七年级下数学期中试卷及答案
2023-2024学年安徽省芜湖市七年级(下)期中数学试卷+答案解析
2023-2024学年安徽省芜湖市七年级(下)期中数学试卷一、选择题:本题共10小题,每小题4分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列命题中,是真命题的是()A.内错角相等B.同角的余角相等C.相等的角是对顶角D.互补的角是邻补角2.2的算术平方根是()A. B.2 C. D.3.如图,根据下列某个条件,可以得到,则这个条件应该是()A.B.C.D.4.如图,在同一平面内,,,垂足为O,则OA与OB重合的理由是()A.两点确定一条直线B.垂线段最短C.同一平面内,过一点有且只有一条直线与已知直线垂直D.已知直线的垂线只有一条5.已知点P在第四象限,且到x轴的距离为3,到y轴的距离为2,则点P的坐标一定是()A. B. C. D.6.若整数x满足,则x的值是()A.8B.9C.10D.117.如图是一个无理数生成器的工作流程图,根据该流程图,下面说法:①当输出值y为时,输入值x为3或9;②当输入值x为16时,输出值y为;③对于任意的正无理数y,都存在正整数x,使得输入x后能够输出y;④存在这样的正整数x,输入x之后,该生成器能够一直运行,但始终不能输出y值.其中错误的是()A.①②B.②④C.①④D.①③8.如图,直线,分别与直线l交于点A,B,把一块含角的三角尺按如图所示的位置摆放,若,则的度数是()A.B.C.D.9.有一列数按一定规律排列:,…,则第n个数是()A. B.C. D.10.如图,在平面直角坐标中,动点M从点出发,按图中箭头所示方向依次运动,第1次运动到点,第2次运动到点,第3次运动到点,…,按这样的运动规律,动点M第2024次运动到点()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。
11.在平面直角坐标系中,将点向下平移3个单位长度,得到的点的坐标为______.12.比较大小:______填“>”,“<”或“=”13.已知一个角的两边分别垂直于另一个角的两边,且这两个角的差是,则这两个角的度数分别是______.14.已知,请完成以下问题:如图1,、、、、的度数之间的等量关系是______;如图2,,,,,则______.三、计算题:本大题共1小题,共8分。
人教版数学七年级下学期《期中考试题》附答案
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1. 在平面直角坐标系中,点A(2,-3)在第( )象限.A. 一B. 二C. 三D. 四2.4的平方根是( )A. 2B. ±2C. 2D. 2± 3.实数﹣2,0.31••,3π,0.1010010001,38中,无理数有( )个 A. 1 B. 2 C. 3 D. 4 4.如图,已知160∠=︒,260∠=︒,368∠=︒,则4∠等于( )A 68︒ B. 60︒ C. 102︒ D. 112︒5.如图,在48⨯的方格中,建立直角坐标系()1,2E ﹣﹣,2(2,)F ﹣,则点坐标为( )A. ()1,1﹣B. (2,1)﹣﹣C. ()3,1﹣D. (1,)2﹣ 6.在平面直角坐标系中,点的坐标()0,1,点的坐标()3,3,将线段AB 平移,使得到达点()4,2C ,点到达点,则点的坐标是( )A. ()7,3B. ()6,4C. ()7,4D. ()8,4 7.如图,AB∥CD ,BC∥DE ,∠A=30°,∠BCD=110°,则∠AED 的度数为( )A. 90°B. 108°C. 100°D. 80° 8.下列说法错误的是( ) A. 4=2±± B. 64算术平方根是4 C. 330a a +-= D. 110x x -+-≥,则x =19.一只跳蚤在第一象限及、轴上跳动,第一次它从原点跳到(0,1),然后按图中箭头所示方向跳动(0,0)0,11,()()1,)0(1→→→→……,每次跳一个单位长度,则第2020次跳到点( )A. (7,45)B. (6,44)C. (5,45)D. (4,44)10.下列命题是真命题的有( )个①对顶角相等,邻补角互补②两条直线被第三条直线所截,同位角平分线平行③垂直于同一条直线的两条直线互相平行④过一点有且只有一条直线与已知直线平行A. 0B. 1C. 2D. 3二、填空题11.2-的绝对值是________.12.、是实数230x y +-=,则xy =________.13.已知,(0,4)A ,0()2,B ﹣,1(3,)C ﹣,则ABC S =________.14.若23n ﹣与1n ﹣是整数的平方根,则x =________.15.在平面坐标系中,1(1,)A ﹣,(3,3)B ,M 是轴上一点,要使MB MA +的值最小,则M 的坐标为________.16.如图,在平面内,两条直线1l ,2l 相交于点,对于平面内任意一点M ,若,分别是点M 到直线1l ,2l 的距离,则称(,)p q 为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有________个.三、解答题17.计算:(13316648-(2)333521|1228- 18.求下列各式中的值(1)()216149x += (2)3()81125x ﹣= 19.已知是不等式组 513(1)131722a a a a ->+⎧⎪⎨-<-⎪⎩ 的整数解,、满足方程组 27234ax y x y -=-⎧⎨+=⎩,求22x xy y -+的值 20.已知在平面直角坐标系中有三点()21A -,、1(3)B ,、(23)C ,,请回答如下问题: (1)在坐标系内描出点、、A B C 的位置:(2)求出以、、A B C 三点为顶点的三角形的面积;(3)在轴上是否存在点,使以A B P 、、三点为顶点的三角形的面积为10,若存在,请直接写出点的坐标;若不存在,请说明理由.21.(1)如图1所示,O是直线AB上一点,OD平分∠AOC,OE平分∠BOC,求证:OD⊥OE;(2)如图2所示,AB∥CD,点E为AC上一点,∠1=∠B,∠2=∠D.求证:BE⊥DE.22.某公司装修需用A型板材240块、B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(如图是裁法一的裁剪示意图)裁法一裁法二裁法三A型板材块数 1 2 0B型板材块数 2 m n设所购的标准板材全部裁完,其中按裁法一裁x张、按裁法二裁y张、按裁法三裁z张,且所裁出的A、B两种型号的板材刚好够用.(1)上表中,m= _____,n= ____;(2)分别求出y与x和z与x的函数关系式;(3)若用Q 表示所购标准板材的张数,求Q 与x 的函数关系式,并指出当x 取何值时Q 最小,此时按三种裁法各裁标准板材多少张?23.(1)①如图1,//AB CD ,则B 、P ∠、D ∠之间的关系是 ;②如图2,//AB CD ,则A ∠、E ∠、C ∠之间的关系是 ;(2)①将图1中BA 绕点逆时针旋转一定角度交CD 于Q (如图3).证明:123BPD ∠=∠+∠+∠②将图2中AB 绕点顺时针旋转一定角度交CD 于 (如图4)证明:360E C CHA A ∠+∠+∠+∠=︒(3)利用(2)中结论求图5中A B C D E F G ∠+∠+∠+∠+∠+∠+∠的度∠+∠+∠+∠+∠+∠+∠=数.A B C D E F G24..如图1,在平面直角坐标系中,A 、B 在坐标轴上,其中A(0,a) ,B(b, 0)满足| a - 3 |+4b-= 0.(1)求A 、B 两点的坐标;(2)将AB 平移到CD ,A 点对应点C(-2,m) ,CD 交y 轴于E ,若≥ABC 的面积等于13,求点E 的坐标;(3)如图2,若将AB 平移到CD ,点C、D 也在坐标轴上,F 为线段AB 上一动点,(不包括点A ,点B) ,连接OF 、FP 平分 BFO , BCP = 2 PCD,试探究 COF, OFP , CPF 的数量关系.答案与解析一、选择题1. 在平面直角坐标系中,点A(2,-3)在第( )象限.A. 一B. 二C. 三D. 四[答案]D[解析]试题分析:根据平面直角坐标系中各象限点的特征,判断其所在象限,四个象限的符号特征分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).故点A(2,-3)位于第四象限,故答案选D . 考点:平面直角坐标系中各象限点的特征.2.4的平方根是( )A. 2B. ±2C.D. [答案]B[解析][分析]根据平方根的定义即可求得答案.[详解]解:∵(±2)2=4,∴4的平方根是±2. 故选:B .[点睛]本题考查平方根.题目比较简单,解题的关键是熟记定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.3.,0.31••,3π,0.1010010001中,无理数有( )个 A. 1B. 2C. 3D. 4 [答案]B[解析][分析]利用无理数的定义判断即可.[详解]解:在实数2-(无理数),0.31••(有理数),3π(无理数),0.1010010001(有理数),382=(有理数)中,无理数有2个,故选:B . [点睛]此题考查了无理数,弄清无理数的定义是解本题的关键.4.如图,已知160∠=︒,260∠=︒,368∠=︒,则4∠等于( )A. 68︒B. 60︒C. 102︒D. 112︒[答案]D[解析][分析] 根据∠1=∠2,得a ∥b ,进而得到∠5=3∠,结合平角的定义,即可求解.[详解]∵160∠=︒,260∠=︒,∴∠1=∠2,∴a ∥b ,∴∠5=368∠=︒,∴∠4=180°-∠5=112︒.故选D .[点睛]本题主要考查平行线的判定和性质定理以及平角的定义,掌握“同位角相等两直线平行”,“两直线平行,同位角相等”,是解题的关键.5.如图,在48⨯的方格中,建立直角坐标系()1,2E ﹣﹣,2(2,)F ﹣,则点坐标为( )A. ()1,1﹣ B. (2,1)﹣﹣ C. ()3,1﹣ D. (1,)2﹣ [答案]C[解析][分析] 直接利用已知点得出原点位置进而建立平面直角坐标系,即可得出答案.[详解]解:建立直角坐标系如图所示:则G 点坐标为:(-3,1).故选:C .[点睛]此题主要考查了点的坐标,正确得出原点位置是解题关键.6.在平面直角坐标系中,点的坐标()0,1,点的坐标()3,3,将线段AB 平移,使得到达点()4,2C ,点到达点,则点的坐标是( )A. ()7,3B. ()6,4C. ()7,4D. ()8,4[答案]C[解析][分析]根据A 和C 的坐标可得点A 向右平移4个单位,向上平移1个单位,点B 的平移方法与A 的平移方法相同,再根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点D 的坐标.[详解]解:∵点A (0,1)的对应点C 的坐标为(4,2),即(0+4,1+1),∴点B (3,3)的对应点D 的坐标为(3+4,3+1),即D (7,4);故选:C.[点睛]此题主要考查了坐标与图形的变化——平移,关键正确得到点的平移方法.7.如图,AB∥CD ,BC∥DE ,∠A=30°,∠BCD=110°,则∠AED 度数为( )A. 90°B. 108°C. 100°D. 80°[答案]C[解析][分析] 在图中过E 作出BA 平行线EF ,根据平行线性质即可推出∠AEF 及∠DEF 度数,两者相加即可.[详解]过E 作出BA 平行线EF,∠AEF=∠A =30°,∠DEF=∠ABC AB ∥CD,BC ∥DE,∠ABC=180°-∠BCD =180°-110°=70°,∠AED=∠AEF+∠DEF=30°+70°=100° [点睛]本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质. 8.下列说法错误的是( ) A. 4=2±±B. 64的算术平方根是4C. 330a a -=D. 110x x --≥,则x =1 [答案]B[解析][分析]根据平方根、算术平方根、立方根的概念对选项逐一判定即可.[详解]A .4=2±±,正确;B .64的算术平方根是8,错误;C 330a a -,正确;D 110x x --≥,则x =1,正确; 故选:B .[点睛]本题考查了平方根、算数平方根,立方根的概念,理解概念内容是解题的关键. 9.一只跳蚤在第一象限及、轴上跳动,第一次它从原点跳到(0,1),然后按图中箭头所示方向跳动(0,0)0,11,()()1,)0(1→→→→……,每次跳一个单位长度,则第2020次跳到点( )A. (7,45)B. (6,44)C. (5,45)D. (4,44)[答案]D[解析][分析] 根据跳蚤运动的速度确定:(0,1)用的次数是21(1)次,到(0,2)是第8(24)次,到(0,3)是第29(3)次,到(0,4)是第24(46)次,到(0,5)是第225(5)次,到(0,6)是第48(68)次,依此类推,到(0,45)是第2025次,后退5次可得2020次所对应的坐标.[详解]解:跳蚤运动的速度是每秒运动一个单位长度,(0,1)用的次数是21(1)次,到(0,2)是第8(24)次,到(0,3)是第29(3)次,到(0,4)是第24(46)次,到(0,5)是第225(5)次,到(0,6)第48(68)次,依此类推,到(0,45)是第2025次.2025142020,故第2020次时跳蚤所在位置的坐标是(4,44).故选:D .[点睛]此题主要考查了数字变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间.10.下列命题是真命题的有( )个①对顶角相等,邻补角互补②两条直线被第三条直线所截,同位角的平分线平行③垂直于同一条直线的两条直线互相平行④过一点有且只有一条直线与已知直线平行A. 0B. 1C. 2D. 3[答案]B[解析][分析]根据平行线的性质定理、平行公理、对顶角和邻补角的概念判断即可.[详解]解:对顶角相等,邻补角互补,故①是真命题;两条平行线被第三条直线所截,同位角的平分线平行,故②是假命题;在同一平面内,垂直于同一条直线的两条直线互相平行,故③是假命题;过直线外一点有且只有一条直线与已知直线平行,故④是假命题;故正确的个数只有1个,故选:B.[点睛]本题考查的是平行的公理和应用,命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.二、填空题11.的绝对值是________.[答案[解析][分析]根据绝对值的意义,实数的绝对值永远是非负数,负数的绝对值是它的相反数,即可得解.[详解]解:根据负数的绝对值是它的相反数,得=.[点睛]此题主要考查绝对值的意义,熟练掌握,即可解题.=,则xy=________.12.、是实数0[答案]-6[解析][分析]根据算术平方根的非负性即可求出与的值.y-=,[详解]解:由题意可知:20x+=,30y=x2∴=-,3xy6-故答案为:6[点睛]本题考查非负数的性质,解题的关键是熟练运用算术平方根的定义.13.已知,(0,4)A ,0()2,B ﹣,1(3,)C ﹣,则ABC S =________.[答案]11[解析][分析] 根据三角形的面积等于正方形面积减去三个小三角形面积解答即可.[详解]解:如图示,根据(0,4)A ,0()2,B ﹣,1(3,)C ﹣三点坐标建立坐标系得: 则1115524351511222ABC S .故答案为:11[点睛]此题考查利用直角坐标系求三角形的面积,关键是根据三角形的面积等于正方形面积减去三个小三角形面积解答.14.若23n ﹣与1n ﹣是整数的平方根,则x =________.[答案]1[解析][分析]分类讨论:当231n n ,解得2n =,所以22(1)(21)1x n ;当2310n n ,解得43n =,所以241(1)(1)39x n . [详解]解:因为23n ﹣与1n ﹣是整数的平方根,当231n n 时,解得2n =,所以22(1)(21)1x n ; 当2310n n ,解得43n =,所以241(1)(1)39x n . x 是整数, 1x ∴=,故答案为1.[点睛]本题考查了平方根的应用,若一个数的平方等于,那么这个数叫的平方根,记作(0)a a ±.15.在平面坐标系中,1(1,)A ﹣,(3,3)B ,M 是轴上一点,要使MB MA +的值最小,则M 的坐标为________. [答案](32, [解析][分析]连接AB 交轴于M ,点M 即为所求; [详解]解:如图示,连接AB 交轴于M ,则MB MA +的值最小.设直线AB 的解析式为y kx b =+,根据坐标1(1,)A ﹣,(3,3)B , 则有331k b k b +=⎧⎨+=-⎩, 解得23k b =⎧⎨=-⎩, 直线AB 的解析式为23yx ,令0y =,得到32x, 32(M ,故本题答案为:(32,.[点睛]本题考查了坐标与图形的性质,两点之间线段最短等知识,解题的关键是灵活运用所学知识解决问题. 16.如图,在平面内,两条直线1l ,2l 相交于点,对于平面内任意一点M ,若,分别是点M 到直线1l ,2l 的距离,则称(,)p q 为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有________个.[答案]4[解析][分析]到1l 的距离是2的点,在与1l 平行且与1l 的距离是2的两条直线上;同理,点M 在与2l 的距离是1的点,在与2l 平行,且到2l 的距离是1的两直线上,四条直线的距离有四个交点.因而满足条件的点有四个.[详解]解:到1l 的距离是2的点,在与1l 平行且与1l 的距离是2的两条直线上;到2l 距离是1的点,在与2l 平行且与2l 的距离是1的两条直线上;以上四条直线有四个交点,故“距离坐标”是(2,1)的点共有4个.故答案为:4.[点睛]本题主要考查了到直线的距离等于定长的点的集合.三、解答题17.计算:(13316648-(2)333521|1228- [答案](1)12;(2)2.[解析][分析](1)直接利用算术平方根以及立方根的性质化简得出答案;(2)直接利用绝对值的性质以及立方根的性质进而得出答案.[详解]解:3316648-44248=+12=;(2)333521|12|28 33221222=.[点睛]此题主要考查了实数运算,正确化简各数是解题关键.18.求下列各式中的值(1)()216149x += (2)3()81125x ﹣= [答案](1)12311,44x x ==-;(2)32x =-. [解析][分析](1)根据平方根的性质,直接开方,即可解答;(2)根据立方根,直接开立方,即可解答.[详解]解:(1)216(1)49x 249(1)16x 714x , 12311,44x x ==-. (2)38(1)125x 3125(1)8x 512x 32x =-. [点睛]本题考查平方根、立方根,解决本题的关键是熟记平方根、立方根的相关性质.19.已知是不等式组 513(1)131722a a a a ->+⎧⎪⎨-<-⎪⎩ 的整数解,、满足方程组 27234ax y x y -=-⎧⎨+=⎩,求22x xy y -+的值 [答案]7[解析][分析]本题应先解不等式组确定a 整数值,再将a 值代入关于x 、y 的二元一次方程组中求解,最后求得22x xy y -+的值.[详解]解:解不等式513(1)a a ->+得:a >2 解不等式131722a a 得:a <4 所以不等式组的解集是:2<a <4所以a 的整数值为3.把a=3代入方程组27234ax y x y ,得327234x y x y解得12x y =-⎧⎨=⎩, 所以222212112472x xy y .[点睛]本题考查了一元一次不等式组、不等式组的特殊解、代数求值的综合运用,熟悉基本运算方法、运算法则是解题的关键.20.已知在平面直角坐标系中有三点()21A -,、1(3)B ,、(23)C ,,请回答如下问题: (1)在坐标系内描出点、、A B C 的位置:(2)求出以、、A B C 三点为顶点的三角形的面积;(3)在轴上是否存在点,使以A B P 、、三点为顶点的三角形的面积为10,若存在,请直接写出点的坐标;若不存在,请说明理由.[答案](1)见解析;(2)5;(3)存在;点的坐标为(0,5)或(0,3)-.[解析][分析](1)根据点的坐标,直接描点;(2)根据点的坐标可知,AB∥x轴,且AB=3-(-2)=5,点C到线段AB的距离3-1=2,根据三角形面积公式求解;(3)因为AB=5,要求△ABP的面积为10,只要P点到AB的距离为4即可,又P点在y轴上,满足题意的P点有两个,分别求解即可.详解]解:(1)描点如图:(2)依题意,得AB∥x轴,且AB3(2)5=--=,∴S△ABC1525 2=⨯⨯=;(3)存在;∵AB=5,S△ABP=10,∴P点到AB的距离为4,又点P在y轴上,∴P点的坐标为(0,5)或(0,-3).[点睛]本题考查了点的坐标的表示方法,能根据点的坐标表示三角形的底和高并求三角形的面积是解题的关键.21.(1)如图1所示,O是直线AB上一点,OD平分∠AOC,OE平分∠BOC,求证:OD⊥OE;(2)如图2所示,AB∥CD,点E为AC上一点,∠1=∠B,∠2=∠D.求证:BE⊥DE.[答案](1)见解析(2)见解析[解析][分析](1)证明∠COD+∠COE=90°即可.(2)证明∠1+∠2=90°即可.[详解]证明:(1)∵OD平分∠AOC,OE平分∠BOC,∴∠COD=12∠AOC,∠COE=12∠COB,∴∠DOE=∠COD+∠COE=12(∠AOC+∠COB)=90°,∴OD⊥OE.(2)∵AB∥CD,∴∠A+∠C=180°,∵∠1=∠B,∠2=∠D,∠A+2∠1=180°,∠C+2∠2=180°,∴∠1+∠2=90°,∴∠DEB=90°,∴DE⊥BE.[点睛]本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.某公司装修需用A型板材240块、B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(如图是裁法一的裁剪示意图)裁法一裁法二裁法三A型板材块数120B型板材块数2m n设所购的标准板材全部裁完,其中按裁法一裁x张、按裁法二裁y张、按裁法三裁z张,且所裁出的A、B两种型号的板材刚好够用.(1)上表中,m= _____,n= ____;(2)分别求出y与x和z与x的函数关系式;(3)若用Q表示所购标准板材的张数,求Q与x的函数关系式,并指出当x取何值时Q最小,此时按三种裁法各裁标准板材多少张?[答案](1)m=0,n=3;(2)y=120﹣12x,z=60﹣23x;(3)Q=180﹣16x;当x=90时,Q最小,此时按三种裁法分别裁90张、75张、0张.[解析][详解](1)按裁法二裁剪时,2块A型板材块的长为120cm,150﹣120=30,所以无法裁出B型板, 按裁法三裁剪时,3块B型板材块的长为120cm,120<150,而4块B 型板材块长为160cm >150cm ,所以无法裁出4块B 型板;∴m=0,n=3;(2)由题意得:共需用A 型板材240块、B 型板材180块,又∵满足x+2y=240,2x+3z=180,∴整理得:y=120﹣12x ,z=60﹣23x ; (3)由题意,得Q=x+y+z=x+120﹣12x+60﹣23x . 整理,得Q=180﹣16x . 由题意,得11200226003x x ⎧-⎪⎪⎨⎪-⎪⎩, 解得x≤90.[注:0≤x≤90且x 是6的整数倍]由一次函数的性质可知,当x=90时,Q 最小.由(2)知,y=120﹣12x=120﹣12×90=75, z=60﹣23x=60﹣23×90=0; 故此时按三种裁法分别裁90张、75张、0张.考点:一次函数的应用.23.(1)①如图1,//AB CD ,则B 、P ∠、D ∠之间的关系是 ;②如图2,//AB CD ,则A ∠、E ∠、C ∠之间的关系是 ;(2)①将图1中BA 绕点逆时针旋转一定角度交CD 于Q (如图3).证明:123BPD ∠=∠+∠+∠②将图2中AB 绕点顺时针旋转一定角度交CD 于 (如图4)证明:360E C CHA A ∠+∠+∠+∠=︒(3)利用(2)中的结论求图5中A B C D E F G ∠+∠+∠+∠+∠+∠+∠的度数. A B C D E F G ∠+∠+∠+∠+∠+∠+∠=[答案](1)①B D P ∠+∠=∠,②360A E C ∠+∠+∠=︒;(2)①证明见解析,②证明见解析;(3)540︒.[解析][分析](1)①如图1中,作//PE AB ,利用平行线的性质即可解决问题;②作//EH AB ,利用平行线的性质即可解决问题;(2)①如图3中,作//BE CD ,利用平行线的性质即可解决问题;②如图4中,连接EH .利用三角形内角和定理即可解决问题;(3)利用(2)中结论,以及五边形内角和540︒即可解决问题;[详解]解:(1)①如图1中,作//PE AB ,//AB CD ,//PE CD ∴,1B ∴∠=∠,D 2∠=∠,12B D BPD .②如图2,作//EH AB ,//AB CD ,//EH CD ,1180A ∴∠+∠=︒,2180C , 12360A C , 360A AEC C .故答案为B D P ∠+∠=∠,360A E C ∠+∠+∠=︒.(2)①如图3中,作//BE CD ,3EBQ ,1EBP EBQ ,2132BPD EBP .②如图4中,连接EH .180C CEB CBE,A AEH AHE,180A AEH AHE CEH CHE C,360A AEC C AHC.360(3)如图5中,设AC交BG于.AHB A B F,∠=∠,AHB CHG在五边形HCDEG中,540CHG C D E G,A B F C D E G540[点睛]本题考查图形的变换、规律型问题、平行线的性质、多边形内角和等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用结论解决问题.24..如图1,在平面直角坐标系中,A 、B 在坐标轴上,其中A(0,a) ,B(b, 0)满足| a - 3 |+4b-= 0.(1)求A 、B 两点的坐标;(2)将AB 平移到CD ,A 点对应点C(-2,m) ,CD 交y 轴于E ,若≥ABC 的面积等于13,求点E 的坐标;(3)如图2,若将AB 平移到CD ,点C、D 也在坐标轴上,F 为线段AB 上一动点,(不包括点A ,点B) ,连接OF 、FP 平分 BFO , BCP = 2 PCD,试探究 COF, OFP , CPF 的数量关系.[答案](1)A (0,3),B (4,0);(2)E 的坐标为(0,72-);(3)∠COF+∠OFP=3∠CPF . [解析][分析](1)根据非负数的性质分别求出a 、b,得到答案; (2)构造矩形,根据三角形的面积是13,利用割补法求出m,再根据平移的性质,求出直线DC 的解析式,则可求出点E 的坐标;(3)作HP ∥AB 交AD 于H,OG ∥AB 交FP 于G,设∠OFP=x,∠PCD=y,根据平行线的性质、三角形的外角的性质计算即可.[详解]解:(1)由题意得,a-3=0,b-4=0, 解得,a=3,b=4, 则A (0,3),B (4,0); (2)如图1所示,∵∆ABC 的面积等于13,根据A,B,C 三点的坐标, 可得:111324232422413222m m ,(m<0) 解得,m=-2,则点C 的坐标为(-2,-2),根据平移规律,则有点D 的坐标为(2,-5),设直线CD 的解析式为:y=cx+d ,2225cd c d ,解得3472c d , ∴CD 的解析式为:3742yx , ∴CD 与y 轴的交点E 的坐标为(0,72- ); (3)如图2所示,作HP ∥AB 交AD 于H ,OG ∥AB 交FP 于G ,设∠OFP=x,∠PCD=y,则∠BFP=x,∠PCB=2y,∵HP∥AB,OG∥AB,∴∠HPC=∠PCD=y,∠OPF=∠OFP=x,∴∠CPF=x+y,又∵∠COF=∠PCB +∠CPF +∠OFP =2y+(x+y)+ x =2x+3y,∴∠COF+∠OFP=3x+3y=3∠CPF.[点睛]本题考查的是非负数的性质、坐标与图形的关系、待定系数法求函数解析式以及平行线的性质,掌握待定系数法求函数解析式的一般步骤、平移规律是解题的关键.。
人教版七年级下册数学期中考试试题及答案
人教版七年级下册数学期中考试试卷一、单选题1.下列数据能确定物体具体位置的是()A .朝阳大道右侧B .好运花园2号楼C .东经103︒,北纬30°D .南偏西55︒2.在0.21)A .0.2BC .﹣1D3.下列各式计算正确的是()A 2=±B 1=-C 2=±D .3=4.下列命题中是假命题的是()A .两直线平行,同位角互补B .对顶角相等C .直角三角形两锐角互余D .平行于同一直线的两条直线平行5.在平面直角坐标系内,将M (5,2)先向下平移2个单位,再向左平移3个单位,则移动后的点的坐标是()A .(2,0)B .(3,5)C .(8,4)D .(2,3)6.如图,直线AB 和CD 相交于点O ,45AOC ∠=︒,射线OE 是BOD ∠的角平分线,则∠BOE 的度数为()A .22.5︒B .23.5︒C .45︒D .40︒7.如图,在下列条件中,能判断AB ∥CD 的是()A .∠1=∠2B .∠BAD =∠BCDC .∠BAD +∠ADC =180°D .∠3=∠48.小明在学习平行线的性质后,把含有60°角的直角三角板摆放在自己的文具上,如图,AD ∥BC ,若∠2=70°,则∠1=()A .22°B .20°C .25°D .30°9.如图,数轴上有M ,N ,P ,Q 四点,则这四点中所表示的数最接近)A .点MB .点NC .点PD .点Q10.如图,已知直线AB ,CD 被直线AC 所截,//AB CD ,E 是平面内任意一点(点E 不在直线AB ,CD ,AC 上),设∠BAE =α,∠DCE =β.下列各式:①α+β,②α﹣β,③180°﹣α﹣β,④360°﹣α﹣β,∠AEC 的度数可能是()A .①②③B .①②④C .①③④D .①②③④二、填空题11.已知点(1,3)M m m ++在x 轴上,则m 等于______.12.如果一个正数a 的两个不同平方根分别是22x -和63x -,则a =______.13.在平面直角坐标系中,第二象限内有一点M ,点M 到x 轴的距离为5,到y 轴的距离为4,则点M 的坐标是______.14.如图://AB CD ,AE CE ⊥,13EAF EAB ∠=∠,13ECF ECD ∠=∠,则AFC ∠=__.15a ,小数部分是b ,计算a ﹣2b 的值是__.16<x x 的整数有4个;③﹣3⑥对于任意实数a a .其中正确的序号是_____.三、解答题17218.求下列各式中的x :(1)24810x -=;(2)35(1)48x -+=.19.如图,已知AD BC ⊥于点D ,点E 在AB 上,EF BC ⊥于点F ,12∠=∠,试说明//DE AC .20.按要求画图及填空:在由边长为1个单位长度的小正方形组成的网格中建立如图所示平面直角坐标系,原点O 及△ABC 的顶点都在格点上.(1)点A 的坐标为;(2)将△ABC 先向下平移2个单位长度,再向右平移5个单位长度得到△A 1B 1C 1,画出△A 1B 1C 1.(3)△A 1B 1C 1的面积为.21.(1)由8个同样大小的立方体组成的魔方,体积为64,则出这个魔方的棱长是_____.(2)图1正方形EFGH 的边长等于魔方的棱长,求出阴影部分的面积及其边长.(3)把正方形ABCD 放到数轴上,如图2,使得A 与1-重合,那么D 在数轴上表示的数为______.22.在平面直角坐标系中,有A(﹣2,a +1),B(a ﹣1,4),C(b ﹣2,b )三点.(1)当点C 在y 轴上时,求点C 的坐标;(2)当AB ∥x 轴时,求A ,B 两点间的距离;(3)当CD ⊥x 轴于点D ,且CD =1时,求点C 的坐标.23.先阅读下列一段文字,再回答后面的问题:已知在平面直角坐标系内两点P 1(x 1,y 1),P 2(x 2,y 2),其两点间的距离P 1P 2轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x 2﹣x 1|或|y 2﹣y 1|.(1)已知A (1,3),B (﹣3,﹣5),试求A ,B 两点间的距离;(2)已知线段MN ∥y 轴,MN =4,若点M 的坐标为(2,﹣1),试求点N 的坐标;(3)已知一个三角形各顶点坐标为D (0,6),E (﹣3,2),F (3,2),你能判定此三角形的形状吗?说明理由.24.已知//AM CN ,点B 为平面内一点,AB BC ⊥于B .(1)如图1,直接写出A ∠和C ∠之间的数量关系________;(2)如图2,过点B 作BD AM ⊥于点D ,请说明ABD C ∠=∠的理由;(3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE ,BP 、CF ,BF 平分DBC ∠,BE 平分ABD ∠,若180FCB NCF ∠+∠=︒,3BFC DBE ∠=∠,求EBC ∠的度数.参考答案1.C【分析】在平面中,要用两个数据才能表示一个点的位置.【详解】解:朝阳大道右侧、好运花园2号楼、南偏西55︒都不能确定物体的具体位置,东经103︒,北纬30°能确定物体的具体位置,故选:C.【点睛】此题主要考查了坐标确定位置,要明确,一个有序数对才能确定一个点的位置.2.D【分析】按照无理数的定义逐个来判定即可.【详解】解:A、0.2属于有理数,故A不符合题意;3,为有理数,故B不符合题意;BC、﹣1为有理数,故C不符合题意;D符合题意.D故选:D.【点睛】此题主要考查无理数的识别,解题的关键是熟知无理数的定义.3.B【分析】根据算术平方根、平方根和立方根的定义分别判断即可.【详解】解:A2=,故选项错误;B1=-,故选项正确;C2=,故选项错误;D、3=±,故选项错误;故选B.【点睛】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.4.A【分析】根据平行线、相交线、三角形内角和等性质,对选项逐个判断即可.【详解】解:A:两直线平行,同位角相等,同旁内角互补,选项错误,符合题意;B:对顶角相等,为真命题,故选项不符合题意;C:直角三角形两锐角相加为90︒,即互余,为真命题,故选项不符合题意;D:平行于同一直线的两条直线平行,为真命题,故选项不符合题意;故选A.【点睛】此题主要考查了真假命题,涉及到平行线、相交线、三角形内角和、平行公理等内容,熟练掌握相关几何性质是解题的关键.5.A【分析】根据平移变换与坐标变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减,可得答案.【详解】因为M点坐标为(5,2),根据平移变换的坐标变化规律可知,向下平移2个单位,再向左平移3个单位后得到的点的坐标是(5−3,2-2),即(2,0).故选:A.【点睛】此题主要考查了坐标与图形的变化,关键是掌握点的坐标的变化规律.6.A【分析】根据对顶角相等可得∠BOD=∠AOC,再根据射线OE是∠BOD的角平分线即可得解.【详解】解:由对顶角相等得,∠BOD=∠AOC=45°,∵射线OE是∠BOD的角平分线,∴∠BOE=12∠BOD=12×45°=22.5°.故选:A.【点睛】本题考查了对顶角的性质和角平分线的定义,熟记概念并求出∠BOD的度数是解题的关键.7.C【分析】利用平行线的判定方法逐一判断即可.【详解】解:A.由∠1=∠2可判断AD∥BC,不符合题意;B.∠BAD=∠BCD不能判定图中直线平行,不符合题意;C.由∠BAD+∠ADC=180°可判定AB∥DC,符合题意;D.由∠3=∠4可判定AD∥BC,不符合题意;故选择:C.【点睛】本题主要考查平行线的判定,掌握平行线的判定方法是解题的关键.8.B【分析】过F作FG∥AD,则FG∥BC,即可得到∠2=∠EFG=70°,再根据∠AFE=90°,即可得出∠AFG=90°-70°=20°,进而得到∠1=∠AFG=20°.【详解】解:如图,过F作FG∥AD,则FG∥BC,∴∠2=∠EFG=70°,又∵∠AFE=90°,∴∠AFG=90°-70°=20°,∴∠1=∠AFG=20°,故选:B.【点睛】本题考查了平行线的性质,三角板的知识,比较简单,熟记平行线的性质是解题的关键.9.B【分析】先估算.【详解】∵∴43-<-∴最接近N故答案选择B.【点睛】本题考查的是无理数,正确估算.10.D【分析】根据点E有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可.【详解】解:(1)如图1,由AB//CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图2,过E2作AB平行线,则由AB//CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.当AE2平分∠BAC,CE2平分∠ACD时,∠BAE2+∠DCE2=12(∠BAC+∠ACD)=12×180°=90°,即α+β=90°,又∵∠AE2C=∠BAE2+∠DCE2,∴∠AE2C=180°﹣(α+β)=180°﹣α﹣β;(3)如图3,由AB//CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图4,由AB//CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.(5)(6)当点E 在CD 的下方时,同理可得,∠AEC =α﹣β或β﹣α.综上所述,∠AEC 的度数可能为β﹣α,α+β,α﹣β,180°﹣α﹣β,360°﹣α﹣β.故选:D .【点睛】本题主要考查了平行线的性质的运用与外角定理,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等.11.3-【分析】当点M 的纵坐标为0时,即可列式求值.【详解】解:由题意得:m+3=0,解得m=-3,故答案为:3-.【点睛】此题主要考查点的坐标;用到的知识点为:x 轴上点的纵坐标为0.12.36【分析】根据平方根的定义,两不同平方根互为相反数,列式求解即可【详解】解:由题意可得()3262x x -=--,即2263x x -=-+,解得4x =,222426x ∴-=⨯-=,36a ∴=故答案为:36【点睛】本题主要考查了平方根的定义,利用正数的平方根有两个且互为相反数列出正确的关系式是解决本题的关键.【分析】根据点到x 轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值,得到点M 的横纵坐标可能的值,进而根据所在象限可得点M 的具体坐标.【详解】解:设点M 的坐标是(x ,y ).∵点M 到x 轴的距离为5,到y 轴的距离为4,∴|y|=5,|x|=4.又∵点M 在第二象限内,∴x =−4,y =5,∴点M 的坐标为(−4,5),故答案是:(−4,5).【点睛】本题考查了点的坐标,用到的知识点为:点到x 轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值;第二象限(−,+).14.60︒【分析】利用两直线平行,同旁内角互补,垂直的定义,方程的思想求解即可.【详解】解:连接AC ,设EAF x ∠=,ECF y ∠=,3EAB x ∠=,3ECD y ∠=,//AB CD ,180BAC ACD ∴∠+∠=︒,33180CAE x ACE y ∴∠++∠+=︒,180(33)CAE ACE x y ∴∠+∠=︒-+,180(22)FAC FCA x y ∠+∠=︒-+180()AEC CAE ACE ∴∠=︒-∠+∠180[180(33)]x y =︒-︒-+33x y=+3()x y =+,180()AFC FAC FCA ∠=︒-∠+∠180[180(22)]x y =︒-︒-+2()x y =+,AE CE ⊥ ,90AEC ∴∠=︒,22906033AFC AEC ∴∠=∠=⨯︒=︒.故答案为:60︒.【点睛】本题考查了平行线的性质,垂直的定义,方程的思想,熟练应用平行线的性质,科学引入未知数是解题的关键.15.3﹣【分析】a 、b 的值,代入求出即可.【详解】解:∵12,∴a =1,b 1,∴a ﹣2b =1﹣21)=3﹣故答案为:3﹣【点睛】此题主要考查无理数的估算,解题的关键是根据无理数的大小先表示出a 、b ,代入求解.16.②③【分析】根据有理数、无理数、实数的意义逐项进行判断即可.【详解】解:①开方开不尽的数是无理数,但是有的数不开方也是无理数,如:π,3π等,因此①不正确,不符合题意;x x 的整数有﹣1,0,1,2共4个,因此②正确,符合题意;③﹣3是99,因此③正确,符合题意;④π就是无理数,不带根号的数也不一定是有理数,因此④不正确,不符合题意;⑤无限循环小数,是有理数,因此⑤不正确,不符合题意;⑥若a <0|a|=﹣a ,因此⑥不正确,不符合题意;因此正确的结论只有②③,故答案为:②③.【点睛】本题考查无理数、有理数、实数的意义,理解和掌握实数的意义是正确判断的前提.172++.【分析】先化简绝对值、化简二次根式、立方根、二次根式的乘法,再计算二次根式的加减法即可得.【详解】原式35=+,2+.【点睛】本题考查了化简绝对值、立方根、二次根式的乘法与加减法,熟记各运算法则是解题关键.18.(1)92x =±;(2)12x =-【分析】(1)移项后根据平方根的定义求解;(2)移项后根据立方根的定义求解;【详解】解:(1)∵24810x -=,∴2481x =,∴2814x =,∴92x =±;(2)∵35(1)48x -+=,∴327(1)8x -=-,∴312x -=-,∴12x =-.【点睛】本题考查了利用平方根和立方根的定义解方程,熟练掌握平方根和立方根的定义是解答本题的关键.19.见解析【分析】先由垂直于同一条直线的两条直线平行,得出∠1=∠3,再用∠1=∠2代换,最后用内错角相等得出结论.【详解】解:如图,∵AD BC ⊥于点D ,EF BC ⊥于点F ,∴//AD EF ,∴13∠=∠,∵12∠=∠,∴23∠∠=,∴//DE AC .【点睛】此题是平行线的判定,主要考查了平行线的性质和判定,用判断垂直于同一条直线的两直线平行,解本题的关键是判断出AD ∥EF .20.(1)(-4,2);(2)见解析;(3)5.5.【分析】(1)根据点A 的的位置和平面直角坐标系求解即可;(2)根据平移规律即可画出△A 1B 1C 1;(3)利用割补法求△A 1B 1C 1的面积,把△A 1B 1C 1补全成一个矩形,然后用矩形的面积减去其他三个三角形的面积,即可求出△A 1B 1C 1的面积.【详解】(1)A (-4,2);(2)如图,△A 1B 1C 1即为所求.(3)11111134231413 5.5222A B C S =⨯-⨯⨯-⨯⨯-⨯⨯= .∴△A 1B 1C 1的面积是5.5.【点睛】此题考查了平移变换以及利用割补法求三角形面积,解题的关键是熟练掌握平移变换以及利用割补法求三角形面积.21.(1)4;(2)阴影部分的面积是8,边长是(3)-1-【分析】(1)根据正方体的体积公式可求这个魔方的棱长.(2)根据魔方的棱长为4,所以小立方体的棱长为2,阴影部分由4个直角三角形组成,算出一个直角三角形的面积乘以4即可得到阴影部分的面积,开平方即可求出边长.(3)根据两点间的距离公式可得D 在数轴上表示的数.【详解】解:(1=4,答:这个魔方的棱长为4.(2)∵魔方的棱长为4,∴小立方体的棱长为2,∴阴影部分面积为:12×2×2×4=8,答:阴影部分的面积是8,边长是(3)D 在数轴上表示的数为-1-故答案为:-1-【点睛】本题考查的是立方根在实际生活中的运用,解答此题的关键是根据立方根求出魔方的棱长.22.(1)(0,2);(2)4;(3)(﹣1,1)或(﹣3,﹣1)【分析】(1)利用y 轴上点的坐标特征得到b ﹣2=0,求出b 得到C 点坐标;(2)利用与x 轴平行的直线上点的坐标特征得到a +1=4,求出a 得到A 、B 点的坐标,然后计算两点之间的距离;(3)利用垂直于x 轴的直线上点的坐标特征得到|b |=1,然后求出b 得到C 点坐标.【详解】解:(1)∵点C 在y 轴上,∴20b -=,解得2b =,∴C 点坐标为(0,2);(2)∵AB ∥x 轴,∴A 、B 点的纵坐标相同,∴a +1=4,解得a =3,∴A(﹣2,4),B(2,4),∴A ,B 两点间的距离=2﹣(﹣2)=4;(3)∵CD ⊥x 轴,CD =1,∴|b |=1,解得b =±1,∴C 点坐标为(﹣1,1)或(﹣3,﹣1).【点评】本题考查平面直角坐标系中点坐标的求解,解题的关键是掌握坐标轴上点的坐标特征.23.(1)(2)(2,3)或(2,﹣5);(3)等腰三角形,见解析【分析】(1)直接利用两点间的距离公式计算;(2)利用MN∥y轴得到M、N的横坐标相同,设N(2,t),利用两点间的距离为4得到|t+1|=4,然后求出t即可;(3)利用两点间的距离公式计算出DE、DF、EF,然后根据三角形的分类进行判断.【详解】解:(1)A,B(2)∵线段MN∥y轴,∴M、N的横坐标相同,设N(2,t),∴|t+1|=4,解得t=3或﹣5,∴N点坐标为(2,3)或(2,﹣5);(3)△DEF为等腰三角形.理由如下:∵D(0,6),E(﹣3,2),F(3,2),∴DE5,DF5,EF6,∴DE=DF,∴△DEF为等腰三角形.【点睛】本题考查了两点间的距离公式.解答该题时,先弄清两点在平面直角坐标系中的位置,然后选取合适的公式来求两点间的距离.24.(1)∠A+∠C=90°;(2)证明见解析(3)105°【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)过点B作BG∥DM,证∠DBG=90°,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD=∠C;(3)过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.【详解】解:(1)如图1,AM与BC的交点记作点O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°,故答案为:∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∴∠D+∠DBG=180°,∵BD⊥AM,∴∠D=90°,∴∠DBG=90°,∴∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥AM,∴CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,∴∠DBF=∠CBF,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,∵BE平分∠ABD,∴∠DBE=∠ABE,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠ABF=β,∵BG∥DM,∴∠AFB=∠GBF=β,∵∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵BG∥DM,∴∠AFC+∠NCF=180°,∵∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点睛】本题主要考查了平行线的性质和三角形内角和,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.。
人教版七下数学期中检测试卷(含答案)
七年级数学题号 一二三总分19 2021222324得分一、选择题 本大题共12小题,每小题3分,共36分. 每小题有且仅有一个是正确的,请将正确结论的代号填在下表中. 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1.在如图所示的四个汽车标志的图案中,能用平移变换来分析其形成过程的图案有( )A . 1个 B. 2个 C. 3个 D. 4个 2.若a<-2<b,且a,b 是两个连续整数,则a+b 的值是( ) A . 1 B. 2 C. 3 D. 4 3.点(x,x-1)不可能在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.如右图所示,点E 在AC 的延长线上,下列条件中能判断CD AB //的是( )A. 43∠=∠B. 21∠=∠C. DCE D ∠=∠D.180=∠+∠ACD D得 分 评卷人 EDC B4321第4题5.下列结论中正确的有①零是绝对值最小的实数;②π-3的相反数是3-π;③无理数就是带根号的数;④一个实数的平方根有两个,它们互为相反数;⑤所有的实数都有倒数( )A. 5个B. 4个C. 3 个D. 2个 6. 下列各式中计算正确的是( ) A . B .C .D .7.将某图形的各顶点的横坐标减去2,纵坐标保持不变,可将该图形( )A .横向向右平移2个单位 B.横向向左平移2个单位 C .纵向向上平移2个单位 D.纵向向下平移2个单位8.下列命题:①两条直线相交,一角的两邻补角相等,则这两条直线垂直;②两条直线相交,一角与其邻补角相等,则这两条直线垂直;③两条直线被第三条直线所截,内错角相等,则它们的角平分线互相垂直;④两条直线被第三条直线所截,同旁内角互补,则它们的角平分线互相垂直,其中正确的个数为 ( )A . 4 B. 3 C. 2 D. 1 9.如图,直线AB ,CD 相交于点O ,射线OM 平分∠AOC ,ON ⊥OM , 若∠AOM=35°,则∠CON 的度数为( ) A.35° B.45°C.55°D.65°10.已知点P 位于y 轴的右侧,距y 轴5个单位长度,位于x 轴的上方,距x 轴6个单位长度,则点P 的坐标是( )A. (-5,6)B. (6,5)C. (-6,5)D. (5,6) 11.在实数﹣,0.32,π,0.2,,0.101001…,23)( 中,无理数的个数是( ) A . 3 B . 4 C . 5 D . 6第9题12. 如图,已知棋子“车”的坐标为(-2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为( )A .(2,3)B .(3,2)C .(﹣2,﹣3)D .(﹣3,2)二、填空题 本大题共6小题,每小题3分,共18分.请将答案直接填在题中的横线上.13.比较下列各组数大小: (1)12;(2)0.5;(3)π 3.14;14.﹣64的立方根与的平方根之和是 .15.若点a (3,a+1)在x 轴上,点b (2b ﹣1,1)在y 轴上,则a 2+b 2= . 16.如图,把一块三角板的60°角的顶点放在直尺的一边上, 若∠1=2∠2,则∠1= °.17.如图把一张长方形纸条ABCD 沿OG 折叠后,点B 、C 分别落在B ′、C ′的位置上,已知∠AOB′= 70º,则∠OGC = °.18.如图,下列结论:①若AB//CD,则∠3=∠4;②若∠1=∠BEG ,则EF//GH ; ③若∠FGH+∠3=180°,则EF//GH ;④若AB//CD ,∠4=62°,EG 平分∠BEF ,则∠1=59°其中正确的序号是 .得 分 评卷人第16题第17题第12题E 123 4 HF A BCDG 第18题三、解答题 本大题共6小题,共46分.解答应写出必要的过程. 19.(本小题12分)计算:(1)25161204.0-+ (2))142(241083++-+(3)362126---+- (4) ()32332327)21()4()4(2--⨯-+-⨯-20.(本小题5分)已知,0423)13(2=-+-+-z y x 求18xyz 的平方根.得 分 评卷人得 分 评卷人如图,BD 是∠ABC 的平分线,ED ∥BC ,∠3=∠4,则EF 也是∠AED 的平分线.完成下列推理过程:证明:∵BD 是∠ABC 的平分线(已知)∴∠1=∠2 ( ) ∵ED ∥BC(已知)∴∠4=∠2 ( ) ∴___ ( 等量代换 ) 又∵∠3=∠4(已知)∴_____∥_____ ( ) ∴∠5=∠1 ( ) ∴∠5=∠3 ( ) ∴EF 是∠AED 的平分线22. (本小题7分)在平面直角坐标系中,A 、B 、C 三点的坐标分别为(-6,7)、(-3,0)、(0,3).(1) 在图中画出△ABC ; (2) 求△ABC 的面积;(3) 在△ABC 中,点C 经过平移后的对应点为C′(5,2),将△ABC 作同样的平移得到△A′B′C′,画出平移后的△A′B′C′,并写出点A′、B′的坐标.得 分 评卷人1 23 45如图所示,已知∠1+∠2=180°,∠DEF=∠A,∠DEB=60°,求∠ACB的度数.如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角)(1)当动点P落在第①部分时,试说明∠APB=∠PAC+∠PBD;(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?若不成立,请写出这三个角的关系(不用证明);(3)当动点P在第③部分时(点P不在直线BA上),全面探究∠PAC,∠APB,∠PBD之间的关系,并写出动点P的具体位置和相应的结论.选择其中一种结论加以说明.七年级数学试卷答案一、选择题(每小题3分,共36分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BABBDCBCCDAB二、填空题(每小题3分,共18分)13.<,>, > 14.-2或-6 15.4516.80 17.125 18.①③④三、解答题(本大题共6小题,共46分) 19.(本小题12分) (1)原式=53251⨯+ (2)原式=2212102++-+ =57-----3分 = 22+ ------6分 (3)原式=631226+--+- (4)原式=341448-⨯-⨯-=462- ----9分 = -36 ----12分20.(本小题5分)解:由题意得⎪⎩⎪⎨⎧=-=-=-04023013z y x .解得⎪⎪⎪⎩⎪⎪⎪⎨⎧===42331z y x -------3分所以618±=±xyz --------5分 21.(本小题8分)(该题每空1分)角平分线的定义; 两直线平行,内错角相等; ∠4=∠1; EF ; BD ; 内错角相等,两直线平行; 两直线平行,同位角相等; 等量代换22. (本小题7分) (1)画图 ------2分 (2)1546213321732176=⨯⨯-⨯⨯-⨯⨯-⨯=S -----4分(3)A′(-1,6) ------5分B′(2,-1) ------6分 画图 -------7分23.(本小题6分)证明:∵∠1+∠2=180°(已知),∠1+∠DFE=180°(邻补角定义)∴∠2=∠DFE (同角的补角相等) ----1分 ∴AB ∥EF (内错角相等两直线平行) ----2分 ∴∠BDE=∠DEF (两直线平行,内错角相等) ----3分 ∵∠DEF=∠A (已知)∴∠BDE=∠A (等量代换) ----4分 ∴DE ∥AC (同位角相等两直线平行), ----5分 ∴∠ACB=∠DEB (两直线平行,同位角相等) ∵∠BED=60°∴∠ACB=60° ----6分24.(本小题8分)解法:如图过点P 作FP ∥AC , ∴∠PAC=∠APF .∵AC ∥BD ,∴FP ∥BD . ∴∠FPB=∠PBD . ∴∠APB=∠APF+∠FPB=∠PAC+∠PBD ; -----3分(2)∠APB=∠PAC+∠PBD 不成立,∠APB+∠PAC+∠PBD=360°,ABC A 'B ''APFE D ABC12F七年级数学第 11 页 共 11页 -----4分(3)①当动点P 在射线BA 的右侧时,如图3,结论是∠PBD=∠PAC+∠APB ,---5分过P 作EF ∥AC , ∵AC ∥BD ,∴AC ∥EF ∥BD ,∴∠EPB=∠PBD ,∠EPA=∠PAC ,∵∠EPB=∠EPA+∠APB∴∠PBD=∠PAC+∠APB②当动点P 在射线BA 的左侧时,如图5,结论是:∠PAC=∠APB+∠PBD ,---6分过P 作EF ∥AC ,∵AC ∥BD , ∴AC ∥EF ∥BD ,∴∠EPB=∠PBD ,∠EPA=∠PAC ,∵∠EPA=∠EPB+∠APB∴∠PAC=∠PBD+∠APB任选一种证明2分共8分E FE F。
人教版数学七年级下学期《期中检测题》附答案
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(共40分)1. 已知的值不大于3-,用不等式表示的范围是( )A. 3a >-B. 3a <-C. 3a ≥-D. 3a ≤- 2. 若代数式31x -的值为4-,则的值为( )A. 1B.C. 53-D. 353. 下列各组中,不是二元一次方程37x y +=的解的是( )A. 14x y =⎧⎨=⎩B. 07x y =⎧⎨=⎩C. 32x y =⎧⎨=-⎩D. 1.53.5x y =⎧⎨=⎩4. 若a b >,则下列不等式中错误的是( )A. 22a b +>+B.22a b > C. 22a b -<- D. 22a b > 5. 将方程3213123x x x -++=-去分母,正确的是( ) A. ()()18336221x x x +-=-+B. ()()3331221x x x +-=-+C. ()()93321x x x +-=-+D. ()()33121x x x +-=-+6. 某文具店开展促销活动,某种笔记本原价每本元,第一次每本按原价打“六折”,第二次每本再降1元,经两次降价后售价为8元,依题意,可列方程为( )A. 0.68x x -=B. 0.0618x -=C. 80.61x -=D. 0.618x -= 7. 一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A. x y 50{x y 180=-+=B. x y 50{x y 180=++=C. x y 50{x y 90=++= D. x y 50{x y 90=-+=8. 《九章算术》是中国传统数学重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八盈三;人出七,不足四.问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱.问人数、物价各是多少?设合伙人数为人,物价为钱,则下列方程组正确的是( )A. 8374x y y x -=⎧⎨-=⎩B. 8374y x y x -=⎧⎨-=⎩C. 8374y x x y -=⎧⎨-=⎩D. 8374x y x y -=⎧⎨-=⎩ 9. 若关于x ,y 的方程组2315x y m x y +=+⎧-=-⎨⎩的解满足x +y =-3,则m 的值为( ) A. 2- B. 2 C. D. 110. 已知关于,x y 的二元一次方程组43335x y m x y m +=-⎧⎨-=-⎩,则关于代数式x y -的值的说法正确的是( ). A. 随增大而增大 B. 随减小而减小C. 既可能随增大而增大,也可能随减小而减小D. 与的大小无关 二、填空题(共24分)11. 若2x =-是方程520x k +=解,则k =__________.12. 已知二元一次方程235x y +=,若用含的代数式表示,则y =_______.13. 已知关于的不等式()15m x ->的解集为51x m <-,则的取值范围是_________. 14. 已知320a b --=,那么261a b -+=_________.15. 方程组457x y y z x z +=⎧⎪+=⎨⎪+=⎩的解是_____________.16. 若不等式组24x x m-≤⎧⎨<⎩无解,则的取值范围是____________. 三、解答题(共86分)17. 解方程:()()103421x x x --=+.18. 解不等式组:131722755(1)x x x x ⎧+≤-⎪⎨⎪-<-⎩,并把它解集在数轴上表示出来.19. 在代数式ax by +中,当3x =,2y =时,它的值是11;当2x =-,4y =时,它的值是18-,求,a b 的值. 20. 一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,求这个两位数.21. 已知方程组5354x y ax y +=⎧⎨+=⎩和2551x y x by -=⎧⎨+=⎩有相同的解,求a +b 的值. 22. 某商店需要购进甲、乙两种商品共1000件,其进价和售价如下表所示:(1)若商店计划销售完这批商品后能获利4200元,则甲、乙两种商品应分别购进多少件;(2)若该商店销售完这批商品后获利要多于5000元,则至少应购进乙种商品多少件?23. 在等式y =kx +b (k ,b 为常数)中,当x =2时,y =﹣5;当x =﹣1时,y =4.(1)求k 、b 的值;(2)若不等式5﹣2x >m +4x 的最大整数解是k ,求m 的取值范围.24. 一般情况下2323a b a b ++=+是不成立的,但有些数可以使得它成立,例如:0a b .我们称使得2323a b a b ++=+成立的一对数,a b 为“相伴数对”,记为(),a b . (1)若()1,b 为“相伴数对”,试求的值;(2)请写出一个“相伴数对”(),a b ,其中0a ≠,且1a ≠,并说明理由;(3)已知(),m n “相伴数对”,试说明91,4m n ⎛⎫ ⎪⎝+⎭-也是“相伴数对”. 25. 某体育彩票经销商计划用4500元从省体彩中心购进彩票20捆,已知体彩中心有、、三种不同价格的彩票,进价分别是彩票每捆150元,彩票每捆200元,彩票每捆250元.(1)若经销商同时购进两种不同型号的彩票20捆,刚好用去4500元,请你帮助设计进票方案;(2)若销售型彩票每捆获手续费20元,型彩票每捆获手续费30元,型彩票每捆获手续费50元.在问题(1)设计的购进两种彩票的方案中,为使销售完时获得的手续费最多,你选择哪种进票方案?(3)若经销商准备用4500元同时购进、、三种彩票20捆,请你帮助经销商设计进票方案.答案与解析一、选择题(共40分)1. 已知的值不大于3-,用不等式表示的范围是( )A. 3a >-B. 3a <-C. 3a ≥-D. 3a ≤- [答案]D[解析][分析]的值不大于3-就是的值小于或等于3-,据此解答即可.[详解]解:的值不大于3-,用不等式表示的范围是:3a ≤-.故选:D .[点睛]本题考查了列出问题中的不等式,解题的关键是正确理解题意、把“不大于”转化为“≤”. 2. 若代数式31x -的值为4-,则的值为( )A. 1B. C. 53- D. 35[答案]B[解析]分析]根据题意,列出关于x 的一元一次方程314x -=-,通过解该方程可以求得x 的值.[详解]解:由题意,得314x -=-,解得1x =-;故选B .[点睛]本题考查一元一次方程的解法及一元一次方程的解的定义.牢记解一元一次方程的步骤及一元一次方程的解的定义是解题的关键.3. 下列各组中,不是二元一次方程37x y +=的解的是( ) A. 14x y =⎧⎨=⎩ B. 07x y =⎧⎨=⎩ C. 32x y =⎧⎨=-⎩ D. 1.53.5x y =⎧⎨=⎩[答案]D[解析][分析]把各选项中的x 、y 的值逐一代入计算即得答案.[详解]解:A 、把14x y =⎧⎨=⎩代入原方程,得3147⨯+=,∴14x y =⎧⎨=⎩是方程37x y +=的解,本选项不符合题意; B 、把07x y =⎧⎨=⎩代入原方程,得3077⨯+=,∴07x y =⎧⎨=⎩是方程37x y +=的解,本选项不符合题意; C 、把32x y =⎧⎨=-⎩代入原方程,得3327⨯-=,∴32x y =⎧⎨=-⎩是方程37x y +=的解,本选项不符合题意; D 、把 1.53.5x y =⎧⎨=⎩代入原方程,得3 1.5 3.587⨯+=≠,∴ 1.53.5x y =⎧⎨=⎩不是方程37x y +=的解,本选项符合题意. 故选:D .[点睛]本题考查了二元一次方程的解的定义,属于基础题型,熟练掌握二元一次方程的解的概念是解题关键. 4. 若a b >,则下列不等式中错误的是( )A. 22a b +>+B. 22a b >C. 22a b -<-D. 22a b > [答案]D[解析][分析]根据不等式的性质逐项判断即可.[详解]解:A 、不等式a b >两边同时加上2,得22a b +>+,所以本选项变形正确,不符合题意; B 、在不等式a b >两边同时除以2,得22a b >,所以本选项变形正确,不符合题意; C 、在不等式a b >两边同时乘以﹣2,得22a b -<-,所以本选项变形正确,不符合题意;D 、由a b >不能得出22a b >,如1>﹣2,但()2212<-,所以本选项变形错误,符合题意.故选:D .[点睛]本题考查了不等式的性质,属于基础题型,熟练掌握不等式的性质是解题关键.5. 将方程3213123x x x -++=-去分母,正确的是( ) A. ()()18336221x x x +-=-+ B. ()()3331221x x x +-=-+C. ()()93321x x x +-=-+D. ()()33121x x x +-=-+ [答案]A[解析][分析]根据去分母的方法:原方程两边同时乘以6可得答案.[详解]解:原方程两边同时乘以6,得:()()18336221x x x +-=-+.故选:A .[点睛]本题考查了一元一次方程解法,属于基本题型,熟练掌握去分母的方法是解本题的关键.6. 某文具店开展促销活动,某种笔记本原价每本元,第一次每本按原价打“六折”,第二次每本再降1元,经两次降价后售价为8元,依题意,可列方程为( )A 0.68x x -=B. 0.0618x -=C. 80.61x -=D. 0.618x -=[答案]D[解析][分析]由题意可得第一次每本笔记本按原价打“六折”后售价为0.6x 元,第二次降价后的售价为()0.61x -元,进一步即可列出方程.[详解]解:根据题意可列方程为:0.618x -=.故选:D .[点睛]本题考查了一元一次方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.7. 一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A. x y 50{x y 180=-+= B. x y 50{x y 180=++= C. x y 50{x y 90=++= D. x y 50{x y 90=-+= [答案]C[解析] [详解]根据平角和直角定义,得方程x+y=90;根据∠1比∠2的度数大50°,得方程x=y+50.可列方程组为5090x y x y =+⎧⎨+=⎩,故选C . 考点:1.由实际问题抽象出二元一次方程组;2.余角和补角.8. 《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八盈三;人出七,不足四.问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱.问人数、物价各是多少?设合伙人数为人,物价为钱,则下列方程组正确的是( )A. 8374x y y x -=⎧⎨-=⎩B. 8374y x y x -=⎧⎨-=⎩C. 8374y x x y -=⎧⎨-=⎩D. 8374x y x y -=⎧⎨-=⎩ [答案]A[解析][分析]设合伙人数为人,物价为钱,根据该物品价格不变,即可得出关于x 、y 的二元一次方程组,进而得到答案.[详解]解:设合伙人数为人,物价为钱,根据该物品价格不变,即可得出关于x 、y 的二元一次方程组为:8374x y y x -=⎧⎨-=⎩, 故选:A ;[点睛]本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,找出合适的等量关系,列方程求解.9. 若关于x ,y 的方程组2315x y m x y +=+⎧-=-⎨⎩的解满足x +y =-3,则m 的值为( ) A. 2-B. 2C.D. 1[答案]C[解析][分析]先把m 看作是常数,解关于x ,y 二元一次方程组,求得用m 表示的x ,y 的值后,再代入3x+2y=19,建立关于m 的方程,解出m 的数值. [详解]x 2y 3m 1x y 5+=+⎧-=-⎨⎩①②, ①-②得:y=m+2③,把③代入②得:x=m-3,∵x+y=-3,∴m-3+m+2=-3,∴m=-1.故选C .[点睛]本题实质是解二元一次方程组,先用m 表示出x ,y 的值后,再求解关于m 的方程,解方程组关键是消元.10. 已知关于,x y 的二元一次方程组43335x y m x y m +=-⎧⎨-=-⎩,则关于代数式x y -的值的说法正确的是( ). A. 随增大而增大B. 随减小而减小C. 既可能随增大而增大,也可能随减小而减小D. 与的大小无关[答案]D[解析][分析]方程组中的两个方程相加,再两边同时除以2即可进行判断. [详解]解:对方程组43335x y m x y m +=-⎧⎨-=-⎩①②,①+②,得()21x y -=-,即12x y -=-, ∴代数式x y -的值与的大小无关.故选:D .[点睛]本题考查了二元一次方程组的特殊解法,属于常考题型,灵活应用整体的思想方法是解题的关键.二、填空题(共24分)11. 若2x =-是方程520x k +=的解,则k =__________.[答案]5[解析][分析]将2x =-代入方程520x k +=即可求算.[详解]解:∵2x =-是方程520x k +=的解,2x =-代入方程:∴1020k -+=,解得:5k =故答案为:5[点睛]本题考查一元一次方程的解,掌握一元一次方程解的意义是解题关键.12. 已知二元一次方程235x y +=,若用含的代数式表示,则y =_______.[答案]523x - [解析][分析]移项,把x 看做已知数求出y 即可.[详解]解:二元一次方程235x y +=,移项得:352y x =-, 即:523x y, 故答案为:523x -; [点睛]此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .13. 已知关于的不等式()15m x ->的解集为51x m <-,则的取值范围是_________. [答案]1m <[解析][分析]根据不等式的性质可得10m -<,解不等式即得答案.[详解]解:由题意得:10m -<,解得:1m <.故答案为:1m <.[点睛]本题考查了不等式的性质和一元一次不等式的解法,属于基础题型,熟练掌握不等式的性质是解题的关键14. 已知320a b --=,那么261a b -+=_________.[答案]5[解析][分析]由已知可得32a b -=,然后将所求的代数式变形为()231a b -+后再整体代入求解即可.[详解]解:∵320a b --=,∴32a b -=,∴()2612312215a b a b -+=-+=⨯+=.故答案为:5.[点睛]本题考查了代数式求值,属于基本题型,熟练掌握整体代入的思想方法是解答的关键. 15. 方程组457x y y z x z +=⎧⎪+=⎨⎪+=⎩的解是_____________.[答案]314x y z =⎧⎪=⎨⎪=⎩[解析][分析]根据解三元一次方程组的方法解答即可.[详解]解:对457x yy zx z+=⎧⎪+=⎨⎪+=⎩①②③,①+②+③,得()216x y z++=,即8x y z++=④,④-①,得z=4, ④-②,得x=3, ④-③,得y=1,∴方程组的解是:314xyz=⎧⎪=⎨⎪=⎩.故答案为:314 xyz=⎧⎪=⎨⎪=⎩.[点睛]本题考查了三元一次方程组的解法,属于基本题型,熟练掌握解三元一次方程组的方法是解答的关键.16. 若不等式组24xx m-≤⎧⎨<⎩无解,则的取值范围是____________.[答案]2m≤-[解析][分析]先求出不等式的解集,再根据无解得出m的取值范围.[详解]解:24xx m-≤⎧⎨<⎩①②由①得:2x≥-由②得:x m<∵不等式组无解,没有公共部分∴2m≤-故答案为:2m≤-[点睛]本题考查不等式组参数问题,掌握求解不等式组的方法是解题关键.三、解答题(共86分)17. 解方程:()()103421x x x --=+.[答案]2x =-[解析][分析]根据解一元一次方程的方法和步骤解答即可.[详解]解:去括号,得1031222x x x -+=+,移项,得1032212x x x --=-,合并同类项,得510x =-,系数化为1,得2x =-.[点睛]本题考查了一元一次方程的解法,属于基础题型,熟练掌握解一元一次方程的方法是解题的关键.18. 解不等式组:131722755(1)x x x x ⎧+≤-⎪⎨⎪-<-⎩,并把它的解集在数轴上表示出来.[答案]0x <,图见解析[解析][分析]分别解出每一个不等式,再求出公共部分即可,然后在数轴上表示.[详解]解:131722755(1)x x x x ⎧+≤-⎪⎨⎪-<-⎩①②由①得:3x ≤由②得:0x <∴不等式组的解集为:0x <该不等式组解集在数轴上表示如图:[点睛]本题考查一元一次不等式组,掌握一元一次不等式组的解法是解题关键.19. 在代数式ax by +中,当3x =,2y =时,它的值是11;当2x =-,4y =时,它的值是18-,求,a b 的值.[答案]a=5,b=-2[分析]将3x =,2y =时,ax by +的值是11;当2x =-,4y =时,ax by +的值是18-分别代入得出关于a 、b 的二元一次方程组,解方程即可.[详解]解:∵在代数式ax by +中,当3x =,2y =时,它的值是11;当2x =-,4y =时,它的值是18- ∴32112418a b a b +=⎧⎨-+=-⎩①②由②得:29a b =+ ③将③代入①得:()329211b b ++= 解得:2b =-将2b =-代入③解得:5a =∴a=5,b=-2[点睛]本题考查代数式,将已知条件代入建立关于a 、b 的二元一次方程组是解题关键.20. 一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,求这个两位数.[答案]这个两位数为45.[解析][分析]要求这个两位数,可以转化为求个位数字与十位数字分别是多少,若设原数的个位数字是x ,则十位数字是9﹣x ,则原数是10(9﹣x )+x ,新数是10x +(9﹣x ),然后根据等量关系:新数=原数+9即可列出方程,解方程即得结果.[详解]解:设原两位数的个位数字是x ,则十位数字是9﹣x .根据题意得:10x +(9-x )=10(9﹣x )+x +9解得:x =5,则9﹣x =4,答:这个两位数为45.[点睛]本题考查了一元一次方程的应用之数字问题,属于常考题型,正确理解题意、找准相等关系是解题的关键.21. 已知方程组5354x y ax y +=⎧⎨+=⎩和2551x y x by -=⎧⎨+=⎩有相同的解,求a +b 的值. [答案]16[解析]根据题意列出x 和y 的方程组,然后进行求解,将解代入另外的两个方程求出a 和b 的值,进而即可求解.[详解]解方程组5325x y x y +=⎧⎨-=⎩,得12x y =⎧⎨=-⎩. 把12x y =⎧⎨=-⎩代入5451ax y x by +=⎧⎨+=⎩,得142a b =⎧⎨=⎩∴a+b=16.22. 某商店需要购进甲、乙两种商品共1000件,其进价和售价如下表所示:(1)若商店计划销售完这批商品后能获利4200元,则甲、乙两种商品应分别购进多少件;(2)若该商店销售完这批商品后获利要多于5000元,则至少应购进乙种商品多少件?[答案](1)购进甲种商品800件,购进乙种商品200件;(2)334;[解析][分析](1)设购进甲种商品x 件,购进乙种商品y 件,根据购进甲乙两种商品共1000件及销售完这批商品后能获利4200元,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设购进乙种商品a 件,则购进甲种商品(1000-a )件,根据总利润=单件利润×购进数量结合该商店销售完这批商品后获利要多于5000元,即可得出关于a 的一元一次不等式,解之取其中的最小的整数即可得出结论.[详解]解:(1)设购进甲种商品x 件,购进乙种商品y 件,根据题意得:()()1000181544354200x y x y +⎧⎨-+-⎩== , 解得:800200x y ⎧⎨⎩== , 则购进甲种商品800件,购进乙种商品200件,答:购进甲种商品800件,购进乙种商品200件;(2)设购进乙种商品a 件,则购进甲种商品(1000-a )件,根据题意得:(44-35)a+(18-15)(1000-a )>5000,解得:10003a > , ∵a 为整数,∴a 的最小值为334.答:至少应购进乙种商品334件.[点睛]本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,列出关于a 的一元一次不等式.23. 在等式y =kx +b (k ,b 为常数)中,当x =2时,y =﹣5;当x =﹣1时,y =4.(1)求k 、b 的值;(2)若不等式5﹣2x >m +4x 的最大整数解是k ,求m 的取值范围.[答案](1)31k b =-⎧⎨=⎩;(2)7≤m <13 [解析][分析](1)把25x y ⎧⎨⎩==﹣和14x y ⎧⎨⎩=﹣=代入y =kx +b ,可得254k b k b +=-⎧⎨-+=⎩,再解出关于k,b 的二元一次方程组即可解出k 、b 的值;(2)解不等式5﹣2x >m +4x 得x <56m -,再根据不等式最大整数解是k =-3,来得到m 的取值范围. [详解]解:(1)根据题意可得:254k b k b +=-⎧⎨-+=⎩解得:31k b =-⎧⎨=⎩; (2)解不等式5﹣2x >m +4x ,得:x <56m -, 因为该不等式的最大整数解是k ,即﹣3,所以﹣3<56m -≤﹣2, 解得:7≤m <13.[点睛]主要考查二元一次方程组的解与一元一次不等式的整数解.24. 一般情况下2323a b a b ++=+是不成立的,但有些数可以使得它成立,例如:0a b .我们称使得2323a b a b ++=+成立的一对数,a b 为“相伴数对”,记为(),a b .(1)若()1,b 为“相伴数对”,试求的值;(2)请写出一个“相伴数对”(),a b ,其中0a ≠,且1a ≠,并说明理由;(3)已知(),m n 是“相伴数对”,试说明91,4m n ⎛⎫ ⎪⎝+⎭-也是“相伴数对”. [答案](1)94b =-;(2)92,2⎛⎫- ⎪⎝⎭(答案不唯一);(3)见解析 [解析][分析] (1)根据“相伴数对”的定义,将()1,b 代入2323a b a b ++=+,从而求算答案; (2)先根据“相伴数对”的定义算出a 、b 之间的关系为:94a b =-,满足条件即可;(3)将将,a m b n == 代入2323a b a b ++=+得出49m n ,再将49m n 代入91,4m n ⎛⎫ ⎪⎝+⎭-得到491,94n n -+-⎛⎫ ⎪⎝⎭,分别去计算等式左右两边,看是否恒等即可. [详解]解:(1)∵()1,b 为“相伴数对”,将()1,b 代入2323a b a b ++=+得: 112323b b ++=+ ,去分母得:()151061b b +=+ 解得:94b =- (2)2323a b a b ++=+化简得:94a b =- 只要满足这个等量关系即可,例如:92,2⎛⎫-⎪⎝⎭(答案不唯一) (3)∵(),m n 是“相伴数对” 将,a m b n == 代入2323a b a b ++=+: ∴2323m n m n ++=+ ,化简得:49m n 将49m n 代入91,4m n ⎛⎫ ⎪⎝+⎭-得到:491,94n n -+-⎛⎫ ⎪⎝⎭ 将:491,94a n b n =-+=- 代入2323a b a b ++=+左边=49149 942336n n n-+--+=右边=49149 942336n n n-++--=+∴左边=右边∴当(),m n是“相伴数对”时,91,4m n⎛⎫⎪⎝+⎭-也是“相伴数对”[点睛]本题考查定义新运算,正确理解定义是解题关键.25. 某体育彩票经销商计划用4500元从省体彩中心购进彩票20捆,已知体彩中心有、、三种不同价格的彩票,进价分别是彩票每捆150元,彩票每捆200元,彩票每捆250元.(1)若经销商同时购进两种不同型号的彩票20捆,刚好用去4500元,请你帮助设计进票方案;(2)若销售型彩票每捆获手续费20元,型彩票每捆获手续费30元,型彩票每捆获手续费50元.在问题(1)设计的购进两种彩票的方案中,为使销售完时获得的手续费最多,你选择哪种进票方案?(3)若经销商准备用4500元同时购进、、三种彩票20捆,请你帮助经销商设计进票方案.[答案](1)购进A种彩票5捆,C种彩票15捆或B种彩票与C种彩票各10捆;(2)A种彩票5捆,C种彩票15捆;(3)方案1:A种1捆,B种8捆,C种11捆;方案2:A种2捆,B种6捆,C种12捆;方案3:A种3捆,B 种4捆,C种13捆;方案4:A种4捆,B种2捆,C种14捆.[解析][分析](1)因为彩票有A,B,C三种不同型号,而经销商同时只购进两种,所以要将A,B,C两两组合,分三种情况:A,B;A,C;B,C,每种情况都可以根据下面两个相等关系列出方程,两种不同型号的彩票捆数之和=20,购买两种不同型号的彩票钱数之和=4500,然后根据实际含义即可确定他们的解;(2)根据上一问分别求出每一种情况的手续费,然后进行比较即可得出结果;(3)有两个等量关系:A彩票扎数+B彩票扎数+C彩票扎数=20,购买A彩票钱数+购买B彩票钱数+购买C 彩票钱数=4500;可设三个未知数,然后用含有同一个未知数的代数式去表示另外的两个未知数,再根据三个未知数都是正整数,并结合实际意义即可求出结果.[详解]解:(1)若设购进A种彩票x捆,B种彩票y捆,根据题意得:201502004500x yx y+=⎧⎨+=⎩,解得:1030xy=-⎧⎨=⎩,∵x<0,∴此种情况不合题意;若设购进A种彩票x捆,C种彩票y捆,根据题意得:201502504500x yx y+=⎧⎨+=⎩,解得:515xy=⎧⎨=⎩,若设购进B种彩票x捆,C种彩票y捆,根据题意得:202002504500x yx y+=⎧⎨+=⎩,解得:1010xy=⎧⎨=⎩,综上所述,若经销商同时购进两种不同型号的彩票,共有两种方案:即购进A种彩票5捆,C种彩票15捆或B 种彩票与C种彩票各10捆;(2)若购进A种彩票5捆,C种彩票15捆,销售完后可获手续费为:20×5+50×15=850(元);若购进B种彩票与C种彩票各10捆,销售完后可获手续费为:30×10+50×10=800(元);∴为使销售完后获得手续费最多,应选择的方案为:A种彩票5捆,C种彩票15捆;(3)设购进A种彩票m捆,B种彩票n捆,C种彩票h捆.由题意得:201502002504500m n hm n h++=⎧⎨++=⎩,解得:10210h mn m=+=-+⎧⎨⎩,∵m、n都是正整数,∴1≤m<5,∴m=1,2,3,4,所以共有4种进票方案,具体如下:方案1:A种1捆,B种8捆,C种11捆;方案2:A种2捆,B种6捆,C种12捆;方案3:A种3捆,B种4捆,C种13捆;方案4:A种4捆,B种2捆,C种14捆.[点睛]此题考查了二元一次方程组的应用,属于常考题型,正确理解题意、分三种情况求解是解第(1)小题的关键,用含有同一个未知数的代数式去表示另外的两个未知数并结合未知数的实际意义是解第(3)小题的关键.。
人教版七年级数学下学期期中测试卷含答案
七年级数学下学期期中测试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1、两条直线的位置关系有()A、相交、垂直B、相交、平行C、垂直、平行D、相交、垂直、平行2、如图所示,是一个“七”字形,与∠1是同位角的是()A、∠2B、∠3C、∠4D、∠53、经过一点A画已知直线a的平行线,能画()A、0条B、1条C、2条D、不能确定4、如图4,下列条件中,不能判断直线a//b的是()A、∠1=∠3B、∠2=∠3C、∠4=∠5D、∠2+∠4=180°5、下列图形中有稳定性的是()A.正方形 B.长方形 C.直角三角形 D.平行四边形6、一个正数x的平方根是2a-3与5-a,则x的值是()。
A.64B.36C.81D.497、如图,已知:∠1=∠2,∠3=∠4,∠A=80°,则∠BOC等于()A、95°B、120°C、130°D、无法确定8、若a*=1.1062,b*=0.947是经过舍入后作为的近似值,问a*+b*有几位有效数字?()A、4B、5C、6D、79、下列说法正确的是()A、符号相反的数互为相反数B、符号相反绝对值相等的数互为相反数C、绝对值相等的数互为相反数D、符号相反的数互为倒数10、在平面直角坐标系中,已知点A(-4,0)、B(0,2),现将线段AB向右平移,使A 与坐标原点0重合,则B平移后的坐标是()。
A.(0,-2)B.(4,2)C.(4,4)D.(2,4)二、填空题(本大题共7小题,每小题4分,共28分)11、用科学记数法表示9349000(保留2个有效数字)为________________.12、如图1直线AB,CD,EF相交与点O,图中∠AOE的对顶角是_________,∠COF的补角是__________。
13、如图2,要把池中的水引到D处,可过C点引CD⊥AB于D,然后沿CD开渠,可使所开渠道最短,试说明设计的依据:______________________________14、多项式4x²+4mx+36是一个完全平方式,则m=_____________.15、如图,AC平分∠BAD,∠DAC=∠DCA,填空:因为AC平分∠BAD,所以∠DAC= _______,又因为∠DAC=∠DCA,所以∠DCA= _______,所以AB∥_______。
2023-2024学年湖北省武汉市武昌区拼搏联盟七年级(下)期中数学试卷+答案解析
2023-2024学年湖北省武汉市武昌区拼搏联盟七年级(下)期中数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列实数中,是无理数的是()A. B.C. D.02.在平面直角坐标中,点在()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,下列条件中能判断的是()A.B.C.D.4.如图,,则的度数是()A. B. C. D.5.若x轴上的点P到y轴的距离为1,则点P的坐标为()A. B. C.或 D.或6.下列命题中,真命题是()A.两个角的和等于时,这两个角互为邻补角B.内错角相等C.若则D.过直线外一点,有且只有一条直线与已知直线平行7.下列各数中,介于6和7之间的数是()A. B. C. D.8.如图,两直线AB、CD平行,则()A.B.C.D.9.已知点到x轴的距离为2,到y轴的距离为3,且,,则点P的坐标为()A. B. C. D.10.如图,在平面直角坐标系上有点,点A第一次跳动至点,第二次点向右跳到,第三次点跳到,第四次点向右跳动至点,……,依此规律跳动下去,则点A第2022次跳动至点的坐标为()A. B. C. D.二、填空题:本题共6小题,每小题3分,共18分。
11.计算:______,______,的相反数=______.12.若,,,则的度数为______.13.比大小:______5,______3,______14.一个长方形在平面直角坐标系中三个顶点的坐标为、、,则第四个顶点的坐标为______.15.如图,在平面直角坐标系中,已知长方形ABCD的顶点坐标:,,,CD与y轴交于点P,则P点坐标为______.16.如图,直线,点A在直线MN与PQ之间,点B在直线MN上,连接的平分线BC交PQ于点C,连接AC,过点A作交PQ于点D,作交PQ于点F,AE平分交PQ于点E,若,,则的度数是______.三、计算题:本大题共1小题,共8分。
人教版七年级下册数学期中考试试题及答案
人教版七年级下册数学期中考试试卷一、单选题1.下列图形中,1∠与2∠互为邻补角的是()A .B .C .D .2.下列各数中22,,0.27π,有理数有()A .2个B .3个C .4个D .5个3.如图所示,因为AB ⊥l ,BC ⊥l ,B 为垂足,所以AB 和BC 重合,其理由是()A .两点确定一条直线B .在同一平面内,过一点有且只有一条直线与已知直线垂直C .过一点能作一条垂线D .垂线段最短4.在平面坐标系中,线段CF 是由线段AB 平移得到的;点(1,4)A -的对应点为(4,1)C ,则点(,)B a b 的对应点F 的坐标为()A .()3,3a b +-B .()5,3a b +-C .()5,3a b --D .()3,5a b ++5.已知点P 的坐标为()2,32a a ++,且点P 在y 轴上,则点P 坐标为()A .(0,4)P -B .(0,4)P C .(0,2)P -D .(0,6)P -6.已知下列命题:①相等的角是对顶角;②在同一平面内,若//a b ,//b c ,则//a c ;③同旁内角互补;④互为邻补角的两个角的角平分线互相垂直.其中,是真命题的有()A .0个B .1个C .2个D .3个7.若平面直角坐标系内的点M 在第二象限,且M 到x 轴的距离为1,到y 轴的距离为2,则点M 的坐标为()A .()2,1B .()2,1-C .()2,1-D .()1,2-8)A .3±B .3C .3-D .9.把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是()A .45°B .60°C .75°D .82.5°10.如图,AB ⊥BC ,AE 平分∠BAD 交BC 于点E ,AE ⊥DE ,∠1+∠2=90°,M 、N 分别是BA 、CD 延长线上的点,∠EAM 和∠EDN 的平分线交于点F ,∠F 的度数为()A .120°B .135°C .150°D .不能确定11.实数,a b||a b +)A .2a -B .2b -C .2a b +D .2a b-12.如图,动点P 在平面直角坐标系中按图中箭头所示的方向运动,第1次从原点运动到点()1,1;第二次接着运动到点()2,0;第三次接着运动到点()3,2,按这样的运动规律,经过2019次运动后,动点P 的坐标为()A .()2019,0B .()2019,1C .()2019,2D .()2020,0二、填空题13.将命题“两直线平行,同位角相等”写成“如果…,那么…”的形式是________14.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是()()--,那么“帅”的坐标是__________3,1,3,115.若一个数的立方根就是它本身,则这个数是________.16.若a ba b的值为____________<,且,a b17.如图,把一张平行四边形纸片ABCD沿BD对折,使点C落在点E处,BE与AD相交于点O,若∠DBC=15°,则∠BOD=______________.==,现对72进行如下操18.任何实数a,可用[]a表示不超过a的最大整数,如[4]4,[3]3作:72第一次8]=;第二次[8]2=;第三次[2]1=;这样对72只需进行3次操作后变为1,在进行这样3次操作后变为1的所有正整数中,最大的是___19.如图,直线a和b被直线c所截,∠1=110°,当∠2=_____时,直线a b成立三、解答题20.(1-2|x-=-(2)解方程:()3112521.(1)如图这是某市部分简图,为了确定各建筑物的位置:①请你以火车站为原点建立平面直角坐标系②写出体育场、宾馆的坐标;③图书馆的坐标为()-4,-3,请在图中标出图书馆的位置;(2)已知M=是3m +的算术平方根,N=n-2的立方根,试求M-N 的值;22.如图在平面直角坐标系中,已知(1,1)P ,过点P 分别向,x y 轴作垂线,垂足分别是,A B ;(1)点Q 在直线AP 上且与点P 的距离为2,则点Q 的坐标为__________(2)平移三角形ABP ,若顶点P 平移后的对应点(4,3)P ',画出平移后的三角形'''A B P .23.如图,//,AB CD EFG ∆的顶点,F G 分别落在直线,AB CD 上,CE 交AB 于点,H GE 平分FGD ∠,若90,20EFG EFH ︒︒∠=∠=,求EHB ∠的度数.24.如图,在平面直角坐标系中,,A B 坐标分别是(0,),(,)A a B b a ,且,a b 满足()23|5|0a b -+-=,现同时将点,A B 分别向下平移3个单位,再向左平移1个单位,分别得到点,A B 的对应点,C D ,连接,,AC BD AB .(1)求点,C D 的坐标及四边形ACDB 的面积ACDB S ;(2)在y 轴上是否存在一点M ,连接,MC MD ,使13MCD ACDB S S ∆=?若存在这样的点,求出点M 的坐标,若不存在,试说明理由.25.学着说理由:如图∠B =∠C ,AB ∥EF ,试说明:∠BGF =∠C证明:∵∠B =∠C ()∴AB ∥CD ()又∵AB ∥EF ()∴EF ∥CD ()∴∠BGF =∠C ()26.如图,EF ⊥BC 于点F ,∠1=∠2,DG ∥BA ,若∠2=40°,则∠BDG 是多少度?参考答案1.D2.C3.B4.B5.A6.C7.B8.D9.C10.B11.A【详解】解:0,,a b a b <<>0,a b ∴+<||a b a a b b+=+++()a a b b=--++a a b b=---+2.a =-故选A .12.C【详解】解:从图象可以发现,点P 的运动每4次位置循环一次.每循环一次向右移动四个单位.∴2019=4×504+3,当第504循环结束时,点P 位置在(2016,0),在此基础之上运动三次到(2019,2),故选:C .13.如果两条直线是平行线,那么同位角相等.【解析】一个命题都能写成“如果…那么…”的形式,如果后面是题设,那么后面是结论.【详解】“两直线平行,同位角相等”的条件是:“两直线平行”,结论为:“同位角相等”,∴写成“如果…,那么…”的形式为:“如果两条直线是平行线,那么同位角相等”,故答案为如果两条直线是平行线,那么同位角相等.14.()1,3--【解析】首先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“帅”的坐标.【详解】解:建立平面直角坐标系,如图,“帅”的坐标为(-1,-3),故答案为:(-1,-3).15.±1,0【详解】∵13=1,(-1)3=-1,03=0,∴1的立方根是1,-1的立方根是-1,0的立方根是0,∴一个数的立方根就是它本身,则这个数是±1,0.故答案为±1,0.16.-1【详解】解:364049,<<67,∴6,7,a b ∴==1,a b ∴-=-故答案为: 1.-17.150︒【详解】如图,∵在平行四边形ABCD 中,AD ∥BC ,∴∠ODB=∠DBC=15°.又由折叠的性质知,∠EBD=∠CBD=15°,即∠OBD=15°,∴在△OBD 中,∠BOD=180°−∠OBD−∠ODB=150°,18.255【详解】解:9,3,1,⎡===⎣13,3,1,⎡===⎣15,3,1,===16,4,2,1,⎡⎡====⎣⎣需要进行4次操作后变为1,即只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为255.19.70°【分析】根据平行的判定,要使直线a b 成立,则∠2=∠3,再根据∠1=110°,即可把∠2的度数求解出来.【详解】解:要使直线a b 成立,则∠2=∠3(同位角相等,两直线平行),∵∠1=110°,∴∠3=180°-∠1=180°-110°=70°,∴∠2=∠3=70°,故答案为:70°.20.(1)10(2)4x =-【详解】(1)原式=9(3)22+-++-10=(2)解:15x -=-4x =-21.(1)①见解析;②体育馆()4,3-;宾馆()2,2;③见解析;(2)2【详解】(1)①平面直角坐标系如图;②体育馆()4,3-;宾馆()2,2,③图书馆的位置见上图.(2)422433m m n -=⎧⎨-+=⎩ 63m n =⎧∴⎨=⎩3,1M N ∴==2M N ∴-=22.(1)12(1,1),(1,3)Q Q -;(2)见解析【详解】解:(1)∵点Q 在直线AP 上且与点P 的距离为2,AP ⊥x 轴,P (1,1),∴点Q 的坐标为(1,-1)或(1,3),故答案为:(1,-1)或(1,3);(2)如图所示,'(1,1),(4,3).P P ∴平移方式为先向右平移3个单位长度,再向上平移2个单位长度,按相同方式把,A B 作同样的平移得到''.A B ,顺次连接''',,A B P 得到三角形A′B′P′即为所求.【点睛】本题主要考查了利用平移变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.23.55︒【详解】解:90,20EFG EFH ︒︒∠=∠= 70BFG ︒∴∠=//AB CD ,70FGC BFG ︒∴∠=∠=,110FGD ︒∴∠=因为GE 平分FGD ∠,55FGH ︒∴∠=,180705555FHG ︒︒︒∴∠=--=︒55EHB FHG ︒∴∠=∠=24.(1)(1,0),(4,0),C D -15.ACDB S =(2)在y 轴上存在点(0,2)M ,或(0,2)M -使13MCD ABDC S S ∆=【详解】解:(1)依题意得:3050a b -=⎧⎨-=⎩解得:35a b =⎧⎨=⎩(0,3),(5,3)A B ∴,将点,A B 分别向下平移3个单位,再向左平移1个单位,(1,0),(4,0),C D ∴-5315.ACDB S CD OA =∙=⨯=(2)假设在y 轴上存在点(0,)M y ,使13MCD ABDCS S ∆=11553MCD S ∆∴==,1552y ∴⨯⨯=,2y ∴=±,(0,2)M ∴或(0,2)-所以在y 轴上存在点(0,)M y ,使13MCD ABDC S S ∆=.25.【详解】证明:∵∠B =∠C (已知),∴AB ∥CD (内错角相等,两直线平行),又∵AB ∥EF (已知),∴EF ∥CD (平行于同一直线的两直线平行),∴∠BGF =∠C (两直线平行,同位角相等).26.130°【详解】解:∵∠1=∠2,∴EF∥AD,∵EF⊥BC,∴AD⊥BC,即∠ADB=90°,又∵DG∥BA,∠2=40°,∴∠ADG=∠2=40°,∴∠BDG=∠ADG+∠ADB=130°.。
2023-2024学年广东省惠州市博罗县四校联考七年级(下)期中数学试卷+答案解析
2023-2024学年广东省惠州市博罗县四校联考七年级(下)期中数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列各数中的无理数是()A. B. C.0 D.2.下列各式中,是二元一次方程的是()A. B. C. D.3.下列图形中,能说明“相等的角是对顶角”为假命题的是()A. B.C. D.4.在平面直角坐标系中,点位于()A.第一象限B.第二象限C.第三象限D.第四象限5.下列各组x,y的值,不是方程的解的是()A. B. C. D.6.下列各组数中,互为相反数的是A.与B.与C.与D.与7.如图,点E在AC的延长线上,下列条件中能判断的是()A.B.C.D.8.如图是小刚画的一张脸,若用点表示左眼的位置,点表示右眼的位置,则嘴巴点C的位置可表示为()A.B.C.D.9.已知点与点N在同一条平行于x轴的直线上,且点N到y轴的距离等于4,那么点N的坐标是()A. B. C.或 D.或10.如图,E在线段BA的延长线上,,,,连FH交AD于G,的余角比大,K为线段BC上一点,连CG,使,在内部有射线GM,GM平分则下列结论:①;②GK平分;③;④其中正确结论的个数有()A.1个B.2个C.3个D.4个二、填空题:本题共6小题,每小题3分,共18分。
11.比较大小:______12.把方程改写成用含x的式子表示y的形式为______.13.如图,OC是的角平分线,直线若,则的大小为______.14.已知,,则______.15.如图,把一个长方形纸条ABCD沿AF折叠,已知,,则__________.16.如图,点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点,第2次接着运动到点,第3次接着运动到点,……,按这样的运动规律,经过第2023次运动后动点P的坐标是______.三、计算题:本大题共1小题,共6分。
17.解方程组:四、解答题:本题共7小题,共66分。
人教版数学七年级下学期《期中检测试卷》附答案
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:每小题只有一个选项是符合题意的1.计算23()m m -⋅结果是( )A. 5m -B. 5mC. 6m -D. 6m2.下列计算正确的是( )A. 236()()()a a a a ---=B. ()3235626m n m n -=-C. 1025x x x ÷=D. 03226-⨯=- 3.下列各式中能用平方差公式计算的是( )A. (32)(32)a b b a +-B. (21)(21)x x -+--C. ()()x y x y --+D. 1122x x ⎛⎫⎛⎫--+ ⎪⎪⎝⎭⎝⎭4.如图,AB 与CD 交于点,OE AB ⊥.下列说法错误的是( )A. AOC ∠与BOD ∠相等B. BOD ∠与DOE ∠互余C. AOC ∠与AOD ∠互补D. AOE ∠与BOC ∠对顶角 5.计算结果为256x x --的是( )A. ()()23x x -+B. ()()61x x +-C. ()()23x x +-D. ()()61x x -+ 6.如图,AB AC ⊥,AD BC ⊥,垂足分别为,,则图中能表示点到直线的距离的线段共有( )A. 2条B. 3条C. 4条D. 5条7.小颖妈妈在防疫期间从家里出发,用了10分钟快速走到一个离家800米的药店,在药店排队10分钟买到了预约的口罩,然后步行回到家.下列图象能正确表示小颖妈妈所走的路程与时间关系的是( ) A. B. C. D. 8.多项式A B ÷的计算结果是21x -+,已知21B x =+,由此可知多项式是( )A. 241x +B. 214x -C. 4x -D. 241x -二、填空题9.2020年2月21日,国家卫生健康委决定将“新型冠状病毒肺炎”英文名称修订为“COVID-19”,新型冠状病毒的直径约60220nm -,60nm 用科学记数法表示为________.10.一个长方体长是5210cm ⨯,宽是31.510cm ⨯,高是41.310cm ⨯,则它的体积是________3m .11.如图所示,随着剪刀两个把手之间夹角(DOC ∠)的增大,剪刀刀刃之间的夹角(AOB ∠)________(填“增大”“减小”或“不变”),理由是________________.12.下表反映的是某水果店销售的草莓数量(kg )与销售总价(元)之间的关系,它可以表示为________. 销售数量(kg )1 2 3 4 … 销售总价(元)6.5 125 18.5 245 …13.计算101(2)2π-⎛⎫--- ⎪⎝⎭的结果是________.14.如图,在两条方向相同的南北公路之间要修一条笔直的公路AB ,从地测得公路的走向是南偏西50°,则从地测公路的走向是________.15.已知有理数,满足2213a b --=,则33()()a b a b +-的值是________.16.根据如图所示阴影部分的面积可以写出的一个等式是________.三、解答题17.计算:(1)()32328x x y xy ⋅÷; (2)3(2)(3)9a a a a -⋅--÷;(3)()2(1)(1)1x x x -++.18.求下列各式的值:(1)2(31)(32)(23)x x x x +-+-,其中2x =-;(2)222()()22m n m n mn mn ⎡⎤+--+÷⎣⎦,其中1m =,12n =-. 19.数学活动课上,小亮把两个含30°角的三角板按照如图所示方式摆放,点,,,在同一条直线上,他让小明判断直线AB 与CD 的位置关系,小明很快说出了答案并讲出了判断的依据.请你猜猜小明的答案和理由.20.如图,已知α∠,β∠.求作:AOB ∠,使AOB αβ∠=∠-∠.(尺规作图,保留作图痕迹,不写作法)21.防疫期间的某天上午9:00,社区工作人员小孙从社区办公室出发,上门为本社区两户隔离人员家庭送生活用品,同时了解隔离人员的健康状况,她先去了距离社区较近的张家,稍作停留简单询问了情况后,又去了稍远一点的李家,这家人口较多,了解情况时间稍长一些,由于社区还有其它事情等待处理,结束工作后她快速返回社区办公室.已知小孙距离社区办公室的距离(米)与离开办公室的时间(分)之间的关系如图所示.请根据图象回答下列问题:(1)图中点表示的意义是什么?(2)小孙从李家出来后步行的速度是多少?(3)小孙在李家停留了几分钟?小孙几点回到社区办公室?22.如图,已知//AB CE ,点,,在同一条直线上.(1)已知40B ∠=︒,求DCE ∠的度数;(2)已知60A ∠=︒,40B ∠=︒,求ACD ∠的度数;(3)当A ∠,B 的度数变化时,A ∠,B ,ACD ∠之间的数量关系会变化吗?如果不变,请写出它们之间的数量关系.答案与解析一、选择题:每小题只有一个选项是符合题意的1.计算23()m m -⋅的结果是( )A. 5m -B. 5mC. 6m -D. 6m[答案]B[解析][分析] 根据积的乘方和同底数幂的乘法计算即可.[详解]解:23()m m -⋅=23m m ⋅=5m故选B .[点睛]此题考查的是幂的运算性质,掌握积的乘方和同底数幂的乘法是解决此题的关键.2.下列计算正确的是( )A. 236()()()a a a a ---=B. ()3235626m n m n -=- C 1025x x x ÷=D. 03226-⨯=- [答案]A[解析][分析]根据同底数幂的乘法、积的乘方、幂的乘方、同底数幂的除法、零指数幂的性质和负指数幂的性质逐一判断即可.[详解]A.2312366()()()()()a a a a a a ++---=-==-,故本选项正确;B.()3236928m n m n -=-,故本选项错误;C.1018202x x x x -÷==,故本选项错误;D.031122188-⨯=⨯=,故本选项错误. 故选A . [点睛]此题考查的是幂的运算性质,掌握同底数幂的乘法、积的乘方、幂的乘方、同底数幂的除法、零指数幂的性质和负指数幂的性质是解决此题的关键.3.下列各式中能用平方差公式计算的是( )A. (32)(32)a b b a +-B. (21)(21)x x -+--C. ()()x y x y --+D. 1122x x ⎛⎫⎛⎫--+ ⎪⎪⎝⎭⎝⎭[答案]B[解析][分析]根据平方差公式对各选项进行逐一计算即可. [详解]解:A 、不符合两个数的和与这两个数的差相乘,不能用平方差公式,故本选项错误;B 、符合平方差公式,故本选项正确;C 、原式=()2x y -+,故本选项错误; D 、原式=212x ⎛⎫-- ⎪⎝⎭,故本选项错误. 故选:B .[点睛]本题考查平方差公式,熟知两个数的和与这两个数的差相乘,等于这两个数的平方差是解题的关键. 4.如图,AB 与CD 交于点,OE AB ⊥.下列说法错误的是( )A. AOC ∠与BOD ∠相等B. BOD ∠与DOE ∠互余C. AOC ∠与AOD ∠互补D. AOE ∠与BOC ∠是对顶角[解析][分析]根据对顶角的性质、补角和余角的定义即可解题.[详解]解:A.∠AOC 与∠BOD 是对顶角,所以∠AOC=∠BOD ,故正确;B.∠BOD 和∠DOE 互为余角,故正确;C.AOC ∠与AOD ∠互补,故正确;D.AOE ∠与BOC ∠不是对顶角,故错误.故选D .[点睛]本题考查了对顶角的性质、补角和余角的定义,属于简单题,熟悉概念和性质是解题关键. 5.计算结果为256x x --的是( )A. ()()23x x -+B. ()()61x x +-C. ()()23x x +-D. ()()61x x -+[答案]D[解析][分析]运用十字相乘的方法来分解即可.[详解]解:256x x --=(x-6)(x+1)故选D[点睛]本题考查了运用十字相乘的方法来分解因式,熟练掌握该方法是解决本题的关键.6.如图,AB AC ⊥,AD BC ⊥,垂足分别为,,则图中能表示点到直线的距离的线段共有( )A. 2条B. 3条C. 4条D. 5条[答案]D[分析]根据点到直线的距离的定义:从直线外一点到这直线的垂线段的长度叫做点到直线的距离,即可得出结论.[详解]解:AD的长度表示点A到直线BC的距离;BD的长度表示点B到直线AD的距离;CD的长度表示点C到直线AD的距离;CA的长度表示点C到直线AB的距离;BA的长度表示点B到直线AC的距离;综上:图中能表示点到直线的距离的线段共有5条故选D.[点睛]此题主要考查了点到直线的距离,解题关键是明确点到直线的距离是这个点到直线的垂线段的长,因此要找到垂直的特点即可.7.小颖妈妈在防疫期间从家里出发,用了10分钟快速走到一个离家800米的药店,在药店排队10分钟买到了预约的口罩,然后步行回到家.下列图象能正确表示小颖妈妈所走的路程与时间关系的是()A. B. C. D.[答案]A[解析][分析]根据小颖妈妈所走的路程与时间关系分析图象即可.[详解]解:小颖妈妈用了10分钟快速走到一个离家800米的药店,此时各个选项均符合题意;在药店排队10分钟买到了预约口罩,即这10分钟走的路程为0,故可排除B和D;然后步行回到家,即此时小颖妈妈又行驶了800米,故可排除C,选A.故选A.[点睛]此题考查的是根据题意,选择正确的图象,掌握图象横纵坐标表示的实际意义是解决此题的关键.8.多项式A B ÷的计算结果是21x -+,已知21B x =+,由此可知多项式是( )A. 241x +B. 214x -C. 4x -D. 241x -[答案]B[解析][分析]根据A B ÷的计算结果是21x -+,可得A=B (-2x+1),将21B x =+代入计算即可.[详解]解:∵A B ÷的计算结果是21x -+,∴A=B (2x+1)=(2x+1)(-2x+1)=-(2x+1)(2x-1)=214x -.故选:B .[点睛]本题考查了整式的乘除,关键是掌握整式的乘除运算法则,平方差公式,在计算时要注意结果的符号. 二、填空题9.2020年2月21日,国家卫生健康委决定将“新型冠状病毒肺炎”英文名称修订为“COVID-19”,新型冠状病毒的直径约60220nm -,60nm 用科学记数法表示为________.[答案]8610-⨯[解析][分析]绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.[详解]解:∵1nm=1×10-9m ∴60nm=6×10-8m . 故答案为:6×10-8. [点睛]本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中1||10a <,为由原数左边起第一个不为零的数字前面的0的个数所决定.本题也考查了纳米与米之间的单位换算:1nm=1×10-9m . 10.一个长方体的长是5210cm ⨯,宽是31.510cm ⨯,高是41.310cm ⨯,则它的体积是________3m .[答案]63.910⨯[解析][分析]先进行单位换算,再计算长方体的体积[详解]53210cm=210m ⨯⨯,311.510cm=1.510m ⨯⨯,421.310cm=1.310m ⨯⨯故它的体积是:33126210 1.510 1.310 3.1m 90⨯⨯⨯⨯⨯=⨯.故答案为:63.910⨯[点睛]此题主要考查了单项式乘以单项式以及科学记数法的表示方法,单位换算和正确计算是解题关键. 11.如图所示,随着剪刀两个把手之间夹角(DOC ∠)的增大,剪刀刀刃之间的夹角(AOB ∠)________(填“增大”“减小”或“不变”),理由是________________.[答案] (1). 增大 (2). 对顶角相等[解析][分析]根据对顶角的性质即可得出结论.[详解]解:∵∠AOB 和∠DOC 为对顶角∴∠AOB=∠DOC∴随着剪刀两个把手之间夹角(DOC ∠)的增大,剪刀刀刃之间的夹角(AOB ∠)增大理由为对顶角相等.故答案为:增大;对顶角相等.[点睛]此题考查的是对顶角性质的应用,掌握对顶角相等是解决此题的关键.12.下表反映的是某水果店销售的草莓数量(kg )与销售总价(元)之间的关系,它可以表示为________. 销售数量(kg ) 1 2 3 4 …[答案]60.5y x =+[解析][分析] 由图表可知,当销售数量为1kg 时,销售总价为6.5元,销售数量每增加1kg ,销售总价就增加6元,从而求出y 与x 的函数关系式.[详解]解:由图表可知,当销售数量为1kg 时,销售总价为6.5元,销售数量每增加1kg ,销售总价就增加6元, ∴y=6.5+6(x -1)=60.5x +故答案为:60.5y x =+.[点睛]此题考查的是求函数解析式,掌握实际问题中的等量关系是解决此题的关键.13.计算101(2)2π-⎛⎫--- ⎪⎝⎭的结果是________.[答案]-3[解析][分析]按照负指数幂和零指数幂运算法则分别计算后,进行有理数加减法运算即可. [详解]解:101(2213)2π-⎛⎫---=-- ⎪⎭=-⎝ 故答案为:-3[点睛]本题考查了负指数幂、零指数幂和有理数加减运算的运算法则,解答关键是按照法则进行计算.14.如图,在两条方向相同的南北公路之间要修一条笔直的公路AB ,从地测得公路的走向是南偏西50°,则从地测公路的走向是________.[答案]北偏东50°[解析][分析]首先计算2∠的度数,再根据方向角来描述乙地所修公路的走向.[详解]解:如图所示:150∠=︒,//AC BD ,2150∴∠=∠=︒,乙地所修公路的走向是北偏东50︒,故答案为:北偏东50︒.[点睛]此题主要考查了方向角,关键是掌握以正北,正南方向为基准,来描述物体所处的方向.15.已知有理数,满足2213a b --=,则33()()a b a b +-的值是________.[答案]127[解析][分析]根据平方差公式和负指数幂的性质可得()()13a b a b +-=,然后根据积的乘方的逆用即可求出结论.[详解]解:∵2213a b --=∴()()13a b a b +-=∴33()()a b a b +-=[]3()()a b a b +- =313⎡⎤⎢⎥⎣⎦=127故答案为:127. [点睛]此题考查的是平方差公式、负指数幂的性质和积的乘方的逆用,掌握平方差公式、负指数幂的性质和积的乘方的逆用是解决此题的关键.16.根据如图所示阴影部分的面积可以写出的一个等式是________.[答案]22()()4a b a b ab +=-+[解析]分析]由图可知:图中大正方形的边长为a +b ,其面积为2()a b +;空白正方形的边长为a -b ,其面积为2()a b -;阴影部分由4个矩形组成,每个矩形的长为a ,宽为b ,每个矩形的面积为ab ;然后根据大正方形的面积=空白正方形的面积+4个矩形的面积即可得出结论.[详解]解:由图可知:图中大正方形边长为a +b ,其面积为2()a b +; 空白正方形的边长为a -b ,其面积为2()a b -;阴影部分由4个矩形组成,每个矩形的长为a ,宽为b ,每个矩形的面积为ab ;∴22()()4a b a b ab +=-+故答案为:22()()4a b a b ab +=-+.[点睛]此题考查的是完全平方公式变形的几何意义,利用大正方形的面积=空白正方形的面积+4个矩形的面积得出等式是解决此题的关键.三、解答题17.计算:(1)()32328x x y xy ⋅÷; (2)3(2)(3)9a a a a -⋅--÷;(3)()2(1)(1)1x x x -++.[答案](1)623xy (2)2a (3)41x - [解析][分析](1)先计算单项式的乘方,再进行单项式乘法,最后进行单项式除法即可;(2)先计算单项式的乘方,再进行单项式乘除法,最后加减;(3)直接利用平方差公式计算得出答案.[详解]解:(1)()32328x x y xy ⋅÷=63388x x y xy ⋅÷=623x y ;(2)3(2)(3)9a a a a -⋅--÷=232(27)9a a a ---÷=222+3a a -=2a ;(3)()2(1)(1)1x x x -++=()22(1)1x x -+=41x -.[点睛]本题考查整式的混合运算,正确掌握相关运算法则是解题关键.18.求下列各式的值:(1)2(31)(32)(23)x x x x +-+-,其中2x =-;(2)222()()22m n m n mn mn ⎡⎤+--+÷⎣⎦,其中1m =,12n =-. [答案](1)76x +;-8 ; (2)2n +;32[解析][分析] (1)利用多项式乘以多项式和单项式乘以多项式计算法则进行计算,再合并同类项,化简后,再代入的值可得答案.(2)首先利用完全平方公式计算括号里面的乘法,再合并同类项,然后再利用多项式除以单项式计算除法,化简后,再代入、的值计算即可.[详解]解:(1)原式2(31)(32)(23)x x x x +-+-2262(6946)x x x x x =+--+-22626946x x x x x =+-+-+76x =+,当2x =-时,原式2768=-⨯+=-;(2)原式222()()22m n m n mn mn ⎡⎤=+--+÷⎣⎦222222(2)22m mn n m mn n mn mn ⎡⎤=++--++÷⎣⎦22222(222)2m mn n m mn n mn mn =++-+-+÷2(42)2mn mn mn =+÷24222mn mn mn mn =÷+÷2n =+,当1m =,12n =-时,原式13222=-+=. [点睛]此题主要考查了整式的混合运算--化简求值,关键是掌握有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.19.数学活动课上,小亮把两个含30°角的三角板按照如图所示方式摆放,点,,,在同一条直线上,他让小明判断直线AB 与CD 的位置关系,小明很快说出了答案并讲出了判断的依据.请你猜猜小明的答案和理由.[答案]//AB CD ,理由:内错角相等,两直线平行[解析][分析]根据三角尺的摆放方式,比较容易找到一组相等的内错角,从而证明两条直线平行.[详解]//AB CD ,理由:内错角相等,两直线平行[点睛]本题考查了平行线的判定方法,熟练掌握平行线的判定定理是解题的关键.20.如图,已知α∠,β∠.求作:AOB ∠,使AOB αβ∠=∠-∠.(尺规作图,保留作图痕迹,不写作法)[答案]图见解析[解析][分析]作∠AOC=α∠,然后在∠AOC 内部作∠BOC=β∠,即可得到AOB αβ∠=∠-∠.[详解]解:作∠AOC=α∠,然后在∠AOC 内部作∠BOC=β∠,即可得到AOB αβ∠=∠-∠,如下图所示,∠AOB 即为所求.[点睛]此题考查的是基本作图,掌握利用尺规作图作一个角等于已知角是解决此题的关键.21.防疫期间的某天上午9:00,社区工作人员小孙从社区办公室出发,上门为本社区两户隔离人员家庭送生活用品,同时了解隔离人员的健康状况,她先去了距离社区较近的张家,稍作停留简单询问了情况后,又去了稍远一点的李家,这家人口较多,了解情况时间稍长一些,由于社区还有其它事情等待处理,结束工作后她快速返回社区办公室.已知小孙距离社区办公室的距离(米)与离开办公室的时间(分)之间的关系如图所示.请根据图象回答下列问题:(1)图中点表示的意义是什么?(2)小孙从李家出来后步行的速度是多少?(3)小孙在李家停留了几分钟?小孙几点回到社区办公室?[答案](1)点表示小孙从社区办公室出发5分钟后到达距社区办公室200米的张家;(2)80(米/分);(3)10分钟,9:40.[解析][分析](1)根据题意和图象中A点对应的(米)与(分)解答即可;(2)根据“速度时间路程”解答即可;(3)根据图象中(米)与(分)解答即可.[详解]解:(1)由图象可知,点表示小孙从社区办公室出发5分钟后到达距社区办公室200米张家;(2)800(4030)80÷-=(米分).故小孙从李家出来后步行的速度是80米分;(3)由图象可知,小孙在李家停留了()302010-=分钟,小孙9:00出发,到经过40分钟回到社区办公室, 9:40回到社区办公室.故:小孙在李家停留了10分钟,小孙9:40回到社区办公室.[点睛]此题主要考查了看函数图象,解决本题的关键是读懂图意,然后根据图象信息找到所需要的数量关系,利用数量关系即可解决问题.22.如图,已知//AB CE ,点,,在同一条直线上.(1)已知40B ∠=︒,求DCE ∠的度数;(2)已知60A ∠=︒,40B ∠=︒,求ACD ∠的度数;(3)当A ∠,B 的度数变化时,A ∠,B ,ACD ∠之间的数量关系会变化吗?如果不变,请写出它们之间的数量关系.[答案](1)40DCE ∠=︒(2)100ACD ∠=︒(3)不变 ACD A B ∠=∠+∠[解析][分析](1)直接利用两直线平行,同位角相等即可得出答案;(2)利用三角形外角的性质可知ACD A B ∠=∠+∠,然后代入相应的角度即可求出答案;(3)利用三角形外角的性质可知ACD A B ∠=∠+∠,从而得出答案.[详解](1)//AB CE ,40DCE B ∴∠=∠=︒;(2)60A ∠=︒,40B ∠=︒,∴6040100ACD A B ∠=∠+∠=︒+︒=︒;(3)不变,根据三角形外角的性质可知,ACD A B ∠=∠+∠.[点睛]本题主要考查平行线的性质和三角形外角的性质,掌握平行线的性质和三角形外角的性质是解题的关键.。
完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库
完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库一、选择题1.下列说法正确的是()A .4的平方根是2B .16的平方根是±4C .25的平方根是±5D .﹣36的算术平方根是62.下列四种汽车车标,可以看做是由某个基本图案经过平移得到的是( )A .B .C .D .3.如果(),P a b 在第三象限,那么点(),Q a b ab +在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列命题中假命题有( )①两条直线被第三条直线所截,同位角相等②如果两条直线都与第三条直线平行,那么这两条直线也互相平行③点到直线的垂线段叫做点到直线的距离④过一点有且只有一条直线与已知直线平行⑤若两条直线都与第三条直线垂直,则这两条直线互相平行.A .5个B .4个C .3个D .2个5.如图,直线AB 、CD 相交于点E ,//DF AB .若70D ∠=︒,则CEB ∠等于( )A .70°B .110°C .90°D .120°6.下列说法:①两个无理数的和可能是有理数:②任意一个有理数都可以用数轴上的点表示;③33mn π-+是三次二项式;④立方根是本身的数有0和1;其中正确的是( ) A .①② B .①③ C .①②③ D .①②④ 7.直角三角板与两边平行的纸条如图所示放置,下列结论不一定正确的是( )A .12∠=∠B .34∠=∠C .2490∠+∠=D .14∠=∠8.如图,在平面直角坐标系中有点()2,0A ,点A 第一次向左跳动至()11,1A -,第二次向右跳动至()22,1A ,第三次向左跳动至()32,2A -,第四次向右跳动至()43,2A ,…依照此规律跳动下去,点A 第2020次跳动至2020A 的坐标为( )A .()1011,1010B .()1012,1010C .()1010,1009-D .()2020,2021二、填空题9.若,则()m a b +的值为10.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则(m +n )2020的值是_____.11.如图,已知AB //DE ,BC ⊥CD ,∠ABC 和∠CDE 的角平分线交于点F ,∠BFD =__________°.12.如图,//AB CD ,CE 平分ACD ∠,交AB 于E ,若50ACD ∠=︒,则1∠的度数是______°.13.如图,把一张长方形纸片ABCD 沿EF 折叠后,D 、C 分别落在D ,C '的位置上,ED '与BC 交于G 点,若56EFG ∠=︒,则AEG ∠=______.14.如图,在纸面上有一数轴,点A 表示的数为﹣1,点B 表示的数为3,点C 表示的数为3B 为中心折叠,然后再次折叠纸面使点A 和点B 重合,则此时数轴上与点C 重合的点所表示的数是_______.15.下列四个命题:①直角坐标系中的点与有序实数对一一对应;②若a 大于0,b 不小于0,则点(),P a b --在第三象限;③过一点有且只有一条直线与已知直线平行;④若()214=--+y x ,则x y 的算术平方根是12.其中,是真命题的有______.(写出所有真命题的序号) 16.如图,已知A 1(1,2),A 2(2,2),A 3(3,0),A 4(4,﹣2),A 5(5,﹣2),A 6(6,0),…,按这样的规律,则点A 2021的坐标为 ____________.三、解答题17.计算:(1)232643--(2)()21418329⎛⎫-+⨯- ⎪⎝⎭18.求下列各式中的x .(1)x 2-81=0(2)(x ﹣1)3=819.已知:如图,DB ⊥AF 于点G ,EC ⊥AF 于点H ,∠C =∠D .求证:∠A =∠F . 证明:∵DB ⊥AF 于点G ,EC ⊥AF 于点H (已知),∴∠DGH =∠EHF =90°( ).∴DB ∥EC ( ).∴∠C = ( ).∵∠C =∠D (已知),∴∠D = ( ).∴DF ∥AC ( ).∴∠A =∠F ( ).20.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A 到B 记为:A →B (+1,+4),从B 到A 记为:A →B (﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)A →C ( , ),B →D ( , ),C → (+1, );(2)若这只甲虫从A 处去甲虫P 处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P 的位置.21.已知21a -的平方根是3,31a b ±+-的立方根是2,c -是46的整数部分,求2a b c ++的算术平方根.22.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A 表示的数为________; (2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及 35-的点,并比较它们的大小.23.已知,AB∥DE,点C在AB上方,连接BC、CD.(1)如图1,求证:∠BCD+∠CDE=∠ABC;(2)如图2,过点C作CF⊥BC交ED的延长线于点F,探究∠ABC和∠F之间的数量关系;(3)如图3,在(2)的条件下,∠CFD的平分线交CD于点G,连接GB并延长至点H,若BH平分∠ABC,求∠BGD﹣∠CGF的值.【参考答案】一、选择题1.C解析:C【分析】根据平方根和算术平方根的定义判断即可.【详解】解:A.4的平方根是±2,故错误,不符合题意;B16的平方根是±2,故错误,不符合题意;C.25的平方根是±5,故正确,符合题意;D.-36没有算术平方根,故错误,不符合题意;故选:C.【点睛】本题考查了平方根和算术平方根的概念,解题关键是熟悉相关概念,准确进行判断.2.B【分析】根据平移变换的性质,逐一判断选项,即可得到答案.【详解】A. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;B. 可以经过平移变换得到,故本选项符合题意;C解析:B【分析】根据平移变换的性质,逐一判断选项,即可得到答案.【详解】A. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;B. 可以经过平移变换得到,故本选项符合题意;C. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;D. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;故选B.【点睛】本题主要考查平移变换的性质,掌握平移变换的性质,是解题的关键.3.B【分析】根据第三象限内点的横坐标是负数,纵坐标是负数确定出a、b的正负情况,再求出a+b,ab的正负情况,然后确定出点Q所在的象限,即可得解.【详解】解:∵点P(a,b)在第三象限,∴a<0,b<0,∴a+b<0,ab>0,∴点Q(a+b,ab)在第二象限.故选:B.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.B【分析】根据平行线的性质和判定,点到直线距离定义一一判断即可.【详解】解:①两条直线被第三条直线所截,同位角相等,错误,缺少平行的条件;②如果两条直线都与第三条直线平行,那么这两条直线也互相平行,正确;③点到直线的垂线段叫做点到直线的距离,错误,应该是垂线段的长度;④过一点有且只有一条直线与已知直线平行,错误,应该是过直线外一点;⑤若两条直线都与第三条直线垂直,则这两条直线互相平行,错误,条件是同一平面内.故选B.【点睛】本题主要考查命题与定理,解决本题的关键是要熟练掌握平行线的性质和判定,点到直线距离定义.5.B【分析】先根据平行线的性质得到70BED D ∠=∠=︒,然后根据平角的定义解答即可.【详解】解:∵//DF AB ,∴70BED D ∠=∠=︒,∵180BED BEC ∠+∠=︒,∴18070110CEB ∠=︒-︒=︒.故选:B .【点睛】本题主要考查了平行线的性质定理和平角的性质,灵活运用平行线的性质成为解答本题的关键.6.A【分析】根据无理数的运算、数轴的定义、多项式的定义、立方根的运算逐个判断即可.【详解】①两个无理数的和可能是有理数,说法正确(0=,0是有理数②有理数属于实数,实数与数轴上的点是一一对应关系,则任意一个有理数都可以用数轴上的点表示,说法正确③3327mn mn ππ=-+-+是二次二项式,说法错误④立方根是本身的数有0和±1,说法错误综上,说法正确的是①②故选:A .【点睛】本题考查了无理数的运算、数轴的定义、多项式的定义、立方根的运算,熟记各运算法则和定义是解题关键.7.D【分析】直接利用平行线性质解题即可【详解】解:∵直尺的两边互相平行,∴∠1=∠2,∠3=∠4,∵三角板的直角顶点在直尺上,∴∠2+∠4=90°,∴A ,B ,C 正确.故选D .【点睛】本题考查平行线的基本性质,基础知识扎实是解题关键8.A【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,然后写出即可.【详解】解:如图,解析:A【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,然后写出即可.【详解】解:如图,观察发现,第2次跳动至点2A 的坐标是(2,1),第4次跳动至点4A 的坐标是(3,2),第6次跳动至点6A 的坐标是(4,3),第8次跳动至点8A 的坐标是(5,4),⋯第2n 次跳动至点2n A 的坐标是(1,)n n +,则第2020次跳动至点2020A 的坐标是(1011,1010),故选:A .【点睛】本题考查了规律型:点的坐标,坐标与图形的性,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.二、填空题9.-1【解析】解:有题意得,,,,则解析:-1【解析】 解:有题意得,,,,则()m a b + 10.1【分析】直接利用关于y 轴对称点的性质得出横坐标互为相反数,纵坐标相等,进而得出答案.【详解】解:∵点A(1+m,1-n)与点B(-3,2)关于y轴对称,∴1+m=3,1-n=2,∴m=解析:1【分析】直接利用关于y轴对称点的性质得出横坐标互为相反数,纵坐标相等,进而得出答案.【详解】解:∵点A(1+m,1-n)与点B(-3,2)关于y轴对称,∴1+m=3,1-n=2,∴m=2,n=-1,∴(m+n)2020=(2-1)2020=1;故答案为:1.【点睛】此题主要考查了关于y轴对称点的性质,正确掌握点的坐标特点是解题关键.11.135;【分析】连接BD,根据三角形内角和定理得出∠C+∠CBD+∠CDB=180°,再由BC⊥CD可知∠C=90°,故∠CBD+∠CDB=90°,再由AB∥DE可知∠ABD+∠BDE=180°解析:135;【分析】连接BD,根据三角形内角和定理得出∠C+∠CBD+∠CDB=180°,再由BC⊥CD可知∠C=90°,故∠CBD+∠CDB=90°,再由AB∥DE可知∠ABD+∠BDE=180°,故∠CBD+∠CDB+∠ABD+∠BDE =270°,再由∠ABC和∠CDE的平分线交于点F可得出∠CBF+∠CDF的度数,由四边形内角和定理即可得出结论.【详解】解:连接BD,∵∠C+∠CBD+∠CDB=180°,BC⊥CD,∴∠C=90°,∴∠CBD+∠CDB=90°.∵AB∥DE,∴∠ABD+∠BDE=180°,∴∠CBD+∠CDB+∠ABD+∠BDE=90°+180°=270°,即∠ABC+∠CDE=270°.∵∠ABC 和∠CDE 的平分线交于点F ,∴∠CBF+∠CDF=12×270°=135°, ∴∠BFD=360°-90°-135°=135°.故答案为135.【点睛】本题考查平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质.12.25【分析】根据平行线的性质和角平分线的定义求解即可得到答案.【详解】解:∵AB ∥CD ,∴∠1=∠ECD ,∵CE 平分∠ACD ,∠ACD=50°,∴=25°,∴∠1=25°,故答案为解析:25【分析】根据平行线的性质和角平分线的定义求解即可得到答案.【详解】解:∵AB ∥CD ,∴∠1=∠ECD ,∵CE 平分∠ACD ,∠ACD =50°,∴12ECD ACD ∠=∠=25°, ∴∠1=25°,故答案为:25.【点睛】本题主要考查了角平分线的定义,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.13.68°【分析】先根据平行线的性质求得∠DEF 的度数,再根据折叠求得∠DEG 的度数,最后计算∠AEG 的大小.【详解】解:∵AD//BC ,,∴∠DEF=∠EFG=56°,由折叠可得,∠GEF解析:68°【分析】先根据平行线的性质求得∠DEF 的度数,再根据折叠求得∠DEG 的度数,最后计算∠AEG 的大小.【详解】解:∵AD //BC ,56EFG ∠=︒,∴∠DEF =∠EFG =56°,由折叠可得,∠GEF =∠DEF =56°,∴∠DEG =112°,∴∠AEG =180°-112°=68°.故答案为:68°.【点睛】本题考查了折叠问题,平行线的性质,解题时注意:长方形的对边平行,且折叠时对应角相等.14.4+或6﹣或2﹣.【分析】先求出第一次折叠与A 重合的点表示的数,然后再求两点间的距离即可;同理再求出第二次折叠与C 点重合的点表示的数即可.【详解】解:第一次折叠后与A 重合的点表示的数是:3+解析:62【分析】先求出第一次折叠与A 重合的点表示的数,然后再求两点间的距离即可;同理再求出第二次折叠与C 点重合的点表示的数即可.【详解】解:第一次折叠后与A 重合的点表示的数是:3+(3+1)=7.与C 重合的点表示的数:3+(36 第二次折叠,折叠点表示的数为:12(3+7)=5或12(﹣1+3)=1.此时与数轴上的点C 重合的点表示的数为:5+(5﹣11)=2故答案为:62【点睛】本题主要考查了数轴上的点和折叠问题,掌握折叠的性质是解答本题的关键.15.①④【分析】根据平面直角坐标系,平行线,算术平方根的概念进行判断【详解】解:①直角坐标系中的点与有序实数对一一对应;正确;故此命题是真命题; ②若大于0,不小于0,则>0,≥0,点在第三象限解析:①④【分析】根据平面直角坐标系,平行线,算术平方根的概念进行判断【详解】解:①直角坐标系中的点与有序实数对一一对应;正确;故此命题是真命题; ②若a 大于0,b 不小于0,则a >0,b ≥0,点(),P a b --在第三象限或x 轴的负半轴上;故此命题是假命题;③过直线外一点有且只有一条直线与已知直线平行;故此命题是假命题;④若4=y ,则x =1,y =4,则x y的算术平方根是12,正确,故此命题是真命题.故答案为:①④【点睛】此题主要考查了命题与定理,正确掌握相关定义是解题关键. 16.(2021,﹣2)【分析】观察发现,每6个点形成一个循环,再根据点A6的坐标及2021÷6所得的整数及余数,可计算出点A2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标.【详解解析:(2021,﹣2)【分析】观察发现,每6个点形成一个循环,再根据点A 6的坐标及2021÷6所得的整数及余数,可计算出点A 2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标.【详解】解:观察发现,每6个点形成一个循环,∵A 6(6,0),∴OA 6=6,∵2021÷6=336…5,∴点A 2021的位于第337个循环组的第5个,∴点A 2021的横坐标为6×336+5=2021,其纵坐标为:﹣2,∴点A 2021的坐标为(2021,﹣2).故答案为:(2021,﹣2).【点睛】此题主要考查坐标的规律探索,解题的关键是根据图形的特点发现规律进行求解.三、解答题17.(1)-3;(2)-11.【分析】(1)分别计算乘方,立方根,绝对值,再合并即可得到答案;(2)利用乘法的分配律先计算乘法,再计算加减运算即可得到答案.【详解】(1)解:原式=(2)解解析:(1)-3;(2)-11.【分析】(1)分别计算乘方,立方根,绝对值,再合并即可得到答案;(2)利用乘法的分配律先计算乘法,再计算加减运算即可得到答案.【详解】(1)解:原式=443-+-3=-(2)解:原式()()()214181818329=⨯--⨯-+⨯- =1298-+-=11-.【点睛】本题考查的是乘法的分配律的应用,乘方运算,求一个数的立方根,求一个数的绝对值,掌握以上知识是解题的关键.18.(1)x=±9;(2)x=3【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)利用立方根定义开立方即可求出解.【详解】解:(1)方程整理得:x2=81,开方得:x=±9;(解析:(1)x=±9;(2)x=3【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)利用立方根定义开立方即可求出解.【详解】解:(1)方程整理得:x2=81,开方得:x=±9;(2)方程整理得:(x-1)3=8,开立方得:x-1=2,解得:x=3.【点睛】本题考查了平方根、立方根,熟练掌握各自的定义是解本题的关键.19.垂直的定义;同位角相等,两直线平行;∠DBA;两直线平行,同位角相等;∠DBA;等量代换;内错角相等,两直线平行;两直线平行,内错角相等【分析】先证DB∥EC,得∠C=∠DBA,再证∠D=∠DB解析:垂直的定义;同位角相等,两直线平行;∠DBA;两直线平行,同位角相等;∠DBA;等量代换;内错角相等,两直线平行;两直线平行,内错角相等【分析】先证DB∥EC,得∠C=∠DBA,再证∠D=∠DBA,得DF∥AC,然后由平行线的性质即可得出结论.【详解】解:∵DB⊥AF于点G,EC⊥AF于点H(已知),∴∠DGH=∠EHF=90°(垂直的定义),∴DB∥EC(同位角相等,两直线平行),∴∠C=∠DBA(两直线平行,同位角相等),∵∠C=∠D(已知),∴∠D=∠DBA(等量代换),∴DF∥AC(内错角相等,两直线平行),∴∠A=∠F(两直线平行,内错角相等).故答案为:垂直的定义;同位角相等,两直线平行;∠DBA,两直线平行,同位角相等;∠DBA,等量代换;内错角相等,两直线平行;两直线平行,内错角相等.【点睛】本题主要考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解题的关键.20.(1)3,4,3,﹣2,D,﹣2;(2)见解析【分析】(1)根据向上向右走为正,向下向左走为负,可得答案;(2)根据向上向右走为正,向下向左走为负,可得答案.【详解】解:(1)A→C( 3解析:(1)3,4,3,﹣2,D,﹣2;(2)见解析【分析】(1)根据向上向右走为正,向下向左走为负,可得答案;(2)根据向上向右走为正,向下向左走为负,可得答案.【详解】解:(1)A→C( 3,4),B→D(3﹣2),C→D(+1,﹣2);故答案为3,4;3,﹣2;D,﹣2;(2)这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置,如图【点睛】本题主要考查了用有序实数对表示路线.读懂题目信息,正确理解行走路线的记录方法是解题的关键.21.【分析】首先根据平方根与立方根的概念可得2a−1与a+3b−1的值,进而可得a、b的值;接着估计的大小,可得c的值;进而可得a+2b+c,根据算术平方根的求法可得答案.【详解】解:根据题意,3【分析】首先根据平方根与立方根的概念可得2a−1与a+3b−1的值,进而可得a、b的值;接着估46c的值;进而可得a+2b+c,根据算术平方根的求法可得答案.【详解】解:根据题意,可得2a−1=9,a+3b−1=-8;解得:a=5,b=-4;又∵6<46<7,可得c=6;∴a+2b+c=3;∴a+2b+c的算术平方根为3.【点睛】此题主要考查了平方根、立方根、算术平方根的定义及无理数的估算能力,“夹逼法”是估算的一般方法,也是常用方法.22.(1);(2)①见解析;②见解析,【分析】(1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果;(2)① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②解析:(1)2,2-;(2)①见解析;②见解析,350.5-+<-【分析】(1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果;(2)① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正方形的边长为5,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,再把N点表示出来,即可比较它们的大小.【详解】解:设正方形边长为a,∵a2=2,∴a=2±,故答案为:2,2-;(2)解:①裁剪后拼得的大正方形如图所示:②设拼成的大正方形的边长为b,∴b2=5,∴5在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,则M表示的数为5-0.5的N点在M点的右方,∴比较大小:350.5-+<-.【点睛】本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键.23.(1)证明见解析;(2);(3).【分析】(1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证;(2)过点作,同(1)的方法,先根据平行线的性质解析:(1)证明见解析;(2)90ABC F ∠-∠=︒;(3)45︒.【分析】(1)过点C 作CF AB ∥,先根据平行线的性质可得180ABC BCF ∠+∠=︒,再根据平行公理推论可得CFDE ,然后根据平行线的性质可得180CDE BCF BCD ∠+∠+∠=︒,由此即可得证;(2)过点C 作CG AB ∥,同(1)的方法,先根据平行线的性质得出180ABC BCG ∠+∠=︒,180F BCG BCF ∠+∠+∠=︒,从而可得ABC F BCF ∠-∠=∠,再根据垂直的定义可得90BCF ∠=︒,由此即可得出结论;(3)过点G 作GM AB ,延长FG 至点N ,先根据平行线的性质可得ABH MGH ∠=∠,MGN DFG ∠=∠,从而可得MGH MGN ABH DFG ∠-∠=∠-∠,再根据角平分线的定义、结合(2)的结论可得45MGH MGN ∠=-∠︒,然后根据角的和差、对顶角相等可得BGD CG MGH MGN F ∠-∠=∠-∠,由此即可得出答案.【详解】证明:(1)如图,过点C 作CF AB ∥,180ABC BCF ∴∠+∠=︒,AB DE ,CF DE ∴,180CDE DCF ∴∠+∠=︒,即180CDE BCF BCD ∠+∠+∠=︒,CDE BCF BCD ABC BCF ∴∠+∠+∠=∠+∠,BCD CDE ABC ∴∠+∠=∠;(2)如图,过点C 作CG AB ∥,180ABC BCG ∴∠+∠=︒,AB DE ,CG DE ∴,180F FCG ∴∠+∠=︒,即180F BCG BCF ∠+∠+∠=︒,F BCG BCF ABC BCG ∴∠+∠+∠=∠+∠,ABC F BCF ∴∠-∠=∠,CF BC ⊥,90BCF ∴∠=︒,90ABC F ∴∠-∠=︒;(3)如图,过点G 作GM AB ,延长FG 至点N ,ABH MGH ∴∠=∠,AB DE ,GM DE ∴,MGN DFG ∴∠=∠, BH 平分ABC ∠,FN 平分CFD ∠,11,22ABH AB D C CF DFG ∴∠=∠∠∠=, 由(2)可知,90ABC CFD ∠-∠=︒,411225MGH MGN ABH DFG CF B D A C ∠-∠=∠-∠∠∠-==∴︒,又BGD MGH MGDCGF DGN MGN MGD ∠=∠+∠⎧⎨∠=∠=∠+∠⎩,45MGHBGD GF MGNC∠-∠∴-==∠∠︒.【点睛】本题考查了平行线的性质、对顶角相等、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.。
人教版数学七年级下册《期中检测试卷》含答案
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每小题3分,共30分) 1. 14 的平方根是 A. 12 B. 12± C. 12- D. 116± 2. 如图,A ,B ,C ,D 中的哪幅图案可以通过图案①平移得到( )A. B. C. D. 3. 在平面直角坐标系中,点(-2,5)所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4. 下列计算正确的是( )A. 9=±3B. 38-=﹣2C. 2(3)-=﹣3D. 235+=5. 在311.414283π-,,,,中,无理数的个数有( ) A. 1个B. 2个C. 3个D. 4个 6. 若230x y -++=,则的值为( ) A. -8 B. -6 C. 5 D. 67. 如图,点E 在BC 的延长线上,下列条件中不能判定AB ∥CD 的是( )A. ∠1=∠2B. ∠3=∠4 C ∠B =∠DCE D. ∠D +∠DAB =180°8. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是( )A 523220x y x y +=⎧⎨+=⎩B. 522320x y x y +=⎧⎨+=⎩ C 202352x y x y +=⎧⎨+=⎩ D. 203252x y x y +=⎧⎨+=⎩ 9. 如图,现将一块三角板含有60°角的顶点放在直尺的一边上,若∠1=2∠2,那么∠1的度数为( ).A. 50°;B. 60°;C. 70°;D. 80°.10. 如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为(1,0)、(2,0)、(2,1)、(1,1)、(1,2)、(2,2)、……,根据这个规律,第2019个点的坐标为( )A. (45,10)B. (45,6)C. (45,22)D. (45,0)二、填空题(每小题3分,共18分) 11. 81的算术平方根是________,33128+ = ________. 12. 已知a ,b 为两个连续的整数,且a <57<b ,则a +b =___________.13. 点P(m−1,m+3)在平面直角坐标系的y 轴上,则P 点坐标为_______.14. 如图,直线AB ,CD 相交于点O ,OA 平分∠EOC ,∠EOD=120°,则∠BOD=__________°.15. 已知方程2x+y =3,用含x 的代数式表示y ,则y =______.16. 用“*”定义新运算:对于任意实数a b 、,都有2*2a b a b =+,如23*423422=⨯+=,那么3*2=__.三、解答下列各题:(共72分)17. 计算(1)31984-+-- (2)21(1)4x -= (3)()()222121-+--+ (4)()334375x -=- 18. 解方程:(1)3? 42x y x y -=⎧⎨+=⎩(2)10216x y x y +=⎧⎨+=⎩ 19. 如图,AD ∥BE ,∠1=∠2,求证:∠A =∠E .请完成解答过程:解:∵AD ∥BE (已知)∠A =∠______(_________________)又∵1=∠2(已知)∴AC ∥_____(________________)∴∠3=∠_____(两直线平行,内错角相等)∴∠A =∠E (_________)20. 若5a+1和a ﹣19是数m 的平方根.求a 和m 的值.21. 已知:△ABC 在直角坐标平面内,三个顶点的坐标分别为A (0,3),B (3,4),C (2,2)(正方形网格中每个小正方形的边长是一个单位长度)(1)画出△ABC 向下平移4个单位长度得到的△A 1B 1C 1;(2)求△A 1B 1C 1的面积.22. “鸡兔同笼”是我国古代著名的数学趣题之一.大约在1500年前成书的《孙子算经》中,就有关于“鸡兔同笼”的记载:“今有雏兔同笼,上有二十五头,下有七十六足,问雏兔各几何?”这四句话的意思是:有若干只鸡兔关在一个笼子里,从上面数,有25个头;从下面数,有76条腿,问笼中各有几只鸡和兔?23. 如图,∠1=80°,∠2=100°∠C=∠D.(1)判断AC与DF的位置关系,并说明理由;(2)若∠C比∠A大20°,求∠F的度数.24. 如图,已知∠ABC.点D为∠ABC的内部一点,请你再画一个∠DEF,使DE∥AB,EF∥BC,且DE交BC 边与点P(1)操作:画出满足题意的图形.(2)探究:根据所画图形猜想∠ABC与∠DEF有怎样的数量关系?并说明理由.25. 如图,平面直角坐标系中,ABCD为长方形,其中点A、C坐标分别为(﹣8,4)、(2,﹣8),且AD∥x轴,交y轴于M点,AB交x轴于N.(1)求B、D两点坐标和长方形ABCD的面积;(2)一动点P从A出发(不与A点重合),以12个单位/秒的速度沿AB向B点运动,在P点运动过程中,连接MP、OP,请直接写出∠AMP、∠MPO、∠PON之间的数量关系;(3)是否存在某一时刻t,使三角形AMP的面积等于长方形面积的13?若存在,求t的值并求此时点P的坐标;若不存在请说明理由.答案与解析一、选择题(每小题3分,共30分) 1. 14 的平方根是 A. 12 B. 12± C. 12- D. 116± [答案]B[解析][分析]根据平方根的定义求解. [详解]∵211()24±=, ∴14的平方根是12±. 故选B.[点睛]考查了平方根的概念,解题关键是熟记平方根的定义.2. 如图,A ,B ,C ,D 中的哪幅图案可以通过图案①平移得到( )A.B. C. D.[答案]D[解析][分析] 根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.[详解]通过图案①平移得到必须与图案①完全相同,角度也必须相同,观察图形可知D 可以通过图案①平移得到.故答案选:D.[点睛]本题考查的知识点是生活中的平移现象,解题的关键是熟练的掌握生活中的平移现象. 3. 在平面直角坐标系中,点(-2,5)所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限[解析][分析]根据各象限内点P (a ,b )坐标特征:①第一象限:a >0,b >0;②第二象限:a <0,b >0;③第三象限:a <0,b <0;④第四象限:a >0,b <0进行判断即可.[详解]∵第二象限内点横坐标<0,纵坐标>0,∴点(-2,5)所在的象限是第二象限.故选B .[点睛]此题主要考查了平面内坐标点的特征,关键是熟记各象限内坐标点的特征.4. 下列计算正确的是( )3 2 3 =[答案]B[解析][分析]根据算术平方根与立方根的定义即可求出答案.[详解]解:(A )原式=3,故A 错误;(B )原式=﹣2,故B 正确;(C )3,故C 错误;(D ,故D 错误;故选B .[点睛]本题考查算术平方根与立方根,熟练掌握算术平方根与立方根的性质是解题关键.5. 在11.4143π,,,无理数的个数有( ) A. 1个B. 2个C. 3个D. 4个[答案]B[解析][分析] 无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.[详解]解:13,1.414,,和π这两个数是无理数.[点睛]本题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6. 若230x y -++=,则的值为( ) A. -8B. -6C. 5D. 6[答案]B[解析][分析]根据非负数的性质列出方程求出x 、y 的值,代入所求代数式计算即可. [详解]根据题意得:2030x y -=⎧⎨+=⎩,解得:23x y =⎧⎨=-⎩,则xy =﹣6. 故选B .[点睛]本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.7. 如图,点E 在BC 的延长线上,下列条件中不能判定AB ∥CD 的是( )A. ∠1=∠2B. ∠3=∠4C. ∠B =∠DCED. ∠D +∠DAB =180°[答案]B[解析][分析] 结合图形根据平行线的判定定理对选项逐一判断即可求解.[详解]解:A. ∠1=∠2,根据内错角相等,两直线平行,得到AB ∥CD ,不合题意;B. ∠3=∠4,根据内错角相等,两直线平行,得到AD ∥BC ,符合题意;C. ∠B =∠DCE ,根据同位角相等,两直线平行,得到AB ∥CD ,不合题意;D. ∠D +∠DAB =180°,根据同旁内角互补,两直线平行,得到AB ∥CD ,不合题意.故选:B[点睛]本题考查了平行线的判定定理,熟练掌握平行线的判定定理是解题关键.8. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是( )A.523220x yx y+=⎧⎨+=⎩B.522320x yx y+=⎧⎨+=⎩C.202352x yx y+=⎧⎨+=⎩D.203252x yx y+=⎧⎨+=⎩[答案]D[解析]试题分析:要列方程(组),首先要根据题意找出存在的等量关系.本题等量关系为:①男女生共20人;②男女生共植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.据此列出方程组:20 3252 x yx y+=⎧⎨+=⎩.故选D.考点:由实际问题抽象出二元一次方程组.9. 如图,现将一块三角板含有60°角的顶点放在直尺的一边上,若∠1=2∠2,那么∠1的度数为( ).A. 50°;B. 60°;C. 70°;D. 80°.[答案]D[解析]分析:如下图,由平行线的性质可得∠3=∠2,结合∠1=2∠2,∠4=60°,∠1+∠4+∠3=180°即可求得∠1的度数. 详解:∵直尺相对的两边是平行的,∴∠3=∠2,∵∠1=2∠2,∴∠1=2∠3,∵∠1+∠4+∠3=180°,∠4=60°,∴3160180 2∠+=,∴∠1=80°.故选D.点睛:本题是一道考查平行线的性质和平角定义的题目,对于“两直线平行,同位角相等”和“平角的度数为180°”的正确应用是解题的关键.10. 如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为(1,0)、(2,0)、(2,1)、(1,1)、(1,2)、(2,2)、……,根据这个规律,第2019个点的坐标为( )A. (45,10)B. (45,6)C. (45,22)D. (45,0)[答案]B[解析][分析]将其左侧相连,看作正方形边上的点.分析边上点的个数得出规律“边长为n的正方形边上有2n+1个点”,将边长为n的正方形边上点与内部点相加得出共有(n+1)2个点,由此规律结合图形的特点可以找出第2019个点的坐标.[详解]解:将其左侧相连,看作正方形边上的点,如图所示.边长为0的正方形,有1个点;边长为1的正方形,有3个点;边长为2的正方形,有5个点;…,∴边长为n的正方形有2n+1个点,∴边长为n的正方形边上与内部共有1+3+5+…+2n+1=(n+1)2个点.∵2019=45×45-6,结合图形即可得知第2019个点的坐标为(45,6).故选B.[点睛]本题考查了规律型中的点的坐标,解题的规律是找出“边长为n的正方形边上点与内部点相加得出共有(n+1)2个点”.本题属于中档题,有点难度,解决该题型题目时,补充完整图形,将其当成正方形边上的点来看待,本题的难点在于寻找第2019个点所在的正方形的边是平行于x轴的还是平行y轴的.二、填空题(每小题3分,共18分)11.= ________.[答案](1). 3 (2). 3 2[解析][分析]根据算术平方根和立方根的定义,分别进行计算,即可得到答案.[详解]9=,3;32==;故答案为:3;32.[点睛]本题考查了算术平方根和立方根,解题的关键是掌握定义进行计算.12. 已知a,b为两个连续的整数,且a<b,则a+b=___________.[答案]15[解析][分析]估算出在哪两个相邻的整数之间,即可求出a与b的值,然后代入a+b计算即可. [详解]∵72<57<82,∴<8,∴a=7,b=8,∴a+b=7+8=15.故答案为15.[点睛]此题主要考查了估算无理数的大小,注意首先估算被开方数在哪两个相邻的平方数之间,再估算该无理数在哪两个相邻的整数之间.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.13. 点P(m−1,m+3)在平面直角坐标系的y轴上,则P点坐标为_______.[答案](0,4)[解析]分析:根据y轴上点的横坐标为0,可得m的值,根据m的值,可得点的坐标.详解:由P(m−1,m+3)在直角坐标系的y轴上,得m−1=0,解得m=1.m+3=4,P点坐标为()0,4.故答案为()0,4.点睛:考查平面直角坐标系轴的点的坐标特征,横坐标为零.14. 如图,直线AB,CD相交于点O,OA平分∠EOC,∠EOD=120°,则∠BOD=__________°.[答案]30°[解析][分析]先利用补角的定义求出∠EOC=60°,再根据角平分线的性质计算.[详解]解:∵∠EOD=120°,∴∠EOC=60°(邻补角定义).∵OA平分∠EOC,∴∠AOC=12∠EOC=30°(角平分线定义),∴∠BOD=30°(对顶角相等).故答案为:30.[点睛]本题考查由角平分线定义,结合补角的性质,易求该角的度数.15. 已知方程2x+y =3,用含x 的代数式表示y ,则y =______.[答案]32x -[解析][分析]把方程2x y 1-=写成用含x 的代数式表示y ,需要进行移项即得.[详解]解:移项得:y 32x =-,故答案为y 32x =-.[点睛]考查的是方程的基本运算技能:移项、合并同类项、系数化为1等,表示谁就该把谁放到等号的左边,其它的项移到另一边.16. 用“*”定义新运算:对于任意实数a b 、,都有2*2a b a b =+,如23*423422=⨯+=,那么3*2=__. [答案]8 [解析] 由题意得:3※2=2×(3)²+2=6+2=8,故答案为8. 三、解答下列各题:(共72分)17. 计算(1)31984-+-- (2)21(1)4x -= (3)()()222121-+--+ (4)()334375x -=- [答案](1)12 ;(2)x 1=32,x 2=12;(3)0;(4)x=-1. [解析][分析] (1)根据绝对值、立方根、算术平方根的定义进行计算,即可得到答案;(2)利用直接开平方法,即可得到x 的值;(3)由绝对值、算术平方根的定义进行计算,即可得到答案;(4)先化简,然后开立方,即可得到答案.[详解]解:(1) =13(2)2+--=12; (2)21(1)4x -= ∴112x -=±, ∴132x =,212x =; (3)11-=211+-=0;(4)()334375x -=-,∴()34125x -=-,∴45x -=-,∴1x =-;[点睛]本题考查了平方根、立方根,绝对值、以及算术平方根的运算法则,解题的关键是掌握运算法则进行解题. 18. 解方程:(1)3? 42x y x y -=⎧⎨+=⎩(2)10216x y x y +=⎧⎨+=⎩ [答案](1)12x y =⎧⎨=-⎩ ;(2)64x y =⎧⎨=⎩. [解析][分析](1)直接利用加减消元法解方程组,即可得到答案;(2)直接利用加减消元法解方程组,即可得到答案;[详解]解:(1)342x y x y -=⎧⎨+=⎩①②,由①+②,得:55=x ,∴1x =,把1x =代入①,得:2y =-;∴方程组的解为:12x y =⎧⎨=-⎩; (2)10216x y x y +=⎧⎨+=⎩, 由②①,得:6x =,把6x =代入①,得:4y =,∴方程组的解为:64x y =⎧⎨=⎩; [点睛]本题考查了解二元一次方程组,解题的关键是熟练掌握加减消元法解二元一次方程组.19. 如图,AD ∥BE ,∠1=∠2,求证:∠A =∠E .请完成解答过程:解:∵AD ∥BE (已知)∠A =∠______(_________________)又∵1=∠2(已知)∴AC ∥_____(________________)∴∠3=∠_____(两直线平行,内错角相等)∴∠A =∠E (_________)[答案]3,两直线平行,同位角相等;DE,内错角相等,两直线平行;E ;等量代换.[解析][分析]由于AD ∥BE 可以得到∠A=∠3,又∠1=∠2可以得到DE ∥AC,由此可以证明∠E=∠3,等量代换即可证明题目结论.[详解]解:∵AD ∥BE(已知)∠A=∠3 (两直线平行,同位角相等)又∵1=∠2(已知)∴AC∥DE (内错角相等,两直线平行)∴∠3=∠E (两直线平行,内错角相等)∴∠A=∠E(等量代换)[点睛]本题考查平行线的判定和性质,熟练掌握基础知识进行推理是解题关键.20. 若5a+1和a﹣19是数m的平方根.求a和m的值.[答案]a=3,m=256.[解析][分析]根据数m的平方根分别是5a+1和a﹣19一定互为相反数,据此即可列方程求得a的值,然后根据平方根的定义求得m的值.[详解]解:根据题意得:(5a+1)+(a﹣19)=0,解得:a=3,则m=(5a+1)2=162=256.[点睛]本题考查平方根的概念,掌握概念正确计算是解题关键.21. 已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2)(正方形网格中每个小正方形的边长是一个单位长度)(1)画出△ABC向下平移4个单位长度得到△A1B1C1;(2)求△A1B1C1的面积.[答案](1)见解析;(2)2.5.[解析][分析](1)将ABC的每个定点向下平移4个单位长度再将其相连即可得到的△A1B1C1,如图所示. (2)用△A1B1C1所在的长方形面积减去其余部分的三个小三角形面积即可得到S△A1B1C1. [详解]解:(1)如图所示:△A1B1C1,即为所求;(2)△A1B1C1的面积为:2×3﹣12×1×3﹣12×1×2﹣12×1×2=2.5.[点睛]本题考查图形的变换-平移以及在平面直角坐标系中求三角形的面积.22. “鸡兔同笼”是我国古代著名的数学趣题之一.大约在1500年前成书的《孙子算经》中,就有关于“鸡兔同笼”的记载:“今有雏兔同笼,上有二十五头,下有七十六足,问雏兔各几何?”这四句话的意思是:有若干只鸡兔关在一个笼子里,从上面数,有25个头;从下面数,有76条腿,问笼中各有几只鸡和兔?[答案]笼中有12只鸡,13只兔[解析][分析]根据“上有二十五头,下有七十六足”,得出关于,的二元一次方程组,解之即得.[详解]设笼中有只鸡,只兔.由题意得:25 2476 x yx y+=⎧⎨+=⎩解得:1213 xy=⎧⎨=⎩答:笼中有12只鸡,13只兔.[点睛]本题考查二元一次方程组的鸡兔同笼问题,找出等量关系并根据生活常识列出方程组是解题关键.23. 如图,∠1=80°,∠2=100°∠C=∠D.(1)判断AC与DF的位置关系,并说明理由;(2)若∠C比∠A大20°,求∠F的度数.[答案](1)AC∥DF,理由见解析;(2)40°.[解析][分析](1)根据平行线的性质得出∠ABD=∠C,求出∠D=∠ABD,根据平行线的判定得出AC∥DF;(2)根据平行线的性质和三角形内角和解答即可;[详解]解:(1)AC∥DF,理由如下:∵∠1=80°,∠2=100°,∴∠1+∠2=180°,∴BD∥CE,∴∠ABD=∠C,∵∠C=∠D,∴∠ABD=∠D,∴AC∥DF;(2)∵AC∥DF,∴∠A=∠F,∠ABD=∠D,∵∠C=∠D,∠1=80°,∴∠A+∠ABD=180°﹣80°=100°,即∠A+∠C=100°,∵∠C比∠A大20°,∴∠A=40°,∴∠F=40°.[点睛]本题考查了平行线的性质和判定的应用,能综合运用定理进行推理是解此题的关键.24. 如图,已知∠ABC.点D为∠ABC的内部一点,请你再画一个∠DEF,使DE∥AB,EF∥BC,且DE交BC 边与点P(1)操作:画出满足题意的图形.(2)探究:根据所画图形猜想∠ABC与∠DEF有怎样的数量关系?并说明理由.[答案]见解析[解析][分析]先根据题意画出图形,再根据平行线的性质进行解答即可.[详解]∠ABC与∠DEF的数量关系是相等或互补,理由如下:①如图,∵DE∥AB,∴∠ABC=∠DPC,又∵EF∥BC,∴∠DEF=∠DPC,∴∠ABC=∠DEF;②如图,因为DE∥AB,∴∠ABC+∠DPB=180°,又∵EF∥BC,∴∠DEF=∠DPB.∴∠ABC+∠DEF=180°.[点睛]本题考查了平行线的性质,根据题意画出图形是解答此题的关键,解答此题时要注意分两种情况讨论,否则会造成漏解.25. 如图,平面直角坐标系中,ABCD为长方形,其中点A、C坐标分别为(﹣8,4)、(2,﹣8),且AD∥x轴,交y轴于M点,AB交x轴于N.(1)求B、D两点坐标和长方形ABCD的面积;(2)一动点P从A出发(不与A点重合),以12个单位/秒的速度沿AB向B点运动,在P点运动过程中,连接MP、OP,请直接写出∠AMP、∠MPO、∠PON之间的数量关系;(3)是否存在某一时刻t,使三角形AMP的面积等于长方形面积的13?若存在,求t的值并求此时点P的坐标;若不存在请说明理由.[答案](1)B(﹣8,﹣8),D(2,4),120;(2)∠MPO=∠AMP+∠PON;∠MPO=∠AMP-∠PON;(3)存在,P点坐标为(﹣8,﹣6).[解析][分析](1)利用点A、C的坐标和长方形的性质易得B(﹣8,﹣8),D(2,4),然后根据长方形的面积公式即可计算长方形ABCD的面积;(2)分点P在线段AN上和点P在线段NB上两种情况进行讨论即可得;(3)由于AM=8,AP=12t,根据三角形面积公式可得S△AMP =t,再利用三角形AMP的面积等于长方形面积的13,即可计算出t=20,从而可得AP=10,再根据点的坐标的表示方法即可写出点P的坐标. [详解](1)∵点A、C坐标分别为(﹣8,4)、(2,﹣8),∴B(﹣8,﹣8),D(2,4),长方形ABCD的面积=(2+8)×(4+8)=120;(2)当点P在线段AN上时,作PQ∥AM,如图,∵AM∥ON,∴AM∥PQ∥ON,∴∠QPM=∠AMP,∠QPO=∠PON,∴∠QPM+∠QPO=∠AMP+∠PON,即∠MPO=∠AMP+∠PON;当点P 在线段NB 上时,作PQ ∥AM ,如图,∵AM ∥ON ,∴AM ∥PQ ∥ON ,∴∠QPM=∠AMP ,∠QPO=∠PON , ∴∠QPM-∠QPO=∠AMP-∠PON ,即∠MPO=∠AMP-∠PON ;(3)存在,∵AM=8,AP=12t ,∴S △AMP =12×8×12t=2t , ∵三角形AMP 的面积等于长方形面积的13, ∴2t=120×13=40,∴t=20,AP=12×20=10, ∵AN=4,∴PN=6∴P 点坐标为(﹣8,﹣6).[点睛]本题考查了坐标与图形性质,结合图形、运用分类讨论思想进行解答是关键.。
七年级数学下册期中考试试卷(附带答案)
七年级数学下册期中考试试卷(附带答案)(试卷满分:150分;考试时间:120分钟)学校:___________姓名:___________班级:___________考号:___________注意事项:本试题共6页,满分为150分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并同时将考点、姓名、准考证号和座号填写在试卷规定的位置上.答选择题时,必须使用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;答非选择题时,用0.5mm黑色签字笔在答题卡上题号所提示的答题区域作答,答案写在试卷上无效.第I卷(选择题共40分)一.选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列运算正确的是()A.a2·a4=a8B.a4+a4=a8C.(ab)3= a³b3D.(a2)4=a62.泉城广场鲜花盛放,数郁金香最为耀眼,某品种郁金香花粉直径约为0,000000032米,数据0.000000032用科学记数法表示为()A.0.32x10-7B.3.2x10-8C.3.2x10-7D.32x10-93.研究表明,雾霾的程度随城市中心区立体绿化面积的增大而减小,在这个问题中,自变量是()A.雾霾的程度B.城市中心C.雾霾D.城市中心区立体绿化面积4.在下列四组线段中,能组成三角形的是( )A.2,2,5B.3,7,10C.3,5,9D.4,5,75.如图AB ∥CD,若∠1=40°,则∠2=()A.100°B.120°C.140°D.150°(第5题图)(第6题图)(第9题图)(第10题图)6.如图,从人行横道线上的点P处过马路,沿线路PB行走距离最短,其依据的几何学原理是()A.垂线段最短B.两点之间线段最短C.两点确定一条直线D.在同一平面内,过一点有且只有一条直线与已知直线垂直7.下列各式中,可以用平方差公式计算的是( )A.(a-b)(a-b)B.(3a+2b)(3a-2b)C.(a+b)(2a-b)D.(2a+b)(-2a-b )8.已知x2+mx+25是一个完全平方式,则m的值为( )A.±5B.10C.﹣10D.±109.如图:OB=OD,添加下列条件后不能保证△AOB≌△COD的是()A.OA=OCB.AB=CDC.∠A=∠CD.∠B=∠D10.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息,已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分:②乙走完全程用了36分钟:③乙用16分钟追上甲:④乙到达终点时,甲离终点还有300米.其中正确的结论有()A.1个B.2个C.3个D.4个第II卷(非选择题共110分)二.填空题(本大题共6个小题,每小题4分,共24分)11.若一个角是38°,则这个角的余角为.12.4m2n÷(-2m)= .13.在△ABC中,∠A:∠B:∠C=5:6:7,则△ABC是(填入"锐鱼三角形"、"直角三角形"或"钝角三角形").14.农村"雨污分流"工程是"美丽乡村"战略的重要组成部分,我县某村要铺设一条全长为1000米的"雨污分流"管道,现在工程队铺设管道施工x天与铺设管道y米之间的关系用表格表示如下,则施工8天后,未铺设的管道长度为米.15.如图,AD是△ABC的中线,已知△ABD的周长为16cm,AB比AC长3cm,则△ACD的周长为。
华师大版七年级下册数学期中考试试题及答案
华师大版七年级下册数学期中考试试卷一、单选题1.下列方程中,是一元一次方程的是()A .43x +B .0a b +=C .21275x x -=D .370x -=2.下列方程中,解为x =2的方程是()A .2(x+1)=6B .5x ﹣3=1C .223x =D .3x+6=03.下列等式的变形错误的是()A .若a b =,则33a b -=-B .若a b =,则33a b =--C .若ax bx =,则a b=D .若2x =,则22x x =4.若x >y ,则下列不等式成立的是()A .x -1<y -1B .x+5>y+5C .-2x >-2yD .2x <y 25.把方程0.150.710.30.02x x--=分母化为整数,正确的是()A .11570132xx --=B .101570132x x --=C .10157132xx --=D .10 1.57132x x --=6.不等式240x -≥的解集在数轴上表示为()A .B .C .D .7.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A .6折B .7折C .8折D .9折8.如果2150x y x y -+++-=,则x 、y 的值分别是()A .10x y =-⎧⎨=⎩B .14x y =⎧⎨=⎩C .32x y =⎧⎨=⎩D .23x y =⎧⎨=⎩9.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是()A .8374x y y x -=⎧⎨-=⎩B .8374y x y x -=⎧⎨-=-⎩C .8374x y y x -=⎧⎨-=-⎩D .8374y x y x -=⎧⎨-=⎩10.若不等式组213x x a ->⎧⎨≤⎩的整数解共有三个,则a 的取值范围是().A .56a ≤<B .56a <≤C .56a <<D .56a ≤≤二、填空题11.若1x =-是方程32ax x +=的解.则a 的值是_________.12.若关于y 的方程32y k -=与32y y +=的解相同,则k 的值为______.13.已知三元一次方程组345x y y z x z +=⎧⎪+=⎨⎪+=⎩,则x y z ++=________.14.不等式42564x x -≥⎧⎨+>⎩解集是______.15.已知关于x ,y 的方程组4375x y mx y m +=⎧⎨-=-⎩的解满足等式2x +y =8,则m 的值是__.16.已知不等式组2145x x x m ->+⎧⎨>⎩无解,则m 的取值范围是________.三、解答题17.解方程:()()44329x x --=-18.解方程:131142x x +--=-(要求步骤完整)19.解方程组:43524x y x y +=⎧⎨-=⎩.20.解不等式121123y y +--≥,并把解集在数轴上表示出来.21.解不等式组42(1)411223x x x x --<⎧⎪-+⎨≤⎪⎩,并求出它的整数解.22.已知关于x 、y 的方程组33957x y a x y a +=+⎧⎨-=+⎩的解均为非负数,(1)求a 的取值范围;(2)化简:241a a +--23.已知关于x ,y 的方程组2331x y ax by -=⎧⎨+=-⎩和2333211ax by x y +=⎧⎨+=⎩的解相同,求(3a+b )2020的值.24.在抗击新冠肺炎疫情期间,某社区购买酒精和消毒液两种消毒物资,供居民使用.第一次购买酒精和消毒液若干,酒精每瓶10元,消毒液每瓶5元,共花费了350元;第二次又购买了与第一次相同数量的酒精和消毒液,由于酒精和消毒液每瓶价格分别下降了30%和20%,只花费了260元.求每次购买的酒精和消毒液分别是多少瓶?25.请阅读求绝对值不等式3x <和3x >的解集过程.对于绝对值不等式3x <,从图1的数轴上看:大于3-而小于3的绝对值是是小于3的,所以3x <的解集为33x -<<;对于绝对值不等式3x >,从图2的数轴上看:小于3-而大于3的绝对值是是大于3的,所以3x >的解集为3x <-或3x >.已知关于x、y的二元一次方程组245472x y mx y m-=-⎧⎨+=-+⎩的解满足3x y+≤,其中m是负整数,求m的值.26.星光橱具店购进电饭煲和电压锅两种电器进行销售,其进价与售价如表:进价(元/台)售价(元/台)电饭煲200250电压锅160200(1)一季度,橱具店购进这两种电器共30台,用去了5600元,并且全部售完,问橱具店在该买卖中购进电饭煲和电压锅各多少台?(2)为了满足市场需求,二季度橱具店决定用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的56,问橱具店有哪几种进货方案?并说明理由;(3)在(2)的条件下,请你通过计算判断,哪种进货方案橱具店赚钱最多?参考答案1.D【分析】只含有一个未知数(元),且未知数的次数是1,这样的整式方程叫一元一次方程.根据一元一次方程的定义逐个判断即可.解:A .不是方程,故本选项不符合题意;B .是二元一次方程,不是一元一次方程,故本选项不符合题意;C .是一元二次方程,不是一元一次方程,故本选项不符合题意;D .是一元一次方程,故本选项符合题意;故选:D .2.A 【分析】把x=2代入各个方程,看左右两边是否相等即可.【详解】A .把x =2代入方程2(x+1)=6得:左边=6,右边=6,左边=右边,所以x =2是方程2(x+1)=6的解,故本选项符合题意;B .把x =2代入方程5x ﹣3=1得:左边=7,右边=1,左边≠右边,所以x =2不是方程5x ﹣3=1的解,故本选项不符合题意;C .把x =2代入方程23x =2得:左边=43,右边=2,左边≠右边,所以x =2不是方程23x =2的解,故本选项不符合题意;D .把x =2代入方程3x+6=0得:左边=12,右边=0,左边≠右边,所以x =2不是方程3x+6=0的解,故本选项不符合题意;故选:A .3.C 【分析】利用等式的性质对每个等式进行变形即可找出答案.【详解】解:A 、利用等式性质1,两边都减去3,得到a-3=b-3,所以A 成立;B 、利用等式性质2,两边都除以-3,得到33a b =--,所以B 成立;C 、因为x 必须不为0,所以C 不成立;D 、利用等式性质2,两边都乘x ,得到x 2=2x ,所以D 成立;故选:C .4.B根据不等式的性质逐个判断即可.【详解】A 、∵x >y ,∴x -1>y -1,故本选项不符合题意;B 、∵x >y ,∴x+5>y+5,故本选项符合题意;C 、∵x >y ,∴-2x ﹤-2y ,故本选项不符合题意;D 、∵x >y ,∴2x >y2,故本选项不符合题意;故选:B .5.B 【分析】根据分数的基本性质,分子分母同时乘使它们化为整数的数即可.【详解】解:0.150.710.30.02x x --=,方程左边第一项,分子分母同时乘10,第二项分子分母同时乘100得,101570132xx --=,故选:B .【点睛】本题考查了方程的化简,解题关键是根据分数的基本性质对每个含分母的式子分别变形.6.C 【分析】先正确求得解集,后准确在数轴表示即可.【详解】∵240x -≥,∴x≥2,数轴表示为,【点睛】本题考查了不等式的解集,解集的数轴表示,熟练掌握不等式的解法和数轴表示法是解题的关键.7.B 【解析】【分析】设可打x 折,根据售价=标价×打折率和利润=售价-进价=进价×利润率列出不等式求解即可.【详解】解:设可打x 折,则有1200x÷10-800≥800×5%,解得:x≥7,即最多打7折.故选:B.【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.8.C 【解析】【分析】根据非负数的性质得关于x 、y 的二元一次方程组,再解方程组即可求出x 、y 的值.【详解】解:∵2150x y x y -+++-=,∴21050x y x y -+=⎧⎨+-=⎩,解此方程组得:32x y =⎧⎨=⎩.故选:C .此题考查的知识点是解二元一次方程组,关键是根据非负数的性质得关于x 、y 的二元一次方程组.9.A 【解析】【分析】直接根据题意列出二元一次方程组即可.【详解】解:根据题意,得:8374x y y x -=⎧⎨-=⎩,故选:A .【点睛】本题考查二元一次方程组的应用,读懂题意,找到等量关系是解答的关键.10.A 【解析】【分析】首先确定不等式组的解集,利用含a 的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围.【详解】解不等式2x-1>3,得:x >2,∵不等式组整数解共有三个,∴不等式组的整数解为3、4、5,则56a ≤<,故选A .【点睛】本题考查了一元一次不等式组的整数解,正确解出不等式组的解集,确定a 的范围,是解答本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.11.5-【解析】把x 的值代入方程计算即可求出a 的值.【详解】解:把1x =-代入方程得:32a --=,解得:5a =-,故答案为:5-.【点睛】本题考查了一元一次方程的解以及解一元一次方程,方程的解即为能使方程左右两边相等的未知数的值.12.7【解析】【分析】先解32y y +=得到y 的值,把y 的值代入到32y k -=得到关于k 的方程,再解方程即可.【详解】解:解32y y +=得3y =代入到32y k -=得332k ⨯-=,解得7k =.故答案为:7.【点睛】此题考查方程的解,解一元一次方程,理解两个方程的解相同的含义是解题的关键.13.6【解析】【分析】方程组中三个方程左右两边相加,变形即可得到x+y+z 的值.【详解】解:345x y y z x z +=⎧⎪+=⎨⎪+=⎩①②③,①+②+③,得2x+2y+2z =12,∴x+y+z =6,故答案为:6.【点睛】此题考查了解三元一次方程组,本题的技巧为将三个方程相加.14.122x -<≤-【解析】【分析】分别解不等式组中的两个不等式,再取解集的公共部分即可得到答案.【详解】解:42564x x -≥⎧⎨+>⎩①②由①得:21x -≥,1,2x ∴≤-由②得:x >2,-所以不等式组的解集是:122x -<≤-.故答案为:122x -<≤-.【点睛】本题考查的是不等式组的解法,掌握解不等式组的方法与步骤是解题的关键.15.-6【解析】【分析】根据加减消元法,用含m 的式子表示出x 和与y 的值,将其代入2x+y =8即可求得m 的值.【详解】解:4375x y m x y m +=⎧⎨-=-⎩①②①+②,得5x =10m ﹣5,解得x =2m ﹣1,把x =2m ﹣1代入②,得2m ﹣1﹣y =7m ﹣5,解得y=4﹣5m,把x=2m﹣1,y=4﹣5m代入方程2x+y=8,得2(2m﹣1)+4﹣5m=8解得m=﹣6.故答案为:﹣6.【点睛】本题考查了二元一次方程的解、二元一次方程组的解,熟悉二元一次方程的解、二元一次方程组的解是解题的关键.16.m≥-3【解析】【分析】先求出每个不等式的解集,再根据已知得出关于a的不等式,求出不等式的解集即可.【详解】解:2145x xx m->+⎧⎨>⎩①②,∵不等式①的解集是x<−3,不等式②的解集是x>m,又∵不等式组2145x xx m->+⎧⎨>⎩无解,∴m≥−3,故答案为:m≥−3.【点睛】本题考查了解一元一次不等式和解一元一次不等式组的应用,解此题的关键是能根据找不等式的解集和已知得出关于m的不等式组.17.1x=-【解析】【分析】先去括号,再移项,合并同类项,最后未知数系数化为“1”即可解方程.【详解】()()44329x x--=-,去括号得:4412182x x -+=-,移项得:4218124x x -+=--,合并同类项得:22x -=,未知数系数化为“1”得:1x =-.【点睛】本题考查解一元一次方程.掌握解一元一次方程的步骤是解答本题的关键.18.15x =-【解析】【分析】方程去分母,去括号,移项合并,将x 系数化为1,即可求出解.【详解】解:去分母得:()()41231x x -+=--去括号得:4162x x --=-+移项合并得:51x =-解得:15x =-.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.19.21x y =⎧⎨=-⎩【解析】【分析】方程组利用加减消元法求出解即可.【详解】解:43524x y x y +=⎧⎨-=⎩①②,①﹣②×4得:11y =﹣11,即y =﹣1,把y =﹣1代入②得:x =2,则方程组的解为21x y =⎧⎨=-⎩.【点睛】此题主要考查二元一次方程组的求解,解题的关键是熟知加减消元法的运用.20.1y ≤-,数轴表示见解析【解析】【分析】去分母、去括号、移项、合并同类项,然后系数化成1即可求解,再在数轴上表示出解集.【详解】解:121123y y +--≥,去分母得:()()316221y y +-≥-,去括号得:33642y y +-≥-,移项合并得:1y ≤-.数轴表示如下:【点睛】本题考查了解一元一次不等式,在数轴上表示不等式的解集的应用,能求出不等式的解集是解此题的关键,难度适中.21.﹣5≤x <1,整数解为﹣5、﹣4、﹣3、﹣2、﹣1、0【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,从而得出其整数解.【详解】解:解不等式4x ﹣2(x ﹣1)<4,得:x <1,解不等式12x -≤123x +,得:5x ≥-,则不等式组的解集为51x -≤<,∴不等式组的整数解为﹣5、﹣4、﹣3、﹣2、﹣1、0.【点睛】本题考查了解一元一次不等式组及不等式组的整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.(1)21a -≤≤-;(2)33a +【解析】【分析】(1)先利用加减消元法求出方程组的解,然后利用方程组的解均为非负数建立一个关于a 的不等式组,解不等式组即可求出a 的取值范围;(2)利用(1)中a 的取值范围,可判断24,1a a +-的正负,然后利用绝对值的性质去掉绝对值符号,然后合并同类项即可.【详解】(1)33957x y a x y a +=+⎧⎨-=+⎩①②①+②得,4816x a =+,解得24x a =+③,将③代回②中得,2457a y a +-=+,解得33y a =--∴方程组的解为2433x a y a =+⎧⎨=--⎩.∵关于x 、y 的方程组33957x y a x y a +=+⎧⎨-=+⎩的解均为非负数,∴240330x a y a =+≥⎧⎨=--≥⎩,解得21a -≤≤-;(2)∵21a -≤≤-,240,10a a ∴+≥-<,∴24124(1)24133a a a a a a a +--=+--=+-+=+.【点睛】本题主要考查解二元一次方程组和一元一次不等式组,绝对值的性质,掌握加减消元法和一元一次不等式的解法,绝对值的性质是解题的关键.23.25ab=-⎧⎨=⎩,1.【解析】【分析】因为两个方程组有相同的解,故只要将两个方程组中不含有a,b的两个方程联立,组成新的方程组,求出x和y的值,再代入含有a,b的两个方程中,解关于a,b的方程组即可得出a,b的值,代入(3a+b)2020计算即可.【详解】解:由题意可得233 3211 x yx y-=⎧⎨+=⎩,解得31 xy=⎧⎨=⎩,将31xy=⎧⎨=⎩代入1233ax byax by+=-⎧⎨+=⎩得31633a ba b+=-⎧⎨+=⎩,解得25ab=-⎧⎨=⎩,∴(3a+b)2020=(﹣6+5)2020=1.【点睛】本题考查了二元一次方程组的解,解答此题的关键是根据两方程组有相同的解得到关于x、y的方程组,求出x、y的值,再将x、y的值代入含a、b的方程组即可求出a、b的值,即可求出代数式的值.24.每次购买酒精20瓶,消毒液30瓶【解析】【分析】设每次购买酒精x瓶,消毒液y瓶,根据总价=单价×数量,结合两次购买所需费用,即可得出关于x,y的二元一次方程组,解之即可得出结论.【详解】解:设每次购买酒精x瓶,消毒液y瓶,依题意得:()()10535010130%5120%260x y x y +=⎧⎨⨯-+⨯-=⎩,解得:2030x y =⎧⎨=⎩,答:每次购买酒精20瓶,消毒液30瓶.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.25.-4或-3或-2或-1.【解析】【分析】根据题意由3x y +≤得出-3≤x+y≤3,解二元一次方程组,得出x+y=-m-1,得到不等式组-3≤-m-1≤3,求出m 值,结合m 为负整数即可得出结果.【详解】解:∵3x y +≤,∴-3≤x+y≤3,解245 472x y m x y m -=-⎧⎨+=-+⎩①②,①+②得:3x+3y=-3m-3,∴x+y=-m-1,则-3≤-m-1≤3,解得:-4≤m≤2,又m 是负整数,∴m 的值为-4或-3或-2或-1.【点睛】本题考查了解一元一次不等式组和绝对值的意义,能正确去掉绝对值符号是解此题的关键.26.(1)橱具店购进电饭煲20台,电压锅10台;(2)三种方案:①购买电饭煲23台,电压锅27台;②购买电饭煲24台,电压锅26台;③购买电饭煲25台,电压锅25台.(3)购进电饭煲、电压锅各25台厨具店赚钱最多.【解析】【分析】(1)设橱具店购进电饭煲x 台,电压锅y 台,根据图表中的数据列出关于x 、y 的方程组并解答即可,等量关系是:这两种电器共30台;共用去了5600元;(2)设购买电饭煲a 台,则购买电压锅(50-a )台,根据“用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的56”列不等式组求解即可;(3)结合(2)中的数据进行计算.【详解】(1)设橱具店购进电饭煲x 台,电压锅y 台,依题意得x 302001605600y x y +=⎧⎨+=⎩,解得x=20y=10⎧⎨⎩,答:橱具店购进电饭煲20台,电压锅10台;(2)设购买电饭煲a 台,则购买电压锅(50﹣a )台,依题意得200+16050-a)90005(50)6a a a ≤⎧⎪⎨≥-⎪⎩(,解得22811≤a≤25.又∵a 为正整数,∴a 可取23,24,25.故有三种方案:①购买电饭煲23台,电压锅27台;②购买电饭煲24台,电压锅26台;③购买电饭煲25台,电压锅25台.(3)设橱具店赚钱数额为W 元,当a=23时,W=23×50+27×40=2230;当a=24时,W=24×50+26×40=2240;当a=25时,W=25×50+25×40=2250;综上所述,当a=25时,W 最大,此时购进电饭煲、电压锅各25台.【点睛】本题考查一元一次不等式组和二元一次方程组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.。
人教版七年级下册数学期中测试卷【含答案】
人教版七年级下册数学期中测试卷【含答案】专业课原理概述部分一、选择题1. 下列哪一个数是负数?()A. -5B. 0C. 3D. 82. 如果 a > b,那么下列哪一个表达式是正确的?()A. a b > 0B. a + b > 0C. a b > 0D. a / b > 03. 下列哪一个数是偶数?()A. 21B. 34C. 47D. 504. 下列哪一个数是质数?()A. 12B. 17C. 20D. 275. 下列哪一个数是无理数?()A. √9B. √16C. √25D. √2二、判断题1. 整数包括正整数、负整数和零。
()2. 两个负数相乘的结果是正数。
()3. 两个奇数相加的结果是偶数。
()4. 两个偶数相乘的结果是偶数。
()5. 两个质数相加的结果一定是质数。
()三、填空题1. 最大的负整数是______。
2. 两个质数相乘的结果至少有______个因数。
3. 如果 a 是正数,那么 -a 是______。
4. 两个奇数相乘的结果是______。
5. 两个负数相除的结果是______。
四、简答题1. 请解释什么是质数。
2. 请解释什么是无理数。
3. 请解释什么是因数。
4. 请解释什么是偶数。
5. 请解释什么是负数。
五、应用题1. 计算下列各题的值:a. 3 + (-5)b. -2 4c. 15 / (-3)d. (-8) ^ 2e. √(-9)2. 判断下列各题的正误,并解释原因:a. 两个负数相加的结果是正数。
b. 两个偶数相乘的结果是奇数。
c. 两个质数相加的结果一定是质数。
d. 两个无理数相乘的结果是有理数。
e. 两个负数相除的结果是正数。
六、分析题1. 请分析并解释为什么两个质数相乘的结果至少有4个因数。
2. 请分析并解释为什么负数的平方是正数。
七、实践操作题1. 请用纸和剪刀剪出一个正方形,并计算其面积。
2. 请用计算器计算下列各题的值,并解释计算过程:a. 7 + (-9)b. -3 6c. 20 / (-5)d. (-4) ^ 3e. √36八、专业设计题1. 设计一个面积为24平方米的长方形花园,并计算其周长。
2023-2024学年北京市西城区北京市第八中学七年级下学期期中数学试卷+答案解析
2023-2024学年北京市西城区北京市第八中学七年级下学期期中数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.下列各式中正确的是()A. B. C. D.3.如图,下列两个角是内错角的是()A.与B.与C.与D.与4.在实数,,,,,0,,中,无理数有个()A.1B.2C.3D.45.若是二元一次方程的一个解,则m的值为()A. B. C.1 D.6.下列命题中,真命题是()A.互补的角是邻补角B.同旁内角互补C.过直线外一点,有且只有一条直线与已知直线平行D.如果两条直线都与第三条直线垂直,那么这两条直线也相互垂直7.已知,则下列不等式中不成立的是()A. B. C. D.8.《孙子算经》中有一道题,原文是:今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?意思是:用一根绳子去量一根长木,绳子还剩余尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x尺,绳长y尺,根据题意列方程组得()A. B. C. D.9.如图,直线AB,CD交于点O,已知于点平分,若,则的度数是()A. B. C. D.10.如图,是由8个大小相同的小长方形无缝拼接而成的一个大长方形,已知大长方形的周长为2a,则小长方形的周长为()A. B. C. D.二、填空题:本题共8小题,每小题3分,共24分。
11.x的2倍与4的差不大于3,用不等式表示为__________.12.如图,点E在DC的延长线上,请添加一个恰当的条件__________,使13.如图,,则AC__________填>,<,,理由是__________.14.已知二元一次方程组,则的值为__________.15.若是关于x、的二元一次方程,则__________.16.已知:实数a,b满足,则的平方根是__________.17.如图,在公园的长方形草地内修建了宽为2米的道路后,剩余的草地面积是__________平方米.18.如图,第一象限内有两点,,将线段PQ平移,使点P、Q分别落在两条坐标轴上,则点P平移后的对应点的坐标是__________.三、解答题:本题共10小题,共80分。
2024—2025学年最新人教版七年级下学期数学期中考试试卷(含参考答案)
最新人教版七年级下学期数学期中考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、9的算术平方根是()A.±3B.3C.﹣3D.2、下列数是无理数的有()A.B.﹣1C.0D.3、点M在第二象限,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为()A.(5,﹣3)B.(﹣5,3)C.(3,﹣5)D.(﹣3,5)4、下列是真命题的是()A.有理数与数轴上的点一一对应B.内错角相等C.同一平面内,垂直于同一条直线的两条直线互相平行D.负数没有立方根5、如图,下列各组条件中,能得到AB∥CD的是()A.∥1=∥3B.∥2=∥4C.∥B=∥D D.∥B+∥2=180°6、中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五、羊二,直金十两,牛二、羊五,直金八两.问牛、羊各直金几何?“译文:今有牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金x两、y两,依题意,可列出方程组为()A.B.C.D.7、若正数a的两个平方根是3m﹣2与3﹣2m,则m为()A.0B.1C.﹣1D.1或﹣18、如图,将∥ABC沿BC方向平移3cm得到∥DEF,若∥ABC的周长为24cm,则四边形ABFD的周长为()A.30cm B.24cm C.27cm D.33cm9、如图,直线m∥n,∥1=70°,∥2=30°,则∥A等于()A.30°B.35°C.40°D.50°10、已知关于x、y的方程组的解满足x+y=6,则a的值为()A.1B.2C.﹣2D.11第8题第9题第15题二、填空题(每小题3分,满分18分)11、设n为正整数,且,则n的值为.12、若y=+2,则y=.13、若是二元一次方程ax+by=﹣1的一个解,则3a﹣2b+2024的值为.14、已知=1.038,=2.237,=4.820,则=.15、如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么∥1+∥2+∥3=°.16、如果,其中m,n为有理数,那么m+n=.最新人教版七年级下学期数学期中考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:(﹣1)2023+|1﹣|+﹣.18、已知2a﹣1的算术平方根是3,b是﹣1的立方根,c是的整数部分,求a+b+c的值.19、已知方程组的解和方程组的解相同,求(2a+b)2024.20、∥ABC与∥A'B'C'在平面直角坐标系中的位置如图所示.(1)分别写出下列各点的坐标:A(,),B(,),C(,);(2)若∥A'B'C'是由∥ABC平移得到的,点P(x,y)是∥ABC内部一点,则∥A'B'C'内与点P相对应点P'的坐标为(,);(3)求∥A'B'C'的面积.21、已知:如图,DE∥BC,BD平分∥ABC,EF平分∥AED.(1)求证:EF∥BD;(2)若BD∥AC,∥C=2∥2,求∥A的度数.22、在平面直角坐标系xOy中,已知点P(a﹣1,4a),分别根据下列条件进行求解.(1)若点P在y轴上,求此时点P坐标;(2)若点P在过点A(2,8)且与x轴平行的直线上,求此时a值;(3)若点P的横纵坐标相等,Q为x轴上的一个动点,求此时PQ的最小值.23、水果店2月份购进甲种水果50千克、乙种水果80千克,共花费1600元,其中甲种水果以20元/千克,乙种水果以15元/千克全部售出;3月份又以同样的价格购进甲种水果30千克、乙种水果40千克,共花费880元,由于市场不景气,3月份两种水果均以2月份售价的9折全部售出.(1)求甲、乙两种水果的进价每千克分别是多少元?(2)请计算该水果店2月和3月甲、乙两种水果总赢利多少元?24、规定:若P(x,y)是以x,y为未知数的二元一次方程ax+by=c的正整数解,则称此时点P为二元一次方程ax+by=c的“理想点”.请回答以下关于x,y的二元一次方程的相关问题.(1)方程x+2y=3的“理想点”P的坐标为.(2)已知m,n为非负整数,且,若是方程2x+ y=13的“理想点”,求的值;(3)“郡园点”P(x,y)满足关系式:,其中m为整数,求“理想点”P的坐标.25、如图,在平面直角坐标系中,A,B坐标分别为A(0,a)、B(b,a),且a,b满足:,现同时将点A,B分别向下平移3个单位,再向左平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,AB.(1)求C,D两点的坐标及四边形ABDC的面积;(2)点P是线段BD上的一个动点,连接P A,PO,当点P在BD上移动时(不与B,D重合),的值是否发生变化,并说明理由;(3)已知点M在y轴上,连接MB、MD,若∥MBD的面积与四边形ABDC 的面积相等,求点M的坐标.最新人教版七年级下学期数学期中考试试卷(参考答案)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、7 12、2 13、2023 14、22.37 15、360 16、5三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、﹣218、119、720、解:(1)A(1,3),B(2,0),C(3,1)(2)答案为:x﹣4,y﹣2 (3)2.21、(1)略(2)60°22、(1)P(0,4)(2)a=2 (3)P(﹣,﹣),最小值为.23、(1)甲种水果的进价为每千克16元,乙种水果的进价为每千克10元.(2)该水果店2月和3月甲、乙两种水果共赢利800元.24、(1)P的坐标为(1,1)(2)m=25,n=3(3)P(1,1)25、(1)四边形ABDC的面积是15(2)值为1,值不发生变化(3)M的坐标为(0,18)或(0,﹣42)。
北京市顺义区仁和中学2023-2024学年七年级下学期期中数学试题(解析版)
仁和中学2023-2024学年度第二学期期中考试初一年级数学试卷一、选择题(每题2分,共20分)1. 不等式的解集在数轴上表示正确的是( )A. B.C.D.【答案】D【解析】【分析】本题主要考查了一元一次不等式的求解,在数轴上表示不等式解集;解不等式,即可得出合适的选项.【详解】解:解不等式,可得,故不等式解集在数轴上表示为:故选:D .2. 下列命题中,假命题是( )A. 同角的补角相等B. 同一平面内,过一点有且只有一条直线与已知直线垂直C. 如果,,那么D. 两条直线被第三条直线所截,同旁内角互补【答案】D【解析】【分析】利用同角的补角的性质、垂直的定义、平行线的性质等知识分别判断后即可.【详解】解:A 、同角的补角相等,是真命题,故本选项不符合题意;B 、同一平面内,过一点有且只有一条直线与已知直线垂直,是真命题,故本选项不符合题意;C 、如果,,那么,是真命题,故本选项不符合题意;D、两条平行直线被第三条直线所截,同旁内角互补,故原命题是假命题,故本选项符合题意;的10x +<10x +<10x +<1x <-10x +<a b =b c =a c=a b =b c =a c =【点睛】考查了命题与定理的知识,解题的关键是了解同角的补角的性质、垂直的定义、平行线的性质等知识,难度不大.3. 下列各组数值中,哪个是方程的解( )A. B. C. D. 【答案】B【解析】【分析】将四个选项分别代入原方程,能使方程左右两边相等的未知数的值是方程的解.【详解】解:将代入原方程,左边右边,选项不符合题意;将代入原方程,左边右边,选项符合题意;将代入原方程,左边右边,选项不符合题意;将代入原方程,左边右边,选项不符合题意.故选:.【点睛】本题主要考查了二元一次方程的解.正确利用二元一次方程的解的意义是解题的关键.4. 如图,,射线在内部,下列说法一定成立的是( )A. 和互余B. 和互补C. 和互为对顶角D. 和相等21x y +=21x y =⎧⎨=⎩13x y =-⎧⎨=⎩13x y =⎧⎨=-⎩22x y =⎧⎨=-⎩ 21x y =⎧⎨=⎩5=≠A ∴ 13x y =-⎧⎨=⎩1==B ∴13x y =⎧⎨=-⎩1=-≠C ∴ 22x y =⎧⎨=-⎩2=≠D ∴B AO OB ⊥OC AOB ∠1∠2∠1∠2∠1∠2∠1∠2∠【解析】【分析】本题考查了角的互余概念、对顶角的定义,准确理解角的互余概念,对顶角的定义是解题的关键.【详解】解:∵,∴,又∵射线在内部,∴,∴和互余,故选A5. 如图,下列条件中,能判断的是( )A. B. C. D. 【答案】A【解析】【分析】由平行线的判定方法,即可判断.【详解】解:A.,由内错角相等,两直线平行,能判断,故A 符合题意;B.不是被截成的内错角,不能判断,故B 不符合题意;C. 不是被截成的内错角,不能判断,故C 不符合题意;D.不是被截成的同旁内角,不能判断,故D 不符合题意;故选:A .【点睛】本题考查平行线的判定,熟练掌握:①内错角相等,两直线平行;②同位角相等,两直线平行;③同旁内角互补,两直线平行,是解题的关键.6. 如图,由可以得到的结论是( )AO OB ⊥90AOB ∠=︒OC AOB ∠1290∠∠+=︒1∠2∠AB CD 12∠=∠13∠=∠14∠=∠13180∠+∠=︒12∠=∠AB CD 13∠∠、AB CD 、()AD BC AB CD 14∠∠、AB CD 、()AD BC AB CD 13∠∠、AB CD 、()AD BC AB CD AB CD ∥A. B. C. D. 【答案】B【解析】【分析】由平行线的性质,角平分线的定义逐项判断可求解【详解】解:A .当平分时,,故此选项不符合题意;B .当时,,故此选项符合题意;C .当时,,故此选项不符合题意;D .当平分时,,故此选项不符合题意.故选:B .【点睛】本题考查平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.掌握平行线的性质是解题的关键.也考查了角平分线的定义.7. 将一个长方形的长减少,宽变成现在的2倍,设这个长方形的长为,宽为,则下列方程中正确的是( )A. B. C. D. 【答案】C【解析】【分析】根据长方形的长减少宽变成现在的2倍,列出方程即可.【详解】解:设这个长方形的长为,宽为,根据题意得:,故C 正确.故选:C .【点睛】本题主要考查了列二元一次方程,解题的关键是找出题目中的等量关系.8. 实数,对应的位置如图所示,下列式子正确的是( )A. B. C. D. 【答案】D【解析】【分析】根据数轴得出a 和b 的范围,进而得出,,根据有理数运算法则逐一判断即可.【详解】解:由数轴可得:,,∴,,12∠=∠14∠=∠23∠∠=34∠∠=AC BAD ∠12∠=∠AB CD ∥14∠=∠AD BC ∥23∠∠=AC BCD ∠34∠∠=5cm cm x cm y 52x y+=52x y +=+52x y -=52x y -=+5cm=cm x cm y 52x y -=a b 22a b <22a b -<-50a +<44a b +<+a b <a b >54a -<<-3<<4b a b <a b >∴,,,,故A 、B 、C 错误,D 正确,故选:D .【点睛】本题考查了利用数轴判断式子的正负,有理数运算和符号之间的关系,乘、除法注意:同号得正,异号得负.9. 如图为小丽和小欧依次进入电梯时,电梯因超重而警示音响起的过程,且过程中没有其他人进出.已知当电梯乘载的重量超过400千克时警示音响起,且小丽、小欧的重量分别为50千克、70千克.若小丽进入电梯前,电梯内已乘载的重量为千克,则的取值范围是( )A. B. C. D. 【答案】A【解析】【分析】由图可得,小丽的重量为50千克,且进入电梯后,警示音没有响起,小欧的重量分别为70千克.且进入电梯后,警示音响起,分别列出不等式即可求解.【详解】由题意可知:当电梯乘载的重量超过400千克时警示音响起,小丽进入电梯前,电梯内已乘载的重量为x 千克,由图可知:小丽的重量为50千克,且进入电梯后,警示音没有响起,所以此时电梯乘载的重量,解得因为小欧的重量为70千克.且进入电梯后,警示音响起,所以此时电梯乘载的重量,解得因此的取值范围是故选:A【点睛】本题考查了一元一次不等式组的应用,解决本题的关键是根据题意找到不等关系.22a b >22a b ->-50a +>44a b +<+x x 280350x <≤280400x <≤330350x <≤330400x <≤50400x +≤350x ≤5070400x ++>280x >x 280350x <≤10. 已知关于的不等式组有以下说法:①当时,则不等式组的解集是;②若不等式组的解集是,则;③若不等式组无解,则;④若不等式组的整数解只有,0,1,2,则.其中正确的说法有( )A. ①③B. ②④C. ①②③D. ①②③④【答案】C【解析】【分析】先求出各不等式的解集,再根据各小题的结论解答即可.【详解】解:关于的不等式组,①当时,则不等式组的解集是,故本小题正确,符合题意;②若不等式组的解集是,则,故本小题正确,符合题意;③若不等式组无解,则,故本小题正确,符合题意;④若不等式组的整数解只有,0,1,2,则,故本小题错误,不符合题意;故选:C .【点睛】本题考查的是由不等式组的解集情况求参数,熟知解一元一次不等式组的基本步骤是解题的关键.二、填空题(每题2分,共20分)11. 用不等式表示“的3倍与7的差小于11”为______.【答案】【解析】【分析】首先表示“的3倍”为,再表示“与7的差”为,最后再表示“小于11”为.【详解】解:∵“的3倍”为,再表示“与7的差”为,∴用不等式表示“的3倍与7的差小于11”为:,故答案为:.【点睛】本题考查由实际问题抽象出一元一次不等式,用不等式表示不等关系时,要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”、“至少”、“最多”等等,正确选择不等号.x 2x x m >-⎧⎨≤⎩1m =21x -<≤20x -<≤0m =2m ≤-1-2m =x 2x x m >-⎧⎨≤⎩1m =21x -<≤20x -<≤0m =2m ≤-1-23m <≤m 3711m -<m 3m 37m -3711m -<m 3m 37m -m 3711m -<3711m -<12. 已知方程的三个解为方程的三个解为则方程组的解为______.【答案】【解析】【分析】根据方程组解的定义,能够同时满足方程组中的两个方程的解是方程组的解观察得出两个方程的解中相同的解为方程组的解.【详解】解:根据方程组的解的定义,能够同时满足方程组中的两个方程的解是方程组的解,可知是这两个方程中所有的解中能同时满足两个方程的解,∴方程组的解为,故答案为:.【点睛】此题主要是考查了方程组的解的定义,能够熟练掌握同时满足方程组中的两个方程的解是方程组的解是解答此题的关键.13. 如图,利用工具测量角,则的大小为______.【答案】##30度【解析】【分析】根据对顶角的性质解答即可.【详解】解:量角器测量的度数为,根据对顶角相等的性质,可得,故答案为:.【点睛】本题考查量角器的使用和对顶角的性质,掌握对顶角相等是解题的关键.的24x y -+=1,2;x y =-⎧⎨=⎩0,4;x y =⎧⎨=⎩1,6,x y =⎧⎨=⎩1x y +=2,3;x y =-⎧⎨=⎩1,2;x y =-⎧⎨=⎩0,1.x y =⎧⎨=⎩24,1x y x y -+=⎧⎨+=⎩12x y =-⎧⎨=⎩12x y =-⎧⎨=⎩24,1x y x y -+=⎧⎨+=⎩12x y =-⎧⎨=⎩12x y =-⎧⎨=⎩1∠30︒30︒130∠=︒30︒14. 如图,将含有的直角三角板的两个顶点分别放在直尺的一组对边上,如果,那么______°.【答案】40【解析】【分析】首先根据题意求出,然后根据平行线的性质求解即可.【详解】解:如图,∵∴ ∵∴.故答案为:40.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.15. 下列命题中,①对顶角相等;②内错角相等;③平行于同一条直线的两条直线平行;④若,则.是真命题的是______.【答案】①③【解析】【分析】根据对顶角的性质判断①;根据平行线的性质判断②;根据平行公理的推论判断③;根据平方根定义判断④.【详解】解:①对顶角相等,是真命题;②内错角不一定相等,是假命题;③平行于同一条直线的两条直线互相平行,是真命题;60︒120∠=︒2∠=140EBC ABC ∠=∠-∠=︒120∠=︒140EBC ABC ∠=∠-∠=︒EB CD∥240EBC ∠=∠=︒22a b >a b >④若,则a 不一定大于b ,是假命题;故答案为:①③.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.16. 如果关于的不等式的解集为,则的值是___________.【答案】1【解析】【分析】解不等式得,结合关于的不等式的解集为,得出,解之可得答案.详解】解:∵,∴,则, ∵关于的不等式的解集为,∴, 解得,故答案为:1.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.17. 在一本书上写着方程组的解是,其中的值被墨渍盖住了,但我们可解得的值为___________.【答案】【解析】【分析】根据,代入中,解得;把,代入中,即可求出的值.【22a b >x 3223x a a +≤-1x ≤-a 253x a ≤-x 3223x a a +≤-1x ≤-2153a -=-3223x a a +≤-325x a ≤-253x a ≤-x 3223x a a +≤-1x ≤-2153a -=-1a =43x py x y +=⎧⎨+=⎩1x y =⎧⎨=⎩y p 321x =3x y +=2y =1x =2y =4x py +=p【详解】解:∵方程组的解是,∴代入中,解得,把,代入,得解得.故答案为:.【点睛】本题考查二元一次方程组的知识,解题的关键是代入中,求出.18. 如图,一条公路两次转弯后,和原来的方向相同.如果第一次的拐角∠A 是135°,则第二次的拐角∠B 是________, 根据是________________.【答案】①. 135° ②. 两直线平行,内错角相等【解析】【分析】由两次转弯后,和原来的方向相同可知拐弯前、后的两条路平行,可考虑用平行线的性质解答.【详解】解:如图:∵两次转弯后,和原来的方向相同,∴AC∥BD,∴∠B=∠A=135°(两直线平行,内错角相等).故答案为135°;两直线平行,内错角相等.【点睛】本题考查了平行线性质的应用,解答此题的关键是将实际问题转化为几何问题,利用平行线的性质求解.19. 如图,四边形纸片,.折叠纸片,使点D 落在上的点处,点C 落在点处,折痕为.若,则______.43x py x y +=⎧⎨+=⎩1x y =⎧⎨=⎩1x =3x y +=2y =1x =2y =4x py +=124p +=32p =321x =3x y +=2y =ABCD AD BC ∥ABCD AB 1D 1C EF 102EFC ∠=︒1AED ∠=︒【答案】24【解析】【分析】根据平行线的性质可得,再根据折叠的性质可得,然后利用平角的定义求解即可.【详解】∵,∴,∵,∴,∵折叠纸片,使点D 落在上的点处,∴,∴,故答案为:24.【点睛】本题考查了折叠的性质,平行线的性质,平角的定义等知识点,熟练掌握其性质是解决此题的关键.20. 某快递公司的快递件分为甲类件和乙类件,快递员送甲类件每件收入1元,送乙类件每件收入2元.累计工作1小时,只送甲类件,最多可送30件,只送乙类件,最多可送10件;累计工作2小时,只送甲类件,最多可送55件,只送乙类件,最多可送20件;…,经整理形成统计表如表:累计工作时长最多件数(时)种类(件)12345678甲类件305580100115125135145乙类件1020304050607080(1)如果快递员一天工作8小时,且只送某一类件,那么他一天的最大收入为_____元;180EFC DEF ∠+∠=︒178DEF D EF ∠=∠=︒AD BC ∥180EFC DEF ∠+∠=︒102EFC ∠=︒18010278DEF ∠=︒-︒=︒ABCD AB 1D 178DEF D EF ∠=∠=︒1180787824AED ∠=︒-︒-︒=︒(2)如果快递员一天累计送x小时甲类件,y小时乙类件,且x+y=8,x,y均为正整数,那么他一天的最大收入为_____元.【答案】①. 160②. 180【解析】【分析】(1)根据表格数据得出答案即可;(2)根据x+y=8,x,y均为正整数,把所有收入可能都计算出,即可得出最大收入.【详解】解:(1)由统计表可知:如果该快递员一天工作8小时只送甲类件,则他的收入是1×145=145(元)如果该快递员一天工作8小时只送乙类件,则他的收入是2 × 80= 160 (元)∴他一天的最大收入是160元;(2)依题意可知:x和y均正整数,且x+y= 8①当x=1时,则y=7∴该快递员一天的收入是1 ×30+2×70=30+ 140= 170 (元);②当x=2时,则y=6∴该快递员-天的收入是1×55+2×60=55+120=175(元);③当x=3时,则y=5∴该快递员一天的收入是1× 80+2×50= 80+ 100= 180 (元);④当x=4时,则y=4∴该快递员一天的收入是1×100+2×40= 100+80 = 180 (元);⑤当x=5时,则y=3∴该快递员一天的收入是1×115+2×30=115十60 = 175 (元);⑥当x=6时,则y=2∴该快递员一天的收入是1 × 125+ 2× 20= 125+40 = 165 (元);⑦当x=7时,则y=1∴该快递员一天的收入是1×135+2×10=135+20= 155 (元)综上讨论可知:他一天的最大收入为180元.故填:160;180.【点睛】本题主要考查二元一次方程的应用,在给定的“x+y=8,x,y均为正整数”的条件下,分情况讨论出最大收入即可.三、解答题(共60分,第21-24题,每题3分,第25题5分,第26-27题,每题4分,第28题6分,第29-31题,每题5分,第32-33题7分)21. 解方程组【答案】【解析】【分析】利用加减消元法求解可得;【详解】解:,得∴把代入①,得∴所以,原方程组的解为【点睛】此题考查了解二元一次方程组,利用了消元的思想,解决本题的关键是要掌握消元的方法,即代入消元法与加减消元法.22. 解方程组:【答案】【解析】【分析】方程组整理后,方程组利用加减消元法求解即可.【详解】整理得,得,解得,将代入①得:342,328.x y x y +=⎧⎨-=⎩21x y =⎧⎨=-⎩342,328.x y x y +=⎧⎨-=⎩①②-①②66y =-1y =-1y =-()3412x +⨯-=2x =2,1.x y =⎧⎨=-⎩2,232 1.y x x y ⎧+=⎪⎨⎪-=-⎩12x y =⎧⎨=⎩2,232 1.y x x y ⎧+=⎪⎨⎪-=-⎩24321x y x y +=⎧⎨-=-⎩①②2⨯+①②77x =1x =1x =214y ⨯+=∴方程组的解为:.【点睛】此题考查了解二元一次方程组,利用了消元的思想,解题的关键是利用代入消元法或加减消元法消去一个未知数.23. 解不等式,并把解集在数轴上表示出来.【答案】,图见解析【解析】【分析】先去括号,再移项、合并同类项、最后系数化为1即可,再在数轴上把解集表示出来.【详解】解:去括号得,,去括号得,,合并同类项得,,系数化为1得,,解集在数轴上表示为:【点睛】本题考查了解一元一次不等式以及在数轴上表示不等式的解集,是基础知识要熟练掌握.24. 解不式组:并求出它的整数解.【答案】,整数解为3或4【解析】【分析】本题考查了解一元一次不等式组,不等式组的整数解.熟练掌握解一元一次不等式组,不等式组的整数解是解题的关键.先分别求出两个不等式的解集,进而可得不等式组的解集,最后求整数解即可.【详解】解:,,,12x y =⎧⎨=⎩()3157x x +-≤2x ≥-3357x x +-≤3573x x -≤-24x -≤2x ≥-()2241213x x x x ⎧-->⎪⎨+≥-⎪⎩24x <≤()2241213x x x x ⎧-->⎪⎨+≥-⎪⎩()224x x -->224x x -+>,,,,解得,,∴不等式组的解集为,整数解为3或4.25. 完成下列计算,并在括号内填写推理依据.如图,,直线分别交、于点E 和点F ,过点E 作交直线于点G .若,计算的度数.解:∵,∴ ( ).∵,∴ ().∴ .【答案】;两直线平行,内错角相等;垂直定义;;;【解析】【分析】由平行线的性质得,由垂直的定义得,进而可求的度数.【详解】解:∵,∴(两直线平行,内错角相等).∵,∴(垂直定义).∴.1213x x +≥-()1231x x +≥-1233x x +≥-4x -≥-4x ≤24x <≤AB CD MN AB CD EG MN ⊥CD 60EGF ∠=︒MEB ∠AB CD 60EGF ︒=∠=EG MN ⊥90MEG ∠=︒MEB ∠=-906030=︒-︒=︒BEG ∠MEG ∠BEG ∠60BEG EGF ︒∠=∠=90MEG ∠=︒MEB ∠AB CD 60BEG EGF ︒∠=∠=EG MN ⊥90MEG ∠=︒906030MEB MEG BEG ︒︒︒∠=∠-∠=-=故答案为:;两直线平行,内错角相等;垂直定义;;.【点睛】本题考查了平行线的性质,垂直的定义,数形结合是解答本题的关键.26. 如图,在三角形中,平分,求的度数.【答案】【解析】【分析】根据平行线的性质可得,根据角平分线的性质可得,则,最后根据三角形的一个外角定于与它不相邻两个内角之和,即可解答.【详解】解:∵,∴,∵平分,∴,∴,∵,∴.【点睛】本题主要考查了平行线的性质,角平分线的定义,三角形的外角定理,解题的关键是掌握两直线平行,内错角相等;三角形的一个外角定于与它不相邻两个内角之和.27. 如图,点B 、C 在线段异侧,E 、F 分别是线段、上的点,和分别交于点G 和点H .已知,,.求证:.BEG ∠MEG ∠BEG ∠ABC CD ,,80ACB DE BC AED ∠∠=︒∥EDC ∠40︒BCD EDC ∠=∠ECD BCD ∠=∠ECD EDC ∠=∠DE BC ∥BCD EDC ∠=∠CD ACB ∠ECD BCD ∠=∠ECD EDC ∠=∠80AED ∠=︒180402EDC ∠=⨯︒=︒AD AB CD EC BF AD AEG AGE ∠=∠DGC C ∠=∠180BEC BFD ∠+∠=︒EC BF ∥【答案】见解析【解析】【分析】先证明出,从而得到,得到,再根据条件,得出,再根据平行线的判定求解即可.【详解】证明:证明:∵,,又∵∴,∴∴∵∴∴.【点睛】此题考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解题的关键.28. 围棋,起源于中国,古代称为“弈”,是棋类鼻祖,距今已有4000多年的历史.某商家销售A 、B 两种材质的围棋,每套进价分别为200元、170元,下表是近两个月的销售情况:销售数量销售时段A 种材质B 种材质销售收入第一个月3套5套1800元第二个月4套10套3100元(1)求A 、B 两种材质的围棋每套的售价.(2)若商家准备用不多于5400元的金额再采购A 、B 两种材质的围棋共30套,求A 种材质的围棋最多能采购多少套?(3)在(2)的条件下,商店销售完这30套围棋能否实现利润为1300元的目标?请说明理由.【答案】(1)A 种材质的围棋每套的售价为250元,B 种材质的围棋每套的售价为210元;(2)A 种材质的围棋最多能采购10套;(3)商店销售完这30套围棋能实现利润为1300元的目标;理由见解析.【解析】AEG C ∠=∠AB CD ∥180BEC C ∠+∠=︒180BEC BFD ∠+∠=︒C BFD ∠=∠AEG AGE ∠=∠DGC C ∠=∠DGC AGE∠=∠AEG C ∠=∠AB CD∥180BEC C ∠+∠=︒180BEC BFD ∠+∠=︒C BFD∠=∠EC BF ∥【分析】(1)设A 种材质的围棋每套的售价为x 元,B 种材质的围棋每套的售价为y 元,根据表格中的销量和收入列方程组求解即可;(2)设A 种材质的围棋采购a 套,则B 种材质的围棋采购套,根据“用不多于5400元的金额再采购A 、B 两种材质的围棋共30套”列不等式求解即可;(3)设销售利润为w ,根据题意列出一次函数解析式,然后利用一次函数的性质求解.【小问1详解】解:设A 种材质的围棋每套的售价为x 元,B 种材质的围棋每套的售价为y 元,由题意得:,解得:,答:A 种材质的围棋每套的售价为250元,B 种材质的围棋每套的售价为210元;【小问2详解】解:设A 种材质的围棋采购a 套,则B 种材质的围棋采购套,由题意得:,解得:,所以a 的最大值为10,答:A 种材质的围棋最多能采购10套;【小问3详解】解:商店销售完这30套围棋能实现利润为1300元的目标;理由:设销售利润为w ,由题意得:,∵,∴w 随a 的增大而增大,∵a 的最大值为10,∴当时,w 取最大值1300,即商店销售完这30套围棋能实现利润为1300元的目标.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用以及一次函数的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列出方程组、不等式以及一次函数解析()30a -3518004103100x y x y +=⎧⎨+=⎩250210x y =⎧⎨=⎩()30a -()200170305400a a +-≤10a ≤()()()25020021017030101200w a a a =-+--=+100>10a =式.29. 已知:如图,点D 在线段上,过点D 作交线段于点E ,连接,过点D 作于点F ,过点F 作交线段于点G .(1)依题意补全图形;(2)用等式表示与的数量关系,并证明.【答案】(1)见解析;(2),证明见解析.【解析】【分析】(1)根据题意画出图形即可;(2)根据平行线的性质得出,,等量代换得出,根据,可知,进而可得出结论.【小问1详解】解:图形如下:【小问2详解】解:,证明:∵,∴,∵,∴,∴,∵,∴,∴,AB DE BC ∥AC CD DF BC ⊥FG CD ∥AB CDE ∠DFG ∠90CDE DFG ∠+∠=︒12∠=∠23∠∠=13∠=∠DF BC ⊥3490∠+∠=°90CDE DFG ∠+∠=︒DE BC ∥12∠=∠CD FG ∥23∠∠=13∠=∠DF BC ⊥3490∠+∠=°1490∠+∠=︒即.【点睛】本题考查平行线的性质,掌握平行线的性质是解题的关键.30. 解答题:解方程组时,由于,的系数及常数项的数值较大,如果用常规的代入消元法、加减消元法来解,不仅计算量大,而且易出现运算错误,而采用下面的解法则比较简单:①②得,所以③,③①得,解得,从而,所以原方程组的解是.请你运用上述方法解方程组:.【答案】【解析】【分析】仿照例子,利用加减消元法可解方程组求解.【详解】解:,得:,∴③,③①得:,解得:,将代入③得:,∴原方程组的解为.90CDE DFG ∠+∠=︒323538303336x y x y +=⎧⎨+=⎩①②x y -222x y +=1x y +=35⨯-33x =-=1x -2y =12x y =-⎧⎨=⎩201620182020201920212023x y x y +=⎧⎨+=⎩12x y =-⎧⎨=⎩201620182020201920212023x y x y +=⎧⎨+=⎩①②-②①333x y +=1x y +=2018⨯-22x =-=1x -=1x -2y =12x y =-⎧⎨=⎩【点睛】本题主要考查二元一次方程组解法,解二元一次方程组由代入消元法和加减消元法.31. 先阅读绝对值不等式和的解法,再解答问题:①因为,从数轴上(如图1)可以看出只有大于而小于6的数的绝对值小于6,所以的解集为.②因为,从数轴上(如图2)可以看出只有小于的数和大于6的数的绝对值大于6,所以的解集为或.(1)的解集为_________,的解集为_________;(2)已知关于x ,y 的二元一次方程组的解满足,其中m 是负整数,求m 的值.【答案】(1),或(2)【解析】【分析】本题考查了绝对值的意义,不等式组的解集,加减消元法解二元一次方程组等知识.理解题意是解题的关键.(1)根据题意求解集即可;(2)加减消元法解二元一次方程组得,由题意知,,即,,可求,然后作答即可.【小问1详解】解:由题意知,的解集为,的解集为或;故答案为:,或;【小问2详解】解:,的||6x <||6x >||6x <6-||6x <66x -<<||6x >6-||6x >6x <-6x >||2x <||5x >254482x y m x y m -=+⎧⎨+=-+⎩||3x y +≤22x -<<5x <-5x >1-42373x m y m ⎧=+⎪⎪⎨⎪=-⎪⎩472333m m +-≤23m -≤323m -≤-≤15m -≤≤||2x <22x -<<||5x >5x <-5x >22x -<<5x <-5x >254482x y m x y m -=+⎧⎨+=-+⎩①②得,,解得,,将代入①得,,解得,,∴,∵,∴,即,∴,解得,,∵m 是负整数,∴m 的值为.32. 已知:如图,直线,点A 、B 在直线a 上(点A 在点B 左侧),点C 、D 在直线b 上(点C 在点D 左侧),和相交于点E .(1)求证:;(2)分别作和的角平分线相交于点F .① 结合题意,补全图形;② 用等式表示和的数量关系,并证明.【答案】(1)见解析(2)①见解析;②;见解析【解析】【分析】(1) 过点E 作,证明 ,,可得,从而可得答案;2⨯-②①921y m =-73y m =-73y m =-72543x m m ⎛⎫--=+ ⎪⎝⎭423x m =+42373x m y m ⎧=+⎪⎪⎨⎪=-⎪⎩||3x y +≤472333m m +-≤23m -≤323m -≤-≤15m -≤≤1-a b ∥AD BC BED BAD BCD ∠=∠+∠BAD ∠BCD ∠AFC ∠BED ∠12AFC BED ∠=∠EM AB ∥BAD AEM ∠=∠BCD MEC ∠=∠AEC BAD BCD ∠=∠+∠(2)①根据题意补全图形即可;②过点F 作,可得 ,证明,可得,结合、分别平分和,可得,结合,从而可得答案.【小问1详解】过点E 作,∴ ,∵,∴,∴,∵,∴,∵,∴.【小问2详解】①补全图形如图所示:②;证明:过点F 作,∴∵,∴,FN AB ∥AFN BAF ∠=∠NFC FCD ∠=∠AFC BAF FCD ∠=∠+∠AF CF BAD ∠BCD ∠()12AFC BAD BCD ∠=∠+∠BED BAD BCD ∠=∠+∠EM AB ∥BAD AEM ∠=∠AB CD ∥EM CD ∥BCD MEC ∠=∠AEC AEM MEC ∠=∠+∠AEC BAD BCD ∠=∠+∠AEC BED ∠=∠BED BAD BCD ∠=∠+∠12AFC BED ∠=∠FN AB ∥AFN BAF ∠=∠AB CD ∥FN CD ∥∴,∵,∴,∵、分别平分和,∴,∵,∴.【点睛】本题考查的是平行公理的应用,平行线的性质,角平分线的定义,熟练的利用平行线的性质进行证明是解本题的关键.33. 给出如下定义:如果一个未知数的值使得方程和不等式(组)同时成立,那么这个未知数的值称为该方程与不等式(组)的“关联解”.例如:已知方程和不等式,对于未知数,当时,使得,同时成立,则称是方程与不等式 的“关联解”.(1)判断是否是方程与不等式的“关联解”_____(填是或否);判断是方程与不等式(组)①,②,③中_______的“关联解”;(只填序号)(2)如果是关于的方程与关于的不等式组的“关联解”,那么____,的取值范围是_______;(3)如果是关于方程与关于的不等式组的“关联解”,求的取值范围.【答案】(1)否;①;(2);;(3).【解析】的NFC FCD ∠=∠AFC AFN NFC ∠=∠+∠AFC BAF FCD ∠=∠+∠AF CF BAD ∠BCD ∠()12AFC BAD BCD ∠=∠+∠BED BAD BCD ∠=∠+∠12AFC BED ∠=∠321x -=40x +>x 1x =3121⨯-=41450x +=+=>1x =321x -=40x +>3x =260x -=()234x +<=1x -231x +=1322x -<132x ->2050x x ->⎧⎨-<⎩2x =x 20x a -=x ()11212x x a b +⎧>-⎪⎨⎪+-≤⎩=a b x m =x 24x n -=x 121n m x m n x ⎧-+>-⎪⎨⎪-->-⎩m 4a =3b ≥-36m <<【分析】(1)根据“关联解”的定义求解即可;(2)根据“关联解”的定义,将代入方程即可求出,再解不等式得:,即可得出答案;(3)根据“关联解”的定义得出不等式组,求解即可【小问1详解】解:当时,使得成立,不成立,则不是方程与不等式 的“关联解”;当时,使得成立,成立,则是方程与不等式 的“关联解”;当时,使得成立,不成立,则不是方程与不等式 的“关联解”;当时,使得成立,不成立,则不是方程与不等式组 的“关联解”;故答案为:否;①;【小问2详解】解:根据题意可得:,解得:,不等式组解不等式得:,即,解得:;故答案为:;;【小问3详解】2x =4a =②8122b +-≥4122412m m -⎧>-⎪⎪⎨-⎪>-⎪⎩3x =2360⨯-=()2334+<3x =260x -=()234x +<=1x -()2131⨯-+=13122--<=1x -231x +=1322x -<=1x -()2131⨯-+=1132-->=1x -231x +=132x ->=1x -()2131⨯-+=120150-->⎧⎨--<⎩=1x -231x +=2050x x ->⎧⎨-<⎩220a ⨯-=4a =()11212x x a b +⎧>-⎪⎨⎪+-≤⎩①②②212b a x +-≤8122b +-≥3b ≥-4a =3b ≥-解:根据题意可得:,∴,不等式组为,化简得:,解不等式组得:.【点睛】本题考查解一元一次不等式组,方程的解,正确理解新定义是解题的关键.24m n -=42-=m n 4122412m m m m m m -⎧-+>-⎪⎪⎨-⎪-->-⎪⎩4122412m m -⎧>-⎪⎪⎨-⎪>-⎪⎩36m <<。
人教版七年级数学下册期中试卷【含答案】
人教版七年级数学下册期中试卷【含答案】专业课原理概述部分一、选择题1. 下列哪个数是质数?()A. 21B. 29C. 35D. 39()1分2. 一个等腰三角形的底边长为10cm,腰长为13cm,那么这个三角形的周长是()。
A. 32cmB. 36cmC. 42cmD. 46cm()1分3. 有理数a、b、c满足a < b < c,且a + c = 0,那么()。
A. a > 0, c > 0B. a < 0, c < 0C. a < 0, c > 0D. a > 0, c < 0()1分4. 下列哪个图形是中心对称图形?()A. 等边三角形B. 矩形C. 正五边形D. 圆()1分5. 一个正方形的对角线长为10cm,那么这个正方形的面积是()。
A. 50cm²B. 100cm²C. 200cm²D. 50√2cm²()1分二、判断题6. 两个负数相乘的结果是正数。
()()1分7. 等腰三角形的两腰相等,两底角相等。
()()1分8. 任何有理数乘以0都等于0。
()()1分9. 中心对称图形一定是轴对称图形。
()()1分10. 互质的两个数的最大公因数是1。
()()1分三、填空题11. 最大的两位数是_______。
()()1分12. 一个等边三角形的周长是24cm,那么它的边长是_______cm。
()()1分13. 两个互质的数的最小公倍数是它们的_______。
()()1分14. 一个正方形的边长是6cm,那么它的面积是_______cm²。
()()1分15. 任何非0数的0次幂都等于_______。
()()1分四、简答题16. 解释什么是质数。
()2分17. 什么是等腰三角形?它有哪些性质?()2分18. 有理数乘法法则有哪些?()2分19. 什么是中心对称图形?举例说明。
()2分20. 什么是互质数?如何求两个数的最大公因数?()2分五、应用题21. 计算下列各式的值:(1) -3 + 7 × 2(2) (5 + 2) ÷ (3 1)()2分22. 一个等腰三角形的底边长为8cm,腰长为10cm,求这个三角形的周长和面积。
人教(完整版)七年级数学下册期中试卷及答案 - 百度文库
人教(完整版)七年级数学下册期中试卷及答案 - 百度文库一、选择题1.36的平方根是()A .6-B .6C .6±D .4±2.下列图中的“笑脸”,由如图平移得到的是( )A .B .C .D . 3.若点()1,A a a -在第二象限,则点(),1B a a -在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列说法中,真命题的个数为( )①两条平行线被第三条直线所截,同位角相等;②在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行; ③过一点有且只有一条直线与这条直线平行;④点到直线的距离是这一点到直线的垂线段;A .1个B .2个C .3个D .4个 5.将一张边沿互相平行的纸条如图折叠后,若边//AD BC ,则翻折角1∠与2∠一定满足的关系是( )A .122∠=∠B .1290∠+∠=︒C .1230∠-∠=︒D .213230∠-∠=︒ 6.下列命题正确的是( )A .若a >b ,b <c ,则a >cB .若a ∥b ,b ∥c ,则a ∥cC .49的平方根是7D .负数没有立方根 7.一副直角三角板如图所示摆放,它们的直角顶点重合于点O ,//CO AB ,则BOD ∠=( )A .30B .45︒C .60︒D .90︒8.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,……按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,1B .()2020,0C .()2020,2D .()2021,0二、填空题9.计算:﹣9=_____.10.在平面直角坐标系中,已知点A 的坐标为(﹣2,5),点Q 与点A 关于y 轴对称,点P 与点Q 关于x 轴对称,则点P 的坐标是___.11.如图,在平面直角坐标系中,点A ,B ,C 三点的坐标分别是()2,0A -,()0,4B ,()0,1C -,过点C 作//CD AB ,交第一象限的角平分线于点D ,连接AD 交y 轴于点E .则点E 的坐标为______.12.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=54º时,∠1=______.13.如图,将△ABC 沿直线AC 翻折得到△ADC ,连接BD 交AC 于点E ,AF 为△ACD 的中线,若BE =2,AE =3,△AFC 的面积为2,则CE=_____.14.已知,a b 为两个连续的整数,且 15a b <<,则a b +=_______ 15.如图,直线BC 经过原点O ,点A 在x 轴上,AD BC ⊥于D .若A (4,0),B (m ,3),C (n ,-5),则AD BC =______.16.育红中学八五班的数学社团在做如下的探究活动:在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向上、向右、向下、向右的方向依次移动,每次移动1个单位长度,其移动路线如图所示,第1次移动到点A 1,第2次移动到点A 2…第n 次移动到点A n ,则△OA 2A 2021的面积是 __________________.三、解答题17.计算下列各式的值:(1)237)--(233(3)8318.求下列各式中的x 的值:(1)2810x -=;(2)()3164x -=.19.完成下面的证明:已知:如图,130∠=︒,60B ∠=︒,AB AC ⊥.求证://AD BC .证明:AB AC ⊥(已知),∵∠______90=︒(____________________).∴130∠=︒,60B ∠=︒(已知),∵1BAC B ∠+∠+∠=__________.即∠______180B +∠=︒∴//AD BC (______________________________).20.如图①,在平面直角坐标系中,点A 、B 在x 轴上,AB BC ⊥,2AO BO ==,3BC =.(1)写出点A 、B 、C 的坐标.(2)如图②,过点B 作//BD AC 交y 轴于点D ,求CAB BDO ∠+∠的大小. (3)如图③,在图②中,作AE 、DE 分别平分CAB ∠、ODB ∠,求AED ∠的度数. 21.计算:(1)239(6)27----; (2)﹣12+(﹣2)3×31127()89--⨯-; (3)已知实数a 、b 满足1a -+|b ﹣1|=0,求a 2017+b 2018的值.(4)已知5+1的整数部分为a ,5﹣1的小数部分为b ,求2a+3b 的值.22.(1)若一圆的面积与这个正方形的面积都是22cm π,设圆的周长为C 圆,正方形的周长为C 正,则C 圆______C 正.(填“=”或“<”或“>”号)(2)如图,若正方形的面积为216cm ,李明同学想沿这块正方形边的方向裁出一块面积为212cm 的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由. 23.已知:直线AB ∥CD ,M ,N 分别在直线AB ,CD 上,H 为平面内一点,连HM ,HN . (1)如图1,延长HN 至G ,∠BMH 和∠GND 的角平分线相交于点E .求证:2∠MEN ﹣∠MHN =180°;(2)如图2,∠BMH 和∠HND 的角平分线相交于点E .①请直接写出∠MEN 与∠MHN 的数量关系: ;②作MP 平分∠AMH ,NQ ∥MP 交ME 的延长线于点Q ,若∠H =140°,求∠ENQ 的度数.(可直接运用①中的结论)【参考答案】一、选择题1.C解析:C【分析】根据平方根的定义求解即可.【详解】解:∵2(6)36=±,∴36的平方根是6±,故选:C .【点睛】此题考查的是求一个数的平方根,掌握平方根的定义是解决此题的关键.2.D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A 、B 、C 都是由旋转得到的,D 是由平移得到的.故选:D .【点睛】解析:D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A 、B 、C 都是由旋转得到的,D 是由平移得到的.故选:D .【点睛】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.3.A【分析】首先根据第二象限内点的坐标符号可得到0<a<1,然后分析出1-a>0,进而可得点B所在象限.【详解】解:∵点A(a-1,a)在第二象限,∴a-1<0,a>0,∴0<a<1,∴1-a>0,∴点B(a,1-a)在第一象限,故选A.【点睛】此题主要考查了点的坐标,关键是掌握第一象限内点的坐标符号(+,+),第二象限内点的坐标符号(-,+),第三象限内点的坐标符号(-,-),第四象限内点的坐标符号(+,-).4.B【分析】根据平行线的性质与判定,点到直线的距离的定义逐项分析判断即可【详解】①两条平行线被第三条直线所截,同位角相等,故①是真命题;②在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行,故②是真命题;③在同一平面内,过直线外一点有且只有一条直线与这条直线平行,故③不是真命题,④点到直线的距离是这一点到直线的垂线段的长度,故④不是真命题,故真命题是①②,故选B【点睛】本题考查了判断真假命题,平行线的性质与判定,点到直线的距离的定义,掌握相关性质定理是解题的关键.5.B【分析】根据平行可得出∠DAB+∠CBA=180°,再根据折叠和平角定义可求出1290∠+∠=︒.【详解】解:由翻折可知,∠DAE=21∠,∠CBF=22∠,∵//AD BC,∴∠DAB+∠CBA=180°,∴∠DAE+∠CBF=180°,∠+∠=°,即2122180∴1290∠+∠=︒,故选:B.【点睛】本题考查了平行线的性质和角平分线的性质,解题关键是熟练运用平行线的性质进行推理计算.6.B【解析】【分析】根据不等式的性质、平行线的判定、平方根和立方根依次判定各项后即可解答.【详解】选项A,由a>b,b>c,则a>c,可得选项A错误;选项B,若a∥b,b∥c,则a∥c,正确;选项C,由49的平方根是±7,可得选项C错误;选项D,由负数有立方根,可得选项D错误;故选B.【点睛】本题考查了命题的知识,关键是根据不等式的性质、平行线的判定、平方根和立方根解答.7.C【分析】由AB//CO得出∠BAO=∠AOC,即可得出∠BOD.【详解】AB CO,解://∴∠=∠=︒OAB AOC60∴∠=︒+︒=︒6090150BOC∠+∠=∠+∠=︒AOC DOA DOA BOD90∴∠=∠=︒60AOC BOD故选:C.【点睛】本题考查两直线平行内错角相等的知识点,掌握这一点才能正确解题.8.B【分析】分析点P的运动规律找到循环规律即可.【详解】解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位,则2020=505×4,所以,前505次循环运动点P共向右运解析:B【分析】分析点P的运动规律找到循环规律即可.【详解】解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位,则2020=505×4,所以,前505次循环运动点P共向右运动505×4=2020个单位,且在x轴上,故点P坐标为(2020,0).故选:B.【点睛】本题考查了规律型:点的坐标,是平面直角坐标系下的坐标规律探究题,解答关键是利用数形结合解决问题.二、填空题9.﹣3.【详解】试题分析:根据算术平方根的定义﹣=﹣3.故答案是﹣3.考点:算术平方根.解析:﹣3.【详解】﹣3.故答案是﹣3.考点:算术平方根.10.(2,﹣5).【分析】根据题意分析点P,先关于y轴对称,再求关于x轴对称的点即可【详解】∵点A的坐标为(﹣2,5),点Q与点A关于y轴对称,∴点Q 的坐标为(2,5),∵点P 与点Q 关于x 轴解析:(2,﹣5).【分析】根据题意分析点P ,先关于y 轴对称,再求关于x 轴对称的点即可【详解】∵点A 的坐标为(﹣2,5),点Q 与点A 关于y 轴对称,∴点Q 的坐标为(2,5),∵点P 与点Q 关于x 轴对称,∴点P 的坐标是(2,﹣5).故答案为:(2,﹣5).【点睛】本题考查了平面直角坐标系的定义,轴对称,理解题意是解题的关键.11.【分析】设D (x ,y ),由点在第一象限的角平分线上,可得,由待定系数法得直线AB 的解析式为,由,可设,把代入, 得,进而可求得,再由待定系数法求得直线AD 的解析式为,令x=0时,得,即可求得点E 解析:20,3⎛⎫⎪⎝⎭ 【分析】设D (x ,y ),由点D 在第一象限的角平分线上,可得x y =,由待定系数法得直线AB 的解析式为24y x =+,由//CD AB ,可设2CD y x b =+,把()0,1C -代入, 得21CD y x =-,进而可求得1(1)D ,,再由待定系数法求得直线AD 的解析式为1233y x =+,令x =0时,得23y =,即可求得点E 的坐标. 【详解】解:设D (x ,y ),点D 在第一象限的角平分线上,∴x y =,//CD AB ,()20A -,,()04B ,∴设直线AB 的解析式为:4y kx =+,把()20A -,,代入得: k =2,24AB y x ∴=+,2CD y x b ∴=+,把()0,1C -代入,得b =-1,21CD y x ∴=-,点D 在21CD y x =-上,(11)D ∴,,设直线AD 的解析式为:11y k x b =+,可得1111120k b k b +=⎧⎨-+=⎩, 111323k b ⎧=⎪⎪∴⎨⎪=⎪⎩, 1233AD y x ∴=+, 当x =0时,23y =, 2(0)3E ∴,, 故答案为:2(0)3, 【点睛】此题考查了一次函数的性质,掌握待定系数法求一次函数的解析式是解答此题的关键. 12.36°【分析】如图,根据平行线的性质可得∠3=∠2,然后根据平角的定义解答即可.【详解】解:如图,∵三角尺的两边a ∥b ,∴∠3=∠2=54º,∴∠1=180°-90°-∠3=36°.故解析:36°【分析】如图,根据平行线的性质可得∠3=∠2,然后根据平角的定义解答即可.【详解】解:如图,∵三角尺的两边a ∥b ,∴∠3=∠2=54º,∴∠1=180°-90°-∠3=36°.故答案为:36°.【点睛】本题以三角板为载体,主要考查了平行线的性质和和平角的定义,属于基础题型,熟练掌握平行线的性质是解题关键.13.【分析】根据已知条件以及翻折的性质,先求得S 四边形ABCD ,根据S 四边形ABCD ,即可求得,进而求得【详解】∵AF 为△ACD 的中线,△AFC 的面积为2,∴S △ACD =2S △AFC =4,∵解析:【分析】根据已知条件以及翻折的性质,先求得S 四边形ABCD ,根据S 四边形ABCD =12AC BD ⨯⨯,即可求得AC ,进而求得CE【详解】∵AF 为△ACD 的中线,△AFC 的面积为2,∴S △ACD =2S △AFC =4,∵△ABC 沿直线AC 翻折得到△ADC ,∴S △ABC =S △ADC ,BD ⊥AC ,BE =ED ,∴S 四边形ABCD =8, ∴182AC BD ⨯⨯=, ∵BE =2,AE =3,∴BD =4,∴AC =4,∴CE =AC ﹣AE =4﹣3=1.故答案为1.【点睛】本题考查了三角形中线的性质,翻折的性质,利用四边形ABCD 的等面积法求解是解题的关键.14.7【分析】由无理数的估算,先求出a 、b 的值,再进行计算即可.【详解】解:∵,∴,∵、为两个连续的整数,,∴,,∴;故答案为:7.【点睛】本题考查了无理数的估算,解题的关键是正确解析:7【分析】由无理数的估算,先求出a、b的值,再进行计算即可.【详解】解:∵91516<<,∴3154<<,∵a、b为两个连续的整数,15<<,a bb=,∴3a=,4a b+=+=;∴347故答案为:7.【点睛】本题考查了无理数的估算,解题的关键是正确求出a、b的值,从而进行解题.15.【分析】作三角形的高线,根据坐标求出BE、OA、OF的长,利用面积法可以得出BC•AD=32.【详解】解:过B作BE⊥x轴于E,过C作CF⊥y轴于F,∵B(m,3),∴BE=3,∵A解析:32【分析】作三角形的高线,根据坐标求出BE、OA、OF的长,利用面积法可以得出BC•AD=32.【详解】解:过B作BE⊥x轴于E,过C作CF⊥y轴于F,∵B(m,3),∴BE=3,∵A(4,0),∴AO=4,∵C(n,-5),∴OF=5,∵S△AOB=12AO•BE=12×4×3=6,S△AOC=12AO•OF=12×4×5=10,∴S△AOB+S△AOC=6+10=16,∵S△ABC=S△AOB+S△AOC,∴12BC•AD=16,∴BC•AD=32,故答案为:32.【点睛】本题考查了坐标与图形性质,根据点的坐标表示出对应线段的长,面积法在几何问题中经常运用,要熟练掌握;本题根据面积法求出线段的积.16.【分析】由题意知OA4n=2n,图形运动4次一个循环,横坐标对应一个循环增加2,计算出A2A2021,由此即可解决问题.【详解】解:由题意知OA4n=2n(n为正整数),图形运动4次一个循环解析:1009 2【分析】由题意知OA4n=2n,图形运动4次一个循环,横坐标对应一个循环增加2,计算出A2A2021,由此即可解决问题.【详解】解:由题意知OA4n=2n(n为正整数),图形运动4次一个循环,横坐标对应一个循环增加2∵2021÷4=505…1,∴A2021与A1是对应点,A2020与A0是对应点∴OA2020=505×2=1010,A1A2021=1010∴A2A2021=1010-1=1009则△OA2A2019的面积是12×1×1009=10092,故答案为:10092.【点睛】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得.三、解答题17.(1);(2)【分析】(1)先求绝对值,同时利用计算,再合并即可;(2)利用乘法的分配率先进行乘法运算,同时求解的立方根,再合并即可.【详解】解:(1)(2)【点睛】本题考解析:(1)4-;(2)2.【分析】(1)先求绝对值,同时利用()20a a =≥计算2,再合并即可; (2)利用乘法的分配率先进行乘法运算,同时求解8的立方根,再合并即可.【详解】解:(1)23--37 4.=-=-(2312=+-2.=【点睛】本题考查的是实数的运算,考查()20a a =≥,求一个数的立方根,绝对值的运算,掌握以上知识是解题的关键. 18.(1)或;(2)【分析】(1)方程整理后,利用平方根定义开方即可求出x 的值;(2)方程利用立方根定义开立方即可求出x 的值.【详解】解:(1),或.,.【点睛】此题考查了解析:(1)9x =或9x =-;(2)5x =【分析】(1)方程整理后,利用平方根定义开方即可求出x 的值;(2)方程利用立方根定义开立方即可求出x 的值.【详解】解:(1)2810x -=2x =81,9x =或9x =-.(2)()3164x -= 14x -=,5x =.【点睛】此题考查了立方根,以及平方根,熟练掌握运算法则是解本题的关键.19.BAC ,垂直的定义,180°,BAD ,同旁内角互补,两直线平行.【分析】根据垂直的定义和已知证明∠BAD ,即,由同旁内角互补,两直线平行即可得出结论.【详解】证明:∵(已知),∴∠BAC (解析:BAC ,垂直的定义,180°,BAD ,同旁内角互补,两直线平行.【分析】根据垂直的定义和已知证明∠BAD 180B +∠=︒,即1180BAC B ∠+∠+∠=︒,由同旁内角互补,两直线平行即可得出结论.【详解】证明:∵AB AC ⊥(已知),∴∠BAC 90=︒(垂直的定义).∵130∠=︒,60B ∠=︒(已知),∴1BAC B ∠+∠+∠=180°即∠BAD 180B +∠=︒∴//AD BC (同旁内角互补,两直线平行)故答案为:BAC ,垂直的定义,180°,BAD ,同旁内角互补,两直线平行.本题主要考查了垂直定义和平行线的判定,证明∠BAD 180B +∠=︒是解题关键. 20.(1),,;(2)90°;(3)45°【分析】(1)根据图形和平面直角坐标系,可直接得出答案;(2)根据两直线平行,内错角相等可得,则∠;(3)根据角平分线的定义可得,过点作,然后根据平行解析:(1)()2,0A -,()2,0B ,()2,3C ;(2)90°;(3)45°【分析】(1)根据图形和平面直角坐标系,可直接得出答案;(2)根据两直线平行,内错角相等可得ABD BAC ∠=∠,则∠90CAB BDO ABD BDO +∠=∠+∠=︒;(3)根据角平分线的定义可得CAE BDE ∠+∠45=︒,过点E 作//EF AC ,然后根据平行线的性质得出, 45AED CAE BDE ∠=∠+∠=︒.【详解】解:(1)依题意得:()2,0A -,()2,0B ,()2,3C ;(2)∵//BD AC ,∴ABD BAC ∠=∠,∴90CAB BDO ABD BDO +∠=∠+∠=︒;(3)∵//BD AC ,∴ABD BAC ∠=∠,∵AE ,DE 分别平分CAB ∠,ODB ∠, ∴111()()90222CAE BDE BAC BDO ABD BDO ∠+∠=∠+∠=∠+∠=⨯︒ 45=︒,过点E 作//EF AC ,则CAE AEF ∠=∠,BDE DEF ∠=∠,∴45AED AEF DEF CAE BDE ∠=∠+∠=∠+∠=︒.【点睛】本题考查了坐标与图形的性质,平行线的性质,熟记以上性质,并求出A ,B ,C 的坐标是解题的关键,(3)作出平行线是解题的关键.21.(1)0;(2)-3;(3)2;(4).【解析】【分析】直接利用算术平方根以及立方根的定义化简进而得出答案;直接利用有理数的乘方、算术平方根以及立方根的定义化简进而得出答案 利用绝对值以及平解析:(1)0;(2)-3;(3)2;(4).【解析】【分析】() 1直接利用算术平方根以及立方根的定义化简进而得出答案;()2直接利用有理数的乘方、算术平方根以及立方根的定义化简进而得出答案()3利用绝对值以及平方根的非负性质得出a ,b 的值,进而得出答案;()4直接利用23的范围进而得出a ,b 的值,即可得出答案.【详解】解:(13630=-+=;()23121(2)8⎛-+-⨯ ⎝111333⎛⎫=--+⨯-=- ⎪⎝⎭; ()3110a b -+-=,1a ∴=,1b =,20172018a b +112=+=;()451+的整数部分为a 1的小数部分为b ,3a ∴=,2b =,2366a b ∴+=+=【点睛】此题主要考查了估算无理数的大小以及实数运算,正确化简各数是解题关键. 22.(1)<;(2)不能,理由见解析【分析】(1)分别根据圆的面积和正方形的面积得出其半径或边长,再分别求得其周长,根据实数大小比较的方法,可得答案;(2)设裁出的长方形的长为,宽为,由题意得关于解析:(1)<;(2)不能,理由见解析【分析】(1)分别根据圆的面积和正方形的面积得出其半径或边长,再分别求得其周长,根据实数大小比较的方法,可得答案;(2)设裁出的长方形的长为3()a cm ,宽为2()a cm ,由题意得关于a 的方程,解得a 的值,从而可得长方形的长和宽,将其与正方形的边长比较,可得答案.【详解】解:(1)圆的面积与正方形的面积都是22cm π,∴)cm )cm ,)C cm ∴=圆,)C cm =正,32848ππππ=⨯>⨯, ∴C C ∴<正圆.(2)不能裁出长和宽之比为3:2的长方形,理由如下:设裁出的长方形的长为3()a cm ,宽为2()a cm ,由题意得:3212a a ⨯=,解得a =a =∴长为,宽为,正方形的面积为216cm ,∴正方形的边长为4cm , 324>,∴不能裁出长和宽之比为3:2的长方形.【点睛】本题考查了算术平方根在正方形和圆的面积及周长计算中的简单应用,熟练掌握相关计算公式是解题的关键.23.(1)见解析;(2)①2∠MEN +∠MHN =360°;②20°【分析】(1)过点E 作EP ∥AB 交MH 于点Q ,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等即解析:(1)见解析;(2)①2∠MEN +∠MHN =360°;②20°【分析】(1)过点E 作EP ∥AB 交MH 于点Q ,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等即可得证.(2)①过点H 作GI ∥AB ,利用(1)中结论2∠MEN ﹣∠MHN =180°,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等得出∠AMH +∠HNC =360°﹣(∠BMH +∠HND ),进而用等量代换得出2∠MEN +∠MHN =360°. ②过点H 作HT ∥MP ,由①的结论得2∠MEN +∠MHN =360°,∠H =140°,∠MEN =110°.利用平行线性质得∠ENQ +∠ENH +∠NHT =180°,由角平分线性质及邻补角可得∠ENQ +∠ENH +140°﹣12(180°﹣∠BMH )=180°.继续使用等量代换可得∠ENQ 度数.【详解】解:(1)证明:过点E 作EP ∥AB 交MH 于点Q .如答图1∵EP∥AB且ME平分∠BMH,∴∠MEQ=∠BME=12∠BMH.∵EP∥AB,AB∥CD,∴EP∥CD,又NE平分∠GND,∴∠QEN=∠DNE=12∠GND.(两直线平行,内错角相等)∴∠MEN=∠MEQ+∠QEN=12∠BMH+12∠GND=12(∠BMH+∠GND).∴2∠MEN=∠BMH+∠GND.∵∠GND+∠DNH=180°,∠DNH+∠MHN=∠MON=∠BMH.∴∠DHN=∠BMH﹣∠MHN.∴∠GND+∠BMH﹣∠MHN=180°,即2∠MEN﹣∠MHN=180°.(2)①:过点H作GI∥AB.如答图2由(1)可得∠MEN=12(∠BMH+∠HND),由图可知∠MHN=∠MHI+∠NHI,∵GI∥AB,∴∠AMH=∠MHI=180°﹣∠BMH,∵GI∥AB,AB∥CD,∴GI∥CD.∴∠HNC=∠NHI=180°﹣∠HND.∴∠AMH+∠HNC=180°﹣∠BMH+180°﹣∠HND=360°﹣(∠BMH+∠HND).又∵∠AMH+∠HNC=∠MHI+∠NHI=∠MHN,∴∠BMH+∠HND=360°﹣∠MHN.即2∠MEN+∠MHN=360°.故答案为:2∠MEN+∠MHN=360°.②:由①的结论得2∠MEN+∠MHN=360°,∵∠H=∠MHN=140°,∴2∠MEN=360°﹣140°=220°.∴∠MEN=110°.过点H作HT∥MP.如答图2∵MP∥NQ,∴HT∥NQ.∴∠ENQ+∠ENH+∠NHT=180°(两直线平行,同旁内角互补).∵MP平分∠AMH,∴∠PMH=12∠AMH=12(180°﹣∠BMH).∵∠NHT=∠MHN﹣∠MHT=140°﹣∠PMH.∴∠ENQ+∠ENH+140°﹣12(180°﹣∠BMH)=180°.∵∠ENH=12∠HND.∴∠ENQ+12∠HND+140°﹣90°+12∠BMH=180°.∴∠ENQ+12(HND+∠BMH)=130°.∴∠ENQ+12∠MEN=130°.∴∠ENQ=130°﹣110°=20°.【点睛】本题考查了平行线的性质,角平分线的性质,邻补角,等量代换,角之间的数量关系运算,辅助线的作法,正确作出辅助线是解题的关键,本题综合性较强.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级期中联考数学科试卷满分:150分;考试时间:120 分钟参考学校: 翔安一中 柑岭中学 五显中学 翔安实验 诗坂中学 凤南中学 莲河中学等学校一、选择题(本题有10小题,每题4分,共40分) 1、下面四个图形中∠1与∠2是对顶角的是( )A .B .C .D .$2、方程组的解为( )A .B .C .D .3、在①+y=1;②3x ﹣2y=1;③5xy=1;④+y=1四个式子中,不是二元一次方程的有( ) A .1个B .2个C .3个D .4个4、如图所示,图中∠1与∠2是同位角的是( )2(1)11212(3)12(4)A 、1个B 、2个C 、3个D 、4个5.下列运动属于平移的是( )%A .冷水加热过程中小气泡上升成为大气泡B .急刹车时汽车在地面上的滑动C .投篮时的篮球运动D .随风飘动的树叶在空中的运动 6、如图1,下列能判定AB ∥CD 的条件有( )个. (1) ︒=∠+∠180BCD B ; (2)21∠=∠; (3) 43∠=∠; (4) 5∠=∠B . A .1 B .2 C .354D3E21CB A图1^7、下列语句是真命题的有( )①点到直线的垂线段叫做点到直线的距离; ②内错角相等; ③两点之间线段最短;④过一点有且只有一条直线与已知直线平行;⑤在同一平面内,若两条直线都与第三条直线垂直,那么这两条直线互相平行. A .2个 B .3个 C .4个 D .5个8、如图2,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D′、C′的位置,若∠EFB=65°,则∠AED′=( );A 、50°B 、55°C 、60°D 、65°9、如图3,直线21//l l ,∠A=125°,∠B=85°,则∠1+∠2=( )A .30°B .35°C .36°D .40°10、如图4,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B 到C 的方向平移到△DEF 的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为( ) 二、填空题(本题有6小题,11题10分,其余每题4分,共30分) 11、﹣125的立方根是 ,的平方根是 ,/如果=3,那么a= ,的绝对值是 ,2的小数部分是_______12、命题“对顶角相等”的题设 ,结论13、(1)点P 在第二象限内,P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为_______; (2)若,则.图4FEB A 音乐台湖心亭牡丹园孔桥14、如图5,一艘船在A 处遇险后向相距50 海里位于B 处的救生船 报警.用方向和距离描述遇险船相对于救生船的位置[15、∠A 的两边与∠B 的两边互相平行,且∠A 比∠B 的2倍少15°,则∠A 的度数为_______16、在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P′(-y+1,x+1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n ,….若点A 1的坐标为(3,1),则点A 3的坐标为 , 点A 2014的坐标为__________|三、解答题(本题有10小题,共80分) 17、(本题有6小题,每小题3分,共18分) (一)计算:(1)322769----)( (2))13(28323-++-(3)2(2-2)+3(3+13). (二)解方程:(1)9x 2=16. (2)(x ﹣4)2=4 (3)18、(本小题5分)把下列各数分别填入相应的集合里:38,3,-,3π,722,32-,87-,0,-0.••02,,7-,…(每两个相邻的2中间依次多1个1).、(1)正有理数集合:{ …};(2)负无理数集合:{ …}; 19、(本小题6分)王霞和爸爸、妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴.y轴. 只知道游乐园D的坐标为(2,-2),请你帮她画出坐标系,并写出其他各景点的坐标.、20、(本小题5分)已知2是x的立方根,且(y-2z+5)2+=0,求的值.21、(本小题8分)如图,直线AB、CD、EF相交于点O.(1)写出∠COE的邻补角;(2)分别写出∠COE和∠BOE的对顶角;)(3)如果∠BOD=60°,EFAB ,求∠DOF和∠FOC的度数.22、(本小题4分)某公路规定行驶汽车速度不得超过80千米/时,当发生交通事故时,交通警察通常根据刹车后车轮滑过的距离估计车辆的行驶速度,所用的经验公式是,其中v表示车速(单位:千米/时),d表示刹车后车轮滑过的距离(单位:米),f表示摩擦系数.在一次交通事故中,经测量d=32米,f=2.请你判断一下,肇事汽车当时是否超出了规定的速度23、(本小题11分)完成下列推理说明:(1)如图,已知∠1=∠2,∠B=∠C,可推出AB∥CD.理由如下::因为∠1=∠2(已知),且∠1=∠4()所以∠2=∠4(等量代换)所以CE∥BF()所以∠=∠3()又因为∠B=∠C(已知)所以∠3=∠B(等量代换)所以AB∥CD()¥(2)如图,已知∠B+∠BCD=180°,∠B=∠D.求证:∠E=∠DFE.证明:∵∠B+∠BCD=180°(已知),∴AB∥CD ()∴∠B= ()又∵∠B=∠D(已知),∴∠= ∠(等量代换)∴AD∥BE()∴∠E=∠DFE()~24、(本小题6分)如图,长方形OABC中,O为平面直角坐标系的原点,点A、C的坐标分别为A(3,0),C(0,2),点B在第一象限.(1)写出点B的坐标;(2)若过点C的直线交长方形的OA边于点D,且把长方形OABC的周长分成2:3的两部分,求点D的坐标;(3)如果将(2)中的线段CD向下平移3个单位长度,得到对应线段C′D′,在平面直角坐标系中画出△CD′C′,并求出它的面积.…25、(本小题6分)如图,已知∠1+∠2=180°,∠B=∠3,你能判断∠C与∠AED的大小关系吗并说明理由.26(本小题11分)如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.得平行四边形ABDC(1)直接写出点C,D的坐标;(2)若在y轴上存在点M,连接MA,MB,使S△MAB=S平行四边形ABDC,求出点M的坐标.(3)若点P在直线BD上运动,连接PC,PO.【请画出图形,直接写出∠CPO、∠DCP、∠BOP的数量关系.?评分标准一、选择题(本大题共10小题,每小题4分,共40分))二、填空题(本大题共6小题,11题10分,其余每小题4分,共30分) 11. -5 、 ±3 、 9 、﹣2 、2 -112.题设 两个角是对顶角 . 结论 这两个角相等 13.(1) (-3,4) .(2) 14. 南偏西15°,50海里15. 15°或115° . (答出一种情况2分) 16. (-3,1) 、 (0,4)~三、解答题(本大题共11小题,共80分)17(18分)(一)(1)322769----)( (2))13(28323-++-解:原式=3-6-(-3) ...2 解:原式=232223-++-......2 =0 ........................3 =...233- (3)(3)2(2-2)+3(3+13). 解:原式=13222++- (2)《题号1】23456789<10答案 CDBCBC*AAD=222+ (3)(二)(1)9x 2=16. (2)(x ﹣4)2=4解:x 2=,......1 x ﹣4=2或x ﹣4=﹣2 (1)x=±,……3 x ═6或x=2……3 (求出一根给2分)(3),(x+3)3=27,......1 x+3=3, (2))x=0. (3)18(本小题5分)解:(1)正有理数集合:{38,722,,…} ……3分 (2)负无理数集合:{32-,7-,…}.……5分19(本小题6分)解:(1)正确画出直角坐标系;……1分(2)各点的坐标为A(0,4),B (-3,2),C (﹣2,-1),E (3,3),F (0,0);……6分 20(本小题5分)解:∵2是x 的立方根, ∴x=8,……1 ∵(y ﹣2z+5)2+=0,[∴, 解得:, (3)∴==3. (5)21(本小题8分)解:(1)∠COF 和∠EOD (2)(2)∠COE 和∠BOE 的对顶角分别为∠DOF 和∠AOF .……4 (3)∵AB ⊥EF ∴∠AOF=∠BOF=90°@∴∠DOF=∠BOF-∠BOD=90°-60°=30° (6)又∵∠AOC=∠BOD=60°∴∠FOC=∠AOF+∠AOC=90°+60°=150°. (8)22(本小题4分)解:把d=32,f=2代入v=16,v=16=128(km/h) (2)∵128>80, (3)∴肇事汽车当时的速度超出了规定的速度. (4)23.(11分)(1)如图,已知∠1=∠2,∠B=∠C,可推出AB∥CD.理由如下:】因为∠1=∠2(已知),且∠1=∠4(对顶角相等) (1)所以∠2=∠4(等量代换)所以CE∥BF(同位角相等,两直线平行) (2)所以∠C=∠3(两直线平行,同位角相等) (4)又因为∠B=∠C(已知)所以∠3=∠B(等量代换)所以AB∥CD(内错角相等,两直线平行) (5)(2)在括号内填写理由.#如图,已知∠B+∠BCD=180°,∠B=∠D.求证:∠E=∠DFE.证明:∵∠B+∠BCD=180°(已知),∴AB∥CD (同旁内角互补,两直线平行) (1)∴∠B=∠DCE(两直线平行,同位角相等) (3)又∵∠B=∠D(已知),∴∠DCE=∠D (等量代换) (4)∴AD∥BE(内错角相等,两直线平行) (5)∴∠E=∠DFE(两直线平行,内错角相等) (6)}24.(6分)解:(1)点B的坐标(3,2); (1)(2)长方形OABC周长=2×(2+3)=10,∵长方形OABC的周长分成2:3的两部分,∴两个部分的周长分别为4,6,∵OC+OA=5<6∴OC+OD=4∵OC=2,∴OD=2,∴点D的坐标为(2,0); (4)(3)如图所示,△CD′C′即为所求作的三角形, (5)CC′=3,点D′到CC′的距离为2,所以,△CD′C′的面积=×3×2=3. (6)25(6分)解:∠C与∠AED相等, (1)理由为:证明:∵∠1+∠2=180°,∠1+∠DFE=180°,∴∠2=∠DFE (2)∴AB∥EF∴∠3=∠ADE (3)又∠B=∠3∴∠B=∠ADE∴DE∥BC (5)∴∠C=∠AED (6)26、(本小题11分)解:(1)C(0,2),D(4,2); (2)(2)∵AB=4,CO=2,∴S平行四边形ABOC=AB•CO=4×2=8,设M坐标为(0,m),∴×4×|m|=8,解得m=±4∴M点的坐标为(0,4)或(0,﹣4);……5(求出一点给2分)(3)当点P在BD上,如图1,∠DCP+∠BOP=∠CPO; (7)当点P在线段BD的延长线上时,如图2,,∠BOP﹣∠DCP=∠CPO; (9)同理可得当点P在线段DB的延长线上时,∠DCP﹣∠BOP=∠CPO. (11)(每种情况正确画出图形给1分)。