飞机在水平方向的位移为l 时,它的上升高度为h ,如图16所示,求: 图16 (1)飞机受到的升力大小; (2)上升至h 高度时飞机的速度.解析 (1)飞机水平方向速度不变,那么有l =v 0t 竖直方向上飞机加速度恒定,那么有h =12at 2解以上两式得a =2h l 2v 20,故根据牛顿第二定律得飞机受到的升力F 为F =mg +ma =mg (1+2h gl2v 20)(2)由题意将此运动分解为水平方向速度为v 0的匀速直线运动,l =v 0t ;竖直方向初速度为0、加速度a =2h l 2v 20的匀加速直线运动.上升到h 高度其竖直速度v y =2ah =2·2h v 20l 2·h =2h v 0l所以上升至h 高度时其速度v =v 20+v 2y =v 0l l 2+4h 2如下列图,tan θ=v y v 0=2h l ,方向与v 0成θ角,θ=arctan 2hl.答案 (1)mg (1+2h gl 2v 20) (2)v 0l l 2+4h 2,方向与v 0成θ角,θ=arctan 2hl9、如下列图的光滑斜面长为l ,宽为b ,倾角为θ,一物块(可看成质点)沿斜面左上方顶点P 水平射入,恰好从底端Q 点离开斜面,试求:(1)物块由P 运动到Q 所用的时间t ;(2)物块由P 点水平射入时的初速度v 0; (3)物块离开Q 点时速度的大小v .解析 (1)沿水平方向有b =v 0t 沿斜面向下的方向有 mg sin θ=ma l =12at 2 联立解得t = 2lg sin θ. (2)v 0=b t=bg sin θ2l. (3)物块离开Q 点时的速度大小 v =v 20+(at )2=(b 2+4l 2)g sin θ2l.10.(2021·课标全国·15)如图,x 轴在水平地面内,y 轴沿竖直方向.图中画出了从y 轴上沿x 轴正向抛出的三个小球a 、b 和c 的运动轨迹,其中b 和c 是从同一点抛出的.不计空气阻力,那么( )A .a 的飞行时间比b 的长B .b 和c 的飞行时间相同C .a 的水平初速度比b 的小D .b 的水平初速度比c 的大解析 根据平抛运动的规律h =12gt 2,得t =2hg,因此平抛运动的时间只由高度决定,因为h b =h c >h a ,所以b 与c 的飞行时间相同,大于a 的飞行时间,因此选项A 错误,选项B 正确;又因为x a >x b ,而t a <t b ,所以a 的水平初速度比b 的大,选项C 错误;做平抛运动的物体在水平方向上做匀速直线运动,b 的水平位移大于c ,而t b =t c ,所以v b >v c ,即b 的水平初速度比c 的大,选项D 正确.11.(2021·江苏·6)如图19所示,相距l 的两小球A 、B 位于同一高度h (l 、h 均为定值).将A 向B 水平抛出的同时,B 自由下落.A 、B 与地面碰撞前后,水平分速度不变,竖直分速度大小不变、方向相反.不计空气阻力及小球与地面碰撞的时间,那么( )A .A 、B 在第一次落地前能否相碰,取决于A 的初速度 B .A 、B 在第一次落地前假设不碰,此后就不会相碰C .A 、B 不可能运动到最高处相碰D .A 、B 一定能相碰解析 由题意知A 做平抛运动,即水平方向做匀速直线运动,竖直方向为自由落体运动;B 为自由落体运动,A 、B 竖直方向的运动相同,二者与地面碰撞前运动时间t 1相同,且t 1= 2h g ,假设第一次落地前相碰,只要满足A 运动时间t =l v <t 1,即v >lt 1,所以选项A 正确;因为A 、B 在竖直方向的运动同步,始终处于同一高度,且A 与地面相碰后水平速度不变,所以A 一定会经过B 所在的竖直线与B 相碰.碰撞位置由A 的初速度决定,应选项B 、C 错误,选项D 正确.12.?愤怒的小鸟?是一款时下非常流行的游戏,游戏中的故事也相当有趣,如图9甲所示,为了报复偷走鸟蛋的肥猪们,鸟儿以自己的身体为武器,如炮弹般弹射出去攻击肥猪们的堡垒.某班的同学们根据自己所学的物理知识进行假设:小鸟被弹弓沿水平方向弹出,如图乙所示,假设h 1=0.8 m ,l 1=2 m ,h 2=2.4 m ,l 2=1 m ,小鸟飞出后能否直接打中肥猪的堡垒?请用计算结果进行说明.(取重力加速度g =10 m/s 2)答案 不能解析 (1)设小鸟以v 0弹出后能直接击中堡垒,那么 ⎩⎪⎨⎪⎧h 1+h 2=12gt 2l 1+l 2=v 0t t =2(h 1+h 2)g= 2×()10s =0.8 s 所以v 0=l 1+l 2t =2+10.8 m /s =3.75 m/s设在台面的草地上的水平射程为x ,那么 ⎩⎪⎨⎪⎧x =v 0t 1h 1=12gt 21 所以x =v 02h 1g=1.5 m<l 1 可见小鸟不能直接击中堡垒.。

平抛运动基本规律总结

平抛运动基本规律总结

平抛运动基本规律总结知识点:1.平抛运动的运动特点:水平方向上:匀速直线运动t v x v v x 00,==竖直方向上:自由落体运动221,gt y gt v y == 2.平抛(类平抛)运动所涉及物理量的特点Δv =g Δt ,方向恒为竖直向下3.关于平抛(类平抛)运动的两个重要推论(1)做平抛(或类平抛)运动的物体任意时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图中A 点和B 点所示,即x B =x A2.(2)做平抛(或类平抛)运动的物体在任意时刻任意位置处,设其末速度方向与水平方向的夹角为α,位移与水平方向的夹角为θ,则tan α=2tan θ. 4.斜抛运动(1)斜抛运动可以分斜向上抛和斜向下抛两种情况:斜向上抛运动可以看成是水平方向的匀速直线运动和竖直方向的竖直上抛运动的合运动。

(2)斜上抛运动的公式:(1)速度公式: 水平速度:0cos x v v θ= 竖直速度:0sin y v v gt θ=-(2)位移公式:水平方向:0cos x v t θ=g竖直方向:201sin 2y v t gt θ=-g(3)斜向下抛运动可以看成是水平方向的匀速直线运动和竖直方向的匀加速运动(初速度不为0)(1)速度公式: 水平速度:0cos x v v θ=竖直速度:0sin y v v gt θ=+(2)位移公式: 水平位移:0cos x v t θ=g竖直位移 201sin 2y v t gt θ=+g5.平抛与斜面结合的两种经典模型:斜面上的平抛运动问题是一种常见的题型,在解答这类问题时除要运用平抛运动的位移和速度规律,还要充分运用斜面倾角.常见的模型如下:(1)顺着斜面平抛方法:分解位移.x=v0t,y=12gt2,tan θ=yx,可求得t=2v0tan θg.特别强调:θ角是位移偏向角(2)对着斜面平抛(垂直打到斜面)方法:分解速度.v x=v0,v y=gt,tan θ=v0v y=v0gt,可求得t=v0g tan θ.特别强调:θ角是速度偏向角的补角。

微专题Ⅰ平抛运动的临界问题类平抛运动

微专题Ⅰ平抛运动的临界问题类平抛运动

微专题Ⅰ平抛运动的临界问题、类平抛运动知识点一平抛运动的临界问题1.与平抛运动相关的临界情况(1)有些题目中“刚好”“恰好”“正好”等字眼,明显表明题述的过程中存在临界点.(2)如题目中有“取值范围”“多长时间”“多大距离”等词语,表明题述过程中存在着“起止点”,而这些“起止点”往往就是临界点.(3)若题目中有“最大”“最小”“至多”“至少”等字眼,表明题述过程中存在着极值,这些极值也往往是临界点.2.分析平抛运动中的临界情况关键是确定临界轨迹.当受水平位移限制时,其临界轨迹为自抛出点到水平位移端点的一条抛物线;当受下落高度限制时,其临界轨迹为自抛出点到下落高度端点的一条抛物线,确定轨迹后再结合平抛运动的规律即可求解.[例题1](2023春•昌乐县期中)“套圈游戏”深受大家的喜爱,游戏者要站到区域线外将圆圈水平抛出,落地时套中的物体即为“胜利品”。

某同学在一次“套圈”游戏中,从P点以某一速度水平抛出的圆圈落到了物体左边,如图。

为了套中该物体,该同学做了如下调整,则下列方式中一定套不中的是(忽略空气阻力)()A.从P点正上方以原速度水平抛出B.从P点正前方以原速度水平抛出C.从P点增大速度水平抛出D.从P点正下方减小速度水平抛出【解答】解:A、设圆圈平抛运动下落的高度为h,水平位移为x,初速度为v0,竖直方向为自由落体运动,有ℎ=12gt2,解得下落时间为t=√2ℎg,水平为匀速直线运动,所以水平位移为x=v0t=v0√2ℎg,圆圈落到了物体左边,说明圆圈的水平位移偏小,若从P点正上方以原速度水平抛出,h增大,由t=√2ℎg可知时间增大,由x=v0t=v0√2ℎg知,水平位移增大,可能套住物体,故A不符合题意;B、若P点正前方以原速度水平抛出,则高度不变,运动时间不变,根据x=v0t=v0√2ℎg,水平位移不变,落地点右移,可能套住物体,故B不符合题意;C、若P点位置不变,增大速度水平抛出,v0增大,由x=v0t=v0√2ℎg知,水平位移增大,可能套住物体,故C 不符合题意;D 、若P 点正下方,减小速度水平抛出,h 和v 0都减小,由t =√2ℎg ,x =v 0t =v 0√2ℎg知,水平位移减小,圆圈还落到物体左边,故D 符合题意。

第16讲 斜面上的平抛运动模型及类平抛运动模型(解析版)

第16讲 斜面上的平抛运动模型及类平抛运动模型(解析版)

第16讲 斜面上的平抛运动模型及类平抛运动模型一.知识总结斜面上的平抛运动问题是一种常见的题型,在解答这类问题时除要运用平抛运动的位移和速度规律,还要充分运用斜面倾角,找出斜面倾角同位移和速度与水平方向夹角的关系,从而使问题得到顺利解决。

1.从斜面上某点水平抛出,又落到斜面上的平抛运动的五个规律(推论) (1)位移方向相同,竖直位移与水平位移之比等于斜面倾斜角的正切值。

(2)刚落到侧面时的末速度方向都平行,竖直分速度与水平分速度(初速度)之比等于斜面倾斜角正切值的2倍。

(3)运动的时间与初速度成正比⎝ ⎛⎭⎪⎫t =2v 0tan θg 。

(4)位移与初速度的二次方成正比⎝ ⎛⎭⎪⎫s =2v 20tan θg cos θ。

(5)当速度与斜面平行时,物体到斜面的距离最远,且从抛出到距斜面最远所用的时间为平抛运动时间的一半。

2.常见的模型模型方法分解速度,构建速度三角形,找到斜面倾角θ与速度方向的关系 分解速度,构建速度的矢量三角形分解位移,构建位移三角形,隐含条件:斜面倾角θ等于位移与水平方向的夹角基本 规律水平:v x =v 0竖直:v y =gt 合速度:v =v 2x +v 2y水平:v x =v 0 竖直:v y =gt 合速度:v =v 2x +v 2y水平:x =v 0t 竖直:y =12gt 2 合位移: s =x 2+y 2方向:tanθ=v xv y方向:tanθ=v yv x方向:tanθ=yx运动时间由tanθ=v0v y=v0gt得t=v0g tanθ由tanθ=v yv0=gtv0得t=v0tanθg由tanθ=yx=gt2v0得t=2v0tanθg3.类平抛运动模型(1)模型特点:物体受到的合力恒定,初速度与恒力垂直,这样的运动叫类平抛运动。

如果物体只在重力场中做类平抛运动,则叫重力场中的类平抛运动。

学好这类模型,可为电场中或复合场中的类平抛运动打基础。

(2).类平抛运动与平抛运动的区别做平抛运动的物体初速度水平,物体只受与初速度垂直的竖直向下的重力,a=g;做类平抛运动的物体初速度不一定水平,但物体所受合力与初速度的方向垂直且为恒力,a=F合m。

物理学霸笔记16平抛运动及类平抛运动

物理学霸笔记16平抛运动及类平抛运动

轴 正 方 向 的 夹 角 , 有 tan
θ = vy
gt =
,所以落地速度也只
vx
v0
与 初 速 度 v0 和 下 落 高 度 h 有 关 。 速度改变量:因为平抛运动的加速度为恒定的重力加速度
g ,所以做平抛运动的物体在任意相等时间间隔Δ t 内的
速 度 改 变 量 为 Δ v=g Δ t , 相 同 , 方 向 恒 为 竖 直 向 下 。
二、多体平抛运动问题
1 .多体平抛运动问题是指多个物体在同一竖直平面内平
抛时所涉及的问题。
2 .三类常见的多体平抛运动
(1) 若 两 物 体 同 时 从 同 一 高 度 ( 或 同 一 点 ) 水 平 抛 出 , 则 两
物体始终在同一高度,水平间距取决于两物体的初速度和
运动时间。
(2) 若 两 物 体 同 时 从 不 同 高 度 水 平 抛 出 , 则 两 物 体 高 度 差 始
2
合 位 移 : s = x2+y2
方 向 : tan θ = y x
( 2 )对着斜面平抛
水 平 方 向 : vx = v0 竖 直 方 向 : vy = gt 合 速 度 : v = vx2+vy2
方 向 : tan
θ = vx vy
四、类平抛问题模型的分析方法
1 .类平抛运动的受力特点
物体所受的合外力为恒力,且与初速度的方向垂直。
2
g
速为
v
v 和
,则相应水平位移之比为 4

1 ,由相似三
2
角形知,下落高度之比也为 4 ∶ 1 ,由自由落体运动规律 得,落在斜面上竖直方向速度之比为 2 ∶ 1 ,由落至斜面 时 的 速 率 v 斜 = vx2+vy2 可 得 落 至 斜 面 时 速 率 之 比 为 2 ∶ 1 , A 正确。

平抛与类平抛运动典型例题

平抛与类平抛运动典型例题

平抛与类平抛运动典型例题1.如图所示,一高山滑雪运动员,从较陡的坡道上滑下,经过A 点时速度v 0=16m/s ,AB 与水平成θ=530角。

经过一小段光滑水平滑道BD 从D 点水平飞出后又落在与水平面成倾角α=37︒的斜坡上C 点.已知AB 两点间的距离s 1=10m ,D 、C 两点间的距离为s 2=75m ,不计通过B 点前后的速率变化,不考虑运动中的空气阻力。

(取g =10m/s 2,sin370=0.6)求: (1)运动员从D 点飞出时的速度v D 的大小; (2)滑雪板与坡道间的动摩擦因数.2、国家飞碟射击队进行模拟训练用如图1的装置进行。

被训练的运动员在高为H=20m 的塔顶,在地面上距塔的水平距离S 处有一电子抛靶装置。

圆形靶以速度2v 竖直上抛。

当靶被竖直上抛的同时,运动员立即用特制的手枪水平射击,子弹的速度s m v /1001=。

不计人的反应时间、抛靶装置的高度和子弹在枪膛中的运动时间,忽略空气阻力及靶的大小(g=10m/s 2)。

求:(1)当s 取值在什么范围内,无论v 2为何值都不能击中靶?(2)若s=100m ,v 2=20m/s ,请通过计算说明靶能否被击中? 3、(14分)如图所示,水平放置的平行板电容器,原来两板不带电,上极板接地,它的极板长L = 0.1m ,两板间距离 d = 0.4 cm ,有一束相同的带电微粒以相同的初速度先后从两板中央平行极板射入,由于重力作用微粒能落到下板上,微粒所带电荷立即转移到下极板且均匀分布在下极板上.设前一微粒落到下极板上时后一微粒才能开始射入两极板间。

已知微粒质量为 m = 2×10-6kg ,电量q = 1×10-8C ,电容器电容为C =10-6F ,取210m/s g =.求: (1)为使第一个微粒的落点范围能在下板中点到紧靠边缘的B 点之内,求微粒入射的初速度v 0的取值范围;(2)若带电微粒以第一问中初速度0v 的最小值入射,则最多能有多少个带电微粒落到下极板上?αBA4、如图所示,两平行金属板A .B 长8cm ,两板间距离d =8cm ,A 板比B 板电势高300V ,一带正电的粒子电荷量q =10-10C ,质量m =10-20kg ,沿电场中心线RO 垂直电场线飞入电场,初速度υ0=2×106m/s ,粒子飞出平行板电场后经过界面MN .PS 间的无电场区域后,进入固定在O 点的点电荷Q 形成的电场区域,(设界面PS 右边点电荷的电场分布不受界面的影响),已知两界面MN .PS 相距为12cm ,D 是中心线RO 与界面PS 的交点,O 点在中心线上,距离界面PS 为9cm ,粒子穿过界面PS 最后垂直打在放置于中心线上的荧光屏bc 上.(静电力常数k =9.0×109N·m 2/C 2)(1)求粒子穿过界面MN 时偏离中心线RO 的距离多远?到达PS 界面时离D 点多远? (2)在图上粗略画出粒子运动的轨迹.(3)确定点电荷Q 的电性并求其电荷量的大小.5、两块水平平行放置的金属板如图(甲)所示,大量电子(已知电子质量为m 、电荷量为e )由静止开始,经电压为U 0的电场加速后,连续不断地从两板正中间沿水平方向射人两板间.当两板均不带电时,这些电子通过两板之间的时间为3t 0;当在两板间加如图(乙)所示的周期为2t 0、幅值恒为U 的周期性电压时,恰好能使所有电子均从两板间通过.求(1)这些电子飞离两板间时,侧向位移(即竖直方向上的位移)的最大值s ymax ; (2)这些电子飞离两板间时,侧向位移的最小值s ymin 。

平抛于类平抛

平抛于类平抛

平抛、类平抛复习一、平抛运动 平抛运动定义:将物体用一定的初速度眼水平方向抛出,不考虑空气阻力的作用,物体只在重力的作用下所做的运动,叫做平抛运动。

平抛运动特点:1、初速度为水平方向,只在竖直方向上受重力的作用,运动的轨迹为抛物线。

2、平抛运动可以看成两个运动的合成:水平方向的匀速直线运动竖直方向的自由落体运动平抛运动的各种规律:1、速度:gt v v v y x ==,0 合速度:22yx v v v +=方向:xy v v =θtan 0v gt =2、位移:2021,gt y t v x == 合位移:22y x s += 方向:02tan v gt x y ==δ 3、时间由下落的高度决定:gyt 2=4、重要推论:平抛物体任意时刻瞬时时速度方向的反向延长线与初速度延长线的交点到抛出点的距离都等于水平位移的一半。

证明:设时间t 内物体的水平位移为s ,竖直位移为h ,则末速度的水平分量v x =v 0=s/t ,而竖直分量v y =2h/t , sh v v 2tan xy ==α, 所以有2tan s h s =='α典型例题:1、(临界问题)已知网高H ,半场长L ,扣球点高h ,扣球点离网水平距离s 、求:水平扣球速度v 的取值范围。

解:设运动员以速度假设运动员用速度max v 扣球时,球刚好不会出界,用速度min v 扣球时,球刚好不触网,从图中数量关系可得:;2)(2/)(max h g s L g h s L v +=+=)(2)(2/min H h gsg H h s v -=-= 2、(临界问题)如图所示,长斜面OA 的倾角为θ,放在水平地面上,现从顶点O 以速度v 0平抛一小球,不计空气阻力,重力加速度为g ,求小球在飞行过程中离斜面的最大距离s 是多少?v解:为计算简便,本题也可不用常规方法来处理,而是将速度和加速度分别沿垂直于斜面和平行于斜面方向进行分解。

类平抛运动知识分享

类平抛运动知识分享

类平抛运动类平抛运动类平抛运动与平抛运动的运动规律相同,所以处理方法也是分解成两个相互垂直方向上的分运动,不同之处是匀变速直线运动的加速度应根椐题设具体情况确定.一、竖直平面内的类平抛运动例1、质量为m的飞机以水平速度v0飞离跑道后逐渐上升,若飞机在此过程中水平速度保持不变,同时受到重力和竖直向上的恒定升力(该升力由其他力的合力提供,不含重力)。

今测得当飞机在水平方向的位移为l时,它的上升高度为h,求:飞机受到的升力大小.解析:飞机起飞的过程中,水平方向做匀速直线运动,竖直向上做初速度为零的匀加速直线运动,属于类平抛运动,轨迹如图1所示,可以用平抛运动的研究方法来求解.飞机在水平方向上做匀速直线运动,则运动l所用时间为。

飞机水平运动l与竖直上升h用时相同,而飞机竖直向上做初速度为零的匀加速直线运动。

据可得由牛顿第二定律得飞机受到的升力大小为二、倾斜平面内的类平抛运动例2、如图2所示,光滑斜面长为a,宽为b,倾角为θ.一物体从斜面上方P点水平面射入,而从斜面下方顶点Q离开斜面,求入射初速度.解析:物体在斜面上只受重力和支持力,合外力为mgsinθ.由牛顿第二定律可得物体运动的加速度为gsinθ.方向沿斜面向下,由于初速度方向与加速度方向垂直,故物体在斜面上做类平抛运动,在水平面方向上以初速度做匀速运动,沿斜面向下做初速度为零的匀加速运动.在水平方位移为沿斜面下位移为则三、水平面内的类平抛运动例3、在光滑水平面上,一个质量为2kg的物体从静止开始运动,在前5s受到一个正东方向大小为4N的水平恒力作用,从第5s末开始改受正北方向大小为2N的水平面恒力作用了10s,求物体在15s末的速度及位置?解析:设起始点为坐标原点O,向东为x轴正方向,向北为y轴正方向建立直角坐标系xOy,物体在前5s内由坐标原点起向东沿x轴正方向做初速度为零的匀加速直线运动,其加速度为,方向沿x轴正向,5s内物体沿x轴方向的位移为,到达P点,5s末速度为。

第二讲:平抛运动解析版

第二讲:平抛运动解析版

第二讲:平抛运动一、平抛运动1.定义:将物体以一定的初速度沿水平方向抛出,物体只在重力作用下的运动.2.性质:平抛运动是加速度为g 的匀变速曲线运动,运动轨迹是抛物线.3.研究方法:运动的合成与分解 (1)水平方向:匀速直线运动; (2)竖直方向:自由落体运动. 4.基本规律如图,以抛出点O 为坐标原点,以初速度v 0方向(水平方向)为x 轴正方向,竖直向下为y 轴正方向.(1)位移关系(2)速度关系(3)轨迹方程:h =g2v 02x 25.基本应用例题、如图所示,x 轴在水平地面上,y 轴在竖直方向.图中画出了从y 轴上沿x 轴正方向水平抛出的三个小球a 、b 和c 的运动轨迹.不计空气阻力,下列说法正确的是( )A .a 和b 的初速度大小之比为2∶1B .a 和b 在空中运动的时间之比为(1)飞行时间由t =2hg知,时间取决于下落高度h ,与初速度v 0无关.(2)水平射程x =v 0t =v 02hg,即水平射程由初速度v 0和下落高度h共同决定,与其他因素无关. (3)落地速度v =v x 2+v y 2=v 02+2gh ,以θ表示落地速度与水平正方向的夹角,有tan θ=v y v x=2ghv 0,落地速度与初速度v 0和下落高度h 有关. (4)速度改变量因为平抛运动的加速度为恒定的重力加速度g ,所以做平抛运动的物体在任意相等时间间隔Δt 内的速度改变量Δv =g Δt 是相同的,方向恒为竖直向下,如图所示.(5)两个重要推论①做平抛运动的物体在任意时刻的瞬时速度的反向延长线一例题、如图甲所示是网球发球机,某次室内训练时将发球机放在距地面一定的高度,然后向竖直墙面发射网球.假定网球均水平射出,某两次射出的网球碰到墙面时速度与水平方向夹角分别为30°和60°,若不考虑空气阻力,则( )A.两次发射的初速度大小之比为3∶1定通过此时水平位移的中点,如图所示,即x B =x A2.推导:⎭⎪⎬⎪⎫tan θ=y Ax A -x Btan θ=v yv 0=2y Ax A→x B=x A2①做平抛运动的物体在任意时刻任意位置处,有tan θ=2tan α. 推导:⎭⎪⎬⎪⎫tan θ=v y v 0=gtv 0tan α=y x =gt 2v 0→tan θ=2tan α二、与斜面结合的平抛运动1.顺着斜面平抛(如图)方法:分解位移.x =v 0t ,y =12gt 2,tan θ=y x,可求得t =2v 0tan θg.2.对着斜面平抛(垂直打到斜面,如图) 方法:分解速度.v x =v 0, v y =gt ,tan θ=v x v y =v 0gt,可求得t =v 0g tan θ.三、斜抛运动1.定义:将物体以初速度v 0斜向上方或斜向下方抛出,物体只在重力作用下的运动.2.性质:斜抛运动是加速度为g 的匀变速曲线运动,运动轨迹是抛物线.3.研究方法:运动的合成与分解(1)水平方向:匀速直线运动;(2)竖直方向:匀变速直线运动.例题、某同学在练习投篮时将篮球从同一位置斜向上抛出,其中有两次篮球垂直撞在竖直放置的篮板上,运动轨迹如图所示,不计空气阻力,关于这两次篮球从抛出到撞击篮板的过程( )4.基本规律(以斜上抛运动为例,如图所示)(1)水平方向:v 0x =v 0cos θ,F 合x =0;做匀速直线运动,v 0x =v 0cos θ,x =v 0tcos θ. (2)竖直方向:v 0y =v 0sin θ,F 合y =mg .做竖直上抛运动,v 0y =v 0sin θ,y =v 0tsin θ-12gt2四、类平抛运动1.类平抛运动物体受到与初速度垂直的恒定的合外力作用时,其轨迹与平抛运动相似,称为类平抛运动.类平抛运动的受力特点是物体所受合力为恒力,且与初速度的方向垂直.2.类平抛运动问题的求解技巧(1)常规分解法:将类平抛运动分解为沿初速度方向的匀速直线运动和垂直于初速度方向(即沿合力方向)的匀加速直线运动,两分运动彼此独立,互不影响,且与合运动具有等时性.(2)特殊分解法:对于有些问题,可以过抛出点建立适当的直角坐标系,将加速度a 分解为a x 、a y ,初速度v 0分解为v x 、v y ,然后分别在x 、y 方向上列方程求解.针对训练题型1:平抛运动性质例题、如图所示的光滑斜面ABCD 是边长为l 的正方形,倾角为30°,一物块(视为质点)沿斜面左上方顶点A 以平行于AB 边的初速度v 0水平射入,到达底边CD 中点E ,则( )A .初速度2glB .初速度4glC .物块由A 点运动到E 点所用的时间2lt g= D .物块由A 点运动到E 点所用的时间lt g=1.关于平抛运动的性质,以下说法中正确的是()A.变加速运动B.匀变速运动C.匀速率曲线运动D.不可能是两个直线运动的合运动【解答】解:A、平抛运动是匀变速曲线运动,速率不断增加。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考热点专题——平抛和类平抛运动当物体初速度水平且仅受重力作用时的运动,被称为平抛运动。

其轨迹为抛物线,性质为匀变速曲线运动。

平抛运动可分解为水平方向的匀速直线运动和竖直方向的自由落体运动这两个分运动。

广义地说,当物体所受的合外力恒定且与初速度垂直时,做类平抛运动。

平抛运动是日常生活中常见的运动,并且这部分知识还常与电学知识相联系,以解决带电粒子在电场中的运动问题,因此,多年来,平抛运动一直是高考的热点,今后,将仍然是高考的热点。

用分解平抛运动的方法解决带电粒子在电场中的运动,以及将实际物体的运动抽象成平抛运动模型并做相应求解,将是高考的必然趋势。

一、正确理解平抛运动的性质(一)从运动学的角度分析平抛运动可分解为水平方向的匀速直线运动和竖直方向的自由落体运动,以物体的出发点为原点,沿水平和竖直方向建立xOy坐标,如图所示:则水平方向和竖直方向的分运动分别为水平方向竖直方向平抛物体在时间t内的位移s可由③⑥两式推得位移的方向与水平方向的夹角由下式决定平抛物体经时间t时的瞬时速度v t可由②⑤两式推得速度v t的方向与水平方向的夹角可由下式决定(二)从动力学的角度分析对于平抛运动的物体只受重力作用,尽管其速度大小和方向时刻在改变,但其运动的加速度却恒为重力加速度g,因而平抛运动是一种匀变速曲线运动。

平抛运动中,由于仅有重力对物体做功,因而若把此物体和地球看作一个系统,则在运动过程中,系统每时每刻都遵循机械能守恒定律。

应用机械能守恒定律分析、处理此类问题,往往比单用运动学公式方便、简单得多。

二、平抛运动的几个重要问题(1)平抛物体运动的轨迹:抛物线由③⑥两式,消去t,可得到平抛运动的轨迹方程为。

可见,平抛物体运动的轨迹是一条抛物线。

(2)一个有用的推论:平抛物体任意时刻瞬时速度方向的反向延长线与初速度延长线的交点到抛出点的距离都等于水平位移的一半。

证明:设物体被抛出后ts末时刻,物体的位置为P,其坐标为x t(ts内的水平位移)和y t (ts内的下落高度);ts末的速度v t的坐标分量为v x、v y,将v t速度反向延长交x轴于x',如图:则由几何关系可知:,即整理得:,∴。

可见,平抛运动物体某时刻的速度反向延长线交x轴坐标值为此时Ox方向位移的一半。

(3)因平抛运动在竖直方向是匀变速直线运动,所以适合于研究匀变速运动的公式,如Δs=aT2,等同样也适用于研究平抛运动竖直方向的运动特点,这一点在研究平抛物体运动的实验中用得较多。

(4)类平抛运动:凡具有合外力恒定且合外力垂直于初速度特征的曲线运动叫类平抛运动。

此物体所做的运动可看成是某一方向的匀速直线运动和垂直此方向的匀加速直线运动,这类运动在电场中会涉及,处理方法与平抛运动类似。

典例剖析:1.考查对平抛运动概念的理解与运用能力方法:解决平抛运动的关键在于把平抛运动分解为水平方向的匀速运动和竖直方向的自由落体运动,要特别注意分运动的独立性以及合运动与分运动的等时性。

解决平抛运动问题常常以竖直分运动为突破口。

【例1】在高度为h的同一位置上向水平方向同时抛出两个小球A和B,若A球的初速度v A大于B球的初速度v B,则下列说法正确的是()A.A球落地时间小于B球落地时间B.在飞行过程中的任一段时间内,A球的水平位移总是大于B球的水平位移C.若两球在飞行中遇到一堵竖直的墙,A球击中墙的高度总是大于B球击中墙的高度D.在空中飞行的任意时刻A球的速率总是大于B球的速率【答案】B、C、D【解析】平抛的高度决定平抛运动的时间,由于两球的抛出点相同(即高度相同),故从抛出到落地所用时间相同,选项A错误。

由于水平位移x=v0t,所以在相同的任意一段时间内,水平初速度较大的球水平位移较大,选项B正确。

若两球均能撞上同一竖直墙,则它们的水平位移相等,由x=v0t可知,初速度较大的球所用时间较短,而高度决定时间,所以A球撞墙点较高,选项C正确。

两球在空中飞行时的任意时刻,速度的竖直分量均相等,水平分量与初速度相同;由于A 球的初速度较大,故其合速度较大,实际速率也较大,选项D正确。

综上所述,该题的正确答案为B、C、D。

请思考:该题中的A、B两球的轨迹曲线重合吗?两球落在同一水平地面上时的着地点重合吗?【例2】如图所示,以v0=10 m / s的水平初速度抛出的物体,飞行一段时间后,垂直地撞在倾角θ为30°的斜面上,可知物体完成这段飞行的时间是()A.B.C.D.2s【答案】C【解析】物体做平抛运动,可分解为水平方向的匀速直线运动和竖直方向的自由落体运动,当物体落到斜面上时,其竖直分速度v1=gt,水平分速度仍为v0,其合速度与斜面垂直,由图可知,tanθ=v0 / gt故选项C正确。

【点评】平抛运动知识与斜面三角形综合应用,找出其间的关系,问题迎刃而解。

【例3】如图所示,一高度为h=0.2 m的水平面在A点处与一倾角为θ=30°的斜面连接,一小球以v0=5 m / s的速度在平面上向右运动,求小球从A点运动到地面所需的时间(平面与斜面均光滑,取g=10 m / s2)。

某同学对此题的解法为:小球沿斜面运动,则,由此可求得落地的时间t。

问:你同意上述解法吗?若同意,求出所需的时间;若不同意,则说明理由,并求出你认为正确的结果。

【答案】不同意该同学的解法,正确答案为0.2 s【解析】由于小球开始在水平面上运动,离开A点时小球将做平抛运动,而不会沿斜面下滑,在运动到地面之前小球是否经历斜面,要看以下条件:小球平抛到地面的水平距离为。

斜面底宽因为s>d,所以小球离开A点后不会落到斜面上,因此落地时间即为平抛运动所需的时间。

即。

【点评】本题考查的是平抛运动的知识,但题型新颖,且对考生有“误导”的作用。

在考查学生应用基本知识解决实际问题的分析判断能力方面,不失为一个好题。

判断出小球离开A点做什么运动是解决本题的关键。

【例4】在研究平抛物体运动的实验中,用一张印有小方格的纸记录轨迹,小方格的边长L=1.25 cm,若小球在平抛运动途中的几个位置如图中的a、b、c、d所示,则小球平抛的初速度的计算式v0=________(用L、g表示),其值是________(取g=9.8 m / s)。

【解析】分析图中a、b、c、d四点的位置关系,可以看出水平方向四点均等间隔,可见时间间隔也是相等的。

但从竖直方向看a、b、c、d四点之间的间隔比为1:2:3,并不是1:3:5,这说明a点不是起始点。

由于平抛运动在竖直方向上是匀变速直线运动,因此它将满足关系又因为△s=L=1.25cm,,所以可以得出。

在平抛运动中,因为,所以代入数据(注意化单位L=1.25 cm=1.25×10-2 m),解得。

【误区点津】此题为容易出现错解的问题。

很多学生对本题不加分析,错误地认为a点是小球平抛运动的初始位置,从而得出的错误答案。

有的学生注意到了小球在竖直方向上的分运动,在连续相等的时间内其位移之比不为1∶3∶5∶7……,知道a点不是抛出点,但却错误地认为题中给出(由图中看出)的y1∶y2∶y3=1∶2∶3不符合匀加速直线运动的规律,怀疑题目的正确性,就此搁浅。

其实,去掉从初速为0起的第一个T秒内的竖直方向y上的投影有Δs=2L-L,易得出。

【点评】克服思维定势,将纸带计算公式迁移至此,不必考虑a点是否为抛出点,其竖直方向的运动规律点满足,问题也就迎刃而解。

从本题看,平时学习一定要注意加强知识的迁移和拓展的训练。

【例5】一固定斜面ABC,倾角为θ,高AC=h,如图所示,在顶点A以某一初速度水平抛出一小球,恰好落在B点,空气阻力不计,试求自抛出起经多长时间小球离斜面最远?【解析】解法一如图所示,小球的瞬时速度v与斜面平行时,小球离斜面最远设此点为D,由A到D时间为t1,则v y=gt1,v y=v0tanθ;。

①设小球由A到B的时间为t,则,。

消去t,②由①②式消去v0tanθ,得。

解法二沿斜面和垂直于斜面建立坐标系如图所示,分解v0和加速度g,这样沿y轴方向的分运动是初速度为v y、加速度为g y的匀减速直线运动,沿x轴方向的分运动是初速度为v x,加速度为g x的匀加速度直线运动,当v y=0时小球离斜面最远,经历时间为t1,当y=0时小球落到B点,经历时间为t,显然t=2t1。

在y轴方向,当y=0时有:在水平方向上位移关系为得,所以故解法三在竖直方向小球做自由落体运动得由解法二的分析可知在垂直斜面方向上小球做匀减速运动,当垂直斜面的速度减为零时离斜面最远,历时t1,则。

【答案】【点评】通常我们把平抛运动分解成水平方向的匀速直线运动和竖直方向的自由落体运动来处理。

这样就把曲线运动分解成为两种最简单的直线运动,但在具体问题中这种分解对所求的问题来说并不一定是最简单的。

如:假设要求小球运动过程中距离斜面的最大距离H,则在解法一的计算中较为复杂;而解法二中的分解结果,刚好使待求的H成为小球垂直斜面向上运动所能达到的最大位移,则,所以在具体问题中,可以根据需要灵活选择分解的方法。

【例6】质量为m的飞机以水平速度v0飞离跑道后逐渐上升,若飞机在此过程中水平速度保持不变,同时受到重力和竖直向上的恒定升力(该升力由其他力的合力提供,不含重力)。

今测得当飞机在水平方向的位移为时,它的上升高度为h,如图所示,求飞机受到的升力的大小。

解析:设飞机上升到h高度的时间为t,有y方向加速度为设飞机的升力为F,由牛顿第二定律有故点评:合外力F恒定,且与物体初速度方向垂直,此运动称之为类平抛运动,其运动轨迹为抛物线,处理方法和平抛运动类似(运动分解)。

该题属于方法迁移题,学生需要理解平抛运动的处理方法,才能进一步灵活地处理该问题。

2.利用平抛运动的规律,迁移到静电场中带电粒子的运动带电粒子的类平抛运动模型其总体思路为运动的合成与分解:(1)带电粒子的加速:带电粒子质量为m、带电量为q,在静电场中静止开始仅在电场力作用下做加速运动,经过电势差U后所获得的速度v0可由动能定理来求得。

即。

(2)带电粒子的偏转:垂直电场线方向粒子做匀速直线运动:,沿电场线方向粒子做匀加速直线运动,有:(3)在电场中移动带电粒子时电场力做功及电势能变化的情况与重力做功即重力势能变化情况类比。

推论:①粒子从偏转电场中射出时,速度的反向延长线与初速度的延长线的交点平分初速度方向的位移,即粒子好像从极板中点处沿直线飞离偏转电场,即②荷质比不同的正离子,被同一电场加速后进入同一偏转电场,它们离开偏转电场时的速度方向一定相同,因而不会分成三股,而是会聚为一束粒子射出。

说明:①由于基本粒子(电子、质子、α粒子等)在电场中受到电场力,所以基本粒子受到的重力忽略不计。

但带电的宏观(由大量分子构成)小颗粒、小球、小液滴所受重力不能忽略。

相关文档
最新文档