转化与化归思想体现 - 副本

合集下载

转化与化归思想在中学数学中的应用

转化与化归思想在中学数学中的应用

转化与化归思想在中学数学中的应用转化思想和化归思想是中学数学中非常重要的两个思想,它们在解决问题和证明定理过程中起着至关重要的作用。

本文将分别探讨转化思想和化归思想在中学数学中的应用。

一、转化思想在中学数学中的应用转化思想是指通过变换问题的形式或等效变形,使问题转化为熟悉的或易于处理的问题。

它就像是把难题中的棘手一面剥离,使问题变得简单易懂,进而更好地解决问题。

在中学数学中,转化思想主要体现在以下几个方面:1.利用等量代换简化方程式在代数运算中,我们会遇到很多组长方程式,而这些方程式中经常出现相同的项。

这时候,我们可以采用等量代换的方法,将其化简,使问题更容易解决。

例如,我们可以利用x+y=1这个式子,将x^3+y^3转化为(x+y)^3-3xy(x+y),从而简化计算过程。

2.利用等式变形证明定理在证明数学定理时,通过大量变量之间的等式变形,可以大大简化证明过程。

例如,在证明勾股定理中,我们可以把原方程式a^2+b^2=c^2转化为a^2+b^2-c^2=0,继续变形成(a+c)(a-c)+(b+c)(b-c)=0,再变形成其它等式,最终证明了定理。

3.利用变量的代数变换简化问题有些问题需要建立函数关系式,但是常见的函数关系式过于复杂,不容易解决。

这时候,我们可以尝试采用代数变换的方法,将其变成简单的函数关系式。

例如,在解决极值问题时,我们可以利用三角函数的性质进行变量的代数变换,将复杂的函数关系式变得简单清晰。

二、化归思想在中学数学中的应用化归思想是指将问题按一定规律,通过变形而归约成一个与原问题相关的子问题,然后逐步化简子问题,最终解决原问题。

通过化归,我们可以更容易地理解问题,从而更好地解决问题。

在中学数学中,化归思想主要体现在以下几个方面:1.将高阶次问题化归为低阶次问题有些问题是高阶次或高维的,很难直接解决。

这时候,我们可以采用化归的方法,将其化归为低阶次问题。

例如,在解决n阶递推数列时,我们可以将n阶递推数列化归为n-1阶递推数列,从而简化问题的处理。

数学思想之一转化与化归思想(概述)

数学思想之一转化与化归思想(概述)

数学思想之一:转化与化归思想(概述)
1、转化与化归的思想方法转化与化归的思想方法是数学中最基本的思想方法,数学中一切问题的解决(当然包括解题)都离不开转化与化数形结合思想体现了数与形的相互转化;函数与方归,
程思想体现了函数、方程、不等式间的相互转化;分类讨论思想体现了局部与整体的相互转化,以上三种思想方法都是转化与化归思想的具体体现。

各种变换方法、分析法、反证法、待定系数法、构造法等都是转化
的手段。

所以说,转化与化归是数学思想方法的灵魂。

2、转化包括等价转化和非等价转化等价转化要求在转化过程中的前因后果既是充分的又是必要的,这样的转化能保证转化的结果仍为原问题所需要的结果,不等价转化其过程则是充分的或必要的,这样的转化能给人带来思维的启迪,找到解决问题的突破口,不等价变形要对所得结论进行必要的修改。

3、转化与化归的原则将不熟悉和难解的问题转化为熟知的易解的或已经解决的问题,将抽象的问题转化为具体的直观的问题,将复杂的问题转化为简单的问题,将一般性的问题转化为直观的特殊的问题;将实际问题转化为数学问题,使问题便与解决。

4、转化与化归的基本类型
(1)正与反、一般与特殊的转化;
(2)常量与变量的转化;
(3)数与形的转化;
(4)数学各分支之间的转化;
(5)相等与不相等之间的转化;
(6)实际问题与数学模型的转化。

转换与化归思想

转换与化归思想

浅谈转换与化归思想转化思想就是数学中的一种基本却很重要的思想。

深究起来,转化两字中包含着截然不同的两种思想,即转换与化归。

这两者其实表达了不同的思想方法,可以说就是思维方式与操作方法的区别。

一、 转换思想(1)转换思想的内涵转换思想就是指解决问题时策略、方法、指导思想的跳跃性变化,能跳出现有领域的局限,联系相关领域,并用相关领域的思维方式来解决现有领域内的问题。

要做到这一点,对思维能力的要求相对更高,必须对各个领域分别都有透彻的了解,更必须对各领域之间的联系有较多的研究,在关键时刻才能随心所欲地运用。

(2)转换思想在同一学科中的应用转换思想可以就是在同一学科的不同知识模块之间的变换,在解决问题时改变解题方向。

象数学学科中,数与式的互相转换、数与形的互相转换、文字语言与符号语言的互相转换。

比如,函数、方程、不等式就是代数中的三大重要问题,而它们之间完全可以用三个知识模块的不同方法解决其她模块的各类问题。

不等式恒成立问题可以转换到用函数图象解决,或者就是二次方程根的分布,也可以转换到二次函数与x 轴的交点问题。

再比如,数列问题用函数观点来解释,那更就是我们数学课堂中一再强调的问题了。

瞧这样一个问题:已知:11122=-+-a b b a ,求证:122=+b a 。

[分析] 这就是一个纯粹的代数证明问题,条件的变形就是比较艰难的,所以希望把条件变形从而得到结论这条思路也有点令人望而生畏。

再仔细观察本题的条件、结论中所出现的形式,稍加联系,我们完全可以想到:21a -、21b -、122=+b a 这些特殊形式在另一知识模块——三角函数中经常出现,它们呈现出完全类似的规律性。

[解答]由题意1≤a 、1≤b ,则可设αsin =a ,αcos =b ,πα<≤0 11122=-+-a b b a 即为1sin 1cos cos 1sin 22=-+-αααα化简得1cos cos sin sin =+αααα所以0sin ≥=αa ,0cos ≥=αb则 1cos sin 2222=+=+ααb a[小结] 本题的解决了就是发现了不同知识模块中的类似规律,加以利用得到新的思路,本题的题设与结论中都没有出现三角函数的形式,最终却必须引进三角函数加以解决,思维已经具有跳跃性,对一般学生来说解决起来还就是比较棘手的。

思想方法 第4讲 转化与化归思想

思想方法 第4讲 转化与化归思想

方 法
可以把握问题的一般规律,使我们达到成批处理问题的效果.对于
客观题,当题设条件提供的信息在普通条件下都成立或暗示答案
是一个定值时,可以把题中变化的量用特殊值代替,可以快捷地
得到答案.
方法二 命题的等价转化
将题目已知条件或结论进行转化,使深奥的问题浅显化、繁杂的问 题简单化,让题目得以解决.一般包括数与形的转化、正与反的转化、常 量与变量的转化、图形形体及位置的转化.
假设平行四边形ABCD为矩形,以A为坐标原点,AB,AD所在直线分
别为x轴、y轴建立如图所示的平面直角坐标系,
则A(0,0),M(12,6),N(8,8), ∴A→M=(12,6),N→M=(4,-2), ∴A→M·N→M=12×4+6×(-2)=36.
规 律
一般问题特殊化,使问题处理变得直接、简单;特殊问题一般化,
思想方法
第4讲 转化与化归思想
思想概述 转化与化归思想方法适用于在研究、解决数学问题时,思维受阻或试图寻求 简单方法或从一种情形转化到另一种情形,也就是转化到另一种情形使问题 得到解决,这种转化是解决问题的有效策略,同时也是获取成功的思维方式.
化 命题的等价转化 函数、方程、不等式之间的转化
批 此类题目一般都是采用方法一,赋值法求解,比较烦琐,所以可

以直接取满足条件的函数求解.
(2)在平行四边形 ABCD 中,|A→B|=12,|A→D|=8,若点 M,N 满足B→M=3M→C, D→N=2N→C,则A→M·N→M等于
A.20
B.15
√C.36
D.6
思路分析 假设平行四边形ABCD为矩形,建系→写出坐标→数量积运算
(2)(2023·天津模拟)某同学参加综合实践活动,设计了一个封闭的包装盒,

专题四转化与化归思想

专题四转化与化归思想

则a≥ x ,x∈(0, ]恒成立.
返回目录
模拟训练
【点评】 本题主要考查转化思想和分类整合思想,分类讨论实 质上也是一种转化思想. 解法1 采用的是分类讨论的方法, 将比较复杂问题通过分类转化 为一些较简单的问题进行求解, 而每一分类中又将恒成立的问题又转 化为最值问题.
1 (0,], 变为不等式一边为参数 , 另一边为含有x的代数式,a只要大 2 1 1 于或等于y= x ,x∈(0, ]的最大值就满足上式要求. x 2
消去x2得2 x12
2 1 x1 2 6m 1 0 , m m
返回目录
模拟训练
2 1 ∴x1∈R,∴Δ= 8 2 6m 1>0, m m 1 ∴(2m+1)(6m2-2m+1)<0,∴m< . 2 1 即当m< 时,抛物线上存在两点关于直线y=m(x-3)对称. 2
x12 满足 2 x1 x 1
2 x2 x1 x 2 m 3 , 2 2 2 x2 1 . x2 m
2 x12 x 2 m( x1 x 2 6), ∴ 1 x x . 1 2 m
行转化, 使问题逐次达到规范化、模式化,直至问题的解决.
返回目录
模拟训练
1. 函数f (x)=cos2x-2 3 sinxcosx的最小正周期是__________.
π 【解析】 ∵f(x) =cos2x-2 3 sinxcosx=cos2x- 3 sin2x=-2sin 2x ,
祝您高考成功!
作文成绩
语文作文课上, 老师布置了一篇500字的作文。
下课铃响了, 一学生发现自己只写了250字, 灵机一动,在

高中数学思想----转化与化归思想

高中数学思想----转化与化归思想

转化与化归思想[思想方法解读] 转化与化归思想方法,就是在研究和解决有关数学问题时,采用某种手段将问题通过变换使之转化,进而使问题得到解决的一种数学方法.一般是将复杂的问题通过变换转化为简单的问题,将难解的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已解决的问题.转化与化归思想是实现具有相互关联的两个知识板块进行相互转化的重要依据,如函数与不等式、函数与方程、数与形、式与数、角与边、空间与平面、实际问题与数学问题的互化等,消去法、换元法、数形结合法等都体现了等价转化思想,我们也经常在函数、方程、不等式之间进行等价转化,在复习过程中应注意相近主干知识之间的互化,注重知识的综合性. 转化与化归思想的原则(1)熟悉已知化原则:将陌生的问题转化为熟悉的问题,将未知的问题转化为已知的问题,以便于我们运用熟知的知识、经验和问题来解决.(2)简单化原则:将复杂问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据.(3)和谐统一原则:转化问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐统一的形式;或者转化命题,使其推演有利于运用某种数学方法或符合人们的思维规律. (4)正难则反原则:当问题正面讨论遇到困难时,应想到问题的反面,设法从问题的反面去探讨,使问题获得解决.体验高考1.(2016·课标全国乙)已知等差数列{a n }前9项的和为27,a 10=8,则a 100等于( ) A .100 B .99 C .98 D .97 答案 C解析 由等差数列性质,知S 9=9(a 1+a 9)2=9×2a 52=9a 5=27,得a 5=3,而a 10=8,因此公差d =a 10-a 510-5=1,∴a 100=a 10+90d =98,故选C.2.(2016·课标全国丙)已知4213532,4,25,a b c ===则( ) A .b <a <c B .a <b <c C .b <c <aD .c <a <b答案 A解析 因为4243552,42,a b ===由函数y =2x 在R 上为增函数知b <a ;又因为24213,33324,255a c ====由函数23y x =在(0,+∞)上为增函数知a <c .综上得b <a <c .故选A.3.(2016·四川)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos A a +cos B b =sin Cc .(1)证明:sin A sin B =sin C ; (2)若b 2+c 2-a 2=65bc ,求tan B .(1)证明 根据正弦定理,可设a sin A =b sin B =csin C =k (k >0),则a =k sin A ,b =k sin B ,c =k sin C . 代入cos A a +cos B b =sin C c 中,有cos A k sin A +cos B k sin B =sin C k sin C,变形可得 sin A sin B =sin A cos B +cos A sin B =sin(A +B ).在△ABC 中,由A +B +C =π,有sin(A +B )=sin(π-C )=sin C ,所以sin A sin B =sin C . (2)解 由已知,b 2+c 2-a 2=65bc ,根据余弦定理,有cos A =b 2+c 2-a 22bc =35,所以sin A =1-cos 2A =45.由(1)知,sin A sin B =sin A cos B +cos A sin B , 所以45sin B =45cos B +35sin B .故tan B =sin B cos B=4.高考必会题型题型一 正难则反的转化例1 已知集合A ={x ∈R |x 2-4mx +2m +6=0},B ={x ∈R |x <0},若A ∩B ≠∅,求实数m 的取值范围.解 设全集U ={m |Δ=(-4m )2-4(2m +6)≥0}, 即U ={m |m ≤-1或m ≥32}.若方程x 2-4mx +2m +6=0的两根x 1,x 2均为非负,则⎩⎪⎨⎪⎧m ∈U ,x 1+x 2=4m ≥0,⇒m ≥32,x 1x 2=2m +6≥0所以使A ∩B ≠∅的实数m 的取值范围为{m |m ≤-1}.点评 本题中,A ∩B ≠∅,所以A 是方程x 2-4mx +2m +6=0①的实数解组成的非空集合,并且方程①的根有三种情况:(1)两负根;(2)一负根和一零根;(3)一负根和一正根.分别求解比较麻烦,我们可以从问题的反面考虑,采取“正难则反”的解题策略,即先由Δ≥0,求出全集U ,然后求①的两根均为非负时m 的取值范围,最后利用“补集思想”求解,这就是正难则反这种转化思想的应用,也称为“补集思想”.变式训练1 若对于任意t ∈[1,2],函数g (x )=x 3+⎝⎛⎭⎫m 2+2x 2-2x 在区间(t,3)上总不为单调函数,则实数m 的取值范围是__________. 答案 ⎝⎛⎭⎫-373,-5 解析 g ′(x )=3x 2+(m +4)x -2,若g (x )在区间(t,3)上总为单调函数,则①g ′(x )≥0在(t,3)上恒成立,或②g ′(x )≤0在(t,3)上恒成立. 由①得3x 2+(m +4)x -2≥0, 即m +4≥2x -3x 在x ∈(t,3)上恒成立,所以m +4≥2t -3t 恒成立,则m +4≥-1,即m ≥-5;由②得m +4≤2x -3x 在x ∈(t,3)上恒成立,则m +4≤23-9,即m ≤-373.所以使函数g (x )在区间(t,3)上总不为单调函数的m 的取值范围为-373<m <-5.题型二 函数、方程、不等式之间的转化 例2 已知函数f (x )=eln x ,g (x )=1e f (x )-(x +1).(e =2.718……)(1)求函数g (x )的极大值;(2)求证:1+12+13+…+1n >ln(n +1)(n ∈N *).(1)解 ∵g (x )=1ef (x )-(x +1)=ln x -(x +1),∴g ′(x )=1x -1(x >0).令g ′(x )>0,解得0<x <1; 令g ′(x )<0,解得x >1.∴函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减, ∴g (x )极大值=g (1)=-2.(2)证明 由(1)知x =1是函数g (x )的极大值点,也是最大值点,∴g (x )≤g (1)=-2,即ln x -(x +1)≤-2⇒ln x ≤x -1(当且仅当x =1时等号成立), 令t =x -1,得t ≥ln(t +1)(t >-1). 取t =1n (n ∈N *)时,则1n >ln ⎝⎛⎭⎫1+1n =ln ⎝⎛⎭⎫n +1n ,∴1>ln 2,12>ln 32,13>ln 43,…,1n >ln ⎝⎛⎭⎫n +1n ,叠加得1+12+13+…+1n >ln(2·32·43·…·n +1n )=ln(n +1).即1+12+13+…+1n >ln(n +1).点评 解决方程、不等式的问题需要函数帮助,解决函数的问题需要方程、不等式的帮助,因此借助于函数、方程、不等式进行转化与化归可以将问题化繁为简,一般可将不等关系转化为最值(值域)问题,从而求出参变量的范围. 变式训练2 设a 为实数,函数f (x )=e x -2x +2a ,x ∈R . (1)求f (x )的单调区间与极值;(2)求证:当a >ln 2-1且x >0时,e x >x 2-2ax +1. (1)解 由f (x )=e x -2x +2a ,x ∈R 知f ′(x )=e x -2,x ∈R . 令f ′(x )=0,得x =ln 2.于是当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,ln 2)ln 2 (ln 2,+∞)f ′(x ) - 0 + f (x )单调递减 ↘2-2ln 2+2a单调递增 ↗故f (x )的单调递减区间是(-∞,ln 2), 单调递增区间是(ln 2,+∞), f (x )在x =ln 2处取得极小值,极小值为f (ln 2)=e ln 2-2ln 2+2a =2-2ln 2+2a .(2)证明 设g (x )=e x -x 2+2ax -1,x ∈R , 于是g ′(x )=e x -2x +2a ,x ∈R . 由(1)知当a >ln 2-1时,g ′(x )取最小值为g ′(ln 2)=2(1-ln 2+a )>0. 于是对任意x ∈R ,都有g ′(x )>0, 所以g (x )在R 内单调递增.于是当a >ln 2-1时,对任意x ∈(0,+∞), 都有g (x )>g (0).而g (0)=0,从而对任意x ∈(0,+∞),都有g (x )>0. 即e x -x 2+2ax -1>0,故e x >x 2-2ax +1. 题型三 主与次的转化例3 已知函数f (x )=x 3+3ax -1,g (x )=f ′(x )-ax -5,其中f ′(x )是f (x )的导函数.对满足-1≤a ≤1的一切a 的值,都有g (x )<0,则实数x 的取值范围为________. 答案 ⎝⎛⎭⎫-23,1 解析 由题意,知g (x )=3x 2-ax +3a -5, 令φ(a )=(3-x )a +3x 2-5,-1≤a ≤1. 对-1≤a ≤1,恒有g (x )<0,即φ(a )<0,∴⎩⎪⎨⎪⎧ φ(1)<0,φ(-1)<0, 即⎩⎪⎨⎪⎧3x 2-x -2<0,3x 2+x -8<0, 解得-23<x <1.故当x ∈⎝⎛⎭⎫-23,1时,对满足-1≤a ≤1的一切a 的值,都有g (x )<0. 点评 主与次的转化法合情合理的转化是数学问题能否“明朗化”的关键所在,通过变换主元,起到了化繁为简的作用.在不等式中出现两个字母:x 及a ,关键在于该把哪个字母看成变量,哪个看成常数.显然可将a 视作自变量,则上述问题即可转化为在[-1,1]内关于a 的一次函数小于0恒成立的问题.变式训练3 设f (x )是定义在R 上的单调递增函数,若f (1-ax -x 2)≤f (2-a )对任意a ∈[-1,1]恒成立,则x 的取值范围为______________. 答案 (-∞,-1]∪[0,+∞) 解析 ∵f (x )是R 上的增函数, ∴1-ax -x 2≤2-a ,a ∈[-1,1].(*) (*)式可化为(x -1)a +x 2+1≥0对a ∈[-1,1]恒成立. 令g (a )=(x -1)a +x 2+1.则⎩⎪⎨⎪⎧g (-1)=x 2-x +2≥0,g (1)=x 2+x ≥0, 解得x ≥0或x ≤-1,即实数x 的取值范围是(-∞,-1]∪[0,+∞). 题型四 以换元为手段的转化与化归例4 是否存在实数a ,使得函数y =sin 2x +a cos x +58a -32在闭区间[0,π2]上的最大值是1?若存在,则求出对应的a 的值;若不存在,请说明理由. 解 y =sin 2x +a cos x +58a -32=1-cos 2x +a cos x +58a -32=-(cos x -a 2)2+a 24+58a -12.∵0≤x ≤π2,∴0≤cos x ≤1,令cos x =t ,则y =-(t -a 2)2+a 24+58a -12,0≤t ≤1.当a 2>1,即a >2时,函数y =-(t -a 2)2+a 24+58a -12在t ∈[0,1]上单调递增, ∴t =1时,函数有最大值y max =a +58a -32=1,解得a =2013<2(舍去);当0≤a2≤1,即0≤a ≤2时,则t =a2时函数有最大值,y max =a 24+58a -12=1,解得a =32或a =-4(舍去);当a2<0,即a <0时, 函数y =-(t -a 2)2+a 24+58a -12在t ∈[0,1]上单调递减,∴t =0时,函数有最大值y max =58a -12=1,解得a =125>0(舍去),综上所述,存在实数a =32,使得函数在闭区间[0,π2]上有最大值1.点评 换元有整体代换、特值代换、三角换元等情况.本题是关于三角函数最值的存在性问题,通过换元,设cos x =t ,转化为关于t 的二次函数问题,把三角函数的最值问题转化为二次函数y =-(t -a 2)2+a 24+58a -12,0≤t ≤1的最值问题,然后分类讨论解决问题.变式训练4 若关于x 的方程9x +(4+a )·3x +4=0有解,则实数a 的取值范围是____________. 答案 (-∞,-8]解析 设t =3x ,则原命题等价于关于t 的方程t 2+(4+a )t +4=0有正解,分离变量a ,得a +4=-⎝⎛⎭⎫t +4t , ∵t >0,∴-⎝⎛⎭⎫t +4t ≤-4, ∴a ≤-8,即实数a 的取值范围是(-∞,-8].高考题型精练1.若函数f (x )=x 3-tx 2+3x 在区间[1,4]上单调递减,则实数t 的取值范围是( ) A .(-∞,518] B .(-∞,3]C .[518,+∞) D .[3,+∞)答案 C解析 f ′(x )=3x 2-2tx +3, 由于f (x )在区间[1,4]上单调递减, 则有f ′(x )≤0在[1,4]上恒成立,即3x 2-2tx +3≤0,即t ≥32(x +1x )在[1,4]上恒成立,因为y =32(x +1x )在[1,4]上单调递增,所以t ≥32(4+14)=518,故选C.2.已知函数f (x )=|log 12x |,若m <n ,有f (m )=f (n ),则m +3n 的取值范围是( )A .[23,+∞)B .(23,+∞)C .[4,+∞)D .(4,+∞) 答案 D解析 ∵f (x )=|log 12x |,若m <n ,有f (m )=f (n ),∴log 12m =-log 12n ,∴mn =1,∴0<m <1,n >1,∴m +3n =m +3m 在m ∈(0,1)上单调递减,当m =1时,m +3n =4,∴m +3n >4.3.过抛物线y =ax 2(a >0)的焦点F ,作一直线交抛物线于P ,Q 两点,若线段PF 与FQ 的长度分别为p ,q ,则1p +1q 等于( )A .2a B.12a C .4a D.4a答案 C解析 抛物线y =ax 2(a >0)的标准方程为x 2=1a y (a >0),焦点F (0,14a ),取过焦点F 的直线垂直于y 轴, 则|PF |=|QF |=12a ,所以1p +1q=4a .4.已知函数f (x )=(e 2x +1+1)(ax +3a -1),若存在x ∈(0,+∞),使得不等式f (x )<1成立,则实数a 的取值范围是( ) A .(0,e +23(e +1))B .(0,2e +1)C .(-∞,e +23(e +1))D .(-∞,1e +1)答案 C解析 因为x ∈(0,+∞),所以2x +1>1, 则e 2x +1+1>e +1,要使f (x )<1,则ax +3a -1<1e +1,可转化为:存在x ∈(0,+∞)使得a <e +2e +1·1x +3成立.设g (x )=e +2e +1·1x +3,则a <g (x )max , 因为x >0,则x +3>3, 从而1x +3<13,所以g (x )<e +23(e +1),即a <e +23(e +1),选C.5.已知f (x )=33x +3,则f (-2 015)+f (-2 014)+…+f (0)+f (1)+…+f (2 016)=________.答案 2 016解析 f (x )+f (1-x )=33x +3+331-x +3=33x +3+3x3+3x =3x +33x +3=1, ∴f (0)+f (1)=1,f (-2 015)+f (2 016)=1,∴f (-2 015)+f (-2 014)+…+f (0)+f (1)+…+f (2 016)=2 016.6.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1在区间[-1,1]内至少存在一个值c ,使得f (c )>0,求实数p 的取值范围是________. 答案 (-3,32)解析 如果在[-1,1]内没有值满足f (c )>0,则⎩⎪⎨⎪⎧f (-1)≤0,f (1)≤0⇒⎩⎨⎧p ≤-12或p ≥1,p ≤-3或p ≥32⇒p ≤-3或p ≥32,取补集为-3<p <32,即为满足条件的p 的取值范围.故实数p 的取值范围为(-3,32).7.对任意的|m |≤2,函数f (x )=mx 2-2x +1-m 恒为负,则x 的取值范围是________________. 答案 (7-12,3+12) 解析 对任意的|m |≤2,有mx 2-2x +1-m <0恒成立, 即|m |≤2时,(x 2-1)m -2x +1<0恒成立. 设g (m )=(x 2-1)m -2x +1,则原问题转化为g (m )<0恒成立(m ∈[-2,2]).所以⎩⎪⎨⎪⎧g (-2)<0,g (2)<0,即⎩⎪⎨⎪⎧2x 2+2x -3>0,2x 2-2x -1<0, 解得7-12<x <3+12, 即实数x 的取值范围为(7-12,3+12). 8.(2016·天津模拟)已知一个几何体的三视图如图所示,如果点P ,Q 在正视图中所示位置:点P 为所在线段的中点,点Q 为顶点,则在几何体侧面上,从P 点到Q 点的最短路径的长为________.答案 a 1+π2解析 由三视图,知此几何体是一个圆锥和一个圆柱的组合体,分别沿P 点与Q 点所在母线剪开圆柱侧面并展开铺平,如图所示.则PQ =AP 2+AQ 2=a 2+(πa )2=a 1+π2. 所以P ,Q 两点在侧面上的最短路径的长为a 1+π2.9.求使不等式x 2+(a -6)x +9-3a >0,|a |≤1恒成立的x 的取值范围. 解 将原不等式整理为形式上是关于a 的不等式(x -3)a +x 2-6x +9>0.令f (a )=(x -3)a +x 2-6x +9.因为f (a )>0在|a |≤1时恒成立,所以(1)若x =3,则f (a )=0,不符合题意,应舍去.(2)若x ≠3,则由一次函数的单调性,可得⎩⎪⎨⎪⎧ f (-1)>0,f (1)>0, 即⎩⎪⎨⎪⎧x 2-7x +12>0,x 2-5x +6>0, 解得x <2或x >4.即x 的取值范围为(-∞,2)∪(4,+∞).10.已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若m ,n ∈[-1,1],m +n ≠0时,有f (m )+f (n )m +n>0. (1)证明f (x )在[-1,1]上是增函数;(2)解不等式f (x 2-1)+f (3-3x )<0;(3)若f (x )≤t 2-2at +1对∀x ∈[-1,1],a ∈[-1,1]恒成立,求实数t 的取值范围. 解 (1)任取-1≤x 1<x 2≤1,则f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (x 1)+f (-x 2)x 1-x 2(x 1-x 2). ∵-1≤x 1<x 2≤1,∴x 1+(-x 2)≠0,由已知f (x 1)+f (-x 2)x 1-x 2>0,x 1-x 2<0, ∴f (x 1)-f (x 2)<0,即f (x )在[-1,1]上是增函数.(2)因为f (x )是定义在[-1,1]上的奇函数,且在[-1,1]上是增函数,不等式化为f (x 2-1)<f (3x -3),所以⎩⎪⎨⎪⎧ x 2-1<3x -3,-1≤x 2-1≤1,-1≤3x -3≤1,解得x ∈(1,43]. (3)由(1)知,f (x )在[-1,1]上是增函数,所以f (x )在[-1,1]上的最大值为f (1)=1,要使f (x )≤t 2-2at +1对∀x ∈[-1,1],a ∈[-1,1]恒成立,只要t 2-2at +1≥1⇒t 2-2at ≥0,设g (a )=t 2-2at ,对∀a ∈[-1,1],g (a )≥0恒成立,所以⎩⎪⎨⎪⎧g (-1)=t 2+2t ≥0,g (1)=t 2-2t ≥0 ⇒⎩⎪⎨⎪⎧t ≥0或t ≤-2,t ≥2或t ≤0, 所以t ≥2或t ≤-2或t =0.11.已知函数f (x )=2|x -1|-a ,g (x )=-|2x +m |,a ,m ∈R ,若关于x 的不等式g (x )≥-1的整数解有且仅有一解-2.(1)求整数m 的值;(2)若函数y =f (x )的图象恒在函数y =12g (x )的图象的上方,求实数a 的取值范围. 解 (1)由g (x )≥-1,即-|2x +m |≥-1,|2x +m |≤1,得-m -12≤x ≤-m +12. ∵不等式的整数解为-2,∴-m -12≤-2≤-m +12, 解得3≤m ≤5.又∵不等式仅有一个整数解-2,∴m =4.(2)函数y =f (x )的图象恒在函数y =12g (x )的上方, 故f (x )-12g (x )>0对任意x ∈R 恒成立, ∴a <2|x -1|+|x +2|对任意x ∈R 恒成立.设h (x )=2|x -1|+|x +2|,则h (x )=⎩⎪⎨⎪⎧ -3x ,x ≤-2,4-x ,-2<x ≤1,3x ,x >1,则h(x)在区间(-∞,1)上是减函数,在区间(1,+∞)上是增函数,∴当x=1时,h(x)取得最小值3,故a<3,∴实数a的取值范围是(-∞,3).--。

4、转化与化归思想

4、转化与化归思想

4 转化与化归思想主线—基础—方法—应用—例题—注意—总结知识清单:知识1 转化与化归思想概述知识2 转化与化归的原则知识1 转化与化归思想概述所谓化归思想就是通过转化,使所要解决的问题由难变易或变为已经解决的问题,以有利于解决的一种数学思想。

化归思想常常以变换题目的结构形状、变更问题、从反面探究结论等方式出现,前面所介绍的函数思想、方程思想、数形结合、分类讨论等都是重要的化归方法。

知识2 转化与化归的原则(1)目标简化原则将复杂的问题向简单的问题转化。

(2)和谐统一性原则即化归应朝着使待解决问题在表现形式上趋于和谐,在量、形关系上趋于统一的方向进行,使问题的条件和结论更均匀和恰当。

(3)具体化原则即化归方向应由抽象到具体。

(4)低层次原则即将高维空间问题化归成低维空间问题。

(5)正难则反原则即当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探求,使问题获解。

方法清单:方法1 直接转化法方法2 换元转化法方法3 数形结合法转化方法4 构造法转化方法5 坐标法转化方法6 补集法转化方法7 空间与平面间的转化方法8 几何条件转化为向量关系的方法方法9 变更主元的转化法方法10一般式转化为标准式方法1 直接转化法把原问题转化为基本定理、基本公式或基本图形问题。

例1函数y=1+a x(0<a<1)的反函数的图象大致是()方法2 换元转化法运用“换元”把超越式转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题。

例2 设20≤≤x ,求函数523421+⋅-=-x x y 的最大值和最小值。

方法3 数形结合法转化研究原问题中数量关系(解析式)与空间形式(图形)的关系,通过互相变化获得转化途径。

例3 已知1,0,0=+≥≥b a b a ,求证225)2()2(22≥+++b a 方法4 构造法转化 “构造”一个合适的数学模型,把问题变为易于解决的问题。

浅谈转换与化归思想(精)

浅谈转换与化归思想(精)

浅谈转换与化归思想转化思想是数学中的一种基本却很重要的思想。

深究起来,转化两字中包含着截然不同的两种思想,即转换和化归。

这两者其实表达了不同的思想方法,可以说是思维方式与操作方法的区别。

一、 转换思想(1)转换思想的内涵转换思想是指解决问题时策略、方法、指导思想的跳跃性变化,能跳出现有领域的局限,联系相关领域,并用相关领域的思维方式来解决现有领域内的问题。

要做到这一点,对思维能力的要求相对更高,必须对各个领域分别都有透彻的了解,更必须对各领域之间的联系有较多的研究,在关键时刻才能随心所欲地运用。

(2)转换思想在同一学科中的应用转换思想可以是在同一学科的不同知识模块之间的变换,在解决问题时改变解题方向。

象数学学科中,数与式的互相转换、数与形的互相转换、文字语言与符号语言的互相转换。

比如,函数、方程、不等式是代数中的三大重要问题,而它们之间完全可以用三个知识模块的不同方法解决其他模块的各类问题。

不等式恒成立问题可以转换到用函数图象解决,或者是二次方程根的分布,也可以转换到二次函数与x 轴的交点问题。

再比如,数列问题用函数观点来解释,那更是我们数学课堂中一再强调的问题了。

看这样一个问题: 已知:11122=-+-a b b a ,求证:122=+b a 。

[分析] 这是一个纯粹的代数证明问题,条件的变形是比较艰难的,所以希望把条件变形从而得到结论这条思路也有点令人望而生畏。

再仔细观察本题的条件、结论中所出现的形式,稍加联系,我们完全可以想到:21a -、21b -、122=+b a 这些特殊形式在另一知识模块——三角函数中经常出现,它们呈现出完全类似的规律性。

[解答]由题意1≤a 、1≤b ,则可设αsin =a ,αcos =b ,πα<≤0 11122=-+-a b b a 即为1sin 1cos cos 1sin 22=-+-αααα化简得1cos cos sin sin =+αααα所以0sin ≥=αa ,0cos ≥=αb则 1cos sin 2222=+=+ααb a[小结] 本题的解决了是发现了不同知识模块中的类似规律,加以利用得到新的思路,本题的题设和结论中都没有出现三角函数的形式,最终却必须引进三角函数加以解决,思维已经具有跳跃性,对一般学生来说解决起来还是比较棘手的。

转化与化归思想方法

转化与化归思想方法

转化与化归思想方法,就是在研究和解决有关数学问题时采用某种手段将问题通过变换使之转化,进而得到解决的一种方法.一般总是将复杂的问题通过变换转化为简单的问题,将难解的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已解决的问题.转化与化归思想在高考中占有十分重要的地位,数学问题的解决,总离不开转化与化归,如未知向已知的转化、新知识向旧知识的转化、复杂问题向简单问题的转化、不同数学问题之间的互相转化、实际问题向数学问题转化等.各种变换、具体解题方法都是转化的手段,转化的思想方法渗透到所有的数学教学内容和解题过程中.1.转化与化归的原则1熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟知的知识、经验来解决.2简单化原则:将复杂问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据.3直观化原则:将比较抽象的问题化为比较直观的问题来解决.4正难则反原则:当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探讨,使问题获解.2.常见的转化与化归的方法转化与化归思想方法用在研究、解决数学问题时,思维受阻或寻求简单方法或从一种状况转化到另一种情形,也就是转化到另一种情境使问题得到解决,这种转化是解决问题的有效策略,同时也是成功的思维方式.常见的转化方法有:1直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题.2换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题.3数形结合法:研究原问题中数量关系解析式与空间形式图形关系,通过互相变换获得转化途径.4等价转化法:把原问题转化为一个易于解决的等价命题,达到化归的目的.5特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题、结论适合原问题.随着国家经济的发展,科技的发达,人才的需求,中国教育的改革,数学新课标的出现,在对学生的知识与技能,数学思想及情感与态度等方面的要求,学生在数学的学习方法也应该要相应改变了,要满足社会的需要.化归与转化思想的实质是揭示联系,实现转化.除极简单的数学问题外,每个数学问题的解决都是通过转化为已知的问题实现的.从这个意义上讲,解决数学问题就是从未知向已知转化的过程,同时在生活中许许多多的事情也需要往已知的方面转化,把事情简单化,这对以后学生的能力与德育方面有很大的帮助.化归与转化的思想是解决数学问题的根本思想,解题的过程实际上就是一步步转化的过程.数学中的转化比比皆是,如未知向已知转化,复杂问题向简单问题转化,新知识向旧知识的转化,命题之间的转化,数与形的转化,空间向平面的转化,高维向低维转化,多元向一元转化,高次向低次转化,超越式向代数式的转化,函数与方程的转化等,都是转化思想的体现.新的教学体制的出现,化归与转化的思想将是贯穿整个中学教学的一种主要的思想,所以在教学过程中要把这种思想溶入进去,让学生体会个中的精髓.关健词化归;转化;分析;联想1.化归与转化解决数学问题时,常遇到一些问题直接求解较为困难,通过观察、分析、类比、联想等思维过程,选择运用恰当的数学方法进行变换,将原问题转化为一个新问题相对来说,对自己较熟悉的问题,通过新问题的求解,达到解决原问题的目的,这一思想方法我们称之为“化归与转化的思想方法”.化归与转化思想的核心,是以可变的观点对所要解决的问题进行变形,就是在解决数学问题时,不是对问题进行直接进攻,而是采取迂回的战术,通过变形把要解决的问题,化归为某个已经解决的问题.从而求得原问题的解决.它的基本形式有:化未知为已知,化难为易,化繁为简,化曲为直等等.化归与转化的思想也不是随时能用,或随便用的,它需要遵循一定的原则,从而达到转化的正确性,实现这种思想的作用.下面我就来谈谈我对这种方法的理解.2.化归与转化的原则化归与转化思想的实质是揭示联系,实现转化.转化有等价转化和非等价转化,等价转化的作用就不用说,而不等价转换,如果没明确的附加条件,那就失去它的价值了.所以化归与转化就需要遵循一定的原则:2.1熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟知的知识、经验和问题来解决.除了及少数的原始知识外,整个中学的数学知识的学习就是在实现转化为旧的知识而得到的.例如:学二元一次方程就用化元法转化为一元一次方程;学一元二次方程用降幂法转化为一元一次方程;函数与方程之间的转化等等.2.2简单化原则:将复杂的问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据.这个原则大部分学生都知道,他们都会想把问题简单化,达到求解的过程.这个原则可以在无以记数的数学简便方法中体现出来.2.3和谐化原则:化归问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐的形式,或者转化命题,使其推演有利于运用某种数学方法或其方法符合人们的思维规律.也就是说整个转化的过程中,要符合思维规律,虽然思维可以多样化,可以无以为边的想象,但也要能被人接受并能理解.体现出现在国家倡导的和谐社会.2.4直观化原则:将比较抽象的问题转化为比较直观的问题来解决.这个主要在函数与图象的联系中体现出来.把某些枯燥乏味的代数问题转化为图形来解决,能直观的解决问题.2.5正难则反原则:当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探求,使问题获解.反证法的应用把这个原则表现的淋漓尽致,学生能理解到其中的精髓可是可以受用无穷的,包括在生活中的应用.2.6 现实化原则:所学所用所理解的道理要用于社会实践,同时要满足社会人才的需求.3.化归与转化的方法化归与转化的方法,在千变万化的题目中,方法也各不相同,也无以统计,这里就只讲解几中常用,学生也容易理解的.3.1 直接转化法:直接把新的知识转化为前续知识.这个在讲解新课的时候,尽量让学生去体会,让他们能自己解决新的问题,获取新的知识,接着把新的知识吸收,继续解决新的问题.3.2 构造法:这个是个重要的方法,有不少题目,不能直接解决和转化,缺少了媒介,让不少学生无从下手,这时就需要构造一个数学情境,建立一个数学模型,把问题溶入进去,使问题简单化,直观化,从而达到求解的过程.3.3 数与形的转化:这个主要用于函数问题的解答和某些图型中的某些量的关系.数形结合是数学学习的一种重要的思想.3.4 换元法:这个重要是把一些繁杂的,但又有重复性的题目简单化,更直观.这个主要用于方程的解答.3.5 相等与不相等之间的转化:这个主要用与不等式的证明和函数区间.3.6 实际问题与数学理论的转化:理论联系实际的一种方法.也是学生情感方面的培养.3.7 特殊与一般之间的转化:公式法解一元二次方程就是把特殊的一般化了.同时也可以说把具体的抽象化了.3.8 数学各分支之间的转化:数学本来就是一个连贯的整体,把各分支有机的联系起来,让人感到它的魄力.同时也能解决数学以外的我问题.5 总结提炼数学新课标要求学生不仅要学会知识,还要能用所学的知识解决新问题,并能总结归纳,化为新的知识并接受,这样才能满足社会人才的需求.化归与转化就是将待解决或未解决的问题,通过转化归结为一个已经能解决的问题,或者归结为一个比较容易解决的问题,或者归结为一个已为人们所熟知的具有既定解决方法和程序的问题,最终求得原问题的解决.懂得化归和转化的基本方向是简单化、熟悉化、和谐化.化归和转化需要广泛和灵活的联想,联想的基础是扎实的基础知识、基本技能和基本方法.熟练、扎实地掌握基础知识、基本技能和基本方法是转化的基础;丰富的联想、机敏细微的观察、比较、类比是实现转化的桥梁;培养训练自己自觉的化归与转化意识需要对定理、公式、法则有本质上的深刻理解和对典型习题的总结和提炼,要积极主动有意识地去发现事物之间的本质联系.为了实施有效的化归,既可以变更问题的条件,也可以变更问题的结论,既可以变换问题的内部结构,又可以变换问题的外部形式,既可以从代数的角度去认识问题,又可以从几何的角度去解决问题.。

专题三 第4讲 转化与化归思想

专题三  第4讲 转化与化归思想
2.在处理多变元的数学问题时,我们可以选取其中的常 数(或参数),将其看作是“主元”,实现主与次的转化,即常 量与变量的转化,从而达到减元的目的.
返回
[应用体验] 设 y=(log2x)2+(t-2)log2x-t+1,若 t∈[-2,2]时,y 恒取正 值,则 x 的取值范围是________.
第4讲 转化与化归思想
Contents
1 应用1 正与反的转化 2 应用2 常量与变量的转化 3 应用3 特殊与一般的转化 4 应用4 函数、方程、不等式间的转化 5 应用5 形体位置关系的相互转化
返回
“抓基础,重转化”是学好中学数学的金钥匙.事实上, 数学中的转化比比皆是,如未知向已知转化,复杂问题向简单 问题转化,新知识向旧知识转化,命题之间的转化,数与形的 转化,空间向平面转化,高维向低维转化,多元向一元转化, 高次向低次转化,函数与方程的转化等,都是转化思想的体现.
则①g′(x)≥0在(t,3)上恒成立,或②g′(x)≤0在(t,3)上恒成
立.
由①得3x2+(m+4)x-2≥0,即m+4≥
2 x
-3x在x∈(t,3)上
恒成立,∴m+4≥2t -3t恒成立,则m+4≥-1,即m≥-5;
返回
由②得 m+4≤2x-3x 在 x∈(t,3)上恒成立, 则 m+4≤23-9,即 m≤-337. ∴函数 g(x)在区间(t,3)上总不为单调函数的 m 的取值范 围为-337<m<-5.
答案:B
返回
2.设四边形 ABCD 为平行四边形,|―A→B |=6,|―A→D |=4.若点
M,N 满足―BM→=3―M→C ,―D→N =2―N→C ,则―AM→·―NM→=
A.20
B.15

转化与化归的数学思想

转化与化归的数学思想

转化与化归的数学思想一、转化与化归思想的含义化归指的是转化与归结.简单的化归思想就是把不熟悉的问题转化成熟悉问题的数学思想.即把数学中待解决或未解决的问题,通过观察、分析、联想、类比等思维过程,选择恰当的方法进行变换、转化,归结到某个或某些已经解决或比较容易解决的问题上,最终解决原问题的这种解决问题的思想,称为化归思想.化归思想是解决数学问题的基本思想,解题的过程实际上就是转化的过程.数学中的转化比比皆是,比如将未知向已知转化;复杂问题向简单问题转化;命题间的转化;数与形的转化;空间向平面的转化;高次向低次的转化;多元向少元的转化;无限向有限的转化等都是化归思想的体现.化归思维模式:问题→新问题→解决新问题→解决原问题.化归与转化应遵循的基本原则:(1)熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟知的知识、经验和问题来解决;(2)简单化原则:将复杂的问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据;(3)和谐化原则:化归问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐的形式,或者转化命题,使其推演有利于运用某种数学方法或其方法符合人们的思维规律;(4)直观化原则:将比较抽象的问题转化为比较直观的问题来解决;(5)正难则反原则:当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探求,使问题获解。

二、化归思想的解题途径1、一般与特殊的转化21(0)11,2.243y ax a F P Q PF FQ p q p q A a B a C a D a =>+例 过抛物线的焦点作一直线与抛物线交于、两点,若线段、的长分别为、则的值为( )2.具体与抽象的转化.把抽象问题具体化是在数学解题中常有的化归途径,它是对抽象问题的理解和再认识,在抽象.例2、设函数 的定义域为D ,若所有点 构成一个正方形区域,则a 的值为A .-2B .-4C .-8D .不能确定3. 正面与反面的转化在处理某一问题时,按习惯思维从正面思考比较困难,这时用逆向思维的方式从反面去考虑,往往使问题变得比较简单。

转化与化归思想

转化与化归思想
返回
3.直观化原则 将比较抽象的问题转化为比较直观的问题来解决. 4.正难则反原则 当问题正面讨论遇到困难时,应想到考虑问题的反面, 设法从问题的反面去探求,使问题获得解决,或证明问题的 可能性. 总之,化归与转化是高中数学的一种重要思想方法,掌 握好化归与转化的思想方法的特点、题型、方法、要素、原 则对我们学习数学是非常有帮助的.
返回
返回
等与不等是数学解题中矛盾的两个方面,但是它们 在一定的条件下可以相互转化,例如本例,表面看来似 乎只具有相等的数量关系,且根据这些相等关系很难解 决,但是通过挖掘其中的不等量关系,转化为不等式(组) 来求解,则显得非常简捷有效.
返回
正向与逆向的转化
[例3] 某射手射击1次击中目标的概率是0.9他连续射击4 次且他各次射击是否击中目标是相互独立的,则他至少击中 目标1次的概率为 ________.
返回
2.转化与化归的常见方法 (1)直接转化法:把原问题直接转化为基本定理、基本公式 或基本图形问题. (2)换元法:运用“换元”把式子转化为有理式或使整式降幂 等,把较复杂的函数、方程、不等式问题转化为易于解决的基 本问题. (3)数形结合法:研究原问题中数量关系(解析式)与空间形 式(图形)关系,通过互相变换获得转化途径. (4)等价转化法:把原问题转化为一个易于解决的等价问题, 以达到化归的目的.
同一区间,故a=1.
返回
“化归与转化”还有“数与形的转化、数学各分支之间的转 化”等,应用时还应遵循以下四条原则:
1.熟悉化原则 将陌生的问题转化为熟悉的问题,以利于运用熟知的知识 和经验来解答问题. 2.简单化原则 将复杂的问题转化为简单的问题,通过对简单问题的解决, 达到解决复杂问题的目的,或获得某种解题的启示和依据.

转化与化归的思想

转化与化归的思想

转化与化归的思想「思想方法解读」 转化与化归思想是指在研究解决数学问题时,采用某种手段将问题通过转化,使问题得以解决的一种思维策略,其核心是把复杂的问题化归为简单的问题,将较难的问题化归为较容易求解的问题,将未能解决的问题化归为已经解决的问题.常见的转化与化归思想应用具体表现在:将抽象函数问题转化为具体函数问题,立体几何和解析几何中一般性点或图形问题转化为特殊点或特殊图形问题,以及“至少”或“是否存在”等正向思维受阻问题转化为逆向思维问题,空间与平面的转化,相等问题与不等问题的转化等.热点题型探究热点1 特殊与一般的转化例1 (1)过抛物线y =ax 2(a >0)的焦点F ,作一直线交抛物线于P ,Q 两点,若线段PF 与FQ 的长度分别为p ,q ,则1p +1q 等于( )A .2aB .12a C .4a D .4a答案 C解析 抛物线y =ax 2(a >0)的标准方程为x 2=1a y (a >0).焦点F ⎝ ⎛⎭⎪⎫0,14a ,取过焦点F 的直线垂直于y 轴,则|PF |=|QF |=12a ,所以1p +1q =4a .(2)在平行四边形ABCD 中,|AB →|=12,|AD →|=8.若点M ,N 满足BM →=3MC →,DN →=2NC →,则AM →·NM→=( ) A .20 B .15 C .36 D .6答案 C解析 解法一:由BM→=3MC →,DN →=2NC →知,点M 是BC 的一个四等分点,且BM =34BC ,点N 是DC 的一个三等分点,且DN =23DC ,所以AM→=AB →+34AD →,AN →=AD →+DN →=AD →+23AB →,所以NM →=AM →-AN →=AB →+34AD →-⎝ ⎛⎭⎪⎫AD →+23AB →=13AB →-14AD →,所以AM →·NM→=⎝ ⎛⎭⎪⎫AB →+34AD →·⎝ ⎛⎭⎪⎫13AB →-14AD →=13⎝ ⎛⎭⎪⎫AB →+34AD →·⎝ ⎛⎭⎪⎫AB →-34AD →=13⎝ ⎛⎭⎪⎫AB →2-916AD →2=13⎝ ⎛⎭⎪⎫144-916×64=36,故选C.解法二:不妨设∠DAB 为直角,以AB 所在直线为x 轴,AD 所在直线为y 轴建立如图所示的平面直角坐标系.则M (12,6),N (8,8),所以AM →=(12,6),NM →=(4,-2),所以AM →·NM→=12×4+6×(-2)=36,故选C.一般问题特殊化,使问题处理变的直接、简单;特殊问题一般化,可以把握问题的一般规律,使我们达到成批处理问题的效果.对于客观题,当题设条件提供的信息在普通条件下都成立或暗示答案是一个定值时,可以把题中变化的量用特殊值代替,可以快捷地得到答案.1.(2019·甘青宁高三3月联考)若函数f (x )=1+x 3,则f (lg 2)+f ⎝ ⎛⎭⎪⎫lg 12=( )A .2B .4C .-2D .-4答案 A解析 ∵f (x )=1+x 3,∴f (-x )+f (x )=2,∵lg 12=-lg 2,∴f (lg 2)+f ⎝ ⎛⎭⎪⎫lg 12=2,故选A.2.(2019·济南市高三3月模拟)已知函数f (x )=⎩⎪⎨⎪⎧13x 3-12x 2,x <0,e x ,x ≥0,则f (3-x 2)>f (2x )的解集为( )A .(-∞,-3)∪(1,+∞)B .(-3,1)C .(-∞,-1)∪(3,+∞)D .(-1,3) 答案 B解析 当x <0时,f (x )=13x 3-12x 2,f ′(x )=x 2-x ,∵x <0,∴f ′(x )>0,f (x )单调递增,且x →0时,f (x )→0,∴f (x )<0;当x ≥0时,f (x )=e x 单调递增,且f (x )≥f (0)=1.因此可得f (x )在整个定义域上单调递增,∴f (3-x 2)>f (2x )可转化为3-x 2>2x .解得-3<x <1,故选B.热点2 函数、方程、不等式间的转化例2 (1)已知函数f (x )=x +4x ,g (x )=2x +a ,若∀x 1∈⎣⎢⎡⎦⎥⎤12,3,∃x 2∈[2,3]使得f (x 1)≥g (x 2),则实数a 的取值范围是( )A .(-∞,1]B .[1,+∞)C .(-∞,0]D .[0,+∞)答案 C解析 当x ∈⎣⎢⎡⎦⎥⎤12,3时,f (x )≥2x ·4x =4,当且仅当x =2时等号成立,此时f (x )min =4.当x ∈[2,3]时,g (x )min =22+a =4+a .依题意f (x )min ≥g (x )min ,∴a ≤0.选C.(2)(2019·河南十所名校高三第二次联考)已知函数f (x )=ax (x 2-1)+x (a >0),方程f [f (x )]=b 对于任意b ∈[-1,1]都有9个不等实根,则实数a 的取值范围为( )A .(1,+∞)B .(2,+∞)C .(3,+∞)D .(4,+∞)答案 D解析 ∵f (x )=ax (x 2-1)+x (a >0),∴f ′(x )=3ax 2+(1-a ).若a ≤1,则f ′(x )≥0,f (x )单调递增,此时方程f [f (x )]=b 不可能有9个不等实根,故a >1.令f ′(x )=0,得x =±a -13a ,不妨令x 1=-a -13a ,x 2=a -13a .∵当a >1时,a -1<3a ,∴-1<x 1<0,0<x 2<1.f (-x )=a (-x )·[(-x )2-1]+(-x )=-[ax (x 2-1)+x ]=-f (x ),∴f (x )是奇函数,又函数f (x )过定点(1,1),(-1,-1)和(0,0),则作出函数f (x )的大致图象如图所示.令f (x )=t ,方程f (t )=b 对于任意b ∈[-1,1]都有9个不等实根,即方程f (x )=t 1,f (x )=t 2,f (x )=t 3,一共有9个不等实根,∴f (x )在极小值点处的函数值小于-1,即f ⎝⎛⎭⎪⎫a -13a =23(1-a )a -13a <-1,即(a -4)(2a +1)2>0,解得a >4,故实数a 的取值范围为(4,+∞).故选D.函数、方程与不等式相互转化的应用函数、方程与不等式三者之间存在着密不可分的联系,解决方程、不等式的问题需要函数帮助,解决函数的问题需要方程、不等式的帮助,因此借助于函数、方程、不等式之间的转化可以将问题化繁为简,常常将不等式的恒成立问题转化为函数的最值问题;将证明不等式问题转化为函数的单调性与最值问题,将方程的求解问题转化为函数的零点问题.1.(2019·安徽马鞍山二次质检)已知函数f (x )=x +(2-kx )e x (x >0),若f (x )>0的解集为(a ,b ),且(a ,b )中恰有两个整数,则实数k 的取值范围为( )A.⎝ ⎛⎭⎪⎫-∞,1e 2 B .⎣⎢⎡⎭⎪⎫1e 4+12,1e 3+23C.⎣⎢⎡⎭⎪⎫1e 3+23,1e 2+1 D .⎣⎢⎡⎭⎪⎫1e 2+1,1e +2答案 C解析 f (x )=x +(2-kx )e x >0⇒x >(kx -2)e x ⇒xe x >kx -2,设g (x )=xe x (x >0),h (x )=kx -2,问题就转化为在(a ,b )内,g (x )>h (x ),且(a ,b )中恰有两个整数.先研究函数g (x )的单调性,g ′(x )=1-xe x (x >0),当x >1时,g ′(x )<0,所以函数g (x )在(1,+∞)上单调递减;当0<x <1时,g ′(x )>0,所以函数g (x )在(0,1)上单调递增,所以g (x )max =g (1)=1e .注意到g (0)=0,当x >0时,g (x )>0.h (x )=kx -2,恒过(0,-2),要想在(a ,b )内,g (x )>h (x ),且(a ,b )中恰有两个整数,必须要满足以下两个条件:⎩⎨⎧g (2)>h (2),g (3)≤h (3)⇒⎩⎪⎨⎪⎧k <1e 2+1,k ≥1e 3+23⇒1e 3+23≤k <1e 2+1,故选C.2.已知a =13ln 94,b =45ln 54,c =14ln 4,则( ) A .a <b <c B .b <a <c C .c <a <b D .b <c <a 答案 B解析 a =13ln 94=13ln ⎝ ⎛⎭⎪⎫322=23ln 32=ln 3232,b =45ln 54=ln 5454,c =14ln 4=14×2ln 2=ln 22.故构造函数f (x )=ln x x ,则a =f ⎝ ⎛⎭⎪⎫32,b =f ⎝ ⎛⎭⎪⎫54,c =f (2).因为f ′(x )=1-1·ln x x 2=1-ln xx 2,由f ′(x )=0,解得x =e.故当x ∈(0,e)时,f ′(x )>0,函数f (x )在(0,e]上单调递增;当x ∈(e ,+∞)时,f ′(x )<0,函数f (x )在[e ,+∞)上单调递减.因为54<32<2<e ,所以f ⎝ ⎛⎭⎪⎫54<f ⎝ ⎛⎭⎪⎫32<f (2),即b <a <c ,故选B. 热点3 正难则反的转化例3 (1)(2019·湖南邵阳高三10月大联考)若命题“∃x 0∈R ,x 20+2mx 0+m +2<0”为假命题,则m 的取值范围是( )A .(-∞,-1]∪[2,+∞)B .(-∞,-1)∪(2,+∞)C .[-1,2]D .(-1,2)答案 C解析 若命题“∃x 0∈R ,x 20+2mx 0+m +2<0”为假命题,则命题等价于∀x∈R ,x 2+2mx +m +2≥0恒成立,故只需要Δ=4m 2-4(m +2)≤0⇒-1≤m ≤2.故选C.(2)已知函数f (x )=ax 2-x +ln x 在区间(1,2)上不单调,则实数a 的取值范围为________.答案 ⎝ ⎛⎭⎪⎫0,18解析 f ′(x )=2ax -1+1x .(ⅰ)若函数f (x )在区间(1,2)上单调递增,则f ′(x )≥0在(1,2)上恒成立,所以2ax -1+1x ≥0,得a ≥12⎝ ⎛⎭⎪⎫1x -1x 2.①令t =1x ,因为x ∈(1,2),所以t =1x ∈⎝ ⎛⎭⎪⎫12,1.设h (t )=12(t -t 2)=-12⎝ ⎛⎭⎪⎫t -122+18,t ∈⎝ ⎛⎭⎪⎫12,1,显然函数y =h (t )在区间⎝ ⎛⎭⎪⎫12,1上单调递减,所以h (1)<h (t )<h ⎝ ⎛⎭⎪⎫12,即0<h (t )<18.由①可知,a ≥18.(ⅱ)若函数f (x )在区间(1,2)上单调递减,则f ′(x )≤0在(1,2)上恒成立,所以2ax -1+1x ≤0,得a ≤12⎝ ⎛⎭⎪⎫1x -1x 2.②结合(ⅰ)可知,a ≤0.综上,若函数f (x )在区间(1,2)上单调,则实数a 的取值范围为(-∞,0]∪⎣⎢⎡⎭⎪⎫18,+∞.所以若函数f (x )在区间(1,2)上不单调,则实数a 的取值范围为⎝ ⎛⎭⎪⎫0,18.正与反的转化法正难则反,利用补集求得其解,这就是补集思想,一种充分体现对立统一、相互转化的思想方法.一般地,题目若出现多种成立的情形,则不成立的情形相对很少,从反面考虑较简单,因此,间接法多用于含有“至多”“至少”情形的问题中.1.若抛物线y =x 2上的所有弦都不能被直线y =k (x -3)垂直平分,则k 的取值范围是( )A.⎝ ⎛⎦⎥⎤-∞,12 B .⎝ ⎛⎭⎪⎫-∞,12C.⎝ ⎛⎭⎪⎫-12,+∞ D .⎣⎢⎡⎭⎪⎫-12,+∞答案 D解析 当k =0时,显然符合题意.当k ≠0时,设抛物线y =x 2上两点A (x 1,x 21),B (x 2,x 22)关于直线y =k (x -3)对称,AB 的中点为P (x 0,y 0),则x 0=x 1+x 22,y 0=x 21+x 222.由题设知x 21-x 22x 1-x 2=-1k ,所以x 1+x 22=-12k .又AB 的中点P (x 0,y 0)在直线y =k (x -3)上,所以x 21+x 222=k ⎝ ⎛⎭⎪⎫x 1+x 22-3=-6k +12,所以中点P ⎝ ⎛⎭⎪⎫-12k,-6k +12.由于点P 在y >x 2的区域内,则-6k +12>⎝ ⎛⎭⎪⎫-12k 2,整理得(2k +1)(6k 2-2k +1)<0,解得k <-12.因此当k <-12时,抛物线y =x 2上存在两点关于直线y =k (x -3)对称,于是当k ≥-12时,抛物线y =x 2上不存在两点关于直线y =k (x -3)对称.所以实数k 的取值范围为⎣⎢⎡⎭⎪⎫-12,+∞.故选D.2.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1在区间[-1,1]内至少存在一个值c ,使得f (c )>0,则实数p 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫-3,32解析 若在区间[-1,1]内不存在c 满足f (c )>0,因为Δ=36p 2≥0恒成立, 则⎩⎨⎧f (-1)≤0,f (1)≤0,解得⎩⎪⎨⎪⎧p ≤-12或p ≥1,p ≤-3或p ≥32.所以p ≤-3或p ≥32,取补集得-3<p <32, 即满足题意的实数p 的取值范围是⎝ ⎛⎭⎪⎫-3,32.热点4 形体位置关系的转化例4 (1)(2019·延安市高考模拟)正三角形ABC 的边长为2,将它沿高AD 折叠,使点B 与点C 间的距离为3,则四面体ABCD 外接球的表面积为( )A .6πB .7πC .8πD .9π答案 B解析 根据题意可知四面体ABCD 的三条侧棱BD ⊥AD ,DC ⊥DA ,底面△BDC 是等腰三角形,它的外接球就是它扩展为三棱柱的外接球,求出三棱柱的底面中心连线的中点到顶点的距离,就是球的半径,在三棱柱底面△BDC 中,BD =CD =1,BC =3,∴∠BDC =120°,∴△BDC 的外接圆的半径为12×3sin120°=1,由题意可得,球心到底面的距离为12AD =32,∴球的半径为r =34+1=72.故外接球的表面积为4πr 2=7π,故选B.(2)(2019·天津市滨海新区高三摸底考试)如图所示,已知多面体ABCDEFG中,AB ,AC ,AD 两两互相垂直,平面ABC ∥平面DEFG ,平面BEF ∥平面ADGC ,AB =AD =DG =2,AC =EF =1,则该多面体的体积为________.答案 4解析 解法一:(分割法)因为几何体有两对相对面互相平行,如图所示,过点C 作CH ⊥DG 于H ,连接EH ,即把多面体分割成一个直三棱柱DEH -ABC 和一个斜三棱柱BEF -CHG .由题意,知V 三棱柱DEH -ABC =S △DEH ·AD =⎝ ⎛⎭⎪⎫12×2×1×2=2,V三棱柱BEF -CHG =S △BEF ·DE =⎝ ⎛⎭⎪⎫12×2×1×2=2.故所求几何体的体积为V 多面体ABCDEFG =2+2=4.解法二:(补形法)因为几何体有两对相对面互相平行,如图所示,将多面体补成棱长为2的正方体,显然所求多面体的体积即该正方体体积的一半.又正方体的体积V 正方体ABHI -DEKG =23=8,故所求几何体的体积为V 多面体ABCDEFG =12×8=4.形体位置关系的转化是通过切割、补形、等体积转化等方式转化为便于观察、计算的常用几何体,由于新的几何体是转化而来的,一般需要对新几何体的位置关系、数据情况进行必要分析,准确理解新几何体的特征.1. (2019·东北三省三校高三第二次模拟)如图,直三棱柱ABC-A1B1C1中,点D是棱B1C1的中点,AB=AC=2,BC=BB1=2.(1)求证:AC1∥平面A1BD;(2)求点D到平面ABC1的距离.解(1)证明:连接AB1,交A1B于点O,则O为AB1的中点,连接OD,又D是B1C1的中点,∴OD∥AC1,∵OD⊂平面A1BD,AC1⊄平面A1BD,∴AC1∥平面A1BD.(2)由已知,AB=AC,取BC的中点H,则BC⊥AH,∵BB1⊥平面ABC,AH ⊂平面ABC,∴BB1⊥AH,∵BC∩BB1=B,∴AH⊥平面BCC1B1.又AB=AC=2,BC=2,∴AH=1,∵BB1⊥C1D,∴S △BC 1D =12C 1D ·BB 1=12×1×2=1,∴V D -ABC 1=V A -BC 1D =13S △BC 1D ·AH =13×1×1=13. ∵AC 1=2+4=6,BC 1=4+4=22,∴AC 21+AB 2=BC 21,∴△ABC 1是直角三角形,∴S △ABC 1=12×2×6=3,设点D 到平面ABC 1的距离为h ,则13×3×h =13,得h =33,即点D 到平面ABC 1的距离为33.2.(2019·山东师范大学附属中学高三上学期二模)已知等腰梯形ABCE (图1)中,AB ∥EC ,AB =BC =12EC =4,∠ABC =120°,D 是EC 的中点,将△ADE 沿AD 折起,构成四棱锥P -ABCD (图2).(1)求证:AD ⊥PB ;(2)当平面P AD ⊥平面ABCD 时,求三棱锥C -P AB 的体积. 解 (1)证明:取AD 的中点K ,连接PK ,BK ,BD ,∵P A =PD ,K 为AD 的中点,∴PK ⊥AD ,又AD =AB ,∠DAB =60°,∴△ADB 为等边三角形,则AB =BD ,则BK ⊥AD ,又PK ∩BK =K ,∴AD ⊥平面PBK ,又PB ⊂平面PBK ,则AD ⊥PB .(2)由平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,PK ⊂平面P AD ,PK ⊥AD ,得PK ⊥平面ABCD ,由已知AB =BC =4,∠ABC =120°,得S △ABC =43,又PK=23,∴V C-P AB =V P-ABC=13×43×23=8.。

高中数学-化归与转化思想

高中数学-化归与转化思想

一、 考点回顾化归与转化的思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图象、公式或已知条件将问题通过变换加以转化,进而达到解决问题的思想。

转化是将数学命题由一种形式向另一种形式的变换过程,化归是把待解决的问题通过某种转化过程归结为一类已经解决或比较容易解决的问题。

化归转化思想是中学数学最基本的思想方法,堪称数学思想的精髓,它渗透到了数学教学内容的各个领域和解题过程的各个环节中。

转化有等价转化与不等价转化。

等价转化后的新问题与原问题实质是一样的,不等价转则部分地改变了原对象的实质,需对所得结论进行必要的修正。

应用化归转化思想解题的原则应是化难为易、化生为熟、化繁为简,尽量是等价转化。

常见的转化有: 1、等与不等的相互转化等与不等是数学中两个重要的关系,把不等问题转化成相等问题,可以减少运算量,提高正确率;把相等问题转化为不等问题,能突破难点找到解题的突破口。

2、正与反的相互转化对于那些从“正面进攻”很难奏效或运算较难的问题,可先攻其反面,从而使正面问题得以解决。

3、特殊与一般的相互转化对于那些结论不明或解题思路不易发现的问题,可先用特殊情形探求解题思路或命题结论,再在一般情况下给出证明,这不失为一种解题的明智之举。

4、整体与局部的相互转化整体由局部构成,研究某些整体问题可以从局部开始。

5、高维与低维的相互转化事物的空间形成,总是表现为不同维数且遵循由低维想高维的发展规律,通过降维转化,可把问题有一个领域转换到另一个领域而得以解决,这种转化在复数与立体几何中特别常见。

6、数与形的相互转化通过挖掘已知条件的内涵,发现式子的几何意义,利用几何图形的直观性解决问题,使问题简化。

7、函数与方程的转化 二、经典例题剖析例1、设0a ≥,2()1ln 2ln (0)f x x x a x x =--+>.(Ⅰ)令()()F x xf x '=,讨论()F x 在(0)+,∞内的单调性并求极值; (Ⅱ)求证:当1x >时,恒有2ln 2ln 1x x a x >-+.解析:(Ⅰ)讨论()F x 在(0)+,∞内的单调性并求极值只需求出()F x 的导数'()F x 即可解决;(Ⅱ)要证当1x >时,恒有2ln 2ln 1x x a x >-+,可转化为证1x >时2ln 2ln 10x x a x -+->,亦即转化为1x >时()0f x >恒成立;因(1)0f =,于是可转化为证明()(1)f x f >,即()f x 在(1,)+∞上单调递增,这由(Ⅰ)易知。

怎样在教学中渗透转化与化归思想

怎样在教学中渗透转化与化归思想

谈学论教众所周知,数学知识之间的联系较为密切.这意味着学生要想解决问题,需掌握数学知识之间的内在联系,探寻其规律.因此,教师在教学中要有意识地渗透转化与化归思想,引导学生将所学的知识关联起来,合理进行转化,以提升课堂教学的效率.一、在讲解知识时渗透转化与化归思想所谓转化与化归思想,就是在研究和解决有关数学问题时采用某种手段将问题通过变换使之转化,进而解决问题的一种思想方法.转化与划归思想贯穿于高中数学的各个章节,是一种应用广泛的数学思想方法.因此,教师要精心研究教材,深度挖掘教材中与这种思想方法相关的知识,在讲解知识时引导学生分析知识间的内在联系,构建知识网络,实现知识之间的转化.例如,在教学“向量的加法运算及其几何意义”时,笔者给出了如图1所示的两个向量a 、b ,然后在平面内任取一点A ,作 AB =a , BC =b .学生通过观察图形,便会发现a +b = AB + BC = AC .这样便得到了三角形法则,也有效地渗透了转化与化归思想.通过数与形的转化,学生也就掌握了两个向量的加法运算及其几何意义.图1二、在习题课上渗透转化与化归思想转化与化归思想是一种重要的解题方法.当学生遇到一些比较抽象的数学问题,很难找到解题的思路时,教师可引导他们寻找各知识点之间的联系,另辟蹊径,将一些复杂的、难度大的、陌生的问题转化为简单的、容易的、熟悉的问题,这样能有效地提升解题的效率.例1.已知f (x )=x ln x ,g (x )=-x 2+ax -3.对一切x ∈(0,+∞),2f (x )≥g (x )恒成立,求a 的取值范围.解析:此问题是不等式恒成立问题.由于不等式左右两侧都是比较复杂的函数式,学生采用常规方法很难比较它们的大小.教师可引导学生将不等式进行变形,分离出参数,得到a ≤2ln x +x +3x ,然后构造新的函数h (x )=2ln x +x +3x ,利用转化与化归思想,将该问题转化为求函数h (x )最小值的问题,再利用导数知识,求得h (x )的最小值为4,最后得到答案a ≤4.例2.如图2,在四棱锥P ­ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,AB =2,∠BAD =60°.(1)求证:BD ⊥平面PAC ;(2)若PA =AB ,求PB 与AC 所成角的余弦值.解析:由于两异面直线PB 与AC 所成角很难找到,所以可以引导学生建立空间直角坐标系,利用转化与化归思想将问题转化为向量问题来求解,这样便可达到化难为易的目的了.解:(1)略;(2)设AC ∩BD =O .因为∠BAD =60°,PA =AB =2,所以BO =1,AO =CO =3.如图2,以O 为坐标原点,建立空间直角坐标系O ­xyz ,则P (0,-3,2),A (0,-,0),B (1,0,0),C (0,,0).所以 PB =(1,-3,-2),AC =(0,23,0).设PB 与AC 所成角为θ,则cos θ=|PB ⋅ AC |PB | |PC ||=622×23=即PB 与AC 所成角的余弦值为.总之,转化与化归思想是一种重要的解题思想,此思想的实质是建立知识之间联系,对问题进行变换、转化,使问题得以解决.在教学中,教师要结合教学内容和学生的实际情况渗透转化与化归思想,引导他们掌握此思想.(作者单位:甘肃省甘南藏族自治州合作一中)图251。

例谈转化与化归的思想方法

例谈转化与化归的思想方法

例谈转化与化归的思想方法
例谈转化与化归的思想方法是一种理论,旨在将事物归结为不同
的元素,并以此来理解它们之间的关系和内在联系。

其中,例谈转化
是指从一般的概念出发而不断深入讨论的过程,以达到更广泛的认识。

而化归则是从一般到特殊、从特殊到一般的一种思考方法。

首先,例谈转化以具体例子入手,比如数学中的实例,可以以此
作为我们学习概念的基础,进一步深入探讨,由具体到抽象,最终把
它提升到一般的概念,从而得到更加宏观的认识。

其次,化归的方法也可以帮助我们理解事物,从而使我们对复杂
的概念有更清晰的认识。

化归可以划分为从一般到特殊和从特殊到一
般的思考方法。

从一般到特殊的方法我们可以通过聚焦特定领域,把
抽象的概念引入具体的实例,以便更深入地理解。

而从特殊到一般的
思考方法则与前者相反,在这种方法中,我们可以根据特定的实例,
把具体的概念引入抽象的概念,从而掌握概念的宏观结构。

例谈转化与化归的思想方法在各种学科和领域都有应用,可以帮
助我们理解事物,从而更好地推动知识的发展。

首先,例谈转化可以
帮助我们理解抽象的概念,从实例出发,深入探讨,归纳出更宏观的
概念。

而化归则可以帮助我们理解复杂的概念,从一般到特殊,从特
殊到一般,把具体的概念理解为抽象的概念,从而更好地掌握它们之
间的联系。

马井堂-高中数学-专题-转化与化归思想

马井堂-高中数学-专题-转化与化归思想

第四讲 转化与化归思想Z 知识整合hi shi zheng he一、转化与化归思想的含义转化与化归思想方法,就是在研究和解决有关数学问题时,采用某种手段将问题通过变换使之转化,进而使问题得到解决的一种数学方法,一般是将复杂的问题通过变换转化为简单的问题,将难解的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已解决的问题.二、转化与化归的常见方法1.直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题. 2.换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题.3.数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径.4.等价转化法:把原问题转化为一个易于解决的等价问题,以达到化归的目的. 5.特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题的结论适合原问题.6.构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题.7.坐标法:以坐标系为工具,用计算方法解决几何问题是转化方法的一个重要途径. 8.类比法:运用类比推理,猜测问题的结论,易于探求. 9.参数法:引进参数,使原问题转化为熟悉的问题进行解决.10.补集法:如果正面解决原问题有困难,可把原问题的结果看作集合A ,而把包含该问题的整体问题的结果类比为全集U ,通过解决全集U 及补集∁U A 使原问题获得解决,体现了正难则反的原则.命题方向1 特殊与一般的转化例1 (1)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a ,b ,c 成等差数列,则cos A +cos C 1+cos A cos C =45.[思路探究] 看到a ,b ,c 成等差数列,可联想到等边三角形举特例求解. [解析] 显然△ABC 为等边三角形时符合题设条件,所以cos A +cos C1+cos A cos C=cos60°+cos60°1+cos60°cos60°=11+14=45.(2)已知f (x )=33x +3,则f (-2018)+f (-2017)+…+f (0)+f (1)+…+f (2019)=2019.[思路探究] 看到求f (-2018)+f (-2017)+…+f (0)+f (1)+…+f (2019)的值,想到求f (x )+f (1-x )的值.[解析] f (x )+f (1-x )=33x +3+331-x +3=33x +3+3x 3+3x =3x +33x +3=1,所以f (0)+f (1)=1,f (-2018)+f (2019)=1,所以f (-2018)+f (-2017)+…+f (0)+f (1)+…+f (2019)=2019. 『规律总结』 化一般为特殊的应用(1)常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等. (2)对于选择题,当题设在普通条件下都成立时,用特殊值进行探求,可快捷地得到答案.(3)对于填空题,当填空题的结论唯一或题设条件提供的信息暗示答案是一个定值时,可以把题中变化的量用特殊值代替,即可得到答案.G 跟踪训练en zong xun lian1.AB 是过抛物线x 2=4y 的焦点的动弦,直线l 1,l 2是抛物线两条分别切于A ,B 的切线,则l 1,l 2的交点的坐标为(0,-1).[解析] 找特殊情况,当AB ⊥y 轴时,AB 的方程为y =1,则A (-2,1),B (2,1),过点A 的切线方程为y -1=-(x +2),即x +y +1=0.同理,过点B 的切线方程为x -y -1=0,则l 1,l 2的交点为(0,-1).2.已知数列{x n }满足x n +3=x n ,x n +2=|x n +1-x n |(n ∈N *),若x 1=1,x 2=a (a ≤1,a ≠0),则数列{x n }的前2019项和S 2019=1346.[解析] 根据题意,特殊化可得x 3=|x 2-x 1|=|a -1|=1-a (a ≤1,a ≠0),则x 1+x 2+x 3=2又因为x n +3=x n ,所以x 4=x 1,x 5=x 2,x 6=x 3,即x 4+x 5+x 6=x 1+x 2+x 3=2.同理,x 7+x 8+x 9=2,x 10+x 11+x 12=2,…,而2019=673×3,则S 2019=2×673=1346.命题方向2 函数、方程、不等式之间的转化例2 已知e 为自然对数的底数,若对任意的x ∈[1e,1],总存在唯一的y ∈[-1,1],使得ln x -x +1+a =y 2e y 成立,则实数a 的取值范围是( A )A .[1e,e]B .(2e,e]C .(2e ,+∞)D .(2e ,e +1e)[解析] 设f (x )=ln x -x +1+a ,当x ∈[1e ,1]时,f ′(x )=1-x x ≥0,f (x )是增函数,所以x ∈[1e ,1]时,f (x )∈[a -1e ,a ];设g (y )=y 2e y ,则g ′(y )=e y y (y +2),则g (y )在[-1,0)单调递减,在[0,1]单调递增,且g (-1)=1e <g (1)=e.因为对任意的x ∈[1e ,1],存在唯一的y ∈[-1,1],使得f (x )=g (y )成立,所以[a -1e ,a ]⊆[0,e],解得1e≤a ≤e.『规律总结』函数、方程与不等式相互转化的应用(1)函数与方程、不等式联系密切,解决方程、不等式的问题需要函数帮助.(2)解决函数的问题需要方程、不等式的帮助,因此借助于函数与方程、不等式进行转化与化归可以将问题化繁为简,一般可将不等式关系转化为最值(值域)问题,从而求出参变量的范围.G 跟踪训练en zong xun lian已知函数f (x )=x 3+3ax -1,g (x )=f ′(x )-ax -5,其中f ′(x )是f (x )的导函数.对满足-1≤a ≤1的一切a 的值,都有g (x )<0,则实数x 的取值范围为(-23,1).[解析] 由题意得g (x )=3x 2-ax +3a -5,令φ(a )=(3-x )a +3x 2-5,-1≤a ≤1,对-1≤a ≤1,恒有g (x )<0,即φ(a )<0,∴⎩⎪⎨⎪⎧ φ(1)<0,φ(-1)<0即⎩⎪⎨⎪⎧3x 2-x -2<0,3x 2+x -8<0解得-23<x <1.故x 的取值范围是(-23,1).命题方向3 正难则反的转化例3 若对于任意t ∈[1,2],函数g (x )=x 3+(m2+2)x 2-2x 在区间(t,3)上总不为单调函数,则实数m 的取值范围是( B )A .(-5,-103)B .(-373,-5)C .(-5,-2)D .(-5,+∞)[解析] g ′(x )=3x 2+(m +4)x -2, 若g (x )在区间(t,3)上总为单调函数,则①g ′(x )≥0在(t,3)上恒成立,或②g ′(x )≤0在(t,3)上恒成立.由①得3x 2+(m +4)x -2≥0,即m +4≥2x -3x 在x ∈(t,3)上恒成立,所以m +4≥2t -3t 恒成立,又t ∈[1,2],则m +4≥21-3×1=-1,即m ≥-5;由②得m +4≤2x -3x 在x ∈(t,3)上恒成立,则m +4≤23-9,即m ≤-373.所以函数g (x )在区间(t,3)上总不为单调函数的m 的取值范围为-373<m <-5.『规律总结』转化化归思想遵循的原则(1)熟悉化原则:将陌生的问题转化为我们熟悉的问题. (2)简单化原则:将复杂的问题通过变换转化为简单的问题.(3)直观化原则:将较抽象的问题转化为比较直观的问题(如数形结合思想,立体几何向平面几何问题转化).(4)正难则反原则:若问题直接求解困难时,可考虑运用反证法或补集法或用逆否命题间接地解决问题.G 跟踪训练en zong xun lian若抛物线y =x 2上的所有弦都不能被直线y =k (x -3)垂直平分,则k 的取值范围是( D )A .(-∞,12]B .(-∞,12)C .(-12,+∞)D .[-12,+∞)[解析] 设抛物线y =x 2上两点A (x 1,x 21),B (x 2,x 22)关于直线y =k (x -3)对称,AB 的中点为P (x 0,y 0),则x 0=x 1+x 22,y 0=x 21+x 222.由题设知x 21-x 22x 1-x 2=-1k ,所以x 1+x 22=-12k .又AB 的中点P (x 0,y 0)在直线y =k (x -3)上,所以x 21+x 222=k (x 21+x 222)=k (x 1+x 22-3)=-6k +12,所以中点P (-12k ,-6k +12).由于点P 在y >x 2的区域内,则-6k +12>(-12k )2,整理得(2k +1)(6k 2-2k +1)<0,解得k <-12.因此当k <-12时,抛物线y =x 2上存在两点关于直线y =k (x -3)对称,于是当k ≥-12时,抛物线y =x 2上存在两点关于直线y =k (x =3)对称.所以实数k 的取值范围是[-12,+∞).故选D .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

转化与化归思想在立体几何中的体现
摘要:转化与化归的思想,是数学学科与其他学科相比,一个特有的数学思想方法,化归思想的核心是把生问题转化为熟问题,我们平时解题的过程实质上就是一个缩小已知与求解差异的过程,一个生题变熟题的过程。

因此,解每一道题,无论是难题还是易题,都离不开化归,所以说,转化与化归是数学思想方法的灵魂。

本文就其基本理论和其在立体几何中的体现做一简单介绍。

关键词:转化;化归;思想;立体几何;体现
转化与化归思想的实质是揭示联系,实现转化。

除极简单的数学问题外,每个数学问题的解决都是通过转化为已知的问题实现的。

从这个意义上讲,解决数学问题就是从未知向已知转化的过程。

转化与化归的思想是解决数学问题的根本思想,解题的过程实际上就是一步步转化的过程。

数学中的转化比比皆是,如未知向已知转化,复杂问题向简单问题转化,新知识向旧知识的转化,命题之间的转化,数与形的转化,空间向平面的转化,高维向低维转化,多元向一元转化,高次向低次转化,超越式向代数式的转化,函数与方程的转化等,都是转化思想的体现。

转化有等价转化和非等价转化。

等价转化前后是充要条件,所以尽可能使转化具有等价性;在不得已的情况下,进行不等价转化,应附加限制条件,以保持等价性,或对所得结论进行必要的验证。

转化思想方法的特点是实现问题的规范化,模式化,以便应用已知的理论、方法和技巧达到问题的解决,其形式如下图:
转化
问题规范化问题
已知理论、方法、技巧
还原
转化与化归应遵循的基本原则:
(1)熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟知的知识、经验和问题来解决。

(2)简单化原则:将复杂的问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据。

(3)和谐化原则:化归问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐的形式,或者转化命题,使其推演有利于运用某种数学方法或其方法符合人们的思维规律。

(4)直观化原则:将比较抽象的问题转化为比较直观的问题来解决。

(5)正难则反原则:当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探求,使问题获解。

转化、化归的思想贯穿立体几何的始终,是处理立体几何问题的基本思想方法,具体体现在如下几个方面:
(1)把立体几何问题向平面几何转化,即立体问题平面化,它是解决立体几何问题始终如一的原则。

如异面直线所成的角、线面所成的角、二面角这三种空间角都是用平面角定义的,在解决有关空间角的问题时,一般是将它们转化为平面角来处理,最终化归为解三角形。

(2)在讨论平行与垂直关系时,应注意用“线线平行↔线面平行↔面面平行”与“线线垂直↔线面垂直↔面面垂直”进行转化。

(3)在计算立体几何中的距离问题时,根据它们的定义都可以化归为两点间的距离,。

例如,求异面直线的距离;或化归为求公垂线段的长;或化归为线面距离或面面距离,而这三种方法最终又化归为两点间的距离。

另外,等体积法、图形语言与符号语言、文字语言的互译等也都体现了转化思想的应用。

下面枚举数例,有不妥之处敬请指正。

例1.已知a 、b 是两条异面直线,求证过a 且平行b 的平面必平行于过b 且平行a 的平面。

【解答】如图1—1所示,任取点A ∈α,由推论1设点A 与b 确定平面γ,
且1b =αγ ,
b ∥α,1b ,⊂b =αγγ
则b ∥1b 又∵ββ⊂,1b b ⊄ ∴1b ∥β
又∵α∥β,A b a =1 ,a 、1b α⊂ ∴α∥β,故原命题正确。

【点评】在面面关系中,要善于用和线线、线面平行的概念判定和性质进行类比、探索、总结,特别要注意互相转化,达到由线线、线面化归为面面问题,使之统一深化。

例2.如图1—2,在矩形ABCD 中,AB=33,BC=3,沿对角线BD 把△BCD 折起使C 点移到C 1点,且C 1在平面ABD 内的射影O 恰好落在AB 上。

(1)求证:AC 1⊥BC 1;
α
1b
A
a
β
b
图1—1
γ
(2)求AB 与平面BC 1D 所成的正弦值; (3)求二面角C 1—BD —A 的正切值。

【解答】(1)由题意,C 1O ⊥面ABD 。

又C 1O ⊂面ABC 1, ∴面ABC 1⊥面ABD 。

又∵AD ⊥AB ,面ABC 1∩面ABD=AB ,
∴AD ⊥面ABC 1, ∴AD ⊥BC 1,
又BC 1⊥C 1D ,AD ∩C 1D=D , ∴BC 1⊥面AC 1D , ∴BC 1⊥AC 1。

(还可由三垂线定理证AD ⊥BC 1) (2)∵BC 1⊥面AC 1D ,BC 1⊂面BC 1D , ∴面AC 1D ⊥面BC 1D ,
作AH ⊥C 1D ,于H ,则AH ⊥面BC 1D 。

连结BH ,则BH 为AB 在面BC 1D 上的射影,
∴∠ABH 即为AB 与面BC 1D 所成的角。

又在Rt △AC 1D 中,C 1D=33,AD=3, ∴AC 1=23,∴AH=6, ∴sin ∠ABH=
AB AH =3
2。

图1—2
O
G
H
C 1
D
C
B
A
即AB 与面BC 1D 所成角的正弦值为
3
2。

(3)过O 作OG ⊥BD 于G ,连结C 1G ,则C 1G ⊥BD 。

则∠C 1GO 为二面角C 1—BD —A 的平面角。

在Rt △AC 1B 中,C 1O=AB
BC AC 1
1•=6
在Rt △BC 1D 中,C 1G=BD CD BC 11•=2
3
3。

∴OG=2121O C G C =2
3
, ∴tan ∠C 1GO=
OG
O
C 1=22. 即二面角C 1—B
D —A 的正切值为22。

【点评】(1)本题证线线垂直过程中用到了线线垂直、线面垂直、面面垂直相互转化的思想
线线垂直 线面垂直
面面垂直
(2)通过作线面角与二面角的平面角,将空间角的问题转化为平面角处理。

例3.如图1—3,正三棱柱ABC-A 1B 1C 1的棱长都为a ,D 是AB 的中点,连结A 1D ,DC ,A 1C.
(1)求证:BC 1∥平面A 1DC ;
(2)求BC 1到平面A 1DC 的距离。

【解答】(1)连结AC 1,交A 1C 于点E ,则平面ABC 1∩平面A 1DC=DE.因为E 是AC 1的中点,D 是AB 的中点,所以DE ∥BC 1.而DE ⊂平面A 1DC ,BC 1⊄平面A 1DC , ∴BC 1∥平面A 1DC ;
(2)由(1)知BC 1∥平面A 1DC ,所以BC 1上任一点到平面A 1DC 的距离都是BC 1到平面的距离。

所以求点B 到平面A 1DC 的距离即可,又因为AB 与平面A 1DC 相交于AB 的中点D 。

所以点A 、B 到平面A 1DC 的距离相等,因为CD ⊥AB ,CD ⊥AA 1,所以CD ⊥平面A 1ABB 1。

所以A —A 1D —C 是直二面角,过点A 作平面A 1DC 的垂线,垂足H 在A 1D 上。

在Rt △A 1AD 上,A 1A ·AD=A 1D ·AH ,
所以AH=D
A AD
A A 11∙=4
11a 2+
•1a =
a 5
5。

所以BC 1到平面A 1DC 的距离是
a 5
5。

【点评】线到面的距离是转化为点到平面的距离求解的,线段与平面交于中点时两端点到平面的距离相等,又可化成另一端点到平面的距离。

参考文献:
H E C
D C 1
B 1
B
A
A 1
图1—3
[]1梁大鹏,王俊杰.思想方法高中数学.北京:人民日报出版社,2006年3月第二版.582-610.
[]2皱清林等.高中数学思想方法与能力培养.四川:四川教育出版社,1995年10月第一版.324-385.。

相关文档
最新文档