九年级数学 相似三角形的判定(教案、导学案)
九年级数学下册《相似三角形的性质》教案、教学设计
-学生回顾全等三角形的性质,为新课的学习打下基础。
(二)讲授新知
1.教师引导学生从相似三角形的定义入手,探讨相似三角形的性质。
-解释相似三角形的定义,强调比例关系。
-引导学生观察相似三角形的边长和角度,发现性质。
2.教师运用几何画板动态展示相似三角形的性质,帮助学生形象理解。
-学生能够运用相似三角形的性质,进行严密的几何证明,掌握证明过程中的逻辑关系。
-学生能够灵活运用相似三角形的性质,解决复合几何问题,提高解题技巧。
3.学会运用相似三角形的性质解决实际问题,增强数学应用能力。
-学生能够运用相似三角形的性质,解决生活中的实际问题,如测量高度、距离等。
-学生能够将相似三角形的性质与其他数学知识相结合,解决综合性的数学问题。
3.培养学生的创新精神和实践能力,激发学生探索未知世界的热情。
-教师鼓励学生提出问题、解决问题,培养学生的创新思维。
-学生通过解决实际问题,感受数学与现实生活的联系,激发探索未知世界的热情。
4.培养学生的严谨学生严谨对待数学问题,养成良好的学习习惯。
(二)教学难点
1.相似三角形性质的推理和证明过程。
2.学生在解决实际问题中,对相似三角形性质的应用。
3.帮助学生建立几何直观,理解相似三角形的空间变化。
教学设想:
1.采用情境导入法,引发学生兴趣
-通过展示生活中与相似三角形相关的实例,如建筑物的立面设计、摄影中的构图等,激发学生的学习兴趣,引导学生认识到相似三角形在实际中的应用。
九年级数学下册《相似三角形的性质》教案、教学设计
一、教学目标
(一)知识与技能
1.理解相似三角形的定义及其判定条件,掌握相似三角形的性质和比例关系。
相似三角形的判定(4)导学案
年级:九年级 班级: 学生姓名: 制作人: 不知名 编号:2023-1227.2.1 相似三角形的判定(4)学习目标:1. 掌握“两角对应相等,两个三角形相似”和“斜边直角边对应成比例,两个三角形相似”的判定方法.2. 能够运用三角形相似的条件解决简单的问题.重点:掌握“两角分别相等的两个三角形相似”和“斜边和一条直角边成比例,两个直角三角形相似”的判定方法,并能根据条件选择合适的方法判定两个三角形相似.难点:1. 通过计算证明这两个判定方法.2. 会根据条件选择合适的方法判定两个三角形相似.预学案1. 观察两副三角尺,其中有同样两个锐角(30°与60°,或45°与45°)的两个三角尺大小可能______,但它们看起来是______的.如果两个三角形的 ,那么这两个三角形相似.2. 如果两个直角三角形的那么这两个直角三角形相似.探究案【探究一】 (动手画一画)作∆ABC 与∆A 1B 1C 1,使得∠A =∠A 1,∠B =∠B 1,这时它们的第三角满足∠C =∠C 1吗?分别度量这两个三角形的边长,计算﹑﹑,你有什么发现? 猜测:如果两个三角形的 , 那么这两个三角形相似.已知:求证:证明:归纳: 的两个三角形 .符号语言:∠ ,∠△ABC ∠△DEF 11AB A B 11BC B C 11AC A C C B A FE【探究二】类似判定直角三角形全等的“HL ”, 你能得到判定直角三角形相似方法吗?猜测:如果两个直角三角形的 , 那么这两个直角三角形相似.已知: 求证:证明:归纳: 直角三角形相似的判定定理:如果两个直角三角形的 , 那么这两个直角三角形相似.简称为: , .符号语言: ∠ ,∠∠ABC ∠∠DEF 检测案1. 如图,CD 是Rt ∠ABC 的高,DE ∠BC ,垂足为E ,则图中与∠ABC 相似的三角形共有( )A .5个B .4个C .3个D .2个2. 如图,∠1=∠2=∠3,则图中相似三角形共有 ( )A .1对B .2对C .3对D .4对3 在∠ABC 和∠A 'B ′C ′中,如果∠A =48°,∠C =102°,∠A ′=48°,∠B ′=30°,那么这两个三角形能否相似的结论是______.理由是________.4. 在∠ABC 和∠A 'B ′C ′中,如果∠A =34°,AC =5cm ,AB =4cm ,∠A ′=34°,A 'C ′=2cm ,A ′B ′=1.6cm ,那么这两个三角形能否相似的结论是______,理由是____________________.5. 已知:如图,在Rt ∠ABC 中,∠ACB =90°,CD ∠AB 于D .(1) 求证:∠ACD ∠∠ABC (2) ∠CBD∠∠ABC(3) AC 2=AD ·AB ; (4) 若AD =2,DB =8,求CD ;(5) 若AC =6,DB =9,求AD . FD A。
九年级数学上册《相似三角形的判定》教案、教学设计
四、教学内容与过程
(一)导入新课,500字
1.教学活动设计:以生活中的实例作为导入,例如,展示一组相似的图形,如不同大小的三角形装饰品,并提出问题:“你们观察这些图形,它们之间有什么共同之处?”通过引导学生观察和思考,激发学生对相似三角形的兴趣。
1.教学策略:
-采用直观演示与抽象讲解相结合的方式,通过动态几何软件或实物模型,让学生直观感受相似三角形的形成和性质。
-引导学生通过自主探索、小组讨论等形式,发现并理解相似三角形的判定条件。
-设计层次分明的练习题,从基础到提高,逐步深化学生对知识点的掌握。
2.教学过程:
-导入新课:通过生活实例或几何图形,引发学生对相似三角形的好奇心,激发学习兴趣。
-小组展示:每组选取一道典型问题,进行解题思路和答案的展示,培养学生表达能力和逻辑思维能力。
4.家庭作业:
-布置适量的课后作业,涵盖相似三角形的判定方法和性质应用,要求学生在规定时间内完成,家长签字确认。
-鼓励学生在完成作业过程中,遇到问题主动向同学和老师请教,培养自主学习和解决问题的能力。
5.作业评价:
-对学生的作业进行及时批改,给予反馈,关注学生在作业中反映出的薄弱环节,进行针对性辅导。
-开展优秀作业展示活动,激发学生的学习积极性,营造良好的学习氛围。
2.学生在运用相似三角形的判定方法时,可能会出现混淆和错误,教师应针对这一问题进行针对性的讲解和练习。
3.学生的空间想象能力和逻辑思维能力存在差异,教师应充分关注这一点,设计不同难度的教学活动,使每位学生都能得到提高。
4.学生在小组合作学习中,沟通能力和团队协作能力有待提高,教师应引导学生积极参与讨论,学会倾听他人意见。
九年级数学上册《相似三角形的性质》教案、教学设计
在学生小组讨论环节,我会将学生分成若干小组,每组4-6人。给出以下讨论题目:
1.请列举出相似三角形的性质,并尝试用简洁的语言解释每个性质。
2.请举例说明相似三角形在实际问题中的应用。
3.你认为相似三角形的性质与全等三角形的性质有哪些联系和区别?
要求学生在小组内进行充分讨论,分享各自的观点和想法。在此过程中,我会巡回指导,关注学生的讨论进度,适时给予提示和引导。
2.培养学生运用几何图形描述和分析问题的能力,提高他们的逻辑思维和推理能力。
3.引导学生将相似三角形的性质应用于实际生活,培养他们的应用意识和创新能力。
(二)教学难点
1.相似三角形性质的推导和证明,尤其是其中的比例关系和角度关系。
2.学生在解决实际问题时,如何将相似三角形的性质灵活运用。
3.培养学生合作交流能力,提高他们在团队中的参与度和贡献度。
2.相似三角形的性质:详细讲解相似三角形的性质,如对应角相等、对应边成比例等,并结合实际例子进行解释。
3.相似三角形的判定方法:介绍判定相似三角形的方法,如AA、SSS、SAS等,并通过典型例题进行讲解。
4.相似三角形的应用:展示相似三角形在实际问题中的应用,如测量、设计等,让学生体会几何知识在实际生活中的价值。
(五)总结归纳,500字
在总结归纳环节,我会从以下几个方面进行:
1.知识点回顾:引导学生回顾本节课所学的相似三角形的定义、性质、判定方法及应用。
2.学习方法总结:让学生总结自己在学习相似三角形过程中的心得体会,分享有效的学习方法。
3.情感态度与价值观:强调几何知识在实际生活中的重要性,激发学生学习几何的兴趣和热情。
1.学生对相似三角形定义的理解程度,以及对相似性质的认识和运用能力。
《相似三角形的性质》 导学案
《相似三角形的性质》导学案一、学习目标1、理解相似三角形的对应角相等,对应边成比例。
2、掌握相似三角形的对应线段(高、中线、角平分线)的比等于相似比。
3、了解相似三角形的周长比等于相似比,面积比等于相似比的平方。
二、学习重点1、相似三角形的性质及其应用。
2、相似三角形性质的推导过程。
三、学习难点相似三角形面积比与相似比的关系的推导及应用。
四、知识回顾1、什么是相似三角形?如果两个三角形的对应角相等,对应边成比例,那么这两个三角形叫做相似三角形。
2、相似三角形的判定方法有哪些?(1)两角分别相等的两个三角形相似。
(2)两边成比例且夹角相等的两个三角形相似。
(3)三边成比例的两个三角形相似。
五、新课讲解(一)相似三角形的对应角相等,对应边成比例例 1:已知△ABC∽△DEF,∠A = 50°,∠B = 70°,则∠D =50°,∠E = 70°。
因为相似三角形的对应角相等,所以∠A =∠D,∠B =∠E。
(二)相似三角形的对应线段的比等于相似比1、相似三角形对应高的比等于相似比如图,△ABC∽△A'B'C',AD 和 A'D'分别是△ABC 和△A'B'C'的高。
因为△ABC∽△A'B'C',所以∠B =∠B',又因为∠ADB =∠A'D'B' = 90°,所以△ABD∽△A'B'D',所以\(\frac{AD}{A'D'}=\frac{AB}{A'B'}\),即相似三角形对应高的比等于相似比。
2、相似三角形对应中线的比等于相似比同理,可证明相似三角形对应中线的比等于相似比。
3、相似三角形对应角平分线的比等于相似比(三)相似三角形的周长比等于相似比已知△ABC∽△A'B'C',相似比为 k。
九年级数学上册《用角的关系判定三角形相似》教案、教学设计
4.设计不同难度层次的练习题,让学生自主选择并解决问题,使学生在巩固基础知识的同时,提高自主学习和拓展学习的能力。
(三)情感态度与价值观
在本章节的教学过程中,注重培养学生以下情感态度与价值观:
1.培养学生对数学学科的兴趣和热情,激发学生主动探索数学问题的欲望。
-如何判断两个三角形是相似的?
-相似三角形具有哪些性质?
-这些性质在实际问题中如何应用?
2.交流分享:各小组派代表分享讨论成果,其他小组可进行补充和提问。通过讨论和交流,让学生加深对相似的练习题,让学生运用相似三角形的判定方法和性质解决问题。
2.培养学生严谨、细致、勇于探索的学习态度,提高学生对数学美的鉴赏能力。
3.引导学生认识到数学知识与现实生活的紧密联系,培养学生的应用意识和实践能力。
4.通过对相似三角形的学习,使学生认识到事物之间的联系和规律,培养学生的辩证唯物主义世界观。
二、学情分析
九年级的学生已经具备了一定的数学基础,掌握了三角形的基本概念和性质,能够进行简单的逻辑推理和证明。在此基础上,他们对相似三角形的认识处于初步阶段,对判定三角形相似的方法和性质理解尚不深入。因此,在教学过程中,应关注以下几点:
(二)讲授新知
1.相似三角形的定义:向学生讲解相似三角形的定义,即两个三角形对应角相等,对应边成比例。通过动画演示和实物模型,让学生直观地理解相似三角形的特征。
2.相似三角形的判定方法:
-角角相似定理:如果两个三角形的两个角分别相等,那么这两个三角形相似;
-角边相似定理:如果两个三角形的两个角分别相等,且其中一个角的对边成比例,那么这两个三角形相似;
九年级数学上册《相似三角形判定定理一》教案、教学设计
3.学生的个体差异,针对不同学生的需求,提供适当的学习指导和支持。
4.学生在合作学习中的参与度,鼓励他们积极发言,分享自己的想法和观点。
三、教学重难点和教学设想
(一)教学重难点
1.教学重点:
-理解并掌握相似三角形的判定定理一。
1.判断题:给出几个相似三角形的判定题目,让学生判断其是否符合判定定理一。
2.填空题:给出几个相似三角形的图形,要求学生填写相似比。
3.计算题:运用相似三角形的判定定理一解决实际问题。
学生在完成练习题的过程中,教师巡回指导,针对学生的错误给予及时纠正和解答。
(五)总结归纳
在总结归纳环节,首先让学生回顾本节课所学的相似三角形的判定定理一,然后提问:
-尝试证明相似三角形的另一个判定定理:如果两个三角形的一个角相等,且对应边成比例,那么这两个三角形相似。
3.实践应用题:
-结合所学知识,设计一道与相似三角形判定定理一相关的实际问题,要求至少包含两个已知量和两个未知量。
-将设计的问题及解答过程写下来,与同学们分享,共同讨论。
4.研究性学习题:
-以小组为单位,选择一个研究方向,如相似三角形在实际建筑中的应用、相似三角形在艺术作品中的体现等,进行资料收集和整理。
1.请举例说明相似三角形在实际生活中的应用。
2.如何运用相似三角形的判定定理一解决以下问题:(给出几个具体问题)
3.相似三角形判定定理一的证明过程中,有哪些关键步骤?
要求学生在讨论过程中,充分发表自己的观点,互相学习,共同解决问题。教师在旁边观察学生的讨论情况,适时给予指导。
(四)课堂练习
在课堂练习环节,设计以下练习题:
九年级数学 相似三角形的判定(教案、导学案)
27.2相似三角形27.2.1 相似三角形的判定第3课时相似三角形的判定(3)【知识与技能】1.掌握“两角对应相等的两个三角形相似”的判定方法以及直角三角形中特有的判定相似的方法.2.能运用相似三角形的判定方法解决具体问题.【过程与方法】在观察、动手探究等活动中,掌握判定三角形相似的方法,体会转化思想.【情感态度】经历从实验探究到归纳证明的过程,发展学生的探究、交流能力和推理能力.【教学重点】掌握相似三角形的判定定理3及直角三角形中特有的相似判定方法. 【教学难点】探究两个判定定理的过程及其证明方法.一、情境导入,初步认识观察展示教师用的大三角板(45°和45°) 及学生用小三角尺(45°和45°),请学生们观察这样的两个三角形相似吗?对应相等,这样的两个三角形相似吗?【教学说明】教师简要回顾学过的相似三角形的判定方法1,2后,提出“还有没有其它的 方法来判定两个三角形相似呢?”,进而展示所准备好的三角尺,让学生获得感性认识,顺理成章地提出思考,激发学生求知欲望.二、思考探究,获取新知问题1 作△ABC 和△A ′B ′C ′,使∠A=∠A ′,∠B=∠B ′,分别度量这两个三角形的边长,计算C A AC C B BC B A AB '''''',,的值,你有什么发现? 由此你能作出一个怎样的猜想?【教学说明】让全班同学动手画图,并按要求独立完成探索过程,获得结论后,与同伴交流;只要画图和测量尽可能准确,则会得到它们 的比值相等,从而初步了解“有两个角对应相等的两个三角形相似”的结论.教师巡视,对出现偏差的结论应予以帮助,查找问题,尽量让他们也能获得正确结论.问题2 如图,在△ABC 和△A ′B ′C ′中,∠A=∠A ′,∠B=∠B ′,则△ABC ~△A ′B ′C ′吗?说说你的理由.【教学说明】教师应引导学生论证上述结论,在学生动笔前给予适当点拨,让学生能独立完成说理.在巡视时,对有困难的学生给予指导,并给出足够的时间,锻炼学生的合情推理能力.对应相等,那么这两个三角形相似.试一试如图,点D是AB边上一点,且∠ACD=∠B,试问:图中是否存在能够相似的二角形?如果存在,请指出来,并说明理由. 【教学说明】现学现用,巩固所学新知识.问题3对于直角三角形,我们知道“有一条直角边和斜边对应相等的两个直角三角形是全等的”,那么如果两个直角三角形中,有一条直角边与斜边的比对应相等,这样的两个直角三角形相似吗?【教学说明】教师应先与学生一道交流,找出两个直角三角形的已知条件有哪些(用图形和符号语言来表述),从这些条件到所探讨的结论之间还缺少什么条件,能否通过推理计算获得相应条件,从而引出利用勾股定理来探讨第三条对应边之间关系而获得结论.然后让学生独立完成,或相互交流获得论证过程.直角三角形相似的特殊判定方法:斜边和直角边对应成比例的两个直角三角形相似.三、典例精析,掌握新知例1教材P35例2.例2如图,Rt△ABC中,CD是斜边AB边上的高线.求证:(1)△ABC~△CBD;(2)CD2=AD•DB.【教学说明】例1可让学生自主探究,独立完成,再相互交流.例2则需师生共同探讨,利用直角三角形及高线定义找出图中能够相等 的角,从而获得相似的三角形有哪些,进而可解决问题.但它的证明过程仍可由学生自己完成,教师再挑选两至三份作业予以展示,共同评析,达到掌握本节知识的目的.四、运用新知,深化理解1.底角相等的两个等腰三角形是否相似?顶角相等的两个等腰三角形呢?证明你的结论.2.如图,AD 、BE 是AABC 的高线,它们相交于点 F.求证:AF • DF=BF • EF.3. 如图,△ABC 中,CD 是边AB 上的高,且BD CD CD AD ,试求∠ACB 的大小.【教学说明】1,3两题分别应用本节的两种三角形相似的判定方法来获得结论,是对本节知识较好的理解与掌握的体现,而第2题则是用一般三角形相似的判定方法来解决直角三角形中的相似问题,具有代表性.这些练习可根据实际情况选做,要求学生自主完成或相互交 流来得到结论.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.五、师生互动,课堂小结1.本节学习两种判定三角形相似的方法,它们分别是什么?2.总结一下判定两个直角三角形相似的方法.【教学说明】釆用师生互动方式进行,教师设问,学生抢答,进行必要的知识梳理.1.布置作业:从P42〜44习题27.2中选取.2.完成创优作业中本课时的“课时作业”部分.本课时应强调学生自主探究的原则,让学生通过观察、实验、动手探究等方式掌握判定三角形相似的方法.整堂课应注重转化思想的运用,本课时难点在于探究两个判定定理的过程及其证明方法,教师教学时讲解要尽可能详尽.教学过程中,应鼓励学生相互交流探讨,以提高学生的学习热情.27.2.1相似三角形的判定第3课时相似三角形的判定(3)——相似三角形的判定3和直角三角形相似的判定一、新课导入1.课题导入情景:拿一个含30°角的三角尺,让学生判断其内、外轮廓构成的两个含30°角的直角三角形是否相似.问题1:你是怎么判定的?能用前面学习的判定定理判定它们相似吗?问题2:我们由三角形全等的SSS和SAS的判定方法类似地得到了三角形相似的判定定理,那么能否同样地由三角形全等的ASA或AAS类比得到相应的三角形相似的判定方法呢?(板书课题)2.学习目标(1)知道两角分别相等的两个三角形相似;知道斜边、直角边成比例的两个直角三角形相似.(2)能证明结论“斜边、直角边成比例的两个直角三角形相似”.(3)能灵活选择适当的方法证明两个三角形相似.3.学习重、难点重点:相似三角形的判定方法3以及直角三角形相似的判定方法.难点:定理的证明.二、分层学习1.自学指导(1)自学内容:教材P35.(2)自学时间:8分钟.(3)自学方法:仿照上课时探究1,2完成探究提纲.(4)探究提纲:①探究:与同伴合作,一人先画△ABC,另一人再画△A′B′C′,使得∠A=∠A′,∠B=∠B′.a.操作判断:分别测量这两个三角形的边长,计算,,AB AC BC A B A C B C ''''''的值,你有什么发现?∠C=∠C′ 吗?由此你得到一个什么样的猜想?b.交流比较:把你的结果跟你周围的同学比较,你们的结论相同吗?c.归纳猜想:两角分别相等的两个三角形相似.d.推理证明:已知△ABC 和△A′B′C′中,∠A=∠A′,∠B=∠B′.求证:△ABC ∽△A′B′C′.证明:在A′B′上截取A′D=AB,过D 作DE ∥B′C′交A′C′于点E.∵DE ∥B′C′,∴△A′DE ∽△A′B′C′.又∵∠A=∠A′,∠B=∠B′,DE ∥B′C′,AB=A′D,∴∠A′DE=∠B′=∠B.∴△ABC ≌△A′DE.∴△ABC ∽△A′B′C′.e.推理格式:∵∠A=∠A′,∠B=∠B′,∴△ABC ∽△A′B′C′.②教材P35例2:如图,Rt △ABC 中,∠C=90°,AB=10,AC=8,E 是AC 上一点,AE=5,ED ⊥AB,垂足为D,求AD 的长.a.AB,AC,AE,AD 分别是哪两个三角形的边?这两个三角形相似吗?b.怎样证明这两个三角形相似?由此可以得到关于AB,AC,AE,AD 的一个怎样的比例式?c.写出你的解答过程.AB,AC 是△ABC 的边,AE,AD 是△AED 的边,这两个三角形相似.∵ED ⊥AB,∴∠EDA=90°,又∵∠C=90°,∠A=∠A,∴△AED ∽△ABC.∴AD AE AC AB =.∴AD=·AC AE AB=4. ③如图,若∠B=∠AED ,则△ADE ∽△ACB 吗?为什么?△ADE ∽△ACB.理由:∵∠B=∠AED,∠A=∠A,∴△ADE∽△ACB.④底角相等的两个等腰三角形相似吗?顶角相等的两个等腰三角形相似吗?证明你的结论.(相似,证明略)2.自学:学生参照自学指导进行自学.3.助学(1)师助生:①明了学情:了解学生对三角形相似的判定定理3的掌握情况.②差异指导:根据学情进行指导.(2)生助生:小组内相互交流、研讨.4.强化:∠A=∠A′,∠B=∠B′△ABC∽△A′B′C′.1.自学指导(1)自学内容:教材P36.(2)自学时间: 6分钟.(3)自学方法:注意怎样根据已知条件选择合适的定理.(4)自学参考提纲:①由已知∠C=∠C′=90°,AB ACA B A C='''',能根据定理“两边成比例且夹角相等的两个三角形相似”证明两个三角形相似吗?为什么?(不能,∠C和∠C′并非对应两边的夹角)②选择定理“三边成比例的两个三角形相似”证明两个三角形相似,还差什么条件?AB BC A B B C=''''③能否像前面三个判定定理的证明一样,构造一个与已知的一个三角形全等而与已知的另一个三角形相似的中间三角形的方法来证明呢?④如图,在Rt△ABC中,∠C=90°,CD是斜边AB上的高.求证:a.△ACD∽△ABC;b.△CBD∽△ABC.证明:∵CD⊥AB,∴∠ADC=∠CDB=90°.∴∠ADC=∠ACB=∠CDB.a.在△ACD和△ABC中,∵∠A=∠A,∠ADC=∠ACB,∴△ACD∽△ABC.b.在△CBD和△ABC中,∵∠B=∠B,∠CDB=∠ACB,∴△CBD∽△ABC.⑤如果Rt△ABC的两条直角边分别为3和4,那么以3k和4k(k>0)为直角边的直角三角形一定与Rt△ABC相似吗?为什么?(相似,理由:两边成比例且夹角相等的两个三角形相似)2.自学:学生参照自学指导进行自学.3.助学(1)师助生:①明了学情:直角三角形相似判定定理的归纳与证明.②差异指导:根据学情进行指导.(2)生助生:生生互动交流、研讨.4.强化(1)直角三角形相似的判定方法.(2)点学生口答后,点3位学生板演,并点评.三、评价1.学生学习的自我评价:这节课你学到了些什么?有哪些收获和不足?2.教师对学生的评价:(1)表现性评价:从学习态度、参与程度、思维状况等方面进行评价.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时应以学生自主探究为原则,让学生通过观察、实验、动手操作等方式探究并掌握判定三角形相似的方法.在这节课中,通过设计问题和启发、引导,让学生悟出学习方法和途径,培养学生独立学习的能力.整堂课应注重转化思想的运用,难点在于探究两个判定定理的过程及其证明方法,教师教学时讲解要尽可能详尽.教学过程中,应鼓励学生相互交流探讨,以提高学生的学习热情.一、基础巩固(70分)1.(10分)如图,当∠ADE=∠C(答案不唯一)时,△ABC∽△AED(填写一个条件).第1题图第2题图2.(10分)如图,在方格纸中,△ABC和△EPD的顶点均在格点上,要使△ABC ∽△EPD,则点P所在的格点为(C)A.P1B.P2C.P3D.P43.(10分)如图,△ABC中,AB=AC,∠A=36°,∠ABC的平分线交AC于点D,求证:△ABC∽△BDC.证明:∵AB=AC,∠A=36°,BD平分∠ABC,∴∠ABD=∠DBC=36°,∴∠A=∠DBC.在△ABC和△BDC中,∠A=∠DBC,∠C=∠C.∴△ABC∽△BDC.4. (10分)如图,AD是Rt△ABC的斜边上的高.若AB=4 cm,BC=10 cm,求BD 的长.解:∵AD⊥BC,∠BAC=90°,∴∠ADB=∠CAB.∴△ABD∽△CBA,∴BD BA AB CB=,即4410BD=,BD=1.6(cm).5.(30分)从下面这些三角形中,选出相似的三角形.①、⑤、⑥相似,③、④、⑧相似,②和⑦相似.二、综合应用(20分)6.(20分)如图,△ABC中,D在线段BC上,∠BAC=∠ADC,AC=8,BC=16.(1)求证:△ABC∽△DAC;(2)求CD的长.(1)证明:∵∠BAC=∠ADC,∠C=∠C,∴△ABC∽△DAC.(2)解:∵△ABC∽△DAC,∴CD ACCA BC=,即8816CD=,∴CD=4.三、拓展延伸(10分)7.(10分)如图,M是Rt△ABC的斜边BC上异于B、C的一个定点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有(C)A.1条B.2条C.3条D.4条。
相似三角形的判定数学教学教案(10篇)
相似三角形的判定数学教学教案(10篇)《相似三角形》数学教案篇一教学目标:1、了解相似三角形的概念,会表示两个三角形相似。
2、能运用相似三角形的概念判断两个三角形相似。
3、理解“相似三角形的对应角相等,对应边成比例”的性质。
重点和难点:1、本节教学的重点是相似三角形的概念2、在具体的图形中找出相似三角形的对应边,并写出比例式,需要学生具有一定的分辨能力,是本节教学的难点。
知识要点:1、对应角相等,对应边成比例的两个三角形叫做相似三角形。
2、相似三角形的对应角相等,对应边成比例。
3、相似三角形对应边的比,叫做两个相似三角形的相似比(或相似系数)重要方法:1、全等三角形是相似三角形的特殊情况,它的相似比是1。
2、相似三角形中,利用对应角寻找对应边;反过来利用对应边寻找对应角。
3、书写相似三角形时,需要把对应顶点的字母写在对应的位置上。
教学过程一、创设情境,导入新课1、课件出示:①国旗上的☆,②同一底片不同尺寸的照片。
以上图形之间可以通过怎样的图形变换得到?2、经过相似变换后得到的像与原像称为相似图形。
那么将一个三角形作相似变换后所得的像与原像称为相似三角形二、合作学习,探索新知1、合作学习如图1,在方格纸内先任意画一个☆ABC,然后画出☆ABC经某一相似变换(如放大或缩小若干倍)后得到像☆A ′B ′C ′(点A ′、B ′、C ′分别对应点A 、B 、C)。
问题讨论1:☆A ′B ′C ′与☆ABC对应角之间有什么关系?问题讨论2:☆A ′B ′C ′与☆ABC对应边之间有什么关系?学生相互比较得到结论:对应角相等,对应边成比例。
2、由合作学习定义相似三角形的概念(1)相似三角形:一般地,对应角相等,对应边成比例的两个三角形,叫做相似三角形(2)表示:相似用符号“☆”来表示,读作“相似于”如☆A ′B ′C ′与☆ABC相似,记做“☆A ′B ′C ′☆☆ABC ” 。
注意:在表示三角形相似时,一般把对应顶点的字母写在对应的位置上(3)定义的几何语言表述:A B C A ′B ′C ′相似三角形的判定数学教学教案篇二一、教学目标1.使学生了解判定定理2、3的证明方法并会应用。
相似三角形的判定(2)导学案
年级:九年级 班级: 学生姓名: 制作人: 不知名 编号:2023-1227.2.1 相似三角形的判定(2)【学习目标】1. 探究平行相似.2. 会证明定理并灵活应用.【重点】三角形相似的判定方法----平行相似 .【难点】证明定理并灵活应用.预学案(回顾)1、相似三角形的定义:如果两个三角形的_________,__________________,那么这两个三角形相似.2、平行线分线段成比例定理:两条直线被 所截,所得的 线段成比例3、推论:平行于三角形一边的直线截其他两边(或两边延长线),所得的_______线段的比_______.探究案探究1:三角形相似的判定定理------平行相似:如图,在△ABC 中,D 为AB 上任意一点,过点D 作BC 的平行线DE ,交AC 于点E .问题1 △ADE 与△ABC 的三个内角分别相等吗?∠A ∠A , ∠ADE ∠B , ∠AED ∠C ,问题2 分别度量△ADE 与△ABC 的边长,它们的边长是否对应成比例?______=_______=BCDE 问题3 你认为△ADE 与△ABC 之间有什么关系?平行移动DE 的位置,你的结论还成立吗? △ADE △ABC猜想: ∵DE ∥BC∴______ = _______.而BCDE 中的DE 不在△ABC 的边BC 上,不能直接利用前面的结论,但从要证的AC AE =BC DE 可以看出,除DE 外,AE ,AC ,BC 都在△ABC 的边上,因此只需将DE _______到BC边上去,使得_____=DE,再证明ACAE=________就可以了.只要过点E作EF∥AB,交BC于点F,BF就是_____DE所得的线段.请你写出证明过程:结论:判定三角形相似的定理:,所构成的三角形与原三角形相似.三角形相似的两种常见类型:“A”型“X”型检测案1.已知在△ABC中,D,E分别是AB,BC的中点,ED:AC等于()A.1:2 B.1:3 C.2:3 D.2:52. 如图,在△ABC中,EF∥BC,AE= 2 cm,BE = 6 cm,BC=4 cm,则EF的长为()A.1 cm B.cmC.3 cm D.2 cm3.如图,在△ABC中,DE∥BC,则△____∽△____,对应边的比为=.4.如图,在平行四边形ABCD中,EF∥AB,DE:EA=2 :3,EF=4,求CD的长.34ABAD。
人教版九年级数学下27.2相似三角形的判定(两角法)优秀教学案例
(一)导入新课
在导入新课时,我会通过展示一些生活中的实际例子,如建筑物的构造、艺术作品的设计等,让学生感受到相似三角形的判定在实际生活中的应用。接着,我会提出一些与本节课相关的问题,如“为什么两角法能够判定两个三角形相似?”、“在实际问题中,如何运用两角法判定相似三角形?”等。通过问题的引导,激发学生的思考兴趣,引出本节课的主题。
2.培养学生运用相似三角形的性质解决实际问题的能力,如计算图形的面积、解决几何构造问题等。
3.引导学生理解相似三角形与全等三角形的区别,并能运用相应的判定方法解决相关问题。
(二)过程与方法
1.通过观察、分析、对比等方法,让学生深入理解两法,培养学生团队协作能力和沟通表达能力。
在教学过程中,我将以生动的语言、丰富的实例和实际问题,激发学生的学习兴趣,让他们在掌握知识的同时,提高自己的思维能力和解决问题的能力。同时,注重培养学生的团队协作和沟通能力,使他们能够在学习过程中,形成积极的情感态度和价值观。
三、教学策略
(一)情景创设
本章节的教学过程中,我将注重情境的创设,以激发学生的学习兴趣和思考能力。在引入两角法这一概念时,我会通过展示生活中的实际例子,如建筑物的构造、艺术作品的设计等,让学生感受到相似三角形的判定在实际生活中的应用。同时,我会设计一些有趣的数学题目,让学生在解决实际问题的过程中,自然地引入两角法的概念和判定条件。
人教版九年级数学下27.2相似三角形的判定(两角法)优秀教学案例
一、案例背景
“人教版九年级数学下27.2相似三角形的判定(两角法)”这一章节,是在学生已经掌握了相似三角形的概念和性质的基础上进行授课的。在此之前,学生已经学习了三角形的各种性质,如内角和定理、外角定理等,并能够运用这些性质解决一些简单的问题。然而,对于相似三角形的判定,尤其是两角法,他们可能存在一定的理解难度。
2023年人教版九年级数学下册第二十七章《相似三角形的判定(一)》导学案
新人教版九年级数学下册第二十七章《相似三角形的判定(一)》导学案 课题27.2.1 相似三角形的判定(一) 课 型 新授 主备人 备课组审核级部审核 学生姓名 教师寄语 学而不思则罔,思而不学则殆。
学习目标 1.经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程,进一步发展同学们的探究、交流能力.2.掌握两个三角形相似的判定条件(三个角对应相等,三条边的比对应相等,则两个三角形相似)——相似三角形的定义,和三角形相似的预备定理(平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似).3.会运用“两个三角形相似的判定条件”和“三角形相似的预备定理”解决简单的问题.一、新知链接1.复习引入(1)相似多边形的主要特征是什么?(2)在相似多边形中,最简单的就是相似三角形.在△ABC 与△A ′B ′C ′中,如果∠A=∠A ′, ∠B=∠B ′, ∠C=∠C ′, 且k A C CA C B BC B A AB =''=''=''. 我们就说△ABC 与△A ′B ′C ′相似,记作△ABC ∽△A ′B ′C ′,k 就是它们的相似比. 反之如果△ABC ∽△A ′B ′C ′,则有∠A=∠A ′, ∠B=∠B ′, ∠C=∠C ′, 且A C CA C B BC B A AB ''=''=''. (3)问题:如果k=1,这两个三角形有怎样的关系?2.教材P42的思考,并引导同学们探索与证明.3.【归纳】三角形相似的预备定理 平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似.二、合作探究例1如图△ABC ∽△DCA ,AD ∥BC ,∠B=∠DCA .(1)写出对应边的比例式;(2)写出所有相等的角;(3)若AB=10,BC=12,CA=6.求AD 、DC 的长.例2,在△ABC中,DE∥BC,AD=EC,DB=1cm,AE=4cm,BC=5cm,求DE的长.三、课堂练习1.(选择)下列各组三角形一定相似的是()A.两个直角三角形B.两个钝角三角形C.两个等腰三角形D.两个等边三角形2.(选择)如图,DE∥BC,EF∥AB,则图中相似三角形一共有()A.1对B.2对C.3对D.4对3.如图,DE∥BC,(1)如果AD=2,DB=3,求DE:BC的值;(2)如果AD=8,DB=12,AC=15,DE=7,求AE和BC的长.4.如图,在□ABCD中,EF∥AB,DE:EA=2:3,EF=4,求CD的长.四、课堂小结:本节课你的收获是什么?自我评价专栏(分优良中差四个等级)教师的职务是‘千教万教,教人求真’;学生的职务是‘千学万学,学做真人’。
27.2.1相似三角形的判定定理(教案)
本章节的核心素养目标旨在培养学生以下能力:
1.掌握相似三角形判定定理,提高空间想象和几何直观能力,使学生能够运用几何知识分析并解决实际问题。
2.培养学生逻辑推理和数学论证能力,通过相似三角形的判定过程,学会运用严密的逻辑思维进行推理和证明。
3.增强学生合作交流意识,通过小组讨论和问题探究,提高团队合作能力和解决问题的能力。
我还注意到,在小组讨论环节,学生们对于相似三角形在实际生活中的应用提出了很多有趣的想法。这让我意识到,将数学知识与学生们的日常生活联系起来,可以极大地提高他们的学习兴趣和积极性。在未来的教学中,我会继续寻找更多实际案例,让数学变得更加生动和有趣。
此外,实践活动中的实验操作部分,学生们表现出很高的热情。他们通过亲手操作,直观地感受到了相似三角形的原理。这也让我认识到,动手操作对于抽象几何概念的理解是非常有帮助的。因此,我计划在后续的教学中,增加更多这样的实践活动。
-对于实际问题的解决,引导学生从问题中发现相似三角形的特征,如角度关系、边长关系等,并运用判定定理进行解答。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《相似三角形的判定定理》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过形状相似但大小不同的物体?”(如照片的放大缩小、不同尺寸的三角形装饰等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索相似三角形的奥秘。
在学生小组讨论的过程中,我发现有些学生不太愿意主动参与讨论,可能是因为他们对自己的观点缺乏信心。为了鼓励这些学生,我会在接下来的课程中,更多地采用肯定和鼓励的语言,让他们感受到自己的观点是有价值的,从而增强他们的自信心。
人教版九年级数学下27.2.1相似三角形的判定(第一课时)优秀教学案例
本节课的教学内容主要包括:相似三角形的定义、判定定理及其证明、应用。在教学过程中,我将以教材为依托,结合学生的实际情况,采用生动形象的语言、贴近生活的实例,引导学生理解和掌握相似三角形的判定方法。
人教版九年级数学下27.2.1相似三角形的判定(第一课时)优秀教学案例
一、案例背景
“人教版九年级数学下27.2.1相似三角形的判定(第一课时)”的教学案例背景如下:
九年级的学生已经学习了三角形的基本概念、性质和分类,对本节课的相似三角形有了初步的认识。然而,对于如何判定两个三角形相似,他们可能还存在一定的困惑。因此,本节课的教学目标是让学生掌握相似三角形的判定方法,并能运用所学知识解决实际问题。
4.注重与家长的沟通,共同关注学生的成长,为学生的全面发展提供良好的教育环境。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示实际生活中的相似三角形例子,如房屋设计、电路布局等,引导学生观察并思考:“这些例子中是否存在相似三角形?如何判断?”
4.培养学生珍惜时间、勤奋学习的意识,养成良好的学习习惯,为学生的终身发展奠定基础。
三、教学重难点
1.教学重点:相似三角形的定义,相似三角形的判定定理及其证明。
2.教学难点:相似三角形的判定定理的理解和运用,解决实际问题。
四、教学策略
1.采用问题驱动的教学方法,引导学生主动探究,发现知识,提高学生的性,培养学生的竞争意识。
(四)反思与评价
1.教师要时刻关注学生的学习情况,及时发现学生的问题,并给予引导和帮助。鼓励学生自我反思,发现自身的不足,调整学习方法。
九年级数学下册《判定三角形相似的第一个定理》教案、教学设计
c.教师引导学生总结规律,提炼解题方法。
2.运用多媒体教学手段,如PPT、几何画板等,辅助学生直观理解几何图形,提高教学效果。
a.通过动态演示,让学生更直观地了解相似三角形的性质。
b.利用实例分析,让学生在实际问题中运用相似定理。
(三)情感态度与价值观
3.创新思考题:请学生思考并尝试解决以下问题:
a.如果两个三角形只有一个角相等,其他两边成比例,这两个三角形是否相似?
b.在一个三角形中,如果两边成比例,第三边与另外两边不成比例,这个三角形是否存在相似三角形?
c.请举例说明相似三角形在实际问题中的应用,并简要阐述相似定理的作用。
4.小组合作作业:以小组为单位,共同完成一道综合性的几何题目,题目要求涉及到相似三角形的判定定理。小组成员需要共同讨论、分析问题,分工合作完成解答。
(二)教学难点
1.对应角、对应边的辨识及运用。
2.将实际问题转化为数学问题,建立几何模型。
3.在团队协作中,培养学生独立思考、解决问题的能力。
(三)教学设想
1.创设情境,导入新课
a.通过生活实例,引导学生发现相似三角形在现实生活中的应用,激发学生的学习兴趣。
b.提出问题,引导学生思考,为新课的学习做好铺垫。
1.培养学生积极探究、主动思考的学习态度。
a.鼓励学生提问,培养质疑精神。
b.引导学生独立思考,提高解决问题的能力。
2.培养学生的团队合作意识,让学生在交流、分享中共同成长。
a.通过小组合作,让学生学会倾听、尊重他人意见。
b.在讨论、交流中,提高学生的表达能力和沟通能力。
3.培养学生运用数学知识解决实际问题的意识,让学生认识到数学在现实生活中的重要性。
九年级数学上册《相似三角形的判定定理1》教案、教学设计
四、教学内容与过程
(一)导入新课
1.引入:通过展示一些生活中的相似图形,如建筑物的立面图、摄影中的景物等,引导学生观察并发现相似图形的美感和应用价值。
2.提问:请学生回顾已学的全等三角形的判定方法,并思考相似三角形是否也有类似的判定方法。
3.实践应用题:设计一道与实际生活相关的相似三角形问题,让学生运用所学知识解决。
要求:学生通过观察、分析、计算,将相似三角形的判定定理1应用于实际问题,感受数学在生活中的价值。
4.小组讨论题:布置一道小组讨论题目,要求学生在课后分组讨论,共同解决问题。
要求:各小组成员积极参与讨论,充分发挥团队协作精神,共同完成解题任务。
3.定期对学生的作业情况进行反馈,帮助学生了解自己的学习进度和存在的问题。
a.引导学生观察已知相似三角形的特征,发现“两边成比例且夹角相等”的条件。
b.通过动态演示,让学生直观感受相似三角形的变化过程,加深对判定定理1的理解。
c.设计典型例题,让学生在解决问题中,学会运用判定定理1。
3.合作探究,化解难点:组织学生进行小组讨论,让学生在合作交流中,共同分析问题、解决问题,化解教学难点。
1.学生对相似三角形概念的理解程度,特别是对“两边成比例且夹角相等”的理解。
2.学生在解决实际问题时,能否灵活运用判定定理1,并注意排除干扰因素。
3.针对不同学生的认知水平,设计有针对性的教学活动,帮助学生在理解的基础上,提高解题技能。
4.关注学生的学习兴趣和动机,激发学生的学习积极性,培养其自主学习能力。
九年级数学上册《相似三角形的判定定理1》教案、教学设计
九年级数学上册《相似三角形的判定定理的应用》教案、教学设计
1.教师引导学生复习全等三角形的判定定理,为新课的学习打下基础。
2.提问:“全等三角形有什么特点?”学生回答后,教师总结:“全等三角形的大小和形状完全相同,那么相似三角形呢?”
3.教师给出相似三角形的定义,解释相似比的概念,并强调相似三角形的对应角相等、对应边成比例。
4.讲解相似三角形的判定定理,如AA、SSS、SAS、HL等,结合图形进行演示,让学生直观地理解定理的含义。
2.能够运用判定定理解决实际问题,提高几何解题能力。
3.培养学生的逻辑思维能力和几何直观。
(二)教学难点
1.相似三角形判定定理的理解与运用,特别是AA定理和SAS定理的灵活运用。
2.学生在解决实际问题时,难以将问题转化为相似三角形的判定问题。
3.学生在合作交流过程中,如何有效地表达自己的观点和倾听他人的意见。
4.通过变式练习,巩固所学知识,提高学生的灵活运用能力。
(三)情感态度与价值观
1.激发学生对数学学科的兴趣,培养学生热爱数学的情感。
2.培养学生勇于探索、积极思考、克服困难的意志品质,增强学生的自信心。
3.引导学生认识到数学在生活中的广泛应用,体会数学的价值,提高学生的数学素养。
4.通过合作交流,培养学生团结协作、互相帮助的精神,增强学生的团队意识。
(三)教学设想
1.创设情境,导入新课:通过生活中常见的相似图形,如照片放大、建筑设计等,引发学生对相似三角形判定定理的兴趣。
2.自主探究,合作交流:给予学生充足的时间和空间,让他们在自主探究的基础上,进行小组合作交流,共同发现相似三角形的判定定理。
-教师引导学生通过观察、猜想、验证等方法,探索相似三角形的判定条件。
(五)总结归纳,500字
初中数学初三数学上册《相似三角形的判定》教案、教学设计
1.引导学生回顾本节课所学内容,总结相似三角形的判定方法和性质。
2.教师进行补充和强调,帮助学生构建完整的知识体系。
3.提醒学生课后进行复习,布置适量的课后作业,巩固课堂所学知识。
五、作业布置
1.基础作业:完成课本相应练习题,巩固相似三角形的判定方法和性质。要求学生在完成作业时,注意理解题目要求,规范解题过程,提高解题效率。
作业布置注意事项:
1.作业量要适中,避免过多增加学生的负担。
2.作业难度要适中,既要保证基础知识的巩固,又要激发学生的学习兴趣。
3.作业形式要多样化,注重培养学生的自主学习、合作交流和创新思维能力。
4.教师要及时批改作业,给予反馈,指导学生改进学习方法,提高学习效果。
2.提问:“同学们,你们在生活中还见到过哪些相似的三角形?它们之间有什么共同特征?”通过这个问题,激发学生的好奇心,为学习相似三角形的判定方法做好铺垫。
3.引导学生回顾全等三角形的判定方法,为新课的学习打下基础。
(二)讲授新知
1.结合课本,讲解相似三角形的定义,让学生理解相似三角形的含义。
2.通过几何画板演示,让学生直观地观察相似三角形的性质,如对应角相等、对应边成比例等。
3.讲解相似三角形的判定方法,如AA、SAS、SSS等,结合具体例子进行分析,让学生理解并掌握这些方法。
4.针对不同判定方法,设计相应的例题,引导学生运用所学知识解决问题。
(三)学生小组讨论
1.将学生分成若干小组,每组讨论一个相似三角形的判定方法,并给出实际例子。
2.各小组派代表进行汇报,分享本组讨论成果,其他小组可进行补充和提问。
6.作业:布置适量的课后作业,巩固课堂所学知识。
7.课后反思:教师对课堂教学效果进行反思,针对学生的掌握情况,调整教学方法,提高教学质量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
27.2相似三角形27.2.1 相似三角形的判定第1课时相似三角形的判定(1)【知识与技能】1.了解相似三角形的概念及其表示方法;2.掌握平行线分线段成比例定理及平行于三角形一边的直线的性质定理;3.掌握相似三角形判定的预备定理.【过程与方法】经历从探究到归纳证明的过程,发展学生的合情推理能力和逻辑思维能力.【情感态度】体验从一般到特殊及由特殊到一般的认知规律,发展辩证思维能力. 【教学重点】平行线分线段成比例定理及判定三角形相似的预备定理.【教学难点】探索平行线分线段成比例定理的过程.一、情境导入,初步认识问题1相似多边形的性质是否也适用于相似三角形呢?问题2如果△ABC与△A1B1C1相似,能类似于两个三角形全等,给出一种相似表示方法吗?△ABC 与△A 1B 1C 1的相似比为k ,那么△A 1B 1C 1与△ABC 的相似比也是k 吗?问题3 如何判定两个三角形相似呢?【教学说明】通过上述三个问题的设置,既帮助学生认识了相似三角形的一些基本知识,又为引出平行线分线段成比例定理作些铺塾,教师可釆用自问自答形式讲述这部分内容. 二、思考探究,获取新知问题1 如图,任意画两条直线l 1,l 2,再画三条与l 1,l 2相交的平行线l 3,l 4,l 5分别度量AB ,BC ,DE ,EF 长度,则EFDEBC AB 与相等吗?呢?与DF DE AC AB 呢?与DFEFCA BC【教学说明】教师可让学生在自己准备的 白纸上画出类似图形,测出所截各条线段的长度(尽可能准确些),然后求出相应比值的近似值,便于作出说明.教师巡视,发现问题及时引导.对出现比值相差较大情形,帮助他们分析,找出原因,尽量让学生们获得对应线段的比值近似相等这一结果,形成感性认知.最后,教师可综合大多数同学的认知,给予总结,得出结论.平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段的比相等.【教学说明】这一结论不要求学生证明,只需形成感性认识.为了便于记忆,上述定理的结论可使用下面形象化的语言,如:.等全下全下,全上全上,上下上下,下上下上==== 问题 2 如图,当l 1//l 2//l 3时,在(1)中是否仍有呢?,,AF EFAC BCAF AE AC AB EF AE BC AB ===在(2)中是否仍有呢?,,DFBFACBCDF DB AC AB BF DB BC AB ===【教学说明】针对问题2,教师应引导学生利用“平行线分线段成比例定理”来进行说明,不可继续用测量方法得到,这样就由感性认识 上升到理性思考.这里建议将学生进行分组,小组讨论,相互交流,形成认识,最后教师再与全 班同学一道分析,得出结论.平行于三角形一边的直线截其他两边(或两边的延长线),所得到的对应线段的比相等.问题3 如图,在△ABC 中,DE// BC ,DE 分别交AB 、AC 于D 、E ,则△ABC 与△ADE 能相似吗?为什么?问题4如图,已知DE//BC,DE分别交AB.AC的反向延长线于D、E,则△ADE与△ABC能相似吗?为什么?【教学说明】将全班学生分成两组,分别完成问题3、4的探究,教师应先给予点拨,突破难点(即添加辅助线,达到两个三角形的三边的比能相等的目的),然后学生自主完成,锻炼逻辑思维能力和推理能力.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似 (相似三角形判定的预备定理).三、运用新知,深化理解1.如图,DE//BC,EF//AB,请尽可能多地找出图中的相似三角形,并用符号表示出来.2.如图D 为△ABC 中BC 边的中点,E 为AD 中点,连接并延长BE 交 AC 于F.过E 作EG//AC 交BC 于G. (1) 求AC EG 的值;(2)求CF EG 的值;(3)求FCAF的值.3.如图,已知在△ABC 中,DE//BC ,AD=EC ,BD=1cm ,AE=4cm ,BC=5cm , 求 DE 的长.【教学说明】 让学生自主完成,也可合作完成,在练习中加深理解.教师巡视指导,及时点拨.在完成上述题目后,教师引导学生完成创 优作业中本课时的“名师导学”部分.【答案】1.解:△ADE ~△ABC ,△CEF ~△CAB, △ADE ~△EFC. 2.解:(1)∵EG//AC ,∴△DGE ~△DCA ,∴21==DA DE AC EG . (2)∵EG//AC ,E 是AD 的中点,∴G 是CD 的中点,即CG=DG.又D 是BC 的中点,∴BD=CD ,∴BG=3CG ,BC=4CG ,∴34BG BC = . ∵EG//FC, ∴△BEG ~△BFC,∴43==BC BG FC FG . (3)过D 点作DH//CF ,交BF 于H.易得DH=AF ,∴21==FC DH FC AF . 3.解:∵DE//BC ,∴ECAEDB AD =,又AD=CE ,∴AD 2=4,∴AD=2,∴AB=3.由DE//BC 可知△ADE ~△ABC ,∴)(cm 310352=⨯==BC DE AB AD . 四、师生互动,课堂小结 1.这节课你学到了哪些知识? 2.你还有哪些疑惑?【教学说明】师生以交谈方式回顾本节知识,重点应关注哪些内容,还有什么地方不太明白,及时解疑.完成创优作业中本课时的“课时作业”部分.本课时教学思路应从探究、猜想、验证归纳出发,遵循学生的理解认知能力,由浅入深、逐步推进,激发学生自主探究的学习热情,培养学生的自主学习能力.27.2 相似三角形 27.2.1 相似三角形的判定 第1课时 相似三角形的判定(1)一、新课导入 1.课题导入问题1:我们学过哪些判定两个三角形全等的方法?问题2:类比上面这些方法,猜一猜判定两个三角形相似的方法有哪些? 由此导入课题(板书课题). 2.学习目标(1)能用符号表示两个三角形相似,能确定它们的相似比、对应边和对应角.(2)能叙述平行线分线段成比例定理及其推论,并能结合图形写出正确的比例式.(3)能用平行线分线段成比例定理的推论证明三角形相似的判定引理. 3.学习重、难点重点:平行线分线段成比例定理及其推论. 难点:正确理解定理中的“对应线段”. 二、分层学习1.自学指导(1)自学内容:教材P29~P30思考上面的内容. (2)自学时间:8分钟.(3)自学方法:学生分小组采用度量的方法和已学知识探究平行线分线段成比例定理,并完成自学参考提纲.(4)自学参考提纲:①三个角相等,三条边成比例的两个三角形相似.在△ABC 和△A′B′C′中, 如果∠A=∠A′, ∠B=∠B′, ∠C=C′,AB BC CAk A B B C C A ==='''''', 那么△ABC 和△A′B′C′相似,记作△ABC ∽△A′B′C′,△ABC与△A′B′C′的相似比为k,△A′B′C′与△ABC的相似比为1 k .全等三角形也是相似三角形, 它们的相似比为1.②相似三角形的对应角相等,对应边成比例.③完成教材P29探究:a.如图1,量一量,算一算,ABBC与DEEF相等吗?BCAB与EFDE呢?ABAC与DEDF呢?BCAC与EFDF呢?b.由上一步可得:∵l3∥l4∥l5,∴ABBC=DEEF,BCAB=EFDE,ABAC=DEDF,BC AC =EFDF.c.平行线分线段成比例定理:两条直线被一组平行线所截,所得的对应线段成比例.d.指出图1中的所有对应线段(如AB与DE):BC与EF,AC与DF.④把平行线分线段成比例定理应用到三角形中,会出现图2和图3两个基本图形:在这两个图形中,把DE看成平行于△ABC的边BC的直线,截其他两边(如图1)或其他两边的延长线(如图2),于是可得推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.即:∵DE∥BC,∴ADDB=AEEC,ADAB=AEAC,BDAB=CEAC.2.自学:结合自学指导进行自学.3.助学(1)师助生:①明了学情:能否正确理解“对应线段”,尤其是在推论的两个图形中.②差异指导:根据学情,指导学生结合图形理解“对应线段”.(2)生助生:小组交流、研讨.4.强化(1)分清平行线分线段成比例定理的条件与结论,弄清哪些是“对应线段”.(2)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段的比相等(强调“对应”).1.自学指导(1)自学内容:教材P30思考~P31.(2)自学时间:6分钟.(3)自学方法:学生分小组对不同类型的相似三角形进行证明,并完成自学参考提纲.(4)自学参考提纲:①已知DE∥BC,运用定义证明△ADE∽△ABC(如图1,作EF∥AB).证三个角相等:∠A公共,由DE∥BC可得∠ADE=∠B,∠AED=∠C.证三条边成比例:由DE∥BC可得ADAB=AEAC,由EF∥AB可得BFBC=AEAC.由DE∥BC,EF∥AB可得四边形BFED是平行四边形,所以BF=DE.故DE BCADAB=AEAC=BFBC.所以△ADE∽△ABC.②如图2, DE∥BC分别交BA、CA的延长线于点D、E,那么△ADE与△ABC 相似吗?能否给予证明?相似.∵DE ∥BC,∴∠E=∠C,∠D=∠B.过E 作EF ∥BD 交CB 的延长线于点F. ∵DE ∥BC ,EF ∥BD ,∴,AE AD BF AEAC AB BC AC==. 又∵四边形BDEF 是平行四边形,∴DE=BF,∴AE AD DEAC AB BC==. ∴△ADE ∽△ABC.③如图3,△ABC 中,DE ∥BC ,EF ∥AB ,求证:△ADE ∽△EFC. ∵DE ∥BC ,EF ∥AB ,∴∠CEF=∠A,∠ADE=∠B=∠EFC,AD AE DB EC =,BF AEFC EC=. 又∵四边形BDEF 是平行四边形, ∴BD=EF,DE=BF. ∴AD AE DEEF EC FC==, ∴△ADE ∽△EFC.④如图4,DE ∥FG ∥BC ,找出图中所有的相似三角形. 由DE ∥FG ∥BC ,易知△ADE ∽△AFG ∽△ABC. 2.自学:结合自学指导进行自学. 3.助学 (1)师助生:①明了学情:看学生能否添加辅助线构造比例线段进行转化. ②差异指导:根据学情指导学生弄清引理的证明思路和方法. (2)生助生:小组交流、研讨. 4.强化(1)判定三角形相似的预备定理及其两个基本图形. (2)点两名学生板演自学参考提纲中第③、④题,并点评. 三、评价1.学生学习的自我评价:这节课你有什么收获?还有哪些不足?2.教师对学生的评价:(1)表现性评价:从学生的课堂参与程度、思维状况、小组协作等方面的课堂表现去评价.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时先给出相似三角形的定义,说明有关概念,明确相似三角形的符号表示和相似比的意义.由于三角形的相似与比例线段密不可分,因此在形成相似三角形的概念之后,主要安排学习比例线段,进而讨论平行于三角形一边的平行线的性质与判定以及平行线分线段成比例定理,为研究相似三角形提供了必要的知识准备.教学过程中应遵循学生的理解认知能力,由浅入深,逐步推进.一、基础巩固(70分)1.(10分)如图,在△ABC中,DE∥BC, 且AD=3,DB=2.图中的相似三角形是△ADE∽△ABC,其相似比是35.第1题图第2题图2.(10分)如图,DE∥BC,DF∥AC,则图中相似三角形一共有(C)A.1对B.2对C.3对D.4对3.(10分)如图,DE∥BC,12ADDB,则AEAC=(B)A.12B.13C.23D.32第3题图第4题图4.(10分)如图,已知AB ∥CD ∥EF ,那么下列结论正确的是(A )5.(10分)如图,AB ∥CD ∥EF,AF 与BE 相交于点G ,且AG=2,GD=1,DF=5,求BC CE .解:∵AB ∥CD ∥EF,∴35BC AD AG GD CE DF DF +===. 6.(20分)如图,DE ∥BC.(1)如果AD=5,DB=3,求DE ∶BC 的值;(2)如果AD=15,DB=10,AC=15,DE=7,求AE 和BC 的长.解:(1)∵DE ∥BC ,∴△ADE ∽△ABC,∴58DE AD BC AB ==. (2)AE AD AC AB =,即151525AE =,求得 AE=9. DE AD BC AB =,即71525BC =,求得 BC=353. 二、综合应用(20分)7.(20分)如图,△ABC ∽△DCA ,AD ∥BC ,∠B=∠DCA.(1)写出对应边的比例式;(2)写出所有相等的角;(3)若AB=10,BC=12,CA=6,求AD 、DC 的长.解:(1)BC AB AC CA DC DA==; (2)∠BAC=∠CDA,∠B=∠ACD,∠ACB=∠DAC; (3)由(1)中的结论和已知条件可知121066DC AD==,求得AD=3,DC=5. 三、拓展延伸(10分)8.(10分)如图,在△ABC 中,DE ∥BC 分别交AB 、AC 于点D 、E ,试证明:ADAB=DOCO.证明:∵DE ∥BC ,∴△ADE ∽△ABC,△DOE ∽△COB,∴,AD DE DO DE AB BC CO CB==. ∴AD DO AB CO =.。