电磁场理论基础答案50页PPT
合集下载
电磁学基本理论 ppt课件
2
0
0 I
4a
ˆz a
ppt课件
O点产生的磁感应强度: 0 I
B B1 B2 B3
ppt课件 2
3. 库仑定律
F21
q1q2 ˆR21 a 2 4π 0 R21
其中: 0为真空中介电常数。
0
1 109 8.85 1012 36 π
q1
R21
q2
F/m
q1
4. 电场强度的计算 q1qt2 ˆR21 F21 a 2 4π 0 R21
R21
q 2t
E
q 1 1 q R2 R1 4π 0 R1 R2 4π 0 R R 1 2
R1 R l cos 2 l R2 R cos 2
因为: l R 则: R2 R1 l cos
2 l R2 R1 R 2 cos2 R 2 4
15
(三) 磁场
Fm
产生磁场的源: a.永久磁铁 b.变化的电场 c.电流周围,即运动的电荷
v
B
1. 什么是磁场?
Fm qv B
存在于载流回路或永久磁铁周围空间,能对运动电荷 施力的特殊物质称为磁场。 ˆv Fm a B lim qt 0 2. 磁感应强度 B的定义 qt v
ˆv 和磁感应强度 B 三者相互 可见: 磁场力 Fm 、运动速度 a 垂直,且满足右手螺旋法则。
ppt课件 16
3. 磁感应强度的计算
安培力实验定律:
dF21 ˆR ) 0 I 2dl2 ( I1dl1 a 4π R
2
电流元
I1
I 2dl2
I2
I1dl1
0
0 I
4a
ˆz a
ppt课件
O点产生的磁感应强度: 0 I
B B1 B2 B3
ppt课件 2
3. 库仑定律
F21
q1q2 ˆR21 a 2 4π 0 R21
其中: 0为真空中介电常数。
0
1 109 8.85 1012 36 π
q1
R21
q2
F/m
q1
4. 电场强度的计算 q1qt2 ˆR21 F21 a 2 4π 0 R21
R21
q 2t
E
q 1 1 q R2 R1 4π 0 R1 R2 4π 0 R R 1 2
R1 R l cos 2 l R2 R cos 2
因为: l R 则: R2 R1 l cos
2 l R2 R1 R 2 cos2 R 2 4
15
(三) 磁场
Fm
产生磁场的源: a.永久磁铁 b.变化的电场 c.电流周围,即运动的电荷
v
B
1. 什么是磁场?
Fm qv B
存在于载流回路或永久磁铁周围空间,能对运动电荷 施力的特殊物质称为磁场。 ˆv Fm a B lim qt 0 2. 磁感应强度 B的定义 qt v
ˆv 和磁感应强度 B 三者相互 可见: 磁场力 Fm 、运动速度 a 垂直,且满足右手螺旋法则。
ppt课件 16
3. 磁感应强度的计算
安培力实验定律:
dF21 ˆR ) 0 I 2dl2 ( I1dl1 a 4π R
2
电流元
I1
I 2dl2
I2
I1dl1
电磁场理论基础答案解析
E U0 r ln b a
1 1 P Pz b P ( rP r ) 0 r r r z
b P
Sb
ˆ P n
ˆ r
( 0 )U 0 ˆ P r b r ln a
a
U0 U
sb
1-7 求矢量场 A 从所给球面 S 内穿出的通量。
3 3 3 ˆ ˆ ˆ A x x y yz z
2 2
解:矢量场 A 从所给球面 S 内穿出的通量可表示为
S 为:x y z a 提示:利用高斯散度定理求解
2 2
A dS
S
利用高斯散度定理,则有 ∵ 在直角坐标系中
)
A
( x ˆ x y ˆ y z
ˆ ˆ z ) [ x (
Az y
Ay z
ˆ ) y(
Ax z
Az x
ˆ ) z(
Ay x
Ax y
)]
x
2
(
Az y
2
Ay z
ˆ ˆ )x x
补充: 同轴电缆的内导体半径为a,外导体半径 为b,其间填充介电常数 0 r a 的电介质。已知 外导体接地,内导体的电压为U 。求(1)介质中 的 E 和 D ;(2)介质中的极化电荷分布。 q 解: (1)介质中的 E 和 D S E d S
br
先求出
D
:
D E
q r
2
ˆ E r r
Байду номын сангаас
( br 1) e
1 1 P Pz b P ( rP r ) 0 r r r z
b P
Sb
ˆ P n
ˆ r
( 0 )U 0 ˆ P r b r ln a
a
U0 U
sb
1-7 求矢量场 A 从所给球面 S 内穿出的通量。
3 3 3 ˆ ˆ ˆ A x x y yz z
2 2
解:矢量场 A 从所给球面 S 内穿出的通量可表示为
S 为:x y z a 提示:利用高斯散度定理求解
2 2
A dS
S
利用高斯散度定理,则有 ∵ 在直角坐标系中
)
A
( x ˆ x y ˆ y z
ˆ ˆ z ) [ x (
Az y
Ay z
ˆ ) y(
Ax z
Az x
ˆ ) z(
Ay x
Ax y
)]
x
2
(
Az y
2
Ay z
ˆ ˆ )x x
补充: 同轴电缆的内导体半径为a,外导体半径 为b,其间填充介电常数 0 r a 的电介质。已知 外导体接地,内导体的电压为U 。求(1)介质中 的 E 和 D ;(2)介质中的极化电荷分布。 q 解: (1)介质中的 E 和 D S E d S
br
先求出
D
:
D E
q r
2
ˆ E r r
Байду номын сангаас
( br 1) e
高等电磁场理论课后习题答案
由于是远场,
e 1 e 2 e 3 e 4 e e 1 e 2 e 3 e 4 e
2
I ka sin jkr jk r1 jk r2 E E 1 E 2 E 3 E 4 e e jk r3 e jk r4 e e 4r 1 H e k E
2.7
解:
H j E E j H E k 2 E 0 H 0 E 0
比如 E e z e 2.11
jkz
(1)
2 E ( E) ( E) k 2 E 2 E k 2 E 0 (2)
代入公式,可得,
I ka sin1 jkr1 H e e x cos 1 cos 1 e y cos 1 sin 1 e z sin 1 4r1
2
I ka sin 2 jkr2 e e x cos 2 cos 2 e y cos 2 sin 2 e z sin 2 4r2
推导1 1 1 R ˆ 4 lim 2 dV lim dS lim 3 4 R 2 R V 0 R 0 R 0 R R R V S 1 1 又知道 2 在R 0处值为零,符合 (r r ')函数的定义。 4 R 推导2 点电荷q (r r ')产生的电场强度为 q 1 4 0 R 4 R q (r r ') 1 E 2 4 (r r ') 0 R E q
所以有
H 2 E1 H1 E2 E1 J 2 E2 J1 H 2 M1 H1 M 2
电磁场理论优秀课件
第五章 准静态电磁场
麦克斯韦方程组描述了时变电磁场中时变电场与时变磁场相 互依存又相互制约,并以有限速度在空间传播,形成电磁波旳普 遍规律。此时,电磁场量旳鼓励与响应不是同步发生旳,场量旳 时间变量t与空间变量r有关。但在许多工程问题中,尤其在电气 设备、电力传播、生命科学等领域,时变电磁场旳频率教低,因 而在某些特定旳情况下,能够忽视二次源 B 或 D 旳作用,
例5-3 研究具有双层有损介质旳平板电容器接至直流电压 源旳过分过程,如图5-3所示。[书p.195例5-4]
解:设电容器在t≤0-时
处于零状态,极板上没有电
S
荷,即E1(0-)=E2(0-)=0,u(0-)
=0;t≥0+时,电容器旳端电 压被强制跃变,即u(0+)=U。
U
o
根据电容旳伏安关系
ε2 γ2 ε1 γ1
内外导体之间旳坡印亭矢量是
S E H •
•
•
••
U I
2 2 ln
b a
ez
同轴线传播旳平均功率应是坡印亭矢量在内外导体之间旳横截面
S上旳面积分,即
P
Re
S
••
U I
2 2 ln
b
a
dS
• ReUln
•
I
b a
b a
d
•
Re[U
•
I
]
P Re
••
U I
dS
• ReU
•
I
t
旳库仑电场Ec和感应电场Ei。在低频电磁场中,假如感应电场Ei
远不大于旳库仑电场Ec,则能够忽视Bt 现无旋性
旳作用,这时旳电场呈
E (E c E i) E c 0 (5-1)
麦克斯韦方程组描述了时变电磁场中时变电场与时变磁场相 互依存又相互制约,并以有限速度在空间传播,形成电磁波旳普 遍规律。此时,电磁场量旳鼓励与响应不是同步发生旳,场量旳 时间变量t与空间变量r有关。但在许多工程问题中,尤其在电气 设备、电力传播、生命科学等领域,时变电磁场旳频率教低,因 而在某些特定旳情况下,能够忽视二次源 B 或 D 旳作用,
例5-3 研究具有双层有损介质旳平板电容器接至直流电压 源旳过分过程,如图5-3所示。[书p.195例5-4]
解:设电容器在t≤0-时
处于零状态,极板上没有电
S
荷,即E1(0-)=E2(0-)=0,u(0-)
=0;t≥0+时,电容器旳端电 压被强制跃变,即u(0+)=U。
U
o
根据电容旳伏安关系
ε2 γ2 ε1 γ1
内外导体之间旳坡印亭矢量是
S E H •
•
•
••
U I
2 2 ln
b a
ez
同轴线传播旳平均功率应是坡印亭矢量在内外导体之间旳横截面
S上旳面积分,即
P
Re
S
••
U I
2 2 ln
b
a
dS
• ReUln
•
I
b a
b a
d
•
Re[U
•
I
]
P Re
••
U I
dS
• ReU
•
I
t
旳库仑电场Ec和感应电场Ei。在低频电磁场中,假如感应电场Ei
远不大于旳库仑电场Ec,则能够忽视Bt 现无旋性
旳作用,这时旳电场呈
E (E c E i) E c 0 (5-1)
第一章电磁场理论基础精品PPT课件
1.1.1 矢量和矢量场
(4)微分元矢量
– 线微分元矢量通常称为线元 z 矢量
dl eldl
dl dl3
– 线元矢量可表示成三个坐标 O
y
分量的矢量和。在直角坐标
dl1
系中有
x
dl2
图1-1-2 直角坐标系中线元矢量 dl
d l d l1 d l2 d l3 e x d x e y d y e z d z
• 在直角坐标系中
A •B A xB xA yB yA zB z A
A• B Acos
B
• 满足交换律和分配律
B 图1-1-5 矢量的标积
注:A•B0 AB
1.1.2 矢量的代数运算
AB
(2)矢量的矢积 (叉积 ):为矢量。
ABnABsin
n
A
– 在直角坐标系中
图1-1-6 矢量的矢积B
A B A y B z A z B y e x A z B x A x B z e y A x B y A y B x e z
微波技术与天线
——第1章 电磁场理论基 础
第1章 电磁场理论基础
1.1 矢量分析 1.2 麦克斯韦方程和边界条件 1.3 基于麦克斯韦理论的静态场描述 1.4 电磁场的波动方程、坡印廷定理 和唯一性定理 1.5 动态矢量位和标量位 1.6 理想介质中的SUPW 1.7 SUPW的反射和折射
1.1 矢量分析
1.1.1 矢量和矢量场
(4)微分元矢量
dS ndS n
– 面微分元矢量通常称为面元矢量
dS=ndS
dS
– 方向矢量n的确定
图1-1-3 面元矢量 dS
• dS为开表面上的面元,n的方向与围成开 表面的有向闭合曲线呈右手螺旋关系。 n
电磁第一章(习题和解答).ppt
q
2 0 R2
1-9一半径为R的半球面,均匀地带有电荷,电
荷面密度为 ,求球面中心处的场强。
解:1)如图在半球面上用
z r Rsin
极坐标取任意面元
rd
dS rdRd R2 sindd
Rd
它在球心产生的场强
dE
dq
dE 4 0 R2
dS 4 0 R2
sindd
4 0
由对称性分析可知
d
4 0
方向沿z 轴负向
1-10半径为R的带电细园环,线电荷密度 0 cos ,
0 为常数, 为半径R与x轴夹角,如图所示,求
圆环中心处的电场强度。
Y
解: 0 cos ,即分 布
关于x轴 对 称 E的 方 向 必 在x轴 上
dq Rd R0 cos d
dE
dq
4 0 R
2
0 cos d 4 0 R
解: (补偿法)由于对称性,均匀带电圆环在圆心处
场强为零。 q d
+ E=
E
均匀带电圆环 d L 所以q可视为点电荷
E
q
4 0 R2
d 4 0 R2
Q Q
2R d 2R
E
9 109
3.12 109 2 102
2 (50 102 )3
0.715v / m
1-8 如图所示,一细玻璃棒被弯成半径为R的半圆周,
F13
1
4 0
q1q3 r123
F23
1
4 0
q2q3 r223
r12
q1
q3
q2
r13
r23
F12 F13
F23 F13
解得:
q3 (
电磁场理论PPT课件
I
在非稳恒情况下,电流也是连续闭合的。
传导电流与位移电流的区别:
传导电流I
位移电流I d
变化的电场
不产生焦耳热
起源
热效应
存在媒体 二、全电流
电荷的运动 有
导体
导体、电介质、真空
如果电路中同时有传导电流和位移电流通过某一截面,则二者 之和称为全电流。 dD 全电流电流密度: j全 j jd j dt d 全电流电流强度: I 全 I I d I D dt 全电流在任何情况下总是连续的。
解:
(1)电容器两极板 间的位移电流
R
r
dD dD dE 2 S R 0 Id dt dt dt
2.8( A)
(2)以两板中心连线为轴,取半径为r的圆形回路,应 用全电流定律 d D 全电流为通过 L H dl I
dt
圆形回路的电流
当r R时
B L H dl H 2r 2r
L
H dl I 全 I I d I
D dS S t
位移电流的意义: 揭示了电场和磁场的内在联系
结论:传导电流和位移电流都能激发涡旋磁场。 位移电流的引入深刻地揭示了电场和磁场的内 在联系,反映了自然界对称性的美。法拉第电磁 感应定律表明了变化磁场能够产生涡旋电场,位 移电流假设的实质则是表明变化电场能够产生涡 旋磁场。变化的电场和变化的磁场互相联系,相 互激发,形成一个统一的电磁场。
H dl I
L
I:自由电流或
S
j dS
传导电流
S曲面:以闭合曲线L为边线的曲面 I:穿过曲面S的电流强度
非稳恒电流
I
《电磁场理论基础》课后答案
(教材 1-2)设 解: f 1 r r 1r r r
1-3.
(教材 1-3)证明 证明: r nr r nr nr
r 。 ∂ z ∂z r r r 3x r r 3y r r 3z
1-4.
(教材 1-4)证明 证明: 1 r · r r 3r r 3r
1-5.
(教材 1-5)证明 · 证明: 1 1 r ·r · r r r (教材 1-6)证明 证明:
W
2-12. (教材 2-18)求由三个同心导体球构成的导体系的电位系数 中球内外半径为 b 和 c,外球内外半径为 d 和 e。 解: 1 a P 1 4πε 1 b 1 c 1 c 1 d 1 e 1 d 1 e 1 e 1 c 1 c 1 d 1 d 1 e 1 e 1 e 1 e 1 e 1 e
清华大学出版社
中国科学技术大学 电子科学与技术系 电磁场理论
q 4πε d
q 4πε d q 4πε d q 4πε d q 4πε d
1 4π 1 4πa 1 4πa 1 4πa
1 ∂Φ R ∂n Φ · nds
Φ
∂ 1 ds ∂n R 1 4πa 1 4πa
q 4πε d Φds Φds
1 ∂ ρA ρ ∂ρ ρ 1 ∂ ρ ∂ρ A ρφ ∂ ∂φ ρA
∂ A ∂φ z ∂ ∂z A
A
圆球坐标系中, x y h r sin θ cos φ r sin θ sin φ z r cos θ cos φ sin θ sin φ sin θ cos θ
3 / 45
1
《电磁场理论基础》 王蔷 李国定 龚克
6 / 45
《电磁场理论基础》 王蔷 李国定 龚克
清华大学出版社
《物理光学》1章_光的电磁理论及课后习题答案PPT课件
Tx
sin
Ty
Tz
cos
设光波的初相位为0,可得出该平面波波函数复数和实数表达式分别为:
E x, y, z, t E0 exp i t kx x ky y kz z 0
E0
exp
i
2π
ct
x
sin
z
cos
0
E
x,
y,
z,t
E0
cos
2π
ct
x
sin
z
cos
一、 电磁场的边值关系
电磁场的边界关系 光波在介质的分界面上电磁场量之间的关系称为电 磁场的边界条件。
1、法向分量 通过分界面时磁感强度的法线分量是连续的。
B1n B2n
若没有自由电荷,电感强度的法线分量也是连续的。
D1n D2n
磁感强度:假想在分界面上 作出一个扁平的小圆柱体。
A
n1
得 k y kz 0时,Tx x 2 k x cos
k y k x 0时,Ty y 2 k y cos
k x kz 0时,Tz z 2 kz cos
❖ ❖
沿空间任意与k 由 k
夹角为 r kb
的方向b的空间周期: cos
kb cos 2
❖
得 Tb b 2 k cos cos
❖
⑴
一在维谐E 波波E函0 数r及e其xp周i期k性
r
t
0
中
❖ ❖
若
则
kx E
0, E0
ky
r
0
expi
kz
①空间各点的初位相
t kr
0
0
②空间一点的光场时间变化图
T
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拉
60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
5ห้องสมุดไป่ตู้、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
电磁场理论基础答案
1、合法而稳定的权力在使用得当时很 少遇到 抵抗。 ——塞 ·约翰 逊 2、权力会使人渐渐失去温厚善良的美 德。— —伯克
3、最大限度地行使权力总是令人反感 ;权力 不易确 定之处 始终存 在着危 险。— —塞·约翰逊 4、权力会奴化一切。——塔西佗
5、虽然权力是一头固执的熊,可是金 子可以 拉着它 的鼻子 走。— —莎士 比
60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
5ห้องสมุดไป่ตู้、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
电磁场理论基础答案
1、合法而稳定的权力在使用得当时很 少遇到 抵抗。 ——塞 ·约翰 逊 2、权力会使人渐渐失去温厚善良的美 德。— —伯克
3、最大限度地行使权力总是令人反感 ;权力 不易确 定之处 始终存 在着危 险。— —塞·约翰逊 4、权力会奴化一切。——塔西佗
5、虽然权力是一头固执的熊,可是金 子可以 拉着它 的鼻子 走。— —莎士 比