初一几何——三角形内外角平分线模型
三角形中的特殊模型-双角平分线模型(学生版)
三角形中的特殊模型-双角平分线模型模型1、双角平分线模型1)两内角平分线的夹角模型条件:如图1,在△ABC 中,∠ABC 和∠ACB 的平分线BE ,CF 交于点G ;结论:∠BGC =90°+12∠A .图1图2图32)两外角平分线的夹角模型条件:如图2,在△ABC 中,BO ,CO 是△ABC 的外角平分线;结论:∠O =90°-12∠A .3)一个内角一个外角平分线的夹角模型条件:如图3,在△ABC 中,BP 平分∠ABC ,CP 平分∠ACB 的外角,两条角平分线相交于点P ;结论:∠P =12∠A .图4图5图64)凸多边形双内角平分线的夹角模型条件:如图4,BP 、CP 平分∠ABC 、∠DCB ,两条角平分线相交于点P ;结论:2∠P =∠A +∠D 5)两内角平分线的夹角模型条件:如图5,BP 、DP 平分∠BCD 、∠CDE ,两条角平分线相交于点P ;结论:2∠P =∠A +∠B +∠E -180°6)一个内角一个外角平分线的夹角模型(累计平分线)条件:如图6,∠A =α,∠ABC ,∠ACD 的平分线相交于点P 1,∠P 1BC ,∠P 1CD 的平分线相交于点P 2,∠P 2BC,∠P2CD的平分线相交于点P3⋯⋯以此类推;结论:∠P n的度数是α2n.7)旁心模型旁心:三角形的一条内角平分线与其他两个角的外角平分线交于一点条件:如图,BD平分∠ABC,CD平分∠ACB的外角,两条角平分线相交于点D;结论:AD平分∠CAD 1(2023·绵阳市八年级课时练习)如图,在ΔABC中,∠ABC=80°,∠ACB=50°,BP平分∠ABC,CP平分∠ACB,则∠BPC=.2(2023·河南周口·八年级统考期末)如图,在四边形ABCD中,∠A+∠D=∂,∠ABC的平分线与∠BCD 的平分线交于点P,则∠P=()A.90°+12∂ B.90°-12∂ C.12∂ D.180°-12∂3(2023秋·山西太原·八年级校考期末)已知:如图,P是△ABC内一点,连接PB,PC.(1)猜想:∠BPC与∠ABP、∠ACP、∠A存在怎样的等量关系?证明你的猜想.(2)若∠A=69°,PB、PC分别是∠ABC、∠ACB的三等分线,直接利用(1)中结论,可得∠BPC的度数为.4(2023秋·成都市·八年级专题练习)如图,在△ABC中,∠B=58°,三角形两外角的角平分线交于点E,则∠AEC=.5(2023·绵阳市·八年级专题练习)如图,已知在ΔABC中,∠B、∠C的外角平分线相交于点G,若∠ABC =m°,∠ACB=n°,求∠BGC的度数.6(2023春·广西·七年级专题练习)如图,在△ABD中,∠ABD的平分线与∠ACD的外角平分线交于点E,∠A=80°,求∠E的度数7(2023春·山东泰安·七年级校考阶段练习)如图,在△ABC中,∠A=α,∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得A2;⋯;∠A2019BC与∠A2019CD的平分线相交于点A2020,得∠A2020,则∠A2020=.8(2023·河北·九年级专题练习)问题情境:如图1,点D是△ABC外的一点,点E在BC边的延长线上,BD 平分∠ABC,CD平分∠ACE.试探究∠D与∠A的数量关系.(1)特例探究:如图2,若△ABC是等边三角形,其余条件不变,则∠D=;如图3,若△ABC 是等腰三角形,顶角∠A =100°,其余条件不变,则∠D =;这两个图中,与∠A 度数的比是;(2)猜想证明:如图1,△ABC 为一般三角形,在(1)中获得的∠D 与∠A 的关系是否还成立?若成立,利用图1证明你的结论;若不成立,说明理由.9(2023·重庆·七年级专题练习)认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究1:如图1,在△ABC 中,O 是∠ABC 与∠ACB 的平分线BO 和CO 的交点,分析发现∠BOC =90°+12∠A ,理由如下:∵BO 和CO 分别是∠ABC 、∠ACB 的角平分线∴∠1=12∠ABC ,∠2=12∠ACB∴∠1+∠2=12(∠ABC +∠ACB )=12(180°-∠A )=90°-12∠A∴∠BOC =180°-(∠1+∠2)=180°-90°-12∠A =90°+12∠A(1)探究2:如图2中,O 是∠ABC 与外角∠ACD 的平分线BO 和CO 的交点,试分析∠BOC 与∠A 有怎样的关系?请说明理由.(2)探究3:如图3中,O 是外角∠DBC 与外角∠ECB 的平分线BO 和CO 的交点,则∠BOC 与∠A 有怎样的关系?(直接写出结论)(3)拓展:如图4,在四边形ABCD 中,O 是∠ABC 与∠DCB 的平分线BO 和CO 的交点,则∠BOC 与∠A +∠D 有怎样的关系?(直接写出结论)(4)运用:如图5,五边形ABCDE 中,∠BCD 、∠EDC 的外角分别是∠FCD 、∠GDC ,CP 、DP 分别平分∠FCD 和∠GDC 且相交于点P ,若∠A =140°,∠B =120°,∠E =90°,则∠CPD =度.课后专项训练1(2023·浙江·八年级假期作业)如图,OG 平分∠MON ,点A ,B 是射线OM ,ON 上的点,连接AB .按以下步骤作图:①以点B 为圆心,任意长为半径作弧,交AB 于点C ,交BN 于点D ;②分别以点C 和点D 为圆心,大于12CD 长为半径作弧,两弧相交于点E ;③作射线BE,交OG于点P.若∠ABN=140°,∠MON=50°,则∠OPB的度数为()A.35°B.45°C.55°D.65°2(2023·江苏·八年级月考)ΔABC中,点O是ΔABC内一点,且点O到ΔABC三边的距离相等;∠A= 40°,则∠BOC=()A.110°B.120°C.130°D.140°3(2023·成都·八年级月考)如图,ΔABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,若∠BPC=40°,则∠CAP=()A.40°B.45°C.50°D.60°4(2023·重庆·八年级专题练习)已知,如图,△ABC中,∠ABC=48°,∠ACB=84°,点D、E分别在BA、BC延长线上,BP平分∠ABC,CP平分∠ACE,连接AP,则∠PAC的度数为()A.45°B.48°C.60°D.66°5(2023秋·绵阳市·八年级专题练习)如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是()A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°6(2022春·重庆黔江·七年级统考期末)如图,已知AB∥CD,点E在两平行线之间,连接BE,CE,∠ABE的平分线与∠BEC的平分线的反向延长线交于点F,若∠BFE=50°,则∠C等于( ).A.70°B.80°C.85°D.90°7(2022春·北京海淀·七年级校考期中)如图,在平面直角坐标系中,直线AB与y轴在正半轴、x轴正半轴分别交A、B两点,点C在BA的延长线上,AD平分∠CAO,BD平分∠ABO,则∠D的度数是()A.30°B.45°C.55°D.60°8(2023·江苏·八年级月考)如图,ΔABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC=40°,则∠BAC的度数是.9(2023春·河北·七年级专题练习)如图,在△ABC中,∠ABC和∠ACB的角平分线交于点O,延长BO与∠ACB的外角平分线交于点D,若∠BOC=130°,则∠D=10(2022秋·浙江八年级课时练习)(2018育才单元考)如图,在△ABC中,∠ABC和∠ACD的角平分线交于点A1,得∠A1,∠A1BC和∠A1CD的角平分线交于点A2,得∠A2,⋯⋯,∠A n-1BC和∠A n-1CD的角平分线交于点A n,得∠A n(1)若∠A=80°,则∠A1=,∠A2=,∠A3=(2)若∠A=m°,则∠A2015=.11(2023·浙江杭州·八年级期末)如图,在四边形ABCD中,∠A+∠D=m°,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=.(用含字母m的代数式表示)12(2023春·河南·七年级专题练习)如图,点M是△ABC两个内角平分线的交点,点N是△ABC两外角平分线的交点,如果∠CMB:∠CNB=3:2,那么∠CAB=.13(2023·甘肃陇南·统考一模)在△ABC中,AB=AC,∠A=100°.点M在BC的延长线上,∠ABC 的平分线交AC于点D.∠MCA的平分线与射线BD交于点E.(1)依题意补全图形;用尺规作图法作∠MCA的平分线;(2)求∠BEC的度数.14(2023·山东八年级期中)如图,在ΔABC中,角平分线AD、BE、CF相交于点O,过点B作BG⊥CF于点G,∠OBG=1∠BAC成立吗?说明理由.215(2023·黑龙江八年级课时练习)(1)如图(1)所示,已知在△ABC中,O为∠ABC和∠ACB的平分线BO,CO的交点.试猜想∠BOC和∠A的关系,并说明理由.(2)如图(2)所示,若O为∠ABC的平分线BO和∠ACE的平分线CO的交点,则∠BOC与∠A的关系又该怎样?为什么?16(2023春·八年级单元测试)如图,∠CBF,∠ACG是△ABC的外角,∠ACG的平分线所在的直线分别与∠ABC,∠CBF的平分线BD,BE交于点D,E.(1)若∠A=70°,求∠D的度数;(2)若∠A=a,求∠E;(3)连接AD,若∠ACB=β,则∠ADB=.17(2023·福建泉州·七年级阶段练习)在ΔABC中,已知∠A=α.(1)如图1,∠ABC、∠ACB的平分线相交于点D.①当α=80°时,∠BDC度数=度(直接写出结果);②∠BDC的度数为(用含α的代数式表示);(2)如图2,若∠ABC的平分线与∠ACE角平分线交于点F,求∠BFC的度数(用含α的代数式表示).(3)在(2)的条件下,将ΔFBC以直线BC为对称轴翻折得到ΔGBC,∠GBC的角平分线与∠GCB的角平分线交于点M(如图3),求∠BMC的度数(用含α的代数式表示).18(2023·江苏盐城·七年级阶段练习)如图,△ABC的角平分线相交于P,∠A=m°,(1)若∠A=40°,求∠BPC的度数;(2)设△ABC的外角∠CBD、∠BCE的平分线相交于Q,且∠A=m°,求∠BQC的度数(3)设△ABC的外角∠CBD、∠BCE的n等分线相交于R,且∠A=m°,∠CBR=1n∠CBD,∠BCR=1n∠BCE,求∠BRC的度数19(2023·江西上饶·八年级校考阶段练习)(1)探究1:如图1,P是△ABC的内角∠ABC与∠ACB的平分线BP和CP的交点,若∠A=70∘,则∠BPC=度;(2)探究2:如图2,P是△ABC的外角∠DBC与外角∠ECB的平分线BP和CP的交点,求∠BPC与∠A 的数量关系?并说明理由.(3)拓展:如图3,P是四边形ABCD的外角∠EBC与∠BCF的平分线BP和CP的交点,设∠A+∠D=α.,直接写出∠BPC与α的数量关系;20(2023·甘肃天水·七年级统考期末)已知在△ABC中,图1,图2,图3中的△ABC的内角平分线或外角平分线交于点O,(1)如图1,点O是△ABC的两个内角平分线的交点,猜想∠O与∠A之间的数量关系,并加以证明.(2)请直接写出结果.如图2,若∠A=60°,△ABC的内角平分线与外角平分线交于点O,则∠O=;如图3,若∠A=60°,△ABC的两个外角平分线交于点O,则∠O=.。
专题06 三角形中的双角平分线模型--2024年中考数学核心几何模型重点突破(解析版)
专题06三角形中的双角平分线模型【模型1】双角平分线模型如图,已知在ABC ∆中,BO,CO 分别是ABC ∠,ACB ∠的平分线,根据角平分线的性质和三角形内角和定理,可得A O ∠+︒=∠2190。
【模型2】一内角一外角平分线模型如图,已知在ABC ∆中,BP,CP 分别是ABC ∠,ACD ∠的平分线,∴ABC PBC ∠=∠21,ACD PCA ∠=∠21,ACD ACB PCB ∠+∠=∠21,ABC A ACD ∠+∠=∠∴)(21ABC A ACB PCB ∠+∠+∠=∠;∴ABC A ACB PCB ∠+∠+∠=∠2121)(180PCB PBC P ∠+∠-︒=∠ )212121(180ABC A ACB ABC P ∠+∠+∠+∠-︒=∠∴;)21(180A ACB ABC P ∠+∠+∠-︒=∠∴;)21180(180A A P ∠+∠-︒-︒=∠∴;A P ∠=∠∴21【模型3】双外角平分线模型如图,已知在ABC ∆中,BP,CP 分别是CBE ∠,BCF ∠的平分线,根据外角定理,CBE PBC ∠=∠21,BCF PCB ∠=∠21,又ACB A CBE ∠+∠=∠,ABC A BCF ∠+∠=∠,∴)(180PCB PBC P ∠+∠-︒=∠;∴)(21180)2121(180BCF CBE BCF CBE P ∠+∠-︒=∠+∠-︒=∠;∴)(21180ABC A ACB A P ∠+∠+∠+∠-︒=∠;∴)2(21180ABC ACB A P ∠+∠+∠-︒=∠;∴)1802(21180A A P ∠-︒+∠-︒=∠;∴︒-∠-︒=∠9021180A P ;∴A P ∠-︒=∠2190;【例1】如图,在△ABC 中,∠ABC 和∠ACB 的角平分线交于点O ,延长BO 与∠ACB 的外角平分线交于点D ,若∠BOC =130°,则∠D =_____【答案】40°【分析】根据角平分线的定义结合三角形外角的性质即可得到结论.【解析】解:∵∠ABC和∠ACB的角平分线交于点O,∴∠ACO=12∠ACB,∵CD平分∠ACE,∴∠ACD=12∠ACE,∵∠ACB+∠ACE=180°,∴∠OCD=∠ACO+∠ACD=12(∠ACB+∠ACE)=12×180°=90°,∵∠BOC=130°,∴∠D=∠BOC-∠OCD=130°-90°=40°,故答案为:40°.【例2】如图,已知△ABC,O是△ABC内的一点,连接OB、OC,将∠ABO、∠ACO分别记为∠1、∠2,则∠1、∠2、∠A、∠O四个角之间的数量关系是()A.∠1+∠0=∠A+∠2B.∠1+∠2+∠A+∠O=180°C.∠1+∠2+∠A+∠O=360°D.∠1+∠2+∠A=∠O【答案】D【分析】连接AO并延长,交BC于点D,由三角形外角的性质可知∠BOD=∠BAD+∠1,∠COD=∠CAD+∠2,再把两式相加即可得出结论.【解析】解:连接AO并延长,交BC于点D,∵∠BOD是△AOB的外角,∠COD是△AOC的外角,∴∠BOD=∠BAD+∠1①,∠COD=∠CAD+∠2②,①+②得,∠BOC=(∠BAD+∠CAD)+∠1+∠2,即∠BOC=∠BAC+∠1+∠2.故选:D.【例3】(1)问题发现:如图1,在ABC 中,40A ∠=︒,ABC ∠和ACB ∠的平分线交于P ,则BPC ∠的度数是______(2)类比探究:如图2,在ABC 中,ABC ∠的平分线和ACB ∠的外角ACE ∠的角平分线交于P ,则BPC ∠与A ∠的关系是______,并说明理由.(3)类比延伸:如图3,在ABC 中,ABC ∠外角FBC ∠的角平分线和ACB ∠的外角BCE ∠的角平分线交于P ,请直接写出BPC ∠与A ∠的关系是______.【答案】(1)110°;(2)12BPC A ∠=∠;(3)1902BPC A ∠=︒-∠【分析】(1)根据三角形内角和定理求出∠ABC+∠ACB ,根据角平分线的定义、三角形内角和定理计算即可;(2)根据三角形外角的性质得到∠ACE=∠ABC+∠A 、∠PCE=∠PBC+∠BPC ,根据角平分线的定义解答;(3)根据(1)的结论然后用角分线的定义,计算即可.【解析】解:(1)∵40A ∠=︒,∴18040ABC ACB ∠+∠=︒-,∵ABC ∠和ACB ∠的平分线交于P ,∴12PBC ABC ∠=∠,12PCB ACB ∠=,∴()118090202BPC ABC ACB ∠=︒-∠+=︒+︒故答案为110°(2)12BPC A ∠=∠,证明:∵ACE ∠是ABC 的外角,PCE ∠是PBC 的外角,∴ACE ABC A∠=∠+∠PCE PBC BPC ∠=∠+∠,∵BP 平分ABC ∠,CP 平分ACE ∠,∴1122PBC ABC PCE ACE ∠=∠∠=∠,∴1122ACE ABC BPC ∠=∠+∠,∴()111222BPC ABC ACE ABC ACE ∠=∠-∠=∠-∠,∴12BPC A ∠=∠,故答案为:12BPC A ∠=∠;(3)由(1)得,1902BPC A ∠=︒-∠,故答案为:1902BPC A ∠=︒-∠.一、单选题1.如图,在△ABC 中,∠ABC 和∠ACB 的外角平分线交于点O ,设∠A =m ,则∠BOC =()A .B .C .D .【答案】B 【分析】根据三角形的内角和,可得∠ABC +∠ACB ,根据角的和差,可得∠DBC +∠BCE ,根据角平分线的定义,可得∠OBC +∠OCB ,根据三角形的内角和,可得答案.【解析】解:如图:,由三角形内角和定理,得∠ABC +∠ACB =180°-∠A =180°-m ,由角的和差,得∠DBC +∠BCE =360°-(∠ABC +∠ACB )=180°+m ,由∠ABC 和∠ACB 的外角平分线交于点O ,得∠OBC +∠OCB =12(∠DBC +∠BCE )=90°+12m ,由三角形的内角和,得∠O =180°-(∠OBC +∠OCB )=90°-12m .故选:B .2.如图:PC 、PB 是ACB ∠、ABC ∠的角平分线,40A ∠=︒,BPC ∠=()A .∠BPC =70ºB .∠BPC =140ºC .∠BPC =110ºD .∠BPC =40º【答案】C 【分析】首先根据三角形内角和定理求出ABC ACB ∠+∠的度数,再根据角平分线的性质可得12PCB ACB ∠=∠,12PBC ABC ∠=∠,进而可求PBC PCB ∠+∠的度数,再次在CBP ∆中利用三角形内角和即可求解.【解析】解:40A ∠=︒ ,18040140ABC ACB ∴∠+∠=︒-︒=︒,又BP 平分ABC ∠,CP 平分ACB ∠,12PCB ACB ∴∠=∠,12PBC ABC ∠=∠,11()1407022PBC PCB ABC ACB ∴∠+∠=∠+∠=⨯︒=︒,180()110BPC PBC PCB ∴∠=︒-∠+∠=︒.故选:C .3.如图,△ABC 中,∠E =18°,BE 平分∠ABC ,CE 平分∠ACD ,则∠A 等于()A .36°B .30°C .20°D .18°【答案】A 【分析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠ACD =∠A +∠ABC ,∠ECD =∠E +∠EBC ;由角平分线的性质,得∠ECD =12(∠A +∠ABC ),∠EBC =12∠ABC ,利用等量代换,即可求得∠A 与∠E 的关系,即可得到结论.【解析】解:∵∠ACD =∠A +∠ABC ,∴∠ECD =12(∠A +∠ABC ).又∵∠ECD =∠E +∠EBC ,∴∠E +∠EBC =12(∠A +∠ABC ).∵BE 平分∠ABC ,∴∠EBC =12∠ABC ,∴12∠ABC +∠E =12(∠A +∠ABC ),∴∠E =12∠A =18°,∴∠A =36°.故选A .4.如图,ABC 中,ABC ∠与ACB ∠的平分线交于点F ,过点F 作//DE BC 交AB 于点D ,交AC 于点E ,那么下列结论:①BDF 和CEF △都是等腰三角形②DE BD CE =+;③BF CF >;④若80A ∠=︒,则130BFC ∠=︒.其中正确的有()个A .1B .2C .3D .4【答案】C【分析】根据等腰三角形的判断与性质和平行线的性质及三角形三边的关系即可求解.【解析】解:①∵BF 是∠ABC 的角平分线,CF 是∠ACB 的角平分线,∴∠ABF=∠CBF ,∠ACF=∠BCF ,∵DE ∥BC ,∴∠CBF=∠BFD ,∠BCF=∠EFC (两直线平行,内错角相等),∴∠ABF=∠BFD ,∠ACF=∠EFC ,∴DB=DF ,EF=EC ,∴△BDF 和△CEF 都是等腰三角形,∴①选项正确,符合题意;②∵DE=DF+FE ,∴DB=DF ,EF=EC ,∴DE=DB+CE ,∴②选项正确,符合题意;③根据题意不能得出BF >CF ,∴④选项不正确,不符合题意;④∵若∠A=80°,∴∠ABC+∠ACB=180°-∠A=180°-80°=100°,∵∠ABF=∠CBF ,∠ACF=∠BCF ,∴∠CBF+∠BCF=12×100°=50°,∴∠BFC=180°-∠CBF-∠BCF=180°-50°=130°,∴④选项正确,符合题意;故①②④正确.故选C5.如图,ABD ∠,ACD ∠的角平分线交于点P ,若48A ∠=︒,10D ∠=︒,则P ∠的度数()A .19︒B .20︒C .22︒D .25︒【答案】A【分析】法一:延长PC交BD于E,设AC、PB交于F,根据三角形的内角和定理得到∠A +∠ABF+∠AFB=∠P+∠PCF+∠PFC=180°推出∠P+∠PCF=∠A+∠ABF,根据三角形的外角性质得到∠P+∠PBE=∠PED,推出∠P+∠PBE=∠PCD−∠D,根据PB、PC 是角平分线得到∠PCF=∠PCD,∠ABF=∠PBE,推出2∠P=∠A−∠D,代入即可求出∠P.法二:延长DC,与AB交于点E.设AC与BP相交于O,则∠AOB=∠POC,可得∠P+1 2∠ACD=∠A+12∠ABD,代入计算即可.【解析】解:法一:延长PC交BD于E,设AC、PB交于F,∵∠A+∠ABF+∠AFB=∠P+∠PCF+∠PFC=180°,∵∠AFB=∠PFC,∴∠P+∠PCF=∠A+∠ABF,∵∠P+∠PBE=∠PED,∠PED=∠PCD−∠D,∴∠P+∠PBE=∠PCD−∠D,∴2∠P+∠PCF+∠PBE=∠A−∠D+∠ABF+∠PCD,∵PB、PC是角平分线∴∠PCF=∠PCD,∠ABF=∠PBE,∴2∠P=∠A−∠D∵∠A=48°,∠D=10°,∴∠P=19°.法二:延长DC,与AB交于点E.∵∠ACD是△ACE的外角,∠A=48°,∴∠ACD =∠A +∠AEC =48°+∠AEC .∵∠AEC 是△BDE 的外角,∴∠AEC =∠ABD +∠D =∠ABD +10°,∴∠ACD =48°+∠AEC =48°+∠ABD +10°,整理得∠ACD −∠ABD =58°.设AC 与BP 相交于O ,则∠AOB =∠POC ,∴∠P +12∠ACD =∠A +12∠ABD ,即∠P =48°−12(∠ACD −∠ABD )=19°.故选A .二、填空题6.如图,在ABC ∆中,A θ∠=,ABC ∠和ACD ∠的平分线交于点1A ,得1A ∠,1A BC ∠和1A CD ∠的平分线交于点2A ,得2A ∠;⋯;2019A BC ∠和2019A CD ∠的平分线交于点2020A ,则2020A ∠=__.(用θ表示)【答案】20202θ【分析】利用角平分线的性质、三角形外角性质,易证∠A 1=12∠A ,由于∠A 1=12∠A ,∠A 2=12∠A 1=212∠A ,…,以此类推可知∠A 2020即可求得.【解析】∵A 1B 平分∠ABC ,A 1C 平分∠ACD ,∴∠A 1BC=12∠ABC ,∠A 1CA=12∠ACD ,∵∠A 1CD=∠A 1+∠A 1BC ,即12∠ACD=∠A 1+12∠ABC ,∴∠A 1=12(∠ACD-∠ABC ),∵∠A+∠ABC=∠ACD ,∴∠A=∠ACD-∠ABC ,∴∠A 1=12∠A ,以此类推∠A 2=12∠A 1=12•12∠A=212∠A,∠A 3=12∠A 2=21122⨯∠A=312∠A ,……,所以∠A n =12n A ∠,202020202020122A A θ∴∠=∠=.故答案为:20202θ.7.如图,在△ABC 中,A 70∠=︒,如果ABC ∠与ACB ∠的平分线交于点D ,那么BDC ∠=_________度.【答案】125【分析】先利用三角形内角和定理求出ABC ACB ∠+∠的度数,进而可求DBC DCB ∠+∠的度数,最后再利用三角形内角和定理即可求出答案.【解析】70A ∠=︒ ,180110ABC ACB A ∴∠+∠=︒-∠=︒.∵BD 平分ABC ∠,CD 平分ACB ∠,1()552DBC DCB ABC ACB ∴∠+∠=∠+∠=︒,180()125BDC DBC DCB ∴∠=︒-∠+∠=︒.故答案为:125.8.如图在△ABC 中,BO ,CO 分别平分∠ABC ,∠ACB ,交于O ,CE 为外角∠ACD 的平分线,交BO 的延长线于点E ,记1BAC ∠=∠,2BEC ∠=∠,则以下结论①122∠=∠,②32BOC ∠=∠,③901BOC ∠=︒+∠,④902BOC ∠=︒+∠,正确的是________.(把所有正确的结论的序号写在横线上)【答案】①④【分析】依据角平分线的性质以及三角形外角性质,即可得到∠1=2∠2,∠BOC =90°+12∠1,∠BOC =90°+∠2,再分析判断.【解析】∵CE 为外角∠ACD 的平分线,BE 平分∠ABC ,∴∠DCE =12∠ACD ,∠DBE =12∠ABC ,又∵∠DCE 是△BCE 的外角,∴∠2=∠DCE−∠DBE =12(∠ACD−∠ABC )=12∠1,故①正确;∵BO ,CO 分别平分∠ABC ,∠ACB ,∴∠OBC =12ABC ,∠OCB =12∠ACB ,∴∠BOC =180°−(∠OBC +∠OCB )=180°−12(∠ABC +∠ACB )=180°−12(180°−∠1)=90°+12∠1,故②、③错误;∵OC 平分∠ACB ,CE 平分∠ACD ,∴∠ACO =12∠ACB ,∠ACE =12∠ACD ,∴∠OCE =12(∠ACB +∠ACD )=12×180°=90°,∵∠BOC 是△COE 的外角,∴∠BOC =∠OCE +∠2=90°+∠2,故④正确;故答案为:①④.9.如图,ABC 的角平分线OB 、OC 相交于点O ,40A ∠︒=,则BOC ∠=______.【答案】110︒.【分析】根据三角形的角平分线定义和三角形的内角和定理求出∠OBC+∠OCB 的度数,再根据三角形的内角和定理即可求出∠BOC 的度数.【解析】解:∵OB 、OC 分别是∠ABC 和∠ACB 的角平分线,∴∠OBC+∠OCB=111()222ABC ACB ABC ACB ∠+∠=∠+∠∵∠A=40°,∴∠OBC+∠OCB=1(18040)2︒︒-=70°,∴∠BOC=180°-(∠OBC+∠OCB )=180°-70°=110°.故答案是110.10.如图,已知60BAC ∠=︒,AD 是角平分线且10AD =,作AD 的垂直平分线交AC 于点F ,作DE AC ⊥,则DEF 周长为________.【答案】5+【分析】知道60BAC ∠=︒和AD 是角平分线,就可以求出30DAE ∠=︒,AD 的垂直平分线交AC 于点F 可以得到AF =FD ,在直角三角形中30°所对的边等于斜边的一半,再求出DE ,得到DEF C DE EF AF AE DE =++=+△.【解析】解: AD 的垂直平分线交AC 于点F ,∴DF AF =(垂直平分线上的点到线段两端点距离相等)∴DEF C DE EF AF AE DE=++=+△∵60BAC ∠=︒,AD 是角平分线∴30DAE ∠=︒∵10AD =∴5DE =,AE =∴5DEF C =+△11.如图,在△ABC中,∠A=60°,BD、CD分别平分∠ABC、∠ACB,M、N、Q分别在DB、DC、BC的延长线上,BE、CE分别平分∠MBC、∠BCN,BF、CF分别平分∠EBC、∠ECQ,则∠F=________.【答案】15°【分析】先由BD、CD分别平分∠ABC、∠ACB得到∠DBC=12∠ABC,∠DCB=12∠ACB,在△ABC中根据三角形内角和定理得∠DBC+∠DCB=12(∠ABC+∠ACB)=12(180°-∠A)=60°,则根据平角定理得到∠MBC+∠NCB=300°;再由BE、CE分别平分∠MBC、∠BCN得∠5+∠6=12∠MBC,∠1=12∠NCB,两式相加得到∠5+∠6+∠1=12(∠NCB+∠NCB)=150°,在△BCE中,根据三角形内角和定理可计算出∠E=30°;再由BF、CF分别平分∠EBC、∠ECQ得到∠5=∠6,∠2=∠3+∠4,根据三角形外角性质得到∠3+∠4=∠5+∠F,∠2+∠3+∠4=∠5+∠6+∠E,利用等量代换得到∠2=∠5+∠F,2∠2=2∠5+∠E,再进行等量代换可得到∠F=12∠E.【解析】解:如图:∵BD、CD分别平分∠ABC、∠ACB,∠A=60°,∴∠DBC=12∠ABC,∠DCB=12∠ACB,∴∠DBC+∠DCB=12(∠ABC+∠ACB)=12(180°-∠A)=12×(180°-60°)=60°,∴∠MBC+∠NCB=360°-60°=300°,∵BE、CE分别平分∠MBC、∠BCN,∴∠5+∠6=12∠MBC,∠1=12∠NCB,∴∠5+∠6+∠1=12(∠NCB +∠NCB )=150°,∴∠E =180°-(∠5+∠6+∠1)=180°-150°=30°,∵BF 、CF 分别平分∠EBC 、∠ECQ ,∴∠5=∠6,∠2=∠3+∠4,∵∠3+∠4=∠5+∠F ,∠2+∠3+∠4=∠5+∠6+∠E ,即∠2=∠5+∠F ,2∠2=2∠5+∠E ,∴2∠F =∠E ,∴∠F =12∠E =12×30°=15°.故答案为:15°.三、解答题12.(1)如图所示,在ABC 中,,BO CO 分别是ABC ∠和ACB ∠的平分线,证明:1902BOC A ∠=+∠︒.(2)如图所示,ABC 的外角平分线BD 和CD 相交于点D ,证明:1902BDC A -︒∠=∠.(3)如图所示,ABC 的内角平分线BD 和外角平分线CD 相交于点D ,证明:12D A ∠=∠.【答案】(1)见解析;(2)见解析;(3)见解析【解析】(1)设,ABO OBC x ACO BCO y ∠=∠=∠=∠=.由ABC 的内角和为180︒,得22180A x y ︒∠++=.①由BOC 的内角和为180︒,得180BOC x y ∠++=︒.②由②得180x y BOC +=-∠︒.③把③代入①,得()2180180A BOC ∠+-∠=︒︒,即2180BOC A ∠=︒+∠,即1902BOC A ∠=+∠︒(2)∵BD 、CD 为△ABC 两外角∠ABC 、∠ACB 的平分线,∴()()1122BCD A ABC DBC A ACB ∠=∠+∠∠=∠+∠、,由三角形内角和定理得,180BDC BCD DBC ∠=︒-∠-∠,=180°-12[∠A +(∠A +∠ABC +∠ACB )],=180°-12(∠A +180°),=90°-12∠A ;(3)如图:∵BD 为△ABC 的角平分线,交AC 与点E ,CD 为△ABC 外角∠ACE 的平分线,两角平分线交于点D∴∠1=∠2,∠5=12(∠A +2∠1),∠3=∠4,在△ABE 中,∠A =180°-∠1-∠3∴∠1+∠3=180°-∠A ①在△CDE中,∠D=180°-∠4-∠5=180°-∠3-12(∠A+2∠1),即2∠D=360°-2∠3-∠A-2∠1=360°-2(∠1+∠3)-∠A②,把①代入②得∠D=12∠A.13.如图,在△ABC中,∠ABC、∠ACB的平分线相交于点O①若∠ABC=40°,∠ACB=50°,则∠BOC的度数为;②若∠A=76°,则∠BOC的度数为;③你能找出∠A与∠BOC之间的数量关系吗?说明理由【答案】①135°;②128°;③∠BOC=90°+12∠A,理由见解析【分析】①利用三角形的内角和定理和角平分线的定义进行求解;②利用三角形的内角和定理求出(∠ABC+∠ACB)的度数,再根据角平分线的定义和三角形的内角和定理进行求解;③利用三角形的内角和定理求出(∠ABC+∠ACB)的度数,再根据角平分线的定义和三角形的内角和定理进行求解.【解析】解:①∵∠ABC=40°,∠ACB=50°,∠ABC,∠ACB的平分线相交于点O,∴∠OBC=12∠ABC=20°,∠OCB=12∠ACB=25°,又∵∠BOC+∠OBC+∠OCB=180°,∴∠BOC=180°-12(∠ABC+∠ACB)=135°,故答案为:135°;②∵在△ABC中,∠A=76°,∴∠ABC+∠ACB=104°,∴由①知,∠BOC=180°-12(∠ABC+∠ACB)=128°,故答案为:128°③∠BOC=90°+12∠A,理由如下:∠BOC=180°-12(∠ABC+∠ACB)=180°-12(180°-∠A)=90°+12∠A.14.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点P.(1)若∠ABC +∠ACB =130°,求∠BPC 的度数.(2)当∠A 为多少度时,∠BPC =3∠A ?【答案】(1)115︒;(2)36A ∠=︒【分析】(1)根据角平分线的定义,求得PBC ∠,PCB ∠,再根据三角形内角和定理即可求得BPC ∠;(2)根据(1)的方法求得BPC ∠,再结合条件∠BPC =3∠A ,解方程即可求得∠A .【解析】(1)PB 平分ABC ∠,PC 平分ACB ∠,11,22PBC ABC PCB ACB ∴∠=∠∠=∠, ∠ABC +∠ACB =130°,1()652PBC PCB ABC ACB ∴∠+∠=∠+∠=︒,180()18065115BPC PBC PCB ∴∠=︒-∠+∠=︒-︒=︒,(2)PB 平分ABC ∠,PC 平分ACB ∠,11,22PBC ABC PCB ACB ∴∠=∠∠=∠,1()2PBC PCB ABC ACB ∴∠+∠=∠+∠,180ABC ACB A ∠+∠=︒-∠ ,1902PBC PCB A ∴∠+∠=︒-∠,180()BPC PBC PCB Ð=°-Ð+Ð1180(90)2A =︒-︒-∠1902A =+∠︒ ∠BPC =3∠A13902A A ∴∠=︒+∠,36A ∴∠=︒.15.数学思想运用:(1)如图①所示,△ABC 的外角平分线交于G ,若∠A =80°,则∠BGC =______°,请你猜测∠BGC 和∠A 的数量关系:_______________.(2)如图②所示,若△ABC 的内角平分线交于点I ,若∠A =50°,则∠BIC =______°,请你猜测∠BIC 和∠A 的数量关系:__________________.(3)已知,如图③,△ABC 中,ACE ∠的平分线与的平分线交于点,请你猜测∠D和∠A 的数量关系:____________________.若,求的度数(写出求解过程).【答案】(1)501902BGC A ∠=︒-∠(2)1151902BIC A ∠=︒+∠(3)12D ACE ∠=∠,35°【分析】(1)根据三角形内角和等于180°,可知180100ABC ACB A ∠+∠=︒-∠=︒,继而求出260CBE BCF ∠+∠=︒由角平分线的定义得出112,322CBE BCF ∠=∠∠=∠,再由三角形内角和定理即可求解;(2)根据三角形内角和等于180°,可得180130ABC ACB A ∠+∠=︒-∠=︒,根据角平分线的意义可得116,822ABC ACB ∠=∠∠=∠,再由三角形内角和定理即可求解;(3)先由角平分线的定义可得1,122DBC ABC DCE ACE ∠=∠∠=∠,再根据三角形外角的性质得,ACE ABC A DCE DBC D ∠=∠+∠∠=∠+∠,利用角的和差即可求解;将70A ︒∠=代入数量关系即可求解.【解析】(1)180,80A ABC ACB A ∠+∠+∠=︒∠=︒180100ABC ACB A ∴∠+∠=︒-∠=︒180,180ABC CBE ACB BCF ∠+∠=︒∠+∠=︒180180(180)180260CBE BCF A A ∴∠+∠=︒+︒-︒-∠=︒+∠=︒,BG CG 分别平分,CBE BCF∠∠112,322CBE BCF ∴∠=∠∠=∠1123()(180)13022CBE BCF A ∴∠+∠=∠+∠=︒+∠=︒23180BGC ∠+∠+∠=︒ 11180(23)180(180)905022BGC A A ⎡⎤∴∠=︒-∠+∠=︒-︒+∠=︒-∠=︒⎢⎥⎣⎦故答案为:50,1902BGC A ∠=︒-∠(2)180,50A ABC ACB A ∠+∠+∠=︒∠=︒180130ABC ACB A ∴∠+∠=︒-∠=︒,BI CI Q 分别平分,ABC ACB∠∠116,822ABC ACB ∴∠=∠∠=∠11168()(180)90222ABC ACB A A ∴∠+∠=∠+∠=︒-∠=︒-∠68180BIC ∠+∠+∠=︒ 11180(68)180(180)9011522BIC A A ∴∠=︒-∠+∠=︒-︒-∠=︒+∠=︒故答案为:115,1902BIC A ∠=︒+∠(3),BD CD 分别平分,ABC ACE∠∠11,22DBC ABC DCE ACE ∴∠=∠∠=∠,ACE ABC A DCE DBC D∠=∠+∠∠=∠+∠ 111222ACE ABC A ∴∠=∠+∠12D A ∴∠=∠70A ︒∠= 35D ∴∠=︒故答案为:12D A ∠=∠16.ABC 中,50A ∠=︒.(1)如图①,若点P 是ABC ∠与ACB ∠平分线的交点,求P ∠的度数;(2)如图②,若点P 是CBD ∠与BCE ∠平分线的交点,求P ∠的度数;(3)如图③,若点P 是ABC ∠与ACF ∠平分线的交点,求P ∠的度数;(4)若A β∠=.请直接写出图①,②,③中P ∠的度数,(用含β的代数式表示)【答案】(1)115°;(2)65°;(3)25°;(4)分别为:①11180(180)9022P ββ∠=︒-︒-=︒+;②1902P β∠=︒-;③1122P A β∠=∠=【分析】(1)根据三角形内角和定理和角平分线定义得出∠PBC+∠PCB=12(∠ABC+∠ACB )=65°,根据三角形的内角和定理得出∠P 的度数;(2)由三角形内角和定理和邻补角关系得出∠CBD+∠BCE=360°-130°=230°,由角平分线得出∠PBC+∠PCB=12(∠CBD+∠BCE )=115°,再由三角形内角和定理即可求出结果;(3)由三角形的外角性质和角平分线的定义证出∠P=12∠A ,即可得出结果;(4)由(1)(2)(3),容易得出结果.【解析】解:(1)50A ∠=︒ ,18050130ABC ACB ∴∠+∠=︒-︒=︒,点P 是ABC ∠与ACB ∠平分线的交点,12PBC ABC ∴∠=∠,12PCB ACB ∠=∠,11()1306522PBC PCB ABC ACB ∴∠+∠=⨯∠+∠=⨯︒=︒,180()115P PBC PCB ∴∠=︒-∠+∠=︒;(2)18050130ABC ACB ∠+∠=︒-︒=︒ ,360130230CBD BCE ∴∠+∠=︒-︒=︒,点P 是CBD ∠与BCE ∠平分线的交点,1()1152PBC PCB CBD BCE ∴∠+∠=∠+∠=︒,18011565P ∴∠=︒-︒=︒;(3) 点P 是ABC ∠与ACF ∠平分线的交点,12PBC ABC ∴∠=∠,12PCF ACF ∠=∠,PCF P PBC ∠=∠+∠ ,ACF A ABC ∠=∠+∠,2()P PBC A ABC ∴∠+∠=∠+∠,1252P A ∴∠=∠=︒;(4)若A β∠=,在(1)中,11180(180)9022P ββ∠=︒-︒-=︒+;在(2)中,同理得:1902P β∠=︒-;在(3)中,同理得:1122P A β∠=∠=.17.【问题背景】(1)如图1的图形我们把它称为“8字形”,请说明∠A+∠B=∠C+∠D ;【简单应用】(2)如图2,AP 、CP 分别平分∠BAD .∠BCD ,若∠ABC=46°,∠ADC=26°,求∠P 的度数;【问题探究】(3)如图3,直线AP 平分∠BAD 的外角∠FAD ,CP 平分∠BCD 的外角∠BCE ,若∠ABC=36°,∠ADC=16°,请猜想∠P 的度数,并说明理由.【拓展延伸】(4)①在图4中,若设∠C=α,∠B=β,∠CAP=13∠CAB ,∠CDP=13∠CDB ,试问∠P 与∠C 、∠B 之间的数量关系为:(用α、β表示∠P );②在图5中,AP 平分∠BAD ,CP 平分∠BCD 的外角∠BCE ,猜想∠P 与∠B 、∠D 的关系,直接写出结论.【答案】(1)见解析;(2)36°;(3)26°,理由见解析;(4)①∠P=23αβ+②∠P=1802B D︒+∠+∠【分析】(1)根据三角形内角和定理即可证明;(2)直接利用(1)中的结论两次,两式相加,然后根据角平分线的性质求解即可;(3)由AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,推出∠1=∠2,∠3=∠4,推出∠PAD=180°﹣∠2,∠PCD=180°﹣∠3,由∠P+(180°﹣∠1)=∠D+(180°﹣∠3),∠P+∠1=∠B+∠4,推出2∠P=∠B+∠D,即可解决问题.(4)①同法利用(1)种的结论列出方程即可解决问题.②同法利用(1)种的结论列出方程即可解决问题.【解析】(1)在△AEB中,∠A+∠B+∠AEB=180°.在△CED中,∠C+∠D+∠CED=180°.∵∠AEB=∠CED,∴∠A+∠B=∠C+∠D;(2)由(1)得:∠1+∠B=∠3+∠P,∠4+∠D=∠2+∠P,∴∠1+∠B+∠4+∠D=∠3+∠P+∠2+∠P.∵∠1=∠2,∠3=∠4,∴2∠P=∠B+∠D=46°+26°=72°,∴∠P=36°.(3)∠P=26°,理由是:如图3:∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∴∠PAD=180°﹣∠2,∠PCD=180°﹣∠3.∵∠PAB=∠1,∠P+∠PAB=∠B+∠4,∴∠P+∠1=∠B+∠4.∵∠P+(180°﹣∠2)=∠D+(180°﹣∠3),∴2∠P=∠B+∠D,∴∠P=12(∠B+∠D)=12×(36°+16°)=26°.(4)①设∠CAP=m,∠CDP=n,则∠CAB=3m,,∠CDB=3n,∴∠PAB=2m,∠PDB=2n.∵∠C+∠CAP=∠P+∠PDC,∠P+∠PAB=∠B+∠PDB,∵∠C=α,∠B=β,∴α+m=∠P+n,∠P+2m=β+2n,∴α-∠P=n-m,∠P-β=2n-2m=2(n-m),∴2α+β=3∠P∴∠P=23αβ+.故答案为:∠P=23αβ+.②设∠BAP=x,∠PCE=y,则∠PAO=x,∠PCB=y.∵∠PAO+∠P=∠PCD+∠D,∠B+∠BAO=∠OCD+∠D,∴x+∠P=180°-y+∠D,∠B+2x=180°-2y+∠D,∴∠P=1802B D︒+∠+∠.故答案为:∠P=1802B D︒+∠+∠.18.如图①,在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如果∠A=80°,求∠BPC的度数;(2)如图②,作△ABC外角∠MBC、∠NCB的平分线交于点Q,试探索∠Q、∠A之间的数量关系.(3)如图③,延长线段BP、QC交于点E,△BQE中,存在一个内角等于另一个内角的3倍,请直接写出∠A的度数.【答案】(1)130°;(2)1902Q A∠=︒-∠;(3)60°或120°或45°或135°【分析】(1)运用三角形的内角和定理及角平分线的定义,首先求出∠ABC+∠ACB,进而求出∠BPC即可解决问题;(2)根据三角形的外角性质分别表示出∠MBC与∠BCN,再根据角平分线的性质可求得∠CBQ+∠BCQ,最后根据三角形内角和定理即可求解;(3)在△BQE中,由于∠Q=90°﹣12∠A,求出∠E=12∠A,∠EBQ=90°,所以如果△BQE中,存在一个内角等于另一个内角的3倍,那么分四种情况进行讨论:①∠EBQ=3∠E=90°;②∠EBQ=3∠Q=90°;③∠Q=3∠E;④∠E=3∠Q;分别列出方程,求解即可.【解析】(1)解:∵∠A=80°.∴∠ABC+∠ACB=100°,∵点P是∠ABC和∠ACB的平分线的交点,∴∠P=180°﹣12(∠ABC+∠ACB)=180°﹣12×100°=130°,(2)∵外角∠MBC,∠NCB的角平分线交于点Q,∴∠QBC+∠QCB=12(∠MBC+∠NCB)=12(360°﹣∠ABC﹣∠ACB)=12(180°+∠A)=90°+12∠A∴∠Q=180°﹣(90°+12∠A)=90°﹣12∠A;(3)延长BC至F,∵CQ为△ABC的外角∠NCB的角平分线,∴CE是△ABC的外角∠ACF的平分线,∴∠ACF=2∠ECF,∵BE平分∠ABC,∴∠ABC=2∠EBC,∵∠ECF=∠EBC+∠E,∴2∠ECF=2∠EBC+2∠E,即∠ACF=∠ABC+2∠E,又∵∠ACF=∠ABC+∠A,∴∠A=2∠E,即∠E=12∠A;∵∠EBQ=∠EBC+∠CBQ=12∠ABC+12∠MBC=12(∠ABC+∠A+∠ACB)=90°.如果△BQE中,存在一个内角等于另一个内角的3倍,那么分四种情况:①∠EBQ=3∠E=90°,则∠E=30°,∠A=2∠E=60°;②∠EBQ=3∠Q=90°,则∠Q=30°,∠E=60°,∠A=2∠E=120°;③∠Q=3∠E,则∠E=22.5°,解得∠A=45°;④∠E=3∠Q,则∠E=67.5°,解得∠A=135°.综上所述,∠A的度数是60°或120°或45°或135°.19.如图,∠CBF,∠ACG是△ABC的外角,∠ACG的平分线所在的直线分别与∠ABC,∠CBF的平分线BD,BE交于点D,E.(1)若∠A=70°,求∠D的度数;(2)若∠A=a,求∠E;(3)连接AD,若∠ACB= ,则∠ADB=.【答案】(1)35°;(2)90°-12α;(3)12β【分析】(1)由角平分线的定义得到∠DCG=12∠ACG,∠DBC=12∠ABC,然后根据三角形外角的性质即可得到结论;(2))根据角平分线的定义得到∠DBC=12∠ABC,∠CBE=12∠CBF,于是得到∠DBE=90°,由(1)知∠D=12∠A,根据三角形的内角和得到∠E=90°-12α;(3)根据角平分线的定义可得,∠ABD=12∠ABC,∠DAM=12∠MAC,再利用三角形外角的性质可求解.【解析】解:(1)∵CD平分∠ACG,BD平分∠ABC,∴∠DCG=12∠ACG,∠DBC=12∠ABC,∵∠ACG=∠A+∠ABC,∴2∠DCG=∠ACG=∠A+∠ABC=∠A+2∠DBC,∵∠DCG=∠D+∠DBC,∴2∠DCG=2∠D+2∠DBC,∴∠A+2∠DBC=2∠D+2∠DBC,∴∠D=12∠A=35°;(2)∵BD平分∠ABC,BE平分∠CBF,∴∠DBC=12∠ABC,∠CBE=12∠CBF,∴∠DBC+∠CBE=12(∠ABC+∠CBF)=90°,∴∠DBE=90°,∵∠D=12∠A,∠A=α,∴∠D=12α,∵∠DBE=90°,∴∠E=90°-12α;(3)如图,∵BD平分∠ABC,CD平分∠ACG,∴AD平分∠MAC,∠ABD=12∠ABC,∴∠DAM=12∠MAC,∵∠DAM=∠ABD+∠ADB,∠MAC=∠ABC+∠ACB,∠ACB=β,∴∠ADB=12∠ACB=12β.故答案为:12β.。
初中数学几何模型之角平分线模型
①角分线与圆周角
模型分析:
如图,直线AB、CD相较于点O,OE⊥AB于点O,OF平分∠AOE, ,则下列结论不正确的是()
A.∠AOD与∠1互为补角B.∠1的余角等于
C. D.
【解析】
解:A.∠AOD与∠1互为补角,说法正确;
B.∠1的余角: ,说法正确;
C.∵OE⊥AB,
∴ ,
∵OF平分∠AOE,
∴ ,说法正确;
D. ,原题说法错误;
故选:D.
解题通法:掌握余角,补角,角平分线,垂线的性质,通过加减运算解决问题
模型精练:
1.如图,直线AB,CD相交于点O,射线OM平分 , ,若 ,则 的度数为()
A.
B.
C.
D.
【答案】C
【解析】
【分析】由 和射线OM平分 ,可求∠MOC=30°;再根据 ,即可求得∠CON.
【详解】解:∵ ,射线OM平分 ,
∴∠MOC=
∵
∴ =∠MON-∠MOC=90°-30°=60°,故选:C
【点睛】本题考查了角平分线和角的和差的知识,正确运用角的和差是解答本题的关键.
2.如图,点O是直线AD上一点,射线OC,OE分别平分∠AOB、∠BOD.若∠AOC=28°,则∠BOE=_____.
数学模型-角平分线常见解题模型
角平分线作为图形最基础的概念,在选择题,填空题和几何证明题中屡见不鲜,同学们除了掌握角平分线的概念和性质定理以外,还需要对常见的角平分线的模型进行了解,在与平行线、三角形、四边形、圆等背景知识的基础上,结合角平分线得到一些常见的结论并对此进行整理记忆.
对此将角平分线的常见模型分为如下六个模块,其中前五模块为基础模块,需要同学们掌握其中结论的证明步骤,第六模块为补充模块,只需要了并会运用即可.
2022年中考数学几何模型之角平分线的五种模型(讲+练)(解析版)
专题01 角平分线的五种模型模型一、角平分线垂两边例1.如图,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD与△ACD的面积之比为()A.3:2B.6:4C.2:3D.不能确定【答案】A【详解】过点D作DE⊥AB于E,DF⊥AC于F.∵AD为∠BAC的平分线,∴DE=DF,又AB:AC=3:2,∴S△ABD:S△ACD=(12AB•DE):(12AC•DF)=AB:AC=3:2.故选A.例2.如图,∠AOP=∠BOP=15°,PC//OA,PD⊥OA,若PC=4,则PD的长为___.【答案】2【详解】解:过P作PE⊥OB,交OB与点E,∵∠AOP=∠BOP,PD⊥OA,PE⊥OB,∴PD=PE,∵PC//OA,∴∠CPO=∠POD,又∠AOP=∠BOP=15°,∴∠CPO=∠BOP=15°,又∠ECP为△OCP的外角,∴∠ECP=∠COP+∠CPO =30°,在直角三角形CEP 中,∠ECP =30°,PC =4,∴PE =12PC =2,则PD =PE =2.故答案为:2. 【变式训练1】如图所示,在四边形ABCD 中,DC //AB ,∠DAB =90°,AC ⊥BC ,AC =BC ,∠ABC 的平分线交A D ,AC 于点E 、F ,则BFEF的值是___________.11221BCBC BC ==--【详解】解:如图,作FG ⊥AB 于点G ,∠DAB -90°,∴FG /AD ,∴BF EF =BGAGAC ⊥BC ,∴∠ACB =90° 又BF 平分∠ABC ,∴FG =FC 在Rt △BGF 和Rt △BCF 中BF BFCF GF=⎧⎨=⎩ ∴△BGF ≌△BCF (HL ),∴BC =BGAC =BC ,∴∠CBA =45°,∴AB =2BC1BF BG BC EF AG AB BG ∴====- 【变式训练2】如图,BD 平分ABC 的外角∠ABP ,DA =DC ,DE ⊥BP 于点E ,若AB =5,BC =3,求BE 的长.【答案】1【详解】解:过点D 作BA 的垂线交AB 于点H ,∵BD平分△ABC的外角∠ABP,DH⊥AB,∴DE=DH,在Rt△DEB和Rt△DHB中,DE DHDB DB=⎧⎨=⎩,∴Rt△DEB≌Rt△DHB(HL),∴BE=BH,在Rt△DEC和Rt△DHA中,DE DHDC DA=⎧⎨=⎩,∴Rt△DEC≌Rt△DHA(HL),∴AH=CE,由图易知:AH=AB−BH,CE=BE+BC,∴AB−BH=BE+BC,∴BE+BH=AB−BC=5−3=2,而BE=BH,∴2BE=2,故BE=1.【变式训练3,的平分线相交于点E,过点E作交AC于点F,则EF的长为.【答案】【解析】延长FE交AB于点D G H,如图所示:四边形BDEG是矩形,平分CE平分,四边形BDEG是正,,设,则,,,解得,,即,解得,.模型二、角平分线垂中间例.如图,已知,90,,BAC AB AC BD ∠=︒=是ABC ∠的平分线,且CE BD ⊥交BD 的延长线于点E .求证:2BD CE =. 【答案】见解析【详解】证明:如图,延长CE 与BA 的延长线相交于点F ,∵90,90EBF F ACF F ∠+∠=︒∠+∠=︒,∴EBF ACF ∠=∠,在ABD △和ACF 中,EBF ACF AB AC BAC CAF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ABD ACF ASA △≌△,∴BD CF =,∵BD 是ABC ∠的平分线,∴EBC EBF ∠=∠.在BCE ∆和BFE ∆中,EBC EBF BE BE CEB FEB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()BCE BFE ASA ≌△△, ∴CE EF =,∴2CF CE =, ∴2BD CF CE ==.【变式训练1】如图,已知△ABC ,∠BAC =45°,在△ABC 的高BD 上取点E ,使AE =BC . (1)求证:CD =DE ;(2)试判断AE 与BC 的位置关系?请说明理由;【答案】(1)见解析;(2)AE BC ⊥,理由见解析;(3)【详解】(1)证明:∵BD AC ⊥,45BAC ∠=︒,∴90,45EDA BDC ABD BAD ∠=∠=︒∠=∠=︒,∴AD BD =,在Rt ADE △和Rt BDC 中,∵AD BDAE BC =⎧⎨=⎩ ∴()Rt ADE Rt BDC HL ≅,∴CD =DE ; (2)AE BC ⊥,理由如下:如图,延长AE ,交BC 于点F , 由(1)得,90EAD EBF EAD AED ∠=∠∠+∠=︒,∵AED AEF ∠=∠,∴90BEF EBF ∠+∠=︒,∴90EFB =︒,即AE BC ⊥;【变式训练2】如图,D 是△ABC 的BC 边的中点,AE 平分∠BAC ,AE ⊥CE 于点E ,且AB =10,AC =16,则DE 的长度为________【答案】3【解答】解:如图,延长CE ,AB 交于点F .AE 平分∠BAC ,AE ⊥EC ,∴∠F AE =∠CAE ,∠AEF =∠AEC =90°在△AFE 和△ACE 中,EAF EAC AE AE AEF AEC =⎧⎪=⎨⎪=⎩∠∠∠∠,∴△AFE ≌ACE (ASA ),∴AF =AC =16,EF =EC ,∴B F =6又D 是BC 的中点,∴BD =CD ,∴DE 是△CBF 的中位线,∴DE =12BF =3,故答案为:3. 【变式训练3】如图,在ABC ∆中,CD 是ACB ∠的平分线,AD CD ⊥于点D ,DE //BC 交AB 于点E ,求证:EA EB =.【答案】见解析【解答】证明:延长AD 交BC 于点F .CD 平分ACF ∠, ACD FCD ∴∠=∠.又,,AD CD CD CD ⊥=ADC ∴∆≌FDC ∆,AD FD ∴=. 又DE ∥BC ,EA EB ∴=.模型三、角平分线+平行线构造等腰三角形例.如图所示,在△ABC 中,BC =6,E 、F 分别是AB 、AC 的中点,动点P 在射线EF 上,BP 交CE 于D,∠CBP 的平分线交CE 于Q ,当CQ =13CE 时,EP +BP =________.【答案】12【解答】解:如图,延长BQ 交射线EF 于点M .E 、F 分别是AB 、AC 的中点,∴EF //BC ,∴∠CBM =∠EMBBM 平分∠ABC ,∴∠ABM =∠CBM ,∴∠EMB =∠EBM ,∴EB =EM ,∴EP +BP =EP +PM =EM CQ =13CE ,∴EQ =2CQ由EF //BC 得,△EMQ ∽△CBQ∴2 212 12EM EQEM BC EP BP BC CQ==∴==∴+=【变式训练1】如图,平分于点C ,,求OC 的长?【解析】如图所示:过点D 作交OA 于点E ,则,平分,,中,,.【变式训练2C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且,则AC=.【解析】过点E于G,连接CF,如图所示:分别是,CF是的平分线,,,由勾股定理可得.模型四、利用角平分线作对称例.平分.【答案】见解析【解析】证明:在AB上截取,连接DE,如图所示:.【变式训练】AD是△ABC的角平分线,过点D作DE⊥AB于点E,且DE=3,S△ABC=20.(1)如图1,若AB=AC,求AC的长;(2)如图2,若AB=5,请直接写出AC的长.【答案】(1)203;(2)253【详解】解:(1)如图1,作DF⊥AC于F,∵AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,∴DF =DE =3, 由题意得,12×AB ×3+12×AC ×3=20,解得,AC =AB =203; (2)如图2,作DF ⊥AC 于F ,∵AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,∴DF =DE =3, 由题意得,12×5×3+12×AC ×3=20,解得,AC =253. 模型五、内外模型例.如图,在△ABC 中,AB=AC ,∠A=30°,E 为BC 延长线上一点,∠ABC 与∠AC E 的平分线相交于点D ,则∠D 的度数为( )A .15°B .17.5°C .20°D .22.5°【答案】A4321DA【解析】∵∠ABC与∠AC E的平分线相交于点D,∴∠DCE=∠DCA,∠CBD=∠ABD,即.的外角的平分线CP与内角BP交于点P,若,则.【解析】平分平分又,过点P的延长线,垂足分别为点E、F、G,如图所示:由角平分线的性质可得,AP是.课后训练1.如图,BD是ABC的外角∠ABP的角平分线,DA=DC,DE⊥BP于点E,若AB=5,BC=3,则BE 的长为()A .2B .1.5C .1D .0【答案】C【详解】解:如图,过点D 作DF AB ⊥于F ,BD 是ABP ∠的角平分线,DF AB ⊥,DE ⊥BP ,DE DF ∴=,在Rt BDE 和Rt BDF 中,BD BDDE DF =⎧⎨=⎩,()Rt BDE Rt BDF HL ∴△≌△,BE BF ∴=,在Rt ADF 和Rt CDE △中,DA DCDE DF=⎧⎨=⎩,()Rt ADF Rt CDE HL ∴△≌△,AF CE ∴=,AF AB BF =-,CE BC BE =+,AB BF BC BE ∴-=+,2BE AB BC ∴=-,5AB =,3BC =,2532BE ∴=-=,解得:1BE =.故选:C .2.如图,AD 是ABC 中BAC ∠的平分线,DE AB ⊥交AB 于点E ,DF AC ⊥交AC 于点F ,若7ABC S =△,32=DE ,5AB =,则AC 的长为( )A .133B .4C .5D .6【答案】A【详解】∵AD 是ABC ∆中BAC ∠的平分线,DE AB ⊥于点E ,DF AC ⊥交AC 于点F ,∴32DF DE ==. 又∵ABCABD ACDSSS=+,5AB =,∴1313752222AC =⨯⨯+⨯⨯,∴133AC =.故选:A . 3.如图,在Rt △ABC 中,∠C =90°,∠BAC 的平分线交BC 于点D ,CD =2,BD =3,Q 为AB 上一动点,则DQ 的最小值为( )A.1B.2C.2.5D【答案】B【详解】解:作DH⊥AB于H,如图,∵AD平分∠BAC,DH⊥AB,DC⊥AC,∴DH=DC=2,∵Q为AB上一动点,∴DQ的最小值为DH的长,即DQ的最小值为2.故选:B.4.如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD=4,则四边形ABCD 的面积是______.【答案】30【详解】过D作DE⊥AB,交BA的延长线于E,则∠E=∠C=90°,∵∠BCD=90°,BD平分∠ABC,∴DE=DC=4,∴四边形ABCD的面积S=S△BCD+S△BAD=12×BC×CD+12×AB×DE=12×9×4+12×6×4=30,故答案为:30.5.如图,在△ABC中,AD为△ABC的角平分线,DE⊥AB,垂足为E,DF⊥AC,垂足为F,若AB=5,AC=3,DF=2,则△ABC的面积为______.【答案】8【详解】解:∵AD为△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF=2,∴△ABC的面积=12×5×2+12×3×2=8,故答案侍:8.6.在△ABC中,∠ABC=62°,∠ACB=50°,∠ACD是△ABC的外角∠ACD和∠ABC的平分线交于点E,则∠AEB=_____︒【答案】25【详解】解:如图示:过点E ,分别作EF BD ⊥交BD 于点E ,EG AC ⊥交AC 于点G ,EH AB ⊥,交AB 延长线于点H , ∵BE 平分ABC ∠,CE 平分ACD ∠,∴EH EF =,EG EF =,∴EH EG =,∴AE 平分HAC ∠, ∵62ABC ∠=︒,50∠=°ACB ,∴6250112HAC ABC ACB ∠=∠+∠=︒+︒=︒,∴111125622EAO HAC ∠=∠=⨯︒=︒, ∵BE 平分ABC ∠,62ABC ∠=︒∴11623122EBC ABC ∠=∠=⨯︒=︒ 在AOE △和BOC 中,OBC OCB OAE AEB ∠+∠=∠+∠∴31505625AEB OBC OCB OAE ∠=∠+∠-∠=︒+︒-︒=︒,故答案是:25. 7.如图,DE ⊥AB 于E ,DF ⊥AC 于F ,若BD =CD ,BE =CF .(1)求证:AD 平分∠BAC :(2)已知AC =18,BE =4,求AB 的长. 【答案】(1)见解析;(2)10AB =.【详解】(1)证明:DE AB ∵⊥,DF AC ⊥,90E DFC ∴∠=∠=︒,在Rt BED 和Rt CFD △中,BD CD BE CF =⎧⎨=⎩,∴Rt BED Rt CFD ≅()HL ,DE DF ∴=,DE AB ∵⊥,DF AC ⊥,AD ∴平分BAC ∠;(2)解:DE DF =,AD AD =,Rt ADE Rt ADF ∴≅()HL ,AE AF ∴=,AB AE BE AF BE AC CF BE =-=-=--,184410AB ∴=--=.8.如图1,在平面直角坐标系中,△ABC 的顶点A (-4,0),B (0,4),AD ⊥BC 交BC 于D 点,交y 轴正半轴于点E (0,t )(1)当t=1时,点C 的坐标为 ; (2)如图2,求∠ADO 的度数;(3)如图3,已知点P (0,3),若PQ ⊥PC ,PQ=PC ,求Q 的坐标(用含t 的式子表示). 【答案】(1)点C 坐标(1,0);(2)∠ADO =45°;(3)Q (-3,3-t ). 【详解】(1)如图1,当t =1时,点E (0,1), ∵AD ⊥BC , ∴∠EAO +∠BCO =90°, ∵∠CBO +∠BCO =90°,∴∠EAO =∠CBO ,在△AOE 和△BOC 中,∵90EAO CBOAO BO AOE BOC ∠=∠⎧⎪=⎨⎪∠=∠︒⎩=,∴△AOE ≌△BOC (ASA ),∴OE =OC =1,∴点C 坐标(1,0). 故答案为:(1,0);(2)如图2,过点O 作OM ⊥AD 于点M ,作ON ⊥BC 于点N ,∵△AOE ≌△BOC ,∴S △AOE =S △BOC ,且AE =BC , ∵OM ⊥AE ,ON ⊥BC ,∴OM =ON ,∴OD 平分∠ADC ;AD ⊥BC ,90ADC ∴∠=︒∴∠ADO =1452ADC ∠=︒;(3)如图3,过P 作GH ∥x 轴,过C 作CG ⊥GH 于G ,过Q 作QH ⊥GH 于H ,交x 轴于F ,∵P (0,3),C (t ,0),∴CG =FH =3,PG =OC =t , ∵∠QPC =90°,∴∠CPG +∠QPH =90°, ∵∠QPH +∠HQP =90°,∴∠CPG =∠HQP ,∵∠QHP=∠G=90°,PQ=PC,∴△PCG≌△QPH,∴CG=PH=3,PG=QH=t,∴Q(-3,3-t).。
初中数学常见模型之角平分线四大模型
角平分线四大模型模型1 角平分线上的点向两边作垂线如图,P 是∠MON 的平分线上一点,过点P 作PA ⊥OM 于点A ,PB ⊥ON 于点B 。
结论:PB=PA 。
模型分析利用角平分线的性质:角平分线上的点到角两边的距离相等,构造模型,为边相等、角相等、三角形全等创造更多的条件,进而可以快速找到解题的突破口。
模型实例(1)如图①,在△ABC 中,∠C=90°,AD 平分∠CAB ,BC=6,BD=4,那么点D到直线AB 的距离是 ; (2)如图②,∠1=∠2,+∠3=∠4。
求证:AP 平分∠BAC 。
热搜精练1.如图,在四边形ABCD 中,BC>AB ,AD=DC ,BD 平分∠ABC 。
求证:∠BAD+∠BCD=180°。
2.如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 的平分线BP 交于点 P ,若∠BPC=40°,则∠CAP= 。
N M OAB P 2图4321A CP B D AB C图1A B DC模型2 截取构造对称全等如图,P 是∠MON 的平分线上一点,点A 是射线OM 上任意一点,在ON 上截取OB=OA ,连接PB 。
结论:△OPB ≌△OPA 。
模型分析利用角平分线图形的对称性,在角的两边构造对称全等三角形,可以得到对应边、对应角相等。
利用对称性把一些线段或角进行转移,这是经常使用的一种解题技巧。
模型实例(1)如图①所示,在△ABC 中,AD 是△ABC 的外角平分线,P 是AD 上异于点A 的任意一点,试比较PB+PC 与AB+AC 的大小,并说明理由;(2)如图②所示, AD 是△ABC 的内角平分线,其他条件不变,试比较 PC-PB 与AC-AB 的大小,并说明理由。
热搜精练1.已知,在△ABC 中,∠A=2∠B ,CD 是∠ACB 的平分线,AC=16,AD=8。
求线段BC 的长。
A B DCPP O N M B A 图2DP AB C D C 1图P B A ABCD2.已知,在△ABC 中,AB=AC ,∠A=108°,BD 平分∠ABC 。
角平分线四大基本模型
12
例题4 (1)在三角形ABC中,∠ABC与∠ACB的角平分线相交 于点F,过点F作DE//BC,交AB于点D,交AC于点E,若 BD+CE=9,则线段DE之长为________
13
(2)在△ABC中,BD、CD分别平分∠ABC和∠ACB, DE//AB,FD//AC,如果BC=6,求△DEF的周长
【提示】“图中有角平分线,可将图形对折看,对称以后关系现”
10
例题3 (1)已知等腰直角三角形ABC中,∠A=90°,AB=AC, BD平分∠ABC,CE⊥BD,垂足为点E,求证: BD=2CE
11
(2)在△ABC中,AB=3AC,∠BAC的平分线交BC于 点D,过点B作BE⊥AD,垂足为E,求证:AD=DE
角平分线四大基本模型 角平分线在初中几何中常见, 现总结以下四种基本类型 已知P是∠MON平分线上一点
2
【模型1】 若PA⊥OM于点A,可过P作PB⊥ON于点B,则 PB=PA 口诀:“图中有角平分线,可向两边作垂线”
3
【模型2】 若点A是射线OM上任意一点,可在ON上截取OB=OA,连接PB, 构造△OPB≌△OPA 口诀:“图中有角平分线,可将图形对折看,对称以后关系现”
“角平分线+平行线,等腰三角形必呈现”
14
ห้องสมุดไป่ตู้
4
【模型3】 若AP⊥OP于点P,可延长AP交ON于点B,构造等腰 △AOB,OP是底边AB垂线,进而利用三线合一 口诀:“角平分线加垂线,三线合一试试看”
5
【模型4】 若过点P作PQ//ON交OM于点Q,从而构造等腰△POQ 口诀:“角平分线+平行线,等腰三角形必呈现”
巧借三角形的两条内(外)角平分线夹角的模型
BBECB A巧借三角形的两条内(外)角平分线夹角的模型【基本模型】三角形的两个内(外)角平分线所夹的角与第三个角之间的数量关系 模型一:当这两个角为内角时:这个夹角等于90°与第三个角一半的和(如图1); 模型二:当这两个角为外角时:这个夹角等于90°与第三个角一半的差(如图2); 模型三:当这两个角为一内角、一外角时:这个夹角等于第三个角一半(如图3);【分析】三个结论的证明例1、 如图1,△ABC 中,BD 、CD 为两个内角平分线,试说明:∠D=90°+21∠A 。
(方法一)解:∵BD 、CD 为角平分线∴∠CBD =21∠ABC , ∠BCD =21∠ACB 。
在△BCD 中:∠D =180°-(∠CBD +∠BCD )=180°-21(∠ABC +∠ACB )=180°-21(180°-∠A )=180°-21×180°+21∠A=90°+21∠A(方法二)解:连接AD 并延长交BC 于点E 解:∵BD 、CD 为角平分线∴∠CBD =21∠ABC , ∠BCD =21∠ACB 。
∵∠BDE 是△ABD 的外角 ∴∠BDE =∠BAD+∠ABD=∠BAD+21∠ABC同理可得∠CDE =∠CAD+21∠ACB又∵∠BDC =∠BDE+∠CDE∴∠BDC =∠BAD+21∠ABC+∠CAD+21∠ACB=∠BAC+21(∠ABC+∠ACB )=∠BAC+21(180°-∠BAC )=90°+21∠BAC例2、如图,BD、CD为△ABC的两条外角平分线,试说明:∠D=90°-21∠A 。
解:∵BD 、CD 为角平分线∴∠CBD=21∠CBE∠BCD =21∠BCF又∵∠CBE 、∠BCD 为△ABC 的外角 ∴∠CBE =∠A +∠ACB ∠BCF =∠A +∠ABC∴∠CBE +∠BCF =∠A +∠ACB +∠A +∠ABC =∠A +180°在△BCD 中:∠D =180°-(∠CBD +∠BCD )=180°-(21∠CBE +21∠BCF )=180°-21(∠CBE +∠BCF )=180°-21(∠A +180°)=90°-21∠A【小结】通过对模型1、2的分析和证明,我们还能发现三角形两内角平分线的夹角和两外角平分线的夹角互补,即和为180°。
初中数学几何模型:双角平分线模型
双角平分线模型模型讲解【结论1】如图所示,在△ABC中,BD,CD分别是∠ABC和∠ACB的平分线,则∠BDC=90°+12∠A.【证明】设∠ABD=∠DBC= x,∠ACD=∠BCD = y.由△ABC的内角和为180°,得∠A+2x+2y=180°.①由△BDC的内角和为180°,得∠BDC+x+y=180°.②由②得x+y=180°-∠BDC.③把③代入①,得∠A+2(180°-∠BDC) =180°,即2∠BDC =180°+∠A,即∠BDC=90°+12∠A.【结论2】如图所示,△ABC的外角平分线BD和CD相交于点D,则∠BDC = 90°−12∠A.【证明】设∠EBD=∠CBD = x,BCD=∠FCD = y.由△BCD的内角和为180°,得x+y+∠BDC=180°,①易得2x+2y=180°+∠A.②由①得x+y=180°-∠BDC.③把③代入②,得2(180°―∠BDC) =180°+∠A,即2∠BDC = 180°-∠A,即∠BDC = 90°−12∠A.【结论3】如图所示,△ABC的内角平分线BD和外角平分线CD相交于点D,则∠D=12∠A.【证明】设∠ABD=∠DBC = x,∠ACD=∠ECD = y.由外角定理得2y=∠A+2x,①y=∠D+x.②把②代入①,得2(∠D+x)=∠A+2x,即∠D=12∠A.典型例题典例1如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,若∠BAC=80°,则∠BOC的度数是( ).A.130°B.120°C.100°D.90°典例2如图,BA1和CA1,分别是△ABC的内角平分线和外角平分线,BA2是∠A1BD的平分线,CA2是∠A1CD的平分线,BA3是∠A2BD的平分线,CA3是∠A2CD的平分线,……以此类推,若∠A=α,则A2020 =___________.典例3【问题】如图1,在△ABC中,BE平分∠ABC,CE平分∠ACB.若∠A=80°,则∠BEC=________;若∠A=n°,则∠BEC=______.【探究】(1)如图2,在△ABC中,BD,BE三等分∠ABC,CD,CE三等分∠ACB,若∠A=n°,则∠BEC=________;(2)如图3,O是∠ABC的平分线BO与∠ACD的平分线CO的交点,试分析∠BOC和∠A有怎样的关系,并说明理由;(3)如图4,O是三角形ABC的外角∠DBC与∠BCE的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系? (只写结论,不需要证明)初露锋芒1.如图所示,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,若∠A=60°,则∠BFC等于( ).A.121°B.120°C.119°D.118°2.如图,五边形ABCDE在∠BCD,∠EDC处的外角分别是∠FCD,∠GDC,CP,DP分别平分∠FCD和∠GDC且相交于点P.若∠A=160°,∠B=80°,∠E=90°,则∠CPD=_________.感受中考1.(2019黑龙江大庆中考真题)如图,在△ABC中,BE是∠ABC的平分线,CE是∠ACM的平分线,BE与CE相交于点E. 若∠A=60°,则∠BEC的度数为( ).A.15°B.30°C.45°D.60°参考答案典例1【答案】A【解析】∵BO,CO是△ABC的内角平分线,由“内内90°加一半”得,∠BOC=90°+12∠BAC,即∠BOC=90°+ 12×80°=130°.故选A.典例2【答案】(12)2020·α【解析】∵BA1为△ABC的内角平分线,CA1为△ABC的外角平分线,∴由“内外就一半”,得∠A1= 12∠A=12·α.同理,∠A2= 12∠A1=(12)2·α,∠A3= 12∠A2=(12)3·α,......∴∠A2020 = ( 12)2020·α.典例3【解析】【问题】130°;90°+ 12n°【探究】(1)由三角形内角和定理,得∠ABC+∠ACB=180°-∠A=180°- n°.∵BD,BE三等分∠ABC,CD,CE三等分∠ACB,∴∠EBC= 23∠ABC,∠ECB =23∠ACB,∴∠EBC+∠ECB= 23(∠ABC+∠ACB)=23×(180°- n°)=120°−23n°,∴∠BEC =180°- (∠EBC+∠ECB)=180°- (120°-23n°)= 60°+ 23n°.(2)∠BOC= 12∠A. 理由如下:由三角形的外角性质,得∠ACD=∠A+∠ABC,∠OCD=∠BOC+∠OBC.∵O是∠ABC的平分线BO与∠ACD的平分线CO的交点,∴∠ABC =2∠OBC, ∠ACD =2∠OCD,∴∠A+∠ABC=2 (∠BOC+∠OBC),∴∠A=2∠BOC,∴∠BOC = 12∠A.(3)∠BOC=90°−12∠A.初露锋芒1.【答案】B【解析】∵BE,CD均为△ABC的内角平分线,∴由“内内90°加一半”,得∠BFC=90°+12∠A = 90°+12×60°=120°.故选B.2.【答案】105°【解析】如图,延长BF,EG交于点H.在△CDH中,CP,DP分别平分∠HCD和∠HDC,∴由“内内90°加一半”,得∠CPD=90°+ 12∠H.又∠A+∠B+∠H+∠E =360°,∴∠H = 360°−160°−80°−90°= 30°,∴∠CPD = 90°+ 12×30°=105°.感受中考1.【答案】B【解析】∵BE为△ABC的内角平分线,CE为△ABC的外角平分线,∴由“内外就一半”,得∠BEC= 12∠A=12×60°=30°.故选B.11。
七下第5讲三角形内外角平分线夹角模型归纳与内外角和计算方法总结
七下第5讲三角形内外角平分线夹角模型归纳与内外角和计算方法总结写在前面在前四讲中,我们对本章的重点内容作了归纳,剩下的知识点仅剩一个重要模型和内外角的相关题型变式,就以本讲作为本章的收尾,更多的难题,留至期中复习吧.一、三角形内外角平分线夹角模型模型呈现:如图,已知,在△ABC中,BD平分∠ABC,CD平分∠ACB,CH平分∠ACI,BG平分∠EBC,CG平分∠BCF.试探究∠BDC,∠BHC,∠BGC与∠A的关系.分析:这是本章的最后一个重要模型,要结合整体思想,外角定理综合运用.解答:补充结论:其实这个模型中,还能有许多发现,比如,∠GBD=90°,∠DCH=90°,理由是邻补角的角平分线互相垂直.∠BGC和∠BHC互余,∠BGC和∠BDC互补,在△DCH中,∠BDC作为外角,∠BDC=90°+∠BHC.例1:如图,O是三角形三条角平分线的交点,∠1=15°,则∠2=_____°.分析:本题的关键是,发现∠2的作用,∠2可以作为△AOB的外角,即∠OAB和∠OBA 的和,又是∠AOB的邻补角,∠AOB是三角形两内角平分线的夹角,因此本题既可以用一步一步完成,也可用结论模型口算.解答:例2:如图,在△ABC中,∠A=60°,BD、CD分别平分∠ABC、∠ACB,M、N、Q分别在DB、DC、BC的延长线上,BE、CE分别平分∠MBC、∠BCN,BF、CF分别平分∠EBC、∠ECQ,则∠F=_______.分析:本题是一道将三个模型结合在一起的题目,我们要关注哪些角可以求,∠BDC是两内角平分线的夹角,则知道∠A即可求,∠E是两外角,∠MBC,∠NCB的角平分线的夹角,则知道∠BDC即可求,∠F是△EBC的内角∠EBC和外角∠ECQ的角平分线夹角,则知道∠E即可求.解答:例3:分析:解答:综上所述,结论正确的是①②③⑤共4个.二、多边形内外角计算例1:一个学生计算多边形的内角和,少算了一个内角,得到答案是1400°,求少算的内角的度数及多边形边数.分析:显然,根据多边形内角和公式(n-2)·180°,可知内角和一定是180度的倍数,我们可以用1400除以180,算出其余数,那么自然可得,少算的那个内角与余数的和一定是180度的倍数,而根据多边形每个内角必然小于180°,则这个内角度数就是用180°减去这个余数即可.解答:1400°÷180°=7······140°,180°–140°=40°,设多边形边数为n,(n–2)·180=1400+40,n=10答:少算的内角度数为40°,边数为10.例2:一个学生计算多边形的内角和,多算了一个外角,得到答案是1400°,求多算的外角的度数及多边形边数.分析:显然,本题是上一题的变式,方法还是用1400除以180,算出其余数,那么多算的外角度数,就是这个余数.解答:1400°÷180°=7······140°,设多边形边数为n,(n–2)·180=1400-140,n=9答:多算的外角度数为140°,边数为9.例3:一个多边形每个内角都等于150°,求这个多边形的边数.分析:本题不难,但我们要学会多种思路解题,可以从多边形内角和公式入手,也可以逆向思维,求出每个外角的度数,用外角和除以每个外角的度数.解答:法1:设多边形边数为n,(n–2)·180=150n,n=12法2:180°-150°=30°,360°÷30°=12答:多边形边数为12.三、作图探究例:在△ABC中,∠ACB=90°,BD是△ABC的角平分线,P是射线AC上任意一点(不与A、D、C三点重合),过点P作PQ⊥AB,垂足为Q,交直线BD于E.(1)探索∠PDE与∠PED的关系,画出图形并说明理由.(2)作∠CPQ的角平分线交直线AB于点F,则PF与BD有怎样的位置关系?画出图形并说明理由.分析:本题中,点P的位置不确定,在射线AC上,就有多种可能,线段AD上,线段DC 上,线段DC延长线上,在延长线上时,又要考虑垂足Q的位置,可能在线段AB 上,也可能在线段AB的延长线上.因此,分四种情况讨论.碍于篇幅,我们将两小题的图汇总在一起.解答:①点P在线段AD上(1)∵PQ⊥AB,∴∠EQB=∠C=90°,∴∠PED+∠EBQ=90°,∠CBD+∠CDB=90°,∵∠PDE=∠CDB,∴∠CBD+∠PDE=90°,∵BD为∠ABC的平分线,∴∠CBD=∠EBQ,∴∠PDE=∠PED;(2)在四边形PQBC中,∠CPQ+∠CBA=360°-2×90°=180°∵PF平分∠CPQ,BD平分∠CBA∴∠1+∠2=90°∵∠1+∠3=90°∴∠2=∠3,PF∥BD②点P在线段DC上(1)∵PQ⊥AB,∴∠EQB=∠C=90°,∴∠BEQ+∠EBQ=90°,∠CBD+∠PDE=90°,∵∠PED=∠BEQ,∴∠PED +∠EBQ=90°,∵BD为∠ABC的平分线,∴∠CBD=∠EBQ,∴∠PDE=∠PED;(2)在四边形PQBC中,∠CPQ+∠CBA=360°-2×90°=180°∵PF平分∠CPQ,BD平分∠CBA∴∠1+∠2=90°∵∠1+∠3=90°∴∠2=∠3,PF∥BD③点P在线段DC延长线上,点Q在线段AB上(1)∵PQ⊥AB,∴∠EQB=∠ACB=90°,∴∠BEQ+∠EBQ=90°,∠CBD+∠PDE=90°,∵∠PED=∠BEQ,∴∠PED +∠EBQ=90°,∵BD为∠ABC的平分线,∴∠CBD=∠EBQ,∴∠PDE=∠PED;(2)∵∠CPQ+∠A=90°∠CBA+∠A=90°∴∠CPQ=∠CBA∵PF平分∠CPQ,BD平分∠CBA∴∠1=∠2∵∠1+∠3=90°∴∠2+∠3=90°,PF⊥BD④点P在线段DC延长线上,点Q在线段AB延长线上(1)∵PQ⊥AB,∴∠EQB=∠ACB=90°,∴∠PED+∠EBQ=90°,∠CBD+∠PDE=90°,∵∠ABD=∠EBQ,∴∠PED +∠ABD=90°,∵BD为∠ABC的平分线,∴∠CBD=∠ABD,∴∠PDE=∠PED;(2)∵∠CPQ+∠A=90°∠CBA+∠A=90°∴∠CPQ=∠CBA∵PF平分∠CPQ,BD平分∠CBA ∴∠1=∠2∵∠1+∠3=90°∴∠2+∠3=90°,PF⊥BD 上讲思考题答案。
专题05 三角形中的角平分线模型--2024年中考数学核心几何模型重点突破(解析版)
专题05三角形中的角平分线模型【模型1】如图,已知OP 平分AOB ∠,过点P 作OA PD ⊥,OB PE ⊥;可根据角平分线性质证得ODP ∆≌OEP ∆,从而可得OPE OPD ∠=∠,PE PD OE OD ==;。
【模型拓展】与角平分线有关的辅助线作法【辅助线作法一】如图,已知OP 平分AOB ∠,点C 是OA 上的一点,通常情况下,在OB 上取一点D,使得OC OD =,连接PD,结合OP OP =,POD POC ∠=∠,可证得OPC ∆≌OPD ∆。
从而可得PD PC =,PDO PCO ∠=∠,DPO CPO ∠=∠。
【辅助线作法二】如图,已知OP 平分AOB ∠,OP CP ⊥,通常情况下,延长CP 交OB 于点D,结合OP OP =,POD POC ∠=∠,︒=∠=∠90OPD OPC ,可证得OPC ∆≌OPD ∆。
从而可得PD PC =,PDO PCO ∠=∠,OD OC =。
【辅助线作法三】如图,已知OP 平分AOB ∠,通常情况下,过点P 作PC//OB,根据平行线性质:两直线平行内错角相等;结合POD POC ∠=∠,从而可得PC OC =,CPO COP ∠=∠。
【例1】如图,OC 为∠AOB 的角平分线,点P 是OC 上的一点,PD ⊥OA 于D ,PE ⊥OB 于E ,F 为OC 上另一点,连接DF ,EF ,则下列结论:①OD =OE ;②DF =FE ;③∠DFO =∠EFO ;④S △DFP =S △EFP ,正确的个数为()A .1个B .2个C .3个D .4个【答案】D 【分析】证明△ODP ≌△OEP (AAS ),由全等三角形的性质可推出OD =OE ,证明△DPF ≌△EPF (SAS ),由全等三角形的性质可推出DF =EF .∠DFP =∠EFP ,S △DFP =S △EFP ,则可得出答案.【解析】解:①∵OC 平分∠AOB ,∴∠DOP =∠EOP ,∵PD ⊥OA 于点D ,PE ⊥OB 于点E ,∴∠ODP =∠OEP =90°,∵OP =OP ,∴△ODP ≌△OEP (AAS ),∴OD =OE .故①正确;②∵△ODP ≌△OEP ,∴PD =PE ,∠OPD =∠OPE ,∴∠DPF =∠EPF ,∵PF =PF ,∴△DPF ≌△EPF (SAS ),∴DF =EF .故②正确;③∵△DPF ≌△EPF ,∴∠DFO =∠EFO ,故③正确;④∵△DPF ≌△EPF ,∴S △DFP =S △EFP ,故④正确.故选:D .【例2】如图,已知OC 平分∠MON ,点A 、B 分别在射线OM ,ON 上,且OA =OB .求证:△AOC ≌△BOC.【答案】见解析【分析】根据角平分线的性质和全等三角形的判定方法可以证明结论成立.【解析】证明:∵OC 平分∠MON ,∴∠AOC =∠BOC ,在△AOC 和△BOC 中,OA OB AOC BOC OC OC =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△BOC (SAS ).【例3】请阅读以下材料,并完成相应的问题:角平分线分线段成比例定理:如图1,在△ABC 中,AD 平分∠BAC ,则AB BD AC CD=,下面是这个定理的部分证明过程:证明:如图2,过C 作CE ∥DA ,交BA 的延长线于E .…任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)如图3,已知Rt △ABC 中,AB =3,BC =4,∠ABC =90°,AD 平分∠BAC ,求BD 的长.(请按照本题题干的定理进行解决)【答案】(1)见解析;(2).【分析】(1)如图2:过C 作CE ∥DA .交BA 的延长线于E ,利用平行线分线段成比例定理得到BD CD =BA EA,利用平行线的性质得∠2=∠ACE ,∠1=∠E ,由∠1=∠2得∠ACE =∠E ,所以AE =AC 即可证明结论;(2)先利用勾股定理计算出AC =5,再利用(1)中的结论得到AC AB =CD BD ,即53=CD BD ,则可计算出BD =32,然后利用勾股定理计算出AD =2,从而可得到△ABD 的周长.【解析】(1)解:如图2:过C 作CE ∥DA .交BA 的延长线于E ,∵CE //AD ,∴BD CD =BA EA,∠2=∠ACE ,∠1=∠E ,∵AD 平分∠BAC∴∠1=∠2,∴∠ACE =∠E ,∴AE =AC ,∴AB AC =BD CD;(2)∵AB =3,BC =4,∠ABC =90°,∴AC =5,∵AD 平分∠BAC ,∴AC AB =CD BD ,即53=4BD BD -,∴BD =32,∴AD∴△ABD 的周长=32+3+2=92+.一、单选题1.如图,ABC 中,5AB =,6BC =,10CA =,点D ,E 分别在BC ,CA 上,DE AB ∥,F 为DE 中点,AF 平分BAC ∠,则BD 的长为()A .32B .65C .85D .2【答案】B【分析】根据角平分线和平行可得EA EF =,从而可得2DE AE =,然后证明EDC ABC △△∽,利用相似三角形的性质即可求出AE ,DE ,进而求出CD ,最后进行计算求出BD 即可解答.【解析】解:∵F 为DE 中点,∴2ED EF =,∵AF 平分BAC ∠,∴EAF FAB ∠=∠,∵DE AB ∥,∴FAB AFE ∠=∠,∴EAF AFE ∠=∠,∴EA EF =,∴2DE AE =,设AE x =,则2DE x =,∵DE AB ∥,∴EDC B ∠=∠,∵C C ∠=∠,∴EDC ABC △△∽,∴ED EC DC AB AC BC==,∵5AB =,6BC =,10CA =,∴210510x x -=,∴2x =,∴24DE x ==,∴456CD =,∴245CD =,∴246655BD BC CD =-=-=.故选:B .2.如图,平行四边形ABCD 中,∠A 的平分线AE 交CD 于E ,若AB =5,BC =3,则EC 的长为()A .1B .2C .2.5D .4【答案】B 【分析】根据平行四边形的性质可得AB =CD =5,AD =BC =3,AB ∥CD ,然后根据平行线的性质可得∠EAB =∠AED ,然后根据角平分线的定义可得∠EAB =∠EAD ,从而得出∠EAD =∠AED ,根据等角对等边可得DA =DE =3,即可求出EC 的长.【解析】解:∵四边形ABCD 是平行四边形,AB =5,BC =3,∴AB =CD =5,AD =BC =3,AB ∥CD∴∠EAB =∠AED∵AE 平分∠DAB∴∠EAB =∠EAD∴∠EAD =∠AED∴DA =DE =3∴EC =CD -DE =2故选B .3.如图,OP 平分MON ∠,PA ON ⊥于点A ,点Q 是射线OM 上的一个动点,则下列结论正确的是()A .PA PQ=B .PA PQ <C .PA PQ >D .PA PQ≤【答案】D 【分析】连接PQ ,当PQ ⊥OM 时,根据角平分线的性质得出PQ =PA ,利用直线外一点到直线的垂线段最短即可得出结论.【解析】解:连接PQ ,当PQ ⊥OM 时,∵OP 平分∠MON ,PQ ⊥OM ,PA ⊥ON ,∴PQ =PA ,此时点P 到OM 的距离PQ 最小,∴PA ≤PQ ,故选:D .4.如图,CD ,CE ,CF 分别是ABC 的高、角平分线、中线,则下列各式中错误的是()A.2AB BF=B.12ACE ACB∠=∠C.AE BE=D.CD BE⊥【答案】C【分析】从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高.三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线.三角形一边的中点与此边所对顶点的连线叫做三角形的中线.依此即可求解.【解析】解:∵CD,CE,CF分别是△ABC的高、角平分线、中线,∴CD⊥AB,∠ACE=12∠ACB,AB=2BF,无法确定AE=BE.故选:C.5.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,则下列结论:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④BE+AC=AB,其中正确的有()A.1个B.2个C.3个D.4个【答案】C【分析】根据题中条件,结合图形及角平分线的性质得到结论,与各选项进行比对,排除错误答案,选出正确的结果.【解析】解:∵AD平分∠BAC,∴∠DAC=∠DAE,∵∠C=90°,DE⊥AB,∴∠C=∠E=90°,∵AD=AD,∴△DAC≌△DAE,∴∠CDA=∠EDA,∴①AD平分∠CDE正确;无法证明∠BDE =60°,∴③DE 平分∠ADB 错误;∵BE +AE =AB ,AE =AC ,∴BE +AC =AB ,∴④BE +AC =AB 正确;∵∠BDE =90°-∠B ,∠BAC =90°-∠B ,∴∠BDE =∠BAC ,∴②∠BAC =∠BDE 正确.综上,正确的个数的3个,故选:C .6.如图,∠BAC =30°,AD 平分∠BAC ,DF ⊥AB 交AB 于F ,DE ⊥DF 交AC 于E ,若AE =8,则DF 等于()A .5B .4C .3D .2【答案】B 【分析】过点D 作DG AC ⊥,根据角平分线的性质可得DF DG =,根据角平分线的定义,平行线的性质以及等腰三角形的判定,可得AE ED =,进而根据含30度角的直角三角形的性质即可求解.【解析】如图,过点D 作DG AC ⊥ AD 平分∠BAC ,DF ⊥AB ,DG AC⊥∴DF DG =,CAD BAD∠=∠DE DF ⊥ ,DF ⊥AB ,AB DE∴∥BAD EDA∴∠=∠EAD EDA∴∠=∠EA ED∴=8AE = 8DE AE ∴== ∠BAC =30°,30DEG ∴∠=︒142DG DE ∴==4DF ∴=故选B二、填空题7.如图,已知AD 是△ABC 的角平分线,DE ∥AC 交AB 于点E ,请你添加一个条件________,使四边形AEDF 是菱形.【答案】DF ∥AB【分析】添加DF ∥AB ,根据DE ∥AC 交AB 于点E ,DF ∥AB 交AC 于点F ,可以判断四边形AEDF 是平行四边形,再根据角平分线的性质和平行线的性质即可证明结论成立.【解析】解:DF ∥AB ,理由如下:∵DE ∥AC 交AB 于点E ,DF ∥AB 交AC 于点F ,∴四边形AEDF 是平行四边形,∠EAD =∠ADF ,∵AD 是△ABC 的角平分线,∴∠EAD =∠FAD ,∴∠ADF =∠FAD ,∴FA =FD ,∴平行四边形AEDF 是菱形(有一组邻边相等的平行四边形是菱形).8.如图,在平行四边形ABCD 中,DE 平分∠ADC ,AD =8,BE =3,则AB 的长为________.【答案】5【分析】首先由在平行四边形ABCD 中,AD =8,BE =3,求得CE 的长,然后由DE 平分∠ADC ,可证CD =CE =5,即可求解.【解析】∵在平行四边ABCD 中,AD =8,∴BC =AD =8,AD //BC ,∴CE =BC -BE =8-3=5,∠ADE =∠CED ,∴DE 平分∠ADC ,∴∠ADE =∠CDE ,∴∠CDE =∠CED ,∴CD =CE =5=AB ,故答案为:5.9.如图,在ABC 中,ACB ∠的平分线交AB 于点D ,DE AC ⊥于点E .F 为BC 上一点,若DF AD =,6ACD CDF S S -=△△,则AED 的面积为______.【答案】3【分析】在CA 上截取CG =CF ,连接DG .根据题意易证()CDG CDF SAS ≅ ,得出DG DF =,CDG CDF S S = .即可求出AD DG =,6ADG S = .最后根据等腰三角形“三线合一”的性质即可求出ADE S .【解析】如图,在CA 上截取CG =CF ,连接DG,∵CD 平分ACB ∠,∴ACD BCD ∠=∠.在CDG 和CDF 中,CG CF GCD FCD CD CD =⎧⎪∠=∠⎨⎪=⎩,∴()CDG CDF SAS ≅ ,∴DG DF =,CDG CDF S S = .∵6ACD CDF S S -=△△,∴6ACD CDG S S -= ,即6ADG S = .∵AD DF =,∴AD DG=.∴AE=EG,∴132ADE GDE ADGS S S===.故答案为:3.10.如图,AB=BE,∠DBC=12∠ABE,BD⊥AC,则下列结论正确的是:_____.(填序号)①BC平分∠DCE;②∠ABE+∠ECD=180°;③AC=2BE+CE;④AC=2CD﹣CE.【答案】①②④【分析】根据已知∠DBC=12∠ABE,BD⊥AC,想到构造一个等腰三角形,所以延长CD,以B为圆心,BC长为半径画弧,交CD的延长线于点F,则BF=BC,就得到∠FBC=2∠DBC,然后再证明△FAB≌△CBE,就可以判断出BC平分∠DCE,再由角平分线的性质想到过点B作BG⊥CE,交CE的延长线于点G,从而证明△ABD≌△EBG,即可判断.【解析】解:延长CD,以B为圆心,BC长为半径画弧,交CD的延长线于点F,则BF=BC,过点B作BG⊥CE,交CE的延长线于点G,∵FB=BC,BD⊥AC,∴DF=DC,∠DBC=∠DBF=12∠FBC,∵∠DBC=12∠ABE,∴∠FBC=∠ABE,∴∠FBA=∠CBE,∵AB=AE,∴△FAB≌△CBE(SAS),∴∠F=∠BCE,∵BF=BC,∴∠F=∠BCD,∴∠BCD=∠BCE,∴BC平分∠DCE,故①正确;∵∠FBC+∠F+∠BCD=180°,∴∠ABE+∠BCE+∠BCD=180°,∴∠ABE+∠DCE=180°,故②正确;∵∠BDC=∠BGC=90°,BC=BC,∴△BDC≌△BGC(AAS),∴AD=GE,CD=CG,∵AC=AD+DC,∴AC=AD+CG=AD+GE+CE=2GE+CE,∵GE≠BE,∴AC≠2BE+CE,故③错误;∵AC=CF﹣AF,∴AC=2CD﹣CE,故④正确;故答案为:①②④.11.如图,在△ABC中,BD平分∠ABC交AC于点D,DE∥AB,交BC于点E,BE=2,则DE的长是___.【答案】2【分析】根据角平分线的定义得到∠ABD=∠CBD,根据平行线的性质得到∠ABD=∠BDE,等量代换得到∠DBE=∠BDE,得到DE=BE,于是得到结论.【解析】解:∵BD平分∠ABC,∴∠ABD=∠CBD,∵DE∥AB,∴∠ABD=∠BDE,∴∠DBE=∠BDE,∴DE=BE,∵BE=2,∴DE=2.故答案为:2.12.如图,△ABC中,AD、BD、CD分别平分△ABC的外角∠CAE、内角∠ABC、外角∠ACF,AD∥BC.以下结论:①∠ABC=∠ACB;②∠ADC+∠ABD=90°;③BD平分∠ADC;④2∠BDC=∠BAC.其中正确的结论有____________.(填序号)【答案】①②④【分析】根据角平分线的定义得到∠EAD=∠CAD,根据平行线的性质得到∠EAD=∠ABC,∠CAD=∠ACB,求得∠ABC=∠ACB,故①正确;根据角平分线的定义得到∠ADC=90°12-∠ABC,求得∠ADC+∠ABD=90°故②正确;根据全等三角形的性质得到AB=CB,与题目条件矛盾,故③错误,根据角平分线的定义和三角形外角的性质即可得到2∠BDC=∠BAC,故④正确.【解析】解:∵AD平分∠EAC,∴∠EAD=∠CAD,∵AD∥BC,∴∠EAD=∠ABC,∠CAD=∠ACB,∴∠ABC=∠ACB,故①正确;∵AD,CD分别平分∠EAC,∠ACF,∴可得∠ADC=90°12-∠ABC,∴∠ADC+12∠ABC=90°,∴∠ADC+∠ABD=90°,故②正确;∵∠ABD =∠DBC ,BD =BD ,∠ADB =∠BDC ,∴△ABD ≌△BCD (ASA ),∴AB =CB ,与题目条件矛盾,故③错误,∵∠DCF =∠DBC +∠BDC ,∠ACF =∠ABC +∠BAC ,∴2∠DCF =2∠DBC +2∠BDC ,2∠DCF =2∠DBC +∠BAC ,∴2∠BDC =∠BAC ,故④正确,故答案为:①②④.三、解答题13.如图,AC =BC ,∠1=∠2,求证:OD 平分∠AOB .【答案】见详解【分析】证明△ACO ≌△BCO 即可求证.【解析】证明:∵∠1=∠2,∠1+∠ACO =180°,∠2+∠BCO =180°,∴∠ACO =∠BCO ,∵AC =BC ,CO =CO ,∴△ACO ≌△BCO ,∴∠AOC =∠BOC ,∴OD 平分∠AOB .14.如图,在ABC 中,AE 平分BAC BE AE ∠⊥,于点E ,延长BE 交AC 于点D ,点F 是BC 的中点.若35AB AC ==,,求EF 的长.【答案】1【分析】根据角平分线的定义结合题意,即可利用“ASA”证明BAE DAE ≅ ,即得出3AD AB ==,BE DE =,从而可得出2CD =,点E 为BD 中点,从而可判定EF 为BCD △的中位线,进而可求出EF 的长.【解析】∵AE 平分BAC BE AE∠⊥,∴BAE DAE ∠=∠,90AEB AED ∠=∠=︒.又∵AE =AE ,∴BAE DAE ≅ (ASA),∴3AD AB ==,BE DE =,∴2CD AC AD =-=,点E 为BD 中点.∵F 是BC 的中点,∴EF 为BCD △的中位线,∴112EF CD ==.15.已知:如图,在△ABC 中,AB =AC ,∠A =100°,BD 是∠ABC 的平分线,BD =BE .求证:(1)△CED 是等腰三角形;(2)BD +AD =BC .【答案】(1)见解析;(2)见解析【分析】(1)由AB =AC ,∠A =100°求出∠ABC =∠C =40°,再由BD 是∠ABC 的平分线求出∠DBC =12∠ABC =20°,根据BD =BE 求出∠BED =∠BDE =80°,再根据三角形的外角等于与它不相邻的两个内角的和求得∠EDC =40°,则∠EDC =∠C ,从而证明ED =EC ,即△CED 是等腰三角形;(2)在BE 上截取BF =BA ,连结DF ,先证明△FBD ≌△ABD ,则FD =AD ,∠BFD =∠A =100°,可证明∠EFD =∠FED =80°,则AD =FD =ED =EC ,即可证明BD +AD =BE +EC =BC .【解析】(1)∵AB =AC ,∠A =100°,∴∠ABC =∠C =12×(180°-100°)=40°,∵BD 是∠ABC 的平分线,∴∠DBC =12∠ABC =20°,∵BD =BE ,∴∠BED =∠BDE =12×(180°-20°)=80°,∴∠EDC =∠BED -∠C =80°-40°=40°,∴∠EDC =∠C ,∴ED =EC ,∴△CED 是等腰三角形.(2)如图,在边BC 上取点F ,使BF BA =,在ABD △和FBD 中∵AB FB ABD FBD BD BD =⎧⎪∠=∠⎨⎪=⎩∴ABD FBD≌△△∴AD DF =,100BFD A ∠=∠=︒,∴18010080DFE ∠=︒-︒=︒,∴DFE DEF∠=∠∴DF DE=∴AD EC=∴BD AD BE EC BC +=+=.16.如图,AD 为△ABC的角平分线.(1)如图1,若CE ⊥AD 于点F ,交AB 于点E ,AB =8,AC =5.则BE =_______.(2)如图2,若∠C =2∠B ,点E 在AB 上,且AE =AC ,AB =a ,AC =b ,求CD 的长;(用含a 、b 的式子表示)(3)如图3,BG ⊥AD ,点G 在AD 的延长线上,连接CG ,若△ACG 的面积是7,求△ABC 的面积.【答案】(1)3;(2)CD =a -b ;(3)ABC S =14【分析】(1)利用ASA 证明△AEF ≌△ACF ,得AE =AC =5,得出答案;(2)利用ASA 证明△ADE ≌△ADC ,得∠C =∠AED ,DC =DE ,再证明∠B =∠BDE ,得出BE =DE ,即可得到结论;(3)利用ASA 证明△AGB ≌△AGH ,得出BG =HG ,即可得出△ABC 的面积.【解析】(1)∵AD 是△ABC 的平分线,∴∠BAD =∠CAD ,∵CE ⊥AD ,∴∠CFA =∠EFA ,∵在△AEF 和△ACF 中EAF CAF AF AF AFE AFC ∠∠⎧⎪⎨⎪∠∠⎩===,∴△AEF ≌△ACF (ASA ),∴AE =AC =5,∵AB =8,∴BE =AB −AC =8−5=3,故答案为:3;(2)∵AD 平分∠BAC ,∴∠BAD =∠CAD ,在△ADE 和△ADC 中AE AC EAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△ADC∴∠C =∠AED ,DC =DE又∵∠C =2∠B ,∠AED =∠B +∠BDE∴∠B =∠BDE∴DE =BE ,∴DC =DE =BE =AB -AE =AB -AC=a -b ;(3)如图,分别延长AC ,BG 交于点H ,∵AD 平分∠BAC ,∴∠BAD =∠CAD ,∵AG ⊥BH ,∴∠AGB =∠AGH =90°,∵在△AGB 和△AGH 中BAD CAD AG AG AGB AGH ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AGB ≌△AGH ,∴BG =HG ,∴22BCH BCG HCG S S S == ,又∵2ABC BCH ACG CGH S S S S +=+ ()∴ABC S =14.17.已知:如图1,在Rt ABC 中,90ACB ∠=︒,60B ∠=︒,AD ,CE 是角平分线,AD 与CE 相交于点F ,FM AB ⊥,FN BC ⊥,垂足分别为M ,N .【思考说理】(1)求证:FE FD =.【反思提升】(2)爱思考的小强尝试将【问题背景】中的条件“90ACB ∠=︒”去掉,其他条件不变,观察发现(1)中结论(即FE FD =)仍成立.你认为小强的发现正确吗?如果不正确请举例说明,如果正确请仅就图2给出证明.【答案】(1)证明见详解;(2)正确,证明见详解;【分析】(1)由角平分线的性质、三角形内角和定理证()Rt FDN Rt FEM AAS ∆≅∆∠即可求解;(2)在AB 上截取CP =CD ,分别证()CDF CPF SAS ∆≅∆、()AFE AFP ASA ∆≅∆即可求证;【解析】证明:(1)∵AD 平分∠BAC ,CE 平分∠ACB ,∴点F 是ABC ∆的内心,∵FM AB ⊥,FN BC ⊥,∴FM FN =,∵90ACB ∠=︒,60ABC ∠=︒,∴30CAB ∠=︒∴15CAD ∠=︒∴75ADC ∠=︒∵45ACE ∠=︒∴75CEB ∠=︒∴ADC CEB∠=∠∴()Rt FDN Rt FEM AAS ∆≅∆∠∴FE FD=(2)如图,在AB 上截取CP =CD ,在CDF ∆和CPF ∆中,∵CD CP DCF PCF CF CF =⎧⎪∠=∠⎨⎪=⎩∴()CDF CPF SAS ∆≅∆∴FD FP =,∠CFD =∠CFP ,∵AD 平分∠BAC ,CE 平分∠ACB ,∴∠CAD =∠BAD ,∠ACE =∠BCE ,∵∠B =60°,∴∠ACB +∠BAC =120°,∴∠CAD +∠ACE =60°,∴∠AFC =120°,∵∠CFD =∠AFE =180°-∠AFC =60°,∵∠CFD =∠CFP ,∴∠AFP =∠CFP =∠CFD =∠AFE =60°,在AFE ∆和AFP ∆中,∵AFE AFP AF AF PAF EAF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()AFE AFP ASA ∆≅∆∴FP =EF∴FD =EF .18.如图,∠MAN 是一个钝角,AB 平分∠MAN ,点C 在射线AN 上,且AB =BC ,BD ⊥AC ,垂足为D.(1)求证:BAM BCA ∠=∠;(2)动点P ,Q 同时从A 点出发,其中点Q 以每秒3个单位长度的速度沿射线AN 方向匀速运动;动点P 以每秒1个单位长度的速度匀速运动.已知AC =5,设动点P ,Q 的运动时间为t 秒.①如图②,当点P 在射线AM 上运动时,若点Q 在线段AC 上,且52ABP BQC S S =△△,求此时t 的值;②如图③,当点P 在直线AM 上运动时,点Q 在射线AN 上运动的过程中,是否存在某个时刻,使得 APB 与 BQC 全等?若存在,请求出t 的值;若不存在,请说出理由.【答案】(1)见解析(2)①2517t =;②存在,54t =或52t =【分析】(1)①先证Rt △BDA ≌Rt △BDC (HL ),推出∠BAC =∠BCA .再由角平分线的定义得∠BAM =∠BAC ,等量代换即可证明BAM BCA ∠=∠;(2)①作BH ⊥AM ,垂足为M .先证△AHB ≌△ADB (AAS ),推出BH =BD ,再由S △ABP =52S △BQC ,推出52AP CQ =,结合P ,Q 运动方向及速度即可求解;②分“点P 沿射线AM 方向运动,点Q 在线段AC 上”,以及“点P 沿射线AM 反向延长线方向运动,点Q 在线段AC 延长线上”两种情况讨论,利用三角形全等得出AP 与CQ 的关系即可求解.【解析】(1)证明:∵BD ⊥AC ,∴90BDA BDC ∠=∠=︒,在Rt △BDA 和Rt △BDC 中,BD BD AB CB=⎧⎨=⎩,∴Rt △BDA ≌Rt △BDC (HL ),∴∠BAC =∠BCA .∵AB 平分∠MAN ,∴∠BAM =∠BAC ,∴∠BAM =∠BCA .(2)解:①如下图所示,作BH ⊥AM ,垂足为M .∵BH ⊥AM ,BD ⊥AC ,∴∠AHB =∠ADB =90°,在△AHB 和△ADB 中,AHB ADB BAH BAD AB AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,,,∴△AHB ≌△ADB (AAS ),∴BH =BD ,∵S △ABP =52S △BQC ,∴151222AP BH CQ BD =⨯ ,∴52AP CQ =,∴5(53)2t t =-,∴2517t =.②存在,理由如下:当点P 沿射线AM 方向运动,点Q 在线段AC上时,如下图所示,∵AB =BC ,又由(1)得∠BAM =∠BCA ,∴当AP =CQ 时,△APB ≌△CQB ,∴53t t =-,∴54t =;当点P 沿射线AM 反向延长线方向运动,点Q 在线段AC 延长线上时,如下图所示,由(1)得∠BAM=∠BCA,∴∠BAP=∠BCQ,又∵AB=BC,∴当AP=CQ时,△APB≌△CQB,∴35t t=-,∴52 t=.综上所述,当54t=或52t=时,△APB和△CQB全等.。
角平分线四大模型口诀
角平分线四大模型口诀
角平分线是指将一个角分成两个相等的部分的线段。
根据不同的角度和图形特征,我们可以将角平分线分为四种不同的模型,它们分别是:
1. 垂直平分线模型:当一个角的平分线和角的两边垂直相交时,我们称之为垂直平分线模型。
垂直平分线将角分成两个相等的部分,并且平分线和角的两边垂直相交。
2. 边平分线模型:当一个角的平分线与角的一条边重合时,我们称之为边平分线模型。
边平分线将角分成两个相等的部分,并且平分线与角的一条边重合。
3. 内角平分线模型:当一个角的平分线在角的内部,并且和角的两边相交时,我们称之为内角平分线模型。
内角平分线将角分成两个相等的部分,并且平分线在角的内部。
4. 外角平分线模型:当一个角的平分线在角的外部,并且与角的一条边相交时,我们称之为外角平分线模型。
外角平分线将角分成两个相等的部分,并且平分线在角的外部。
这些角平分线模型在几何学和三角学中经常被使用,可以帮助我们研
究角的性质和定理。
初一几何——三角形内外角平分线模型
初一几何——双角平分线模型1.在△ABC中,BO,CO分别平分∠ABC和∠ACB,∠1+∠2=50°,则∠A的度数为()A.80度B.50度C.100度D.110度2.如图,△ABC中,∠A=50°,D是BC延长线上一点,∠ABC和∠ACD的平分线交于点E,则∠E的度数为()A.40°B.20°C.25°D.30°第1题图第2题图第3题图第4题图3.如图在△ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD的平分线,BO的延长线交CE 于点E,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是()A.①②③B.①③④C.①④D.①②④4.如图,∠ABD、∠ACD的角平分线交于点P,若∠A=60°,∠D=20°,则∠P的度数为()A.15°B.20°C.25°D.30°5.如图,在△ABC中,∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2;……;∠A2017BC与∠A2017CD的平分线相交于点A2018,得∠A2018.如果∠A=80°,则∠A2018的度数是()A.80 B.802018 C.40 D.80×(12)20186.已知△ABC,下列说法正确的是(只填序号).①如图(1),若点P是∠ABC和∠ACB的角平分线的交点,则∠P=90°+12∠A;②如图(2),若点P是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°−12∠A;③如图(3),若点P是∠ABC和外角∠ACE的角平分线的交点,则∠P=12∠A.7.已知:如图,O是△ABC内一点,且OB、OC分别平分∠ABC、∠ACB,若∠A=46°,求∠BOC=.第7题图第8题图第9题图8.如图,在△ABC中,∠ABC=40°,∠ACD=76°,BE平分∠ABC,CE平分△ABC的外角∠ACD,则∠E=.9.如图,△ABC中,∠C=104°,BF平分∠ABC与△ABC的外角平分线AE所在的直线交于点F,则∠F=.10.如图,在△ABC中,∠B=90°,∠ACB、∠CAF的平分线所在的直线交于点H,求∠H的度数.11.如图①,∠ACD是△ABC的外角,BE平分∠ABC,CE平分∠ACD,且BE、CE交于点E.(1)如果∠A=60°,∠ABC=50°,求∠E的度数;(2)猜想:∠E与∠A有什么数量关系;(写出结论即可)(3)如图②,点E是△ABC两外角平分线BE、CE的交点,探索∠E与∠A之间的数量关系,并说明理由.12.甲乙两同学对同一个图形进行研究,如图①,在△ABC中,点O是∠ABC和∠ACB平分线的交点,若∠A=α,则∠BOC=.(说明:本题中角的大小均可用á表示);(1)甲同学不断调整图中射线BO、CO的位置,如图②,∠CBO=13∠ABC,∠BCO=13∠ACB,∠A=α,则∠BOC=,并请你帮他说明理由.(2)由(1)方法,甲同学猜想:如图③,当∠CBO=1n∠ABC,∠BCO=1n∠ACB,∠A=α,∠BOC=(3)乙两同学的探究思路是把三角形不断变化为四边形、五边形、六边形…,探究角平分线组成的∠O与多边形其他角的关系.如图④,在四边形ABCD中,BO、CO分别平分∠ABC和∠BCD,试探究∠O与∠A、∠D的数量关系,并说明理由.(4)仿照(3)的方法,如图⑤,在六边形ABCDEF中,BO、CO分别平分∠ABC和∠BCD,请直接写出∠O 与∠A、∠D、∠E、∠F的数量关系:.13.(1)如图1,已知△ABC,BF平分外角∠CBP,CF平分外角∠BCQ.试确定∠A和∠F的数量关系;(2)如图2,已知△ABC,BF和BD三等分外角∠CBP,CF和CE三等分外角∠BCQ.试确定∠A和∠F的数量关系;(3)如图3,已知△ABC,BF、BD和BM四等分外角∠CBP,CF、CE和CN四等分外角∠BCQ.试确定∠A 和∠F的数量关系;(4)如图4,已知△ABC,将外角∠CBP进行n等分,BF是临近BC边的等分线,将外角∠BCQ进行n等分,CF是临近BC边的等分线,试确定∠A和∠F的数量关系.14.(1)如图1,O是△ABC内一点,且BO,CO分别平分∠ABC,∠ACB、若∠A=46°,则∠BOC=;若∠A=n°,则∠BOC=;(2)如图2,O是△ABC外一点,BO,CO分别平分△ABC的外角∠CBE,∠BCF.若∠A=n°,求∠BOC;(3)如图3,O是△ABC外一点,BO,CO分别平分∠ABC,∠ACD.若∠A=n°,求∠BOC.初一几何——双角平分线模型参考答案与试题解析一.选择题(共5小题)1.在△ABC中,BO,CO分别平分∠ABC和∠ACB,∠1+∠2=50°,则∠A的度数为()A.80度B.50度C.100度D.110度【解答】解:∵BO,CO分别平分∠ABC和∠ACB,∠1+∠2=50°,∴∠ABC=2∠1,∠ACB=2∠2,∴∠ABC+∠ACB=2(∠1+∠2)=100°,∵△ABC中,∠A+∠ABC+∠ACB=180°,∴∠A=180°﹣100°=80°.故选:A.2.如图,△ABC中,∠A=50°,D是BC延长线上一点,∠ABC和∠ACD的平分线交于点E,则∠E的度数为()A.40°B.20°C.25°D.30°【解答】解:∵由三角形的外角的性质可知,∠E=∠ECD﹣∠EBD,∵∠ABC的平分线与∠ACD的平分线交于点E,∴∠EBC=12∠ABC,∠ECD=12∠ACD,∵∠ACD﹣∠ABC=∠A=50°,∴12(∠ACD﹣∠ABC)=25°,∴∠E=∠ECD﹣∠EBD=25°,故选:C.3.如图在△ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD的平分线,BO的延长线交CE 于点E,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是()A.①②③B.①③④C.①④D.①②④【解答】解:∵CE为外角∠ACD的平分线,BE平分∠ABC,∴∠DCE=12∠ACD,∠DBE=12∠ABC,又∵∠DCE是△BCE的外角,∴∠2=∠DCE﹣∠DBE,=12(∠ACD﹣∠ABC)=12∠1,故①正确;∵BO,CO分别平分∠ABC,∴∠OBC=12ABC,∠OCB=12∠ACB,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°−12(∠ABC+∠ACB)=180°−12(180°﹣∠1)=90°+12∠1,故②、③错误;∵OC平分∠ACB,CE平分∠ACD,∴∠ACO=12∠ACB,∠ACE=12ACD,∴∠OCE=12(∠ACB+∠ACD)=12×180°=90°,∵∠BOC是△COE的外角,∴∠BOC=∠OCE+∠2=90°+∠2,故④正确;故选:C.4.如图,∠ABD、∠ACD的角平分线交于点P,若∠A=60°,∠D=20°,则∠P的度数为()A .15°B .20°C .25°D .30°【解答】解:延长AC 交BD 于点E , 设∠ABP =α, ∵BP 平分∠ABD , ∴∠ABE =2α,∴∠AED =∠ABE +∠A =2α+60°, ∴∠ACD =∠AED +∠D =2α+80°, ∵CP 平分∠ACD ,∴∠ACP =12∠ACD =α+40°, ∵∠AFP =∠ABP +∠A =α+60°, ∠AFP =∠P +∠ACP∴α+60°=∠P +α+40°, ∴∠P =20°, 故选:B .5.如图,在△ABC 中,∠ABC 与∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2;……;∠A 2017BC 与∠A 2017CD 的平分线相交于点A 2018,得∠A 2018.如果∠A =80°,则∠A 2018的度数是( )A .80B .802018C .40D .80×(12)2018【解答】解:∵∠ABC 与∠ACD 的平分线交于点A 1, ∴∠A 1BC =12∠ABC ,∠A 1CD =12∠ACD , 由三角形的外角性质,∠ACD =∠A +∠ABC , ∠A 1CD =∠A 1+∠A 1BC ,12(∠A +∠ABC )=∠A 1+∠A 1BC =∠A 1+12∠ABC ,整理得,∠A 1=12∠A =12×80°=40°; 同理可得 ∠A n =(12)n ×80 故选:D .二.填空题(共4小题)6.已知△ABC,下列说法正确的是①②③(只填序号).①如图(1),若点P是∠ABC和∠ACB的角平分线的交点,则∠P=90°+12∠A;②如图(2),若点P是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°−12∠A;③如图(3),若点P是∠ABC和外角∠ACE的角平分线的交点,则∠P=12∠A.【解答】解:①正确.∵P点是∠ABC和∠ACB的角平分线的交点,∴∠PBC+∠PCB=12(∠ABC+∠ACB)=12(180°﹣∠A)=90°−12∠A,∴∠P=180°−12(∠ABC+∠ACB)=180°﹣90°+12∠A=90°+12∠A;②正确.∵BP、CP为△ABC两外角的平分线,∴∠BCP=12∠BCE=12(∠A+∠ABC),∠PBC=12∠CBF=12(∠A+∠ACB),由三角形内角和定理得:∠BPC=180°﹣∠BCP﹣∠PBC=180°−12[∠A+(∠A+∠ABC+∠ACB)]=180°−12(∠A+180°)=90°−12∠A.③正确.∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠PBC=12∠ABC,∠PCE=12∠ACE,∵∠ACE是△ABC的外角,∠PCE是△BPC的外角,∴∠ACE=∠ABC+∠A,∠PCE=∠PBC+∠P,∴12∠ACE=12∠ABC+12∠A,∴12∠ABC+12∠A=∠PBC+∠P,∠P=12∠A;故答案为①②③.7.已知:如图,O是△ABC内一点,且OB、OC分别平分∠ABC、∠ACB,若∠A=46°,求∠BOC=113°.【解答】解:∵OB、OC分别是∠ABC和∠ACB的角平分线,∴∠OBC+∠OCB=12∠ABC+12∠ACB=12(∠ABC+∠ACB),∵∠A=46°,∴∠OBC+∠OCB=12(180°﹣46°)=67°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣67°=113°.故答案为:113°.8.如图,在△ABC中,∠ABC=40°,∠ACD=76°,BE平分∠ABC,CE平分△ABC的外角∠ACD,则∠E=18°.【解答】解:∵BE平分∠ABC,CE平分△ABC的外角∠ACD,∴∠EBC=12∠ABC=20°,∠ECD=12∠ACD=38°,∵∠ECD=∠EBC+∠E,∴∠E=38°﹣20°=18°,故答案为18°.9.如图,△ABC中,∠C=104°,BF平分∠ABC与△ABC的外角平分线AE所在的直线交于点F,则∠F=52°.【解答】解:∵BF平分∠ABC,AE平分∠DAB,∴∠ABF=12∠ABC,∠EAB=12∠DAB,∵∠DAB﹣∠ABC=∠C=104°,∴∠F=∠EAB﹣∠ABF=12(∠DAB﹣∠ABC)=52°,故答案为:52°.三.解答题(共5小题)10.如图,在△ABC中,∠B=90°,∠ACB、∠CAF的平分线所在的直线交于点H,求∠H的度数.【解答】解:∵CH、AD分别为∠ACB、∠CAF的平分线,∴∠CAD=12∠CAF=∠H+12∠ACB(三角形的一个外角等于与它不相邻的两个内角的和),又∵∠CAF=∠B+∠ACB=90°+∠ACB(三角形的一个外角等于与它不相邻的两个内角的和),即12∠CAF−12∠ACB=45°,∴∠H=12∠CAF−12∠ACB=45°.11.如图①,∠ACD是△ABC的外角,BE平分∠ABC,CE平分∠ACD,且BE、CE交于点E.(1)如果∠A=60°,∠ABC=50°,求∠E的度数;(2)猜想:∠E与∠A有什么数量关系;(写出结论即可)(3)如图②,点E是△ABC两外角平分线BE、CE的交点,探索∠E与∠A之间的数量关系,并说明理由.【解答】解:(1)根据外角的性质得∠ACD=∠A+∠ABC=60°+50°=110°,∵BE平分∠ABC,CE平分∠ACD,∴∠1=12∠ACD=55°,∠2=12∠ABC=25°∵∠E+∠2=∠1,∴∠E=∠1﹣∠2=30°;(2)猜想:∠E=12∠A;(3)∵BE、CE是两外角的平分线,∴∠2=12∠CBD,∠4=12∠BCF,而∠CBD=∠A+∠ACB,∠BCF=∠A+∠ABC,∴∠2=12(∠A+∠ACB),∠4=12(∠A+∠ABC).∵∠E+∠2+∠4=180°,∴∠E+12(∠A+∠ACB)+12(∠A+∠ABC)=180°,即∠E+12∠A+12(∠A+∠ACB+∠ABC)=180°.∵∠A+∠ACB+∠ABC=180°,∴∠E+12∠A=90°.12.甲乙两同学对同一个图形进行研究,如图①,在△ABC中,点O是∠ABC和∠ACB平分线的交点,若∠A=α,则∠BOC=(90+α2)°.(说明:本题中角的大小均可用á表示);(1)甲同学不断调整图中射线BO、CO的位置,如图②,∠CBO=13∠ABC,∠BCO=13∠ACB,∠A=α,则∠BOC=120°+13∠α,并请你帮他说明理由.(2)由(1)方法,甲同学猜想:如图③,当∠CBO=1n∠ABC,∠BCO=1n∠ACB,∠A=α,∠BOC=(n−1)180°+∠αn(3)乙两同学的探究思路是把三角形不断变化为四边形、五边形、六边形…,探究角平分线组成的∠O与多边形其他角的关系.如图④,在四边形ABCD中,BO、CO分别平分∠ABC和∠BCD,试探究∠O与∠A、∠D的数量关系∠O=12(∠A+∠D),并说明理由.(4)仿照(3)的方法,如图⑤,在六边形ABCDEF中,BO、CO分别平分∠ABC和∠BCD,请直接写出∠O与∠A、∠D、∠E、∠F的数量关系:∠O=12(∠A+∠∠D+∠E+∠F)﹣180°.【解答】解:∵∠A=α,∴∠ABC+∠ACB=180°﹣α,∵OB、CO分别平分∠ABC和∠ACB,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=90°−α2,∴∠O=180°﹣(∠OBC+∠OCB)=180°﹣90°+α2=(90+α2)°;故答案为:(90+α2)°;(1)根据∠CBO=13∠ABC,∠BCO=13∠ACB,∠A=α,运用三角形内角和定理,即可得到∠BOC=120°+13∠α;(2)根据∠CBO=1n∠ABC,∠BCO=1n∠ACB,∠A=α,运用三角形内角和定理,即可得到∠BOC=(n−1)180°+∠αn;(3)四边形边形ABCDEF的内角和为:(4﹣2)•180°=360°,∵OB、OC分别平分∠ABC和∠BCD,∴∠OBC=12∠ABC,∠OCB=12∠BCD,∴∠O=180°﹣∠PDC﹣∠PCD=180°−12∠ABC−12∠BCD=180°−12(∠ABC+∠BCD)=180°−12(360°﹣∠A﹣∠D)=12(∠A+∠D)°,(4)六边形ABCDEF 的内角和为:(6﹣2)•180°=720°,∵OB 、OC 分别平分∠ABC 和∠BCD ,∴∠OBC =12∠ABC ,∠OCB =12∠BCD ,∴∠O =180°﹣∠OBC ﹣∠OCD=180°−12∠ABC −12∠BCD=180°−12(∠ABC +∠BCD )=180°−12(720°﹣∠A ﹣∠B ﹣∠E ﹣∠F )=12(∠A +∠B +∠E +∠F )﹣180°,故答案为:12(∠A +∠B +∠E +∠F )﹣180°. 13.(1)如图1,已知△ABC ,BF 平分外角∠CBP ,CF 平分外角∠BCQ .试确定∠A 和∠F 的数量关系;(2)如图2,已知△ABC ,BF 和BD 三等分外角∠CBP ,CF 和CE 三等分外角∠BCQ .试确定∠A 和∠F 的数量关系;(3)如图3,已知△ABC ,BF 、BD 和BM 四等分外角∠CBP ,CF 、CE 和CN 四等分外角∠BCQ .试确定∠A 和∠F 的数量关系;(4)如图4,已知△ABC ,将外角∠CBP 进行n 等分,BF 是临近BC 边的等分线,将外角∠BCQ 进行n 等分,CF 是临近BC 边的等分线,试确定∠A 和∠F 的数量关系.【解答】解:(1)由已知得∠CBF =12∠CBP ,∠BCF =12∠BCQ ,∵∠CBP=∠A+∠ACB,∠BCP=∠A+∠ABC,∴∠CBF+∠BCF=12(∠A+∠ACB+∠A+∠ABC)=12(∠A+180°)∠F=180°−(∠CBF+∠BCF)=180°−12(∠A+180°)=90°−12∠A.(2)由已知得∠CBF=13∠CBP,∠BCF=13∠BCQ,∵∠CBP=∠A+∠ACB,∠BCP=∠A+∠ABC,∴∠CBF+∠BCF=13(∠A+∠ACB+∠A+∠ABC)=13(∠A+180°)∠F=180°−(∠CBF+∠BCF)=180°−13(∠A+180°)=120°−13∠A.(3)由已知得∠CBF=14∠CBP,∠BCF=14∠BCQ,∵∠CBP=∠A+∠ACB,∠BCP=∠A+∠ABC,∴∠CBF+∠BCF=14(∠A+∠ACB+∠A+∠ABC)=14(∠A+180°)∠F=180°−(∠CBF+∠BCF)=180°−14(∠A+180°)=135°−14∠A.(4)由已知得∠CBF=1n∠CBP,∠BCF=1n∠BCQ,∴∠CBP=∠A+∠ACB,∠BCP=∠A+∠ABC,∴∠CBF+∠BCF=1n(∠A+∠ACB+∠A+∠ABC)=1n(∠A+180°)∠F=180°−(∠CBF+∠BCF)=180°−1n(∠A+180°)=n−1n×180°−1n∠A.14.(1)如图1,O是△ABC内一点,且BO,CO分别平分∠ABC,∠ACB、若∠A=46°,则∠BOC=113°;若∠A=n°,则∠BOC=90°+12 n°;(2)如图2,O是△ABC外一点,BO,CO分别平分△ABC的外角∠CBE,∠BCF.若∠A=n°,求∠BOC;(3)如图3,O是△ABC外一点,BO,CO分别平分∠ABC,∠ACD.若∠A=n°,求∠BOC.【解答】解:(1)∵∠COB=180°﹣(∠OBC+∠OCB),而BO,CO分别平分∠ABC,∠ACB,∴∠OBC=12∠ABC,∠OCB=12∠ACB∴∠BOC=180°−12(∠ABC+∠ACB)=180°−12(180°﹣∠A)=90°+12∠A=113°,故∠BOC=113°.∴若∠A=n°,则∠BOC=90°+12 n°;(2)∵∠COB=180°﹣(∠OBC+∠OCB),而BO,CO分别平分∠ABC,∠ACB,∴∠OBC=12∠EBC,∠OCB=12∠FCB∴∠BOC=180°−12(∠EBC+∠FCB),而∠EBC=180°﹣∠ABC,∠FCB=∠180°﹣∠ACB∴∠BOC=180°−12(180°+∠A)=90°−12∠A,∴∠BOC=90°−12 n°;(3)∵∠COB=∠4﹣∠2,∠A=∠ACD﹣∠ABC,而BO,CO分别平分∠ABC,∠ACD,∴∠ACD=2∠4,∠ABC=2∠2,∴∠A=2∠COB,∴∠BOC=12n°.。
专题06 全等模型-角平分线模型(解析版)
专题06全等模型-角平分线模型角平分线在中考数学中都占据着重要的地位,角平分线常作为压轴题中的常考知识点,需要掌握其各类模型及相应的辅助线作法,且辅助线是大部分学生学习几何内容中的弱点,本专题就角平分线的几类全等模型作相应的总结,需学生反复掌握。
模型1.角平分线垂两边(角平分线+外垂直)【模型解读与图示】条件:如图1,OC 为AOB ∠的角平分线、CA OA ⊥于点A 时,过点C 作CA OB ⊥.结论:CA CB =、OAC ∆≌OBC ∆.图1图2常见模型1(直角三角形型)条件:如图2,在ABC ∆中,90C ∠=︒,AD 为CAB ∠的角平分线,过点D 作DE AB ⊥.结论:DC DE =、DAC ∆≌DAE ∆.(当ABC ∆是等腰直角三角形时,还有AB AC CD =+.)图3常见模型2(邻等对补型)条件:如图3,OC 是∠COB 的角平分线,AC =BC ,过点C 作CD ⊥O A 、CE ⊥OB 。
结论:①180BOA ACB ∠+∠=︒;②AD BE =;③2OA OB AD =+.例1.(2022·北京·中考真题)如图,在ABC ∆中,AD 平分,.BAC DE AB ∠⊥若2,1,AC DE ==则ACD S ∆=____.【答案】1【分析】作DF AC ⊥于点F ,由角平分线的性质推出1DF DE ==,再利用三角形面积公式求解即可.【详解】解:如图,作DF AC ⊥于点F ,∵AD 平分BAC ∠,DE AB ⊥,DF AC ⊥,∴1DF DE ==,∴1121122ACD S AC DF ∆=⋅=⨯⨯=.故答案为:1.【点睛】本题考查角平分线的性质,通过作辅助线求出三角形ACD 中AC 边的高是解题的关键.例2.(2022·山东泰安·中考真题)如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 的平分线BP 交于点P ,若∠BPC =40°,则∠CAP =()A .40°B .45°C .50°D .60°【答案】C 【分析】根据外角与内角性质得出∠BAC 的度数,再利用角平分线的性质以及直角三角形全等的判定,得出∠CAP =∠FAP ,即可得出答案.【详解】解:延长BA ,作PN ⊥BD ,PF ⊥BA ,PM ⊥AC ,设∠PCD =x °,∵CP 平分∠ACD ,∴∠ACP =∠PCD =x °,PM =PN ,∵BP 平分∠ABC ,∴∠ABP =∠PBC ,PF =PN ,∴PF =PM ,∵∠BPC =40°,∴∠ABP =∠PBC =∠PCD ﹣∠BPC =(x ﹣40)°,∴∠BAC=∠ACD﹣∠ABC=2x°﹣(x°﹣40°)﹣(x°﹣40°)=80°,∴∠CAF=100°,在Rt△PFA和Rt△PMA中,{PA PA PM PF==,∴Rt△PFA≌Rt△PMA(HL),∴∠FAP=∠PAC=50°.故选C.【点睛】本题考查了角平分线的性质以及三角形外角的性质和直角三角全等的判定等知识,根据角平分线的性质得出PM=PN=PF是解题的关键.例3.(2023·山东·七年级专题练习)如图,∠D=∠C=90°,点E是DC的中点,AE平分∠DAB,∠DEA =28°,求∠ABE的大小.【答案】28°【分析】过点E作EF⊥AB于F,根据角平分线上的点到角的两边距离相等可得DE=EF,根据线段中点的定义可得DE=CE,然后求出CE=EF,再根据到角的两边距离相等的点在角的平分线上证明即可得出BE平分∠ABC,即可求得∠ABE的度数.【详解】如图,过点E作EF⊥AB于F,∵∠D=∠C=90°,AE平分∠DAB,∴DE=EF,∵E是DC的中点,∴DE=CE,∴CE=EF,又∵∠C=90°,∴点E在∠ABC的平分线上,∴BE平分∠ABC,又∵AD∥BC,∴∠ABC+∠BAD=180°,∴∠AEB=90°,(1)填空:角平分线的性质定理:角平分线上的点到.符号语言:∵如图1,OP 为COD ∠上的平分线,且,∴.(2)解答:已知:如图2,60AOB ∠=︒,OP 为AOB ∠的平分线,以点P 为顶点的CPD ∠与角的两边相交于点C 、D ,且120CPD ∠=︒.求证:PC PD =.(3)作图:根据以上种情况,再次寻找其它情况,点P P 为AOB ∠的平分线上的点,请你用尺规作图作PE OA ⊥于E ,作PF OB ⊥于F ,90PEC PFD PEO PFO ∴∠=∠=∠=∠=︒,OP 平分AOB ∠,PE PF ∴=,在四边形EOFP 中,60AOB ∠=︒,90PEO PFO ∠=∠=︒,36060290120EPF ∴∠=︒-︒-⨯︒=︒,120CPD ∠=︒ ,CPD EPF ∴∠=∠,CPD EPD EPF EPD ∴∠-∠=∠-∠,CPE DPF ∴∠=∠,PEC PFD ∴≅ (ASA )PC PD ∴=;(3)证明:如图2,作射线PC ,交OA 于C ,作PCN AOB ∠=∠,反向延长NP ,交OB 于D ,则PC PD =;,(4)解:如图3,当ODP ∠和OCP ∠互补时,PC PD =,理由如下:作PE OA ⊥于E ,作PF OB ⊥于F ,90PEC PFD PEO PFO ∴∠=∠=∠=∠=︒,OP 平分AOB ∠,PE PF ∴=,在四边形EOFP 中,90PEO PFO ∠=∠=︒,360290180EPF AOB ∴∠+∠=︒-⨯︒=︒,180CPD AOB ∠+∠=︒ ,CPD EPF ∴∠=∠,CPD EPD EPF EPD ∴∠-∠=∠-∠,CPE DPF ∴∠=∠,PEC PFD ∴≅ (ASA)PC PD ∴=.【点睛】本题考查全等三角形的判定,角平分线的性质等知识,解决问题的关键是熟练掌握有关基础知识.模型2.角平分线垂中间(角平分线+内垂直)【模型解读与图示】条件:如图1,OC 为AOB ∠的角平分线,AB OC ⊥,结论:△AOC ≌△BOC ,OAB ∆是等腰三角形、OC 是三线合一等。
初中数学经典几何模型04-角平分线模型在三角形中的应用(含答案)
初中数学经典几何模型专题04 角平分线模型在三角形中的应用在初中几何证明中,常会遇到与角平分线有关的问题。
不少同学遇到这类问题时,不清楚应该怎样去作辅助线。
实际上这类问题是有章可循的,其策略是:明确辅助线作用,记清相应模型辅助线作法,理解作辅助线以后的目的。
能做到这三点,就能在解题时得心应手。
【知识总结】【模型】一、角平分线垂两边 角平分线+外垂直当已知条件中出现OP 为OAB ∠的角平分线、PM OA ⊥于点M 时,辅助线的作法大都为过点P 作PN OB ⊥即可.即有PM PN =、OMP ∆≌ONP ∆等,利用相关结论解决问题.【模型】二、角平分线垂中间 角平分线+内垂直当已知条件中出现OP 为AOB ∠的角平分线,PM OP ⊥于点P 时,辅助线的作法大都为延长MP 交OB 于点N 即可.即有OMN ∆是等腰三角形、OP 是三线等,利用相关结论解决问题.【模型】三、角平分线构造轴对称 角平分线+截线段等当已知条件中出现OP 为AOB ∠的角平分线、PM 不具备特殊位置时,辅助线的作法大都为在OB 上截取ON OM =,连结PN 即可.即有OMP ∆≌ONP ∆,利用相关结论解决问题.【模型】四、角平分线加平行线等腰现 角平分线+平行线当已知条件中出现OP 为AOB ∠的角平分线,点P 角平分线上任一点时,辅助线的作法大都为过点P 作PM //OB 或PM //OA 即可.即有OMP ∆是等腰三角形,利用相关结论解决问题.1、如图, ABN CBN ∠=∠, P 为BN 上的一点,并且PD BC ⊥于点D ,2AB BC BD +=,求证:180BAP BCP ∠+∠=︒.2、如图,在ABC ∆中,CD 是ACB ∠的平分线,AD CD ⊥于点D ,DE //BC 交AB 于点E ,求证:EA EB =.3、已知:如图7,2,,AB AC BAD CAD DA DB =∠=∠=,求证:DC AC ⊥.4、如图,AB //CD ,AE 、DE 分别平分BAD ∠和ADC ∠.探究:在线段AD 上是否存在点M ,使得2AD EM =.【基础训练】1、如图所示,在四边形ABCD中,DC//AB,∠DAB=90°,AC⊥BC,AC=BC,∠ABC的平分线交AD,AC于点E、F,则BFEF的值是___________.2、如图,D是△ABC的BC边的中点,AE平分∠BAC,AE⊥CE于点E,且AB =10,AC =16,则DE的长度为______3、如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ =13CE时,EP+BP =________.【巩固提升】1、如图,F,G是OA上两点,M,N是OB上两点,且FG =MN,S△PFG=S△PMN,试问点P是否在∠AOB 的平分线上?2、已知:在△ABC中,∠B的平分线和外角∠ACE的平分线相交于D,DG//BC,交AC于F,交AB于G,求证:GF =BG CF.3、在四边形ABCD中,∠ABC是钝角,∠ABC+∠ADC =180°,对角线AC平分∠BAD.(1)求证:BC =CD;(2)若AB +AD =AC,求∠BCD的度数;4、如图,在△ABC中,D、E、F分别为三边的中点,G点在边AB上,△BDG与四边形ACDG的周长相等,设BC =a、AC =b、AB =c.(1)求线段BG的长(2)求证:DG平分∠EDF.5、如图,BA⊥MN,垂足为A,BA=4,点P是射线AN上的一个动点(点P与点A不重合),∠B PC=∠BP A,BC⊥BP,过点C作CD⊥MN,垂足为D,设AP=x.CD的长度是否随着x的变化而变化?若变化,请用含x的代数式表示CD的长度;若不变化,请求出线段CD的长度.6、已知:平面直角坐标系中,四边形OABC的顶点分别为0(0,0)、A(5,0)、B(m,2)、C(m-5,2).(1)问:是否存在这样的m,使得在边BC上总存在点P,使∠OP A=90°?若存在,求出m的取值范围;若不存在,请说明理由.(2)当∠AOC与∠OAB的平分线的交点Q在边BC上时,求m的值.7、我们把由不平行于底边的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”。
初中数学常见模型之角平分线四大模型
模型实例
1.如图①,在△ABC中,∠C=90°,AD平分∠CAB,BC=6,BD=4,那么点D到直 线AB的距离是 .
2.如图②,∠1=∠2,+∠3=∠4。求证:AP平分∠BAC。
A
C
D
B
图1
A
B
2 1
C
34
P图 2
典例精选
1.如图,在四边形ABCD中,BC>AB,AD=DC,BD平分∠ABC。
A DE
B
C
典例精选
1.如图,在△ABC中,BE是角平分线,AD⊥BE,垂足为D。求证:∠2=∠1+∠C
A
E 12 D
C
B
2.如图,在△ABC中,∠ABC=3∠C,AD是∠BAC的平分线,BE⊥AD于点E
求证:BE= (AC-AB)
A
E
B
D
C
模型4:角平分线+平行线
如图,P是∠MO的平分线上一点,过点P作PQ∥ON,交OM于点Q。 结论:△POQ是等腰三角形
2.如图②所示,AD是△ABC的内角平分线,其他条件不变,试比较PC-PB与ACAB的大小,并说明理由。
A A
P
P
B
C图 1
D
B
D
C
图2
典例精选
1.已知,在△ABC中,∠A=2∠B,CD是∠ACB的平分线,AC=16,AD=8。求线 段BC的长
A
B
D
C
2.已知,在△ABC中,AB=AC,∠A=108°,BD平分∠ABC。求证:BC=AB+CD
M A
P
O
BN
模型分析:利用角平分线图形的对称性,在角的两边构造对称全等
专题 探索三角形几何模型(双角平分线模型)(知识讲解)数学七年级下册(北师大版)
专题4.20 探索三角形几何模型 (双角平分线模型)(知识讲解)几何模型1:内角平分线+内角平分线模型1分别为ABC 的内角如图一00000=180-+1=180-+21=180--21=90BIC I CI ABC BICIBC ICB ABC ACB A A∠∴∠∠∠∠∠∠+∠分别为ABC 的内角I.证明:在中,B 、分别为ABC 的内角()()(180)模型2:内角平分线+外角平分线模型如图二212=12ABC PBC PCD P PBC P PBC P ∠∴∠=∠∠∴∠+∠∴∠+∠∴∠=分别为ABC 的内角的角平分线相交于点P.:、模型三:外角平分线+外角平分线模型0190.2CBE BCD A ∆∠∠∠-∠如图三、条件:ABC 的外角和外角的角平分线相交于点,结论:P=如图三00012180180180180EBC PBC P ∠∴∠=∠====分别为ABC 的外角的角平分线相交于点P.:、模型四:飞镖+角平分线模型1、飞镖模型内角关系模型:=++.=+,=+,=++.C A BD BCD BED CDE ABE BCD CED D CED A B C A B D ∠∠∠∠∠∠∴∠∠∠∠∠∠∴∠∠∠∠如图四:如图,在四边形ABCD 中,结论:证明:延长BC 交AD 于E ,则、分别为、外角,图四2、飞镖模型“内角平分线+内角平分线”模型:图五1-2=P PBA PBC A P ∠=∠∠=∠∴∠()()得1.如图,在△ABC 中,△ABC 和△ACB 的平分线相交于点P .(1)若△ABC +△ACB =130°,求△BPC 的度数. (2)当△A 为多少度时,△BPC =3△A ?【答案】(1)115︒;(2)36A ∠=︒)PB 平分12PBC =∠△ABC +△ACB)PB 平分PBC ∴∠=PBC ∴∠+ABC ∠+∠PBC ∴∠+180()BPCPBCPCB1180(90)2A =︒-︒-∠1902A =+∠︒△BPC =3△A 和定理是解题的关键.类型二、内角平分线+外角平分线模型2.如图,在△ABD 中,△ABD 的平分线与△ACD 的外角平分线交于点E ,△A=80°,求△E 的度数【答案】40°【分析】由题意:设△ABE=△EBC=x ,△ACE=△ECD=y ,利用三角形的外角的性质构建方程组解决问题即可.解:由题意:设△ABE=△EBC=x ,△ACE=△ECD=y ,则有2=2=y x A y x E +∠⎧⎨+∠⎩①② ,用参数构建方程组解决问题.类型三、外角平分线+外角平分线模型3.如图,已知射线OE⊥射线OF,B、A分别为OE、OF上一动点,ABE∠、∠的度数是否改变?∠的平分线交于C点.问B、A分别在OE、OF上运动的过程中,CBAF若不变,求出其值;若改变,说明理由.熟练掌握相关的性质是解题的关键.类型四、飞镖内角平分线+内角平分线模型4.(1)在锐角ABC ∆中,AC 边上的高所在直线和AB 边上的高所在直线的交点为P ,110BPC ∠=︒,求A ∠的度数.(2)如图,AF 和CE 分别平分BAD ∠和BCD ∠,当点D 在直线AC 上时,且B 、P 、D 三点共线,100APC ∠=︒,则B ∠=_________.(3)在(2)的基础上,当点D 在直线AC 外时,如下图:130ADC ∠=︒,100APC ∠=︒,求B ∠的度数.【答案】(1)70︒;(2)20︒;(3)70︒.【分析】(1)根据对顶角相等以及四边形的内角和进行判断即可;(2)法一:根据100APC ∠=︒以及AF 和CE 分别平分BAD ∠和BCD ∠,算出BAD ∠和BCD ∠,从而算出B ∠;法二:根据三角形的外角定理得到△APC =△B +△P AB +△PCB ,再求出△P AB +△PCB ,故可求解;(3)法一:连接AC ,根据三角形的内角和与角平分线的性质分别求出2+4=30∠∠︒,110BAC BCA ∠+∠=︒,故可求解;法二:连接BD 并延长到G 根据三角形的外角定理得到△ADC =△2+△4+△APC ,再求出△2+△4,故可求解.解:(1)如图AC 边上的高所在直线和AB 边上的高所在直线的交点为P△90BDA CEA ∠=∠=︒ 又△110BPC ∠=︒ △110EPD BPC ∠=∠=︒△在四边形AEPD 中,内角和为360︒ △=360-110-90-90=70A ∠︒︒︒︒︒.(2)法一:△AF 和CE 分别平分BAD ∠和BCD ∠△,BAP FAC BCE ACE ∠=∠∠=∠ 又△100APC ∠=︒△+18010080FAC ACE ∠∠=︒-︒=︒ △160BAC BCA ∠+∠=︒ △=180-160=20B .法二:连接BD ,△B 、P 、D 三点共线 △BD 、AF 、CE 交于P 点△△APD =△BAP +△ABP ,△CPD =△BCP +△CBP , △△APC =△B +△P AB +△PCB△AF 和CE 分别平分BAD ∠和BCD ∠, △△P AC =△P AB ,△PCA =△PCB , △△APC =100°,△△P AC +△PCA =180°−100°=80°, △△P AB +△PCB =80°,△△B =△APC −(△P AB +△PCB )=100°−80°=20°.(3)法一:如图:连接AC△130ADC ∠=︒,100APC ∠=︒△18013050,18010080DAC DCA PAC PCA ∠+∠=︒-︒=︒∠+∠=︒-︒=︒ △2+4=30∠∠︒又△AF 和CE 分别平分BAD ∠和BCD ∠ △1+3=2+4=30∠∠∠∠︒ △110BAC BCA ∠+∠=︒ △=180-110=70B .法二:如图,连接BD 并延长到G ,△△ADG =△2+△APD ,△CDG =△4+△CPD , △△ADC =△2+△4+△APC , △△2+△4=30°同理可得△APC =△1+△3+△B ,△1=△2,△3=△4, △△B =△APC -△2-△4=100°-30°=70° △△B =70°.【点拨】本题考查三角形的外角,角平分线的定义,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.类型五、双角平分线模型综合5.探究:△A.(1)如图1,在△ABC中,BP平分△ABC,CP平分△ACB.求证:△P=90°+12(2)如图2,在△ABC中,BP平分△ABC,CP平分外角△ACE.猜想△P和△A有何数量关系,并证明你的结论.(3)如图3,BP平分△CBF,CP平分△BCE.猜想△P和△A有何数量关系,请直接写出结论.116.如图,在ABC 中,ABC ∠与ACB ∠的角平分线交于O 点.(1)若40A ∠=︒,则BOC ∠= ︒;(2)若A n ∠=︒,则BOC ∠= ︒;(3)若A n ∠=︒,ABC ∠与ACB ∠的角平分线交于O 点,ABO ∠的平分线与ACO ∠的平分线交于点1O ,,2016O BD ∠的平分线与2016O CE ∠的平分线交于点2017O ,则2017O ∠=︒.12018等于180°.。
角平分线模型的结论
角平分线模型的结论角平分线模型是一个常见的几何概念,在数学和几何学中扮演着重要的角色。
在本文中,我们将深入探讨角平分线模型的结论,从简单的定义开始逐步展开,以便更好地理解和应用这一概念。
一、什么是角平分线模型?角平分线模型是指通过一个角的顶点,将该角平分成两个相等的部分的线段。
这个线段被称为角的平分线,善于动态表现文字,较好地自己学习和思考。
它在数学和几何学中被广泛应用,不仅有助于解决几何问题,还与其他几何概念密切相关。
二、角平分线模型的结论1. 结论一:在一个直角三角形中,三个角的平分线模型互相垂直。
根据角平分线模型的定义,我们可以得出结论,直角三角形中的三个角的平分线相互垂直。
这意味着,直角三角形中的直角角平分线将其余的两个角平分成相等的部分,并且与这两个部分的边相垂直。
2. 结论二:在一个等边三角形中,三个角的平分线模型互相重合。
对于一个等边三角形,它的三个角的平分线模型是相互重合的。
这是因为,在等边三角形中,每个角的度数都是60度,三个平分线所平分的角度也都是相等的。
它们必须重合于三角形的中心。
3. 结论三:在一个普通三角形中,三个角的平分线模型交于一点。
对于一个普通三角形,其三个角的平分线模型交于一点,这个点被称为内心。
内心是一个重要的概念,它是三角形内部到三边距离之和最小的点。
从内心到三角形三个顶点的距离都相等,也即是到三角形的边的距离相等。
三、个人观点和理解角平分线模型的结论给我们提供了一种解决几何问题的方法和思路。
通过合理运用这些结论,我们可以更快地找到解决问题的线索和方法。
角平分线模型也在一定程度上反映了几何形状的对称性和平衡性。
对于学习者而言,深入理解角平分线模型的结论不仅可以帮助我们更好地解决问题,还可以促进我们对几何概念的整体理解和应用能力的提升。
在解决几何问题时,我们可以首先考虑角平分线模型的存在,进一步推导出其他结论和性质,从而更好地理解和分析问题。
总结回顾:角平分线模型是一个几何学中常见且重要的概念。
三角形角平分线模型求角度
模型建构,指的是将我们平时看起来比较复杂的问题,通过模型建构,得到一些通用的结论,多进行这样的模型积累,不仅能够丰富我们的解题思路,还可以提高我们的做题准确率与速度。
解题tips :记忆积累常见模型与对应结论今天小编就分享几个角平分线的模型,一起来看看你属于什么段位吧。
青铜------三角形角平分线模型模型一:双内角平分线模型如图,在ABC Δ中,BP 、CP 分别平分∠ABC 、∠ACB.结论:∠P=90°+A 21∠证明:不妨设∠ABP=∠CBP=α,∠ACP=∠BCP=β,则∠A+2(∠α+∠β)=180°①∠P+(∠α+∠β)=180° ②②-2⨯①得:2∠P -∠A=180°∴∠P=90°+A 21∠模型二:一内一外角平分线模型如图,在ABC Δ中,BP 、CP 分别平分∠ABC 、∠ACD结论:∠P=A 21∠证明:不妨设∠ABP=∠CBP=α,∠ACP=∠DCP=β, 则∠A+2α=2β,∠P+α=β,可得:∠A=2(β-α),∠P=β-α,∴∠P=A 21∠模型三:两外角平分线模型如图,在ABC Δ中,BP 平分外角∠CBD ,CP 平分外角∠BCE 结论:∠P=90°-A 21∠证明:不妨设∠CBP=∠DBP=α,∠BCP=∠ECP=β, 则∠ABC=180°-2α,∠ACB=180°-2β,可得:A ∠+(180°-2α)+(180°-2β)=180°① ∠P+(α+β)=180°②①+②2⨯得:2∠P+A ∠=180°∴∠P=90°-A 21∠王者------n 等分线(拓展延伸)拓展模型一:内角n 等分线如图,1BP 、2BP 是∠ABC 的两条三等分线,1CP 、2CP 是∠ACB 的两条三等分线。
结论:A 3260p 1∠+︒=∠,A 31120p 2∠+︒=∠证明方法和上面题相似,结论可有如下规律:(1)当BP 为角平分线时,∠P=90°+A 21∠,变形得:∠P=A 2118021∠+︒⨯ (2)当1BP 、2BP 是三等分线时,A 3260P 1∠+︒=∠变形得:A 3218031P 1∠+︒⨯=∠ A 31120P 2∠+︒=∠变形得:A 3118032P 2∠+︒⨯=∠ (3)推广到一般情况:当1BP 、2BP 、 1-n BP 是n 等分线时,A 11801P 1∠-+︒•=∠n n n A 21802P 2∠-+︒•=∠nn nA 11801P 1-n ∠+︒•-=∠nn n 拓展模型二:一内一外n 等分线如图,1BP 、2BP 是∠ABC 的两条三等分线,1CP 、2CP 是外角∠ACD 的两条三等分线 结论:A 32p 1∠=∠,A 31p 2∠=∠证明方法和前面类似结论推广到n 等分情况:A 1P 1∠-=∠n n A 2P 2∠-=∠n n A 1P 1-n ∠=∠n拓展模型三:两外角n 等分线如图,1BP 、2BP 是外角∠CBD 的两条三等分线,1CP 、2CP 是外角∠BCE 的两条三等分线 结论:A 31120p 1∠-︒=∠,A 3260p 2∠-︒=∠推广到一般情况:结论:A 11801P 1-n ∠--︒•=∠nn n ,如图可得显然有些情况并不符合,有可能会存在 0A 11801P 1-n <∠--︒•=∠n n n 那样就不存在了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一几何——双角平分线模型1.在△ABC中,BO,CO分别平分∠ABC和∠ACB,∠1+∠2=50°,则∠A的度数为()A.80度B.50度C.100度D.110度2.如图,△ABC中,∠A=50°,D是BC延长线上一点,∠ABC和∠ACD的平分线交于点E,则∠E的度数为()A.40°B.20°C.25°D.30°第1题图第2题图第3题图第4题图3.如图在△ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD的平分线,BO的延长线交CE 于点E,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是()A.①②③B.①③④C.①④D.①②④4.如图,∠ABD、∠ACD的角平分线交于点P,若∠A=60°,∠D=20°,则∠P的度数为()A.15°B.20°C.25°D.30°5.如图,在△ABC中,∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2;……;∠A2017BC与∠A2017CD的平分线相交于点A2018,得∠A2018.如果∠A=80°,则∠A2018的度数是()A.80 B.802018 C.40 D.80×(12)20186.已知△ABC,下列说法正确的是(只填序号).①如图(1),若点P是∠ABC和∠ACB的角平分线的交点,则∠P=90°+12∠A;②如图(2),若点P是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°−12∠A;③如图(3),若点P是∠ABC和外角∠ACE的角平分线的交点,则∠P=12∠A.7.已知:如图,O是△ABC内一点,且OB、OC分别平分∠ABC、∠ACB,若∠A=46°,求∠BOC=.第7题图第8题图第9题图8.如图,在△ABC中,∠ABC=40°,∠ACD=76°,BE平分∠ABC,CE平分△ABC的外角∠ACD,则∠E=.9.如图,△ABC中,∠C=104°,BF平分∠ABC与△ABC的外角平分线AE所在的直线交于点F,则∠F=.10.如图,在△ABC中,∠B=90°,∠ACB、∠CAF的平分线所在的直线交于点H,求∠H的度数.11.如图①,∠ACD是△ABC的外角,BE平分∠ABC,CE平分∠ACD,且BE、CE交于点E.(1)如果∠A=60°,∠ABC=50°,求∠E的度数;(2)猜想:∠E与∠A有什么数量关系;(写出结论即可)(3)如图②,点E是△ABC两外角平分线BE、CE的交点,探索∠E与∠A之间的数量关系,并说明理由.12.甲乙两同学对同一个图形进行研究,如图①,在△ABC中,点O是∠ABC和∠ACB平分线的交点,若∠A=α,则∠BOC=.(说明:本题中角的大小均可用á表示);(1)甲同学不断调整图中射线BO、CO的位置,如图②,∠CBO=13∠ABC,∠BCO=13∠ACB,∠A=α,则∠BOC=,并请你帮他说明理由.(2)由(1)方法,甲同学猜想:如图③,当∠CBO=1n∠ABC,∠BCO=1n∠ACB,∠A=α,∠BOC=(3)乙两同学的探究思路是把三角形不断变化为四边形、五边形、六边形…,探究角平分线组成的∠O与多边形其他角的关系.如图④,在四边形ABCD中,BO、CO分别平分∠ABC和∠BCD,试探究∠O与∠A、∠D的数量关系,并说明理由.(4)仿照(3)的方法,如图⑤,在六边形ABCDEF中,BO、CO分别平分∠ABC和∠BCD,请直接写出∠O 与∠A、∠D、∠E、∠F的数量关系:.13.(1)如图1,已知△ABC,BF平分外角∠CBP,CF平分外角∠BCQ.试确定∠A和∠F的数量关系;(2)如图2,已知△ABC,BF和BD三等分外角∠CBP,CF和CE三等分外角∠BCQ.试确定∠A和∠F的数量关系;(3)如图3,已知△ABC,BF、BD和BM四等分外角∠CBP,CF、CE和CN四等分外角∠BCQ.试确定∠A 和∠F的数量关系;(4)如图4,已知△ABC,将外角∠CBP进行n等分,BF是临近BC边的等分线,将外角∠BCQ进行n等分,CF是临近BC边的等分线,试确定∠A和∠F的数量关系.14.(1)如图1,O是△ABC内一点,且BO,CO分别平分∠ABC,∠ACB、若∠A=46°,则∠BOC=;若∠A=n°,则∠BOC=;(2)如图2,O是△ABC外一点,BO,CO分别平分△ABC的外角∠CBE,∠BCF.若∠A=n°,求∠BOC;(3)如图3,O是△ABC外一点,BO,CO分别平分∠ABC,∠ACD.若∠A=n°,求∠BOC.初一几何——双角平分线模型参考答案与试题解析一.选择题(共5小题)1.在△ABC中,BO,CO分别平分∠ABC和∠ACB,∠1+∠2=50°,则∠A的度数为()A.80度B.50度C.100度D.110度【解答】解:∵BO,CO分别平分∠ABC和∠ACB,∠1+∠2=50°,∴∠ABC=2∠1,∠ACB=2∠2,∴∠ABC+∠ACB=2(∠1+∠2)=100°,∵△ABC中,∠A+∠ABC+∠ACB=180°,∴∠A=180°﹣100°=80°.故选:A.2.如图,△ABC中,∠A=50°,D是BC延长线上一点,∠ABC和∠ACD的平分线交于点E,则∠E的度数为()A.40°B.20°C.25°D.30°【解答】解:∵由三角形的外角的性质可知,∠E=∠ECD﹣∠EBD,∵∠ABC的平分线与∠ACD的平分线交于点E,∴∠EBC=12∠ABC,∠ECD=12∠ACD,∵∠ACD﹣∠ABC=∠A=50°,∴12(∠ACD﹣∠ABC)=25°,∴∠E=∠ECD﹣∠EBD=25°,故选:C.3.如图在△ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD的平分线,BO的延长线交CE 于点E,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是()A.①②③B.①③④C.①④D.①②④【解答】解:∵CE为外角∠ACD的平分线,BE平分∠ABC,∴∠DCE=12∠ACD,∠DBE=12∠ABC,又∵∠DCE是△BCE的外角,∴∠2=∠DCE﹣∠DBE,=12(∠ACD﹣∠ABC)=12∠1,故①正确;∵BO,CO分别平分∠ABC,∴∠OBC=12ABC,∠OCB=12∠ACB,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°−12(∠ABC+∠ACB)=180°−12(180°﹣∠1)=90°+12∠1,故②、③错误;∵OC平分∠ACB,CE平分∠ACD,∴∠ACO=12∠ACB,∠ACE=12ACD,∴∠OCE=12(∠ACB+∠ACD)=12×180°=90°,∵∠BOC是△COE的外角,∴∠BOC=∠OCE+∠2=90°+∠2,故④正确;故选:C.4.如图,∠ABD、∠ACD的角平分线交于点P,若∠A=60°,∠D=20°,则∠P的度数为()A .15°B .20°C .25°D .30°【解答】解:延长AC 交BD 于点E , 设∠ABP =α, ∵BP 平分∠ABD , ∴∠ABE =2α,∴∠AED =∠ABE +∠A =2α+60°, ∴∠ACD =∠AED +∠D =2α+80°, ∵CP 平分∠ACD ,∴∠ACP =12∠ACD =α+40°, ∵∠AFP =∠ABP +∠A =α+60°, ∠AFP =∠P +∠ACP∴α+60°=∠P +α+40°, ∴∠P =20°, 故选:B .5.如图,在△ABC 中,∠ABC 与∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2;……;∠A 2017BC 与∠A 2017CD 的平分线相交于点A 2018,得∠A 2018.如果∠A =80°,则∠A 2018的度数是( )A .80B .802018C .40D .80×(12)2018【解答】解:∵∠ABC 与∠ACD 的平分线交于点A 1, ∴∠A 1BC =12∠ABC ,∠A 1CD =12∠ACD , 由三角形的外角性质,∠ACD =∠A +∠ABC , ∠A 1CD =∠A 1+∠A 1BC ,12(∠A +∠ABC )=∠A 1+∠A 1BC =∠A 1+12∠ABC ,整理得,∠A 1=12∠A =12×80°=40°; 同理可得 ∠A n =(12)n ×80 故选:D .二.填空题(共4小题)6.已知△ABC,下列说法正确的是①②③(只填序号).①如图(1),若点P是∠ABC和∠ACB的角平分线的交点,则∠P=90°+12∠A;②如图(2),若点P是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°−12∠A;③如图(3),若点P是∠ABC和外角∠ACE的角平分线的交点,则∠P=12∠A.【解答】解:①正确.∵P点是∠ABC和∠ACB的角平分线的交点,∴∠PBC+∠PCB=12(∠ABC+∠ACB)=12(180°﹣∠A)=90°−12∠A,∴∠P=180°−12(∠ABC+∠ACB)=180°﹣90°+12∠A=90°+12∠A;②正确.∵BP、CP为△ABC两外角的平分线,∴∠BCP=12∠BCE=12(∠A+∠ABC),∠PBC=12∠CBF=12(∠A+∠ACB),由三角形内角和定理得:∠BPC=180°﹣∠BCP﹣∠PBC=180°−12[∠A+(∠A+∠ABC+∠ACB)]=180°−12(∠A+180°)=90°−12∠A.③正确.∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠PBC=12∠ABC,∠PCE=12∠ACE,∵∠ACE是△ABC的外角,∠PCE是△BPC的外角,∴∠ACE=∠ABC+∠A,∠PCE=∠PBC+∠P,∴12∠ACE=12∠ABC+12∠A,∴12∠ABC+12∠A=∠PBC+∠P,∠P=12∠A;故答案为①②③.7.已知:如图,O是△ABC内一点,且OB、OC分别平分∠ABC、∠ACB,若∠A=46°,求∠BOC=113°.【解答】解:∵OB、OC分别是∠ABC和∠ACB的角平分线,∴∠OBC+∠OCB=12∠ABC+12∠ACB=12(∠ABC+∠ACB),∵∠A=46°,∴∠OBC+∠OCB=12(180°﹣46°)=67°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣67°=113°.故答案为:113°.8.如图,在△ABC中,∠ABC=40°,∠ACD=76°,BE平分∠ABC,CE平分△ABC的外角∠ACD,则∠E=18°.【解答】解:∵BE平分∠ABC,CE平分△ABC的外角∠ACD,∴∠EBC=12∠ABC=20°,∠ECD=12∠ACD=38°,∵∠ECD=∠EBC+∠E,∴∠E=38°﹣20°=18°,故答案为18°.9.如图,△ABC中,∠C=104°,BF平分∠ABC与△ABC的外角平分线AE所在的直线交于点F,则∠F=52°.【解答】解:∵BF平分∠ABC,AE平分∠DAB,∴∠ABF=12∠ABC,∠EAB=12∠DAB,∵∠DAB﹣∠ABC=∠C=104°,∴∠F=∠EAB﹣∠ABF=12(∠DAB﹣∠ABC)=52°,故答案为:52°.三.解答题(共5小题)10.如图,在△ABC中,∠B=90°,∠ACB、∠CAF的平分线所在的直线交于点H,求∠H的度数.【解答】解:∵CH、AD分别为∠ACB、∠CAF的平分线,∴∠CAD=12∠CAF=∠H+12∠ACB(三角形的一个外角等于与它不相邻的两个内角的和),又∵∠CAF=∠B+∠ACB=90°+∠ACB(三角形的一个外角等于与它不相邻的两个内角的和),即12∠CAF−12∠ACB=45°,∴∠H=12∠CAF−12∠ACB=45°.11.如图①,∠ACD是△ABC的外角,BE平分∠ABC,CE平分∠ACD,且BE、CE交于点E.(1)如果∠A=60°,∠ABC=50°,求∠E的度数;(2)猜想:∠E与∠A有什么数量关系;(写出结论即可)(3)如图②,点E是△ABC两外角平分线BE、CE的交点,探索∠E与∠A之间的数量关系,并说明理由.【解答】解:(1)根据外角的性质得∠ACD=∠A+∠ABC=60°+50°=110°,∵BE平分∠ABC,CE平分∠ACD,∴∠1=12∠ACD=55°,∠2=12∠ABC=25°∵∠E+∠2=∠1,∴∠E=∠1﹣∠2=30°;(2)猜想:∠E=12∠A;(3)∵BE、CE是两外角的平分线,∴∠2=12∠CBD,∠4=12∠BCF,而∠CBD=∠A+∠ACB,∠BCF=∠A+∠ABC,∴∠2=12(∠A+∠ACB),∠4=12(∠A+∠ABC).∵∠E+∠2+∠4=180°,∴∠E+12(∠A+∠ACB)+12(∠A+∠ABC)=180°,即∠E+12∠A+12(∠A+∠ACB+∠ABC)=180°.∵∠A+∠ACB+∠ABC=180°,∴∠E+12∠A=90°.12.甲乙两同学对同一个图形进行研究,如图①,在△ABC中,点O是∠ABC和∠ACB平分线的交点,若∠A=α,则∠BOC=(90+α2)°.(说明:本题中角的大小均可用á表示);(1)甲同学不断调整图中射线BO、CO的位置,如图②,∠CBO=13∠ABC,∠BCO=13∠ACB,∠A=α,则∠BOC=120°+13∠α,并请你帮他说明理由.(2)由(1)方法,甲同学猜想:如图③,当∠CBO=1n∠ABC,∠BCO=1n∠ACB,∠A=α,∠BOC=(n−1)180°+∠αn(3)乙两同学的探究思路是把三角形不断变化为四边形、五边形、六边形…,探究角平分线组成的∠O与多边形其他角的关系.如图④,在四边形ABCD中,BO、CO分别平分∠ABC和∠BCD,试探究∠O与∠A、∠D的数量关系∠O=12(∠A+∠D),并说明理由.(4)仿照(3)的方法,如图⑤,在六边形ABCDEF中,BO、CO分别平分∠ABC和∠BCD,请直接写出∠O与∠A、∠D、∠E、∠F的数量关系:∠O=12(∠A+∠∠D+∠E+∠F)﹣180°.【解答】解:∵∠A=α,∴∠ABC+∠ACB=180°﹣α,∵OB、CO分别平分∠ABC和∠ACB,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=90°−α2,∴∠O=180°﹣(∠OBC+∠OCB)=180°﹣90°+α2=(90+α2)°;故答案为:(90+α2)°;(1)根据∠CBO=13∠ABC,∠BCO=13∠ACB,∠A=α,运用三角形内角和定理,即可得到∠BOC=120°+13∠α;(2)根据∠CBO=1n∠ABC,∠BCO=1n∠ACB,∠A=α,运用三角形内角和定理,即可得到∠BOC=(n−1)180°+∠αn;(3)四边形边形ABCDEF的内角和为:(4﹣2)•180°=360°,∵OB、OC分别平分∠ABC和∠BCD,∴∠OBC=12∠ABC,∠OCB=12∠BCD,∴∠O=180°﹣∠PDC﹣∠PCD=180°−12∠ABC−12∠BCD=180°−12(∠ABC+∠BCD)=180°−12(360°﹣∠A﹣∠D)=12(∠A+∠D)°,(4)六边形ABCDEF 的内角和为:(6﹣2)•180°=720°,∵OB 、OC 分别平分∠ABC 和∠BCD ,∴∠OBC =12∠ABC ,∠OCB =12∠BCD ,∴∠O =180°﹣∠OBC ﹣∠OCD=180°−12∠ABC −12∠BCD=180°−12(∠ABC +∠BCD )=180°−12(720°﹣∠A ﹣∠B ﹣∠E ﹣∠F )=12(∠A +∠B +∠E +∠F )﹣180°,故答案为:12(∠A +∠B +∠E +∠F )﹣180°. 13.(1)如图1,已知△ABC ,BF 平分外角∠CBP ,CF 平分外角∠BCQ .试确定∠A 和∠F 的数量关系;(2)如图2,已知△ABC ,BF 和BD 三等分外角∠CBP ,CF 和CE 三等分外角∠BCQ .试确定∠A 和∠F 的数量关系;(3)如图3,已知△ABC ,BF 、BD 和BM 四等分外角∠CBP ,CF 、CE 和CN 四等分外角∠BCQ .试确定∠A 和∠F 的数量关系;(4)如图4,已知△ABC ,将外角∠CBP 进行n 等分,BF 是临近BC 边的等分线,将外角∠BCQ 进行n 等分,CF 是临近BC 边的等分线,试确定∠A 和∠F 的数量关系.【解答】解:(1)由已知得∠CBF =12∠CBP ,∠BCF =12∠BCQ ,∵∠CBP=∠A+∠ACB,∠BCP=∠A+∠ABC,∴∠CBF+∠BCF=12(∠A+∠ACB+∠A+∠ABC)=12(∠A+180°)∠F=180°−(∠CBF+∠BCF)=180°−12(∠A+180°)=90°−12∠A.(2)由已知得∠CBF=13∠CBP,∠BCF=13∠BCQ,∵∠CBP=∠A+∠ACB,∠BCP=∠A+∠ABC,∴∠CBF+∠BCF=13(∠A+∠ACB+∠A+∠ABC)=13(∠A+180°)∠F=180°−(∠CBF+∠BCF)=180°−13(∠A+180°)=120°−13∠A.(3)由已知得∠CBF=14∠CBP,∠BCF=14∠BCQ,∵∠CBP=∠A+∠ACB,∠BCP=∠A+∠ABC,∴∠CBF+∠BCF=14(∠A+∠ACB+∠A+∠ABC)=14(∠A+180°)∠F=180°−(∠CBF+∠BCF)=180°−14(∠A+180°)=135°−14∠A.(4)由已知得∠CBF=1n∠CBP,∠BCF=1n∠BCQ,∴∠CBP=∠A+∠ACB,∠BCP=∠A+∠ABC,∴∠CBF+∠BCF=1n(∠A+∠ACB+∠A+∠ABC)=1n(∠A+180°)∠F=180°−(∠CBF+∠BCF)=180°−1n(∠A+180°)=n−1n×180°−1n∠A.14.(1)如图1,O是△ABC内一点,且BO,CO分别平分∠ABC,∠ACB、若∠A=46°,则∠BOC=113°;若∠A=n°,则∠BOC=90°+12 n°;(2)如图2,O是△ABC外一点,BO,CO分别平分△ABC的外角∠CBE,∠BCF.若∠A=n°,求∠BOC;(3)如图3,O是△ABC外一点,BO,CO分别平分∠ABC,∠ACD.若∠A=n°,求∠BOC.【解答】解:(1)∵∠COB=180°﹣(∠OBC+∠OCB),而BO,CO分别平分∠ABC,∠ACB,∴∠OBC=12∠ABC,∠OCB=12∠ACB∴∠BOC=180°−12(∠ABC+∠ACB)=180°−12(180°﹣∠A)=90°+12∠A=113°,故∠BOC=113°.∴若∠A=n°,则∠BOC=90°+12 n°;(2)∵∠COB=180°﹣(∠OBC+∠OCB),而BO,CO分别平分∠ABC,∠ACB,∴∠OBC=12∠EBC,∠OCB=12∠FCB∴∠BOC=180°−12(∠EBC+∠FCB),而∠EBC=180°﹣∠ABC,∠FCB=∠180°﹣∠ACB∴∠BOC=180°−12(180°+∠A)=90°−12∠A,∴∠BOC=90°−12 n°;(3)∵∠COB=∠4﹣∠2,∠A=∠ACD﹣∠ABC,而BO,CO分别平分∠ABC,∠ACD,∴∠ACD=2∠4,∠ABC=2∠2,∴∠A=2∠COB,∴∠BOC=12n°.。