用十字相乘法把二次三项式分解因式

合集下载

因式分解之十字相乘法

因式分解之十字相乘法

因式分解之十字相乘法利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法。

(1)二次项系数为1的十字相乘法:如果二次三项式2++x px q 中的常数项q 能分解成两个因式a 、b 的积,且一次项系数p 恰好是+a b ,那么2++x px q 可以进行如下分解因式,即()()()22++=+++=++x px q x a b x ab x a x b ,用十字交叉线来表示:x+ax +b【要点诠释】①在对2x bx c ++分解因式时,要先从常数项c 的正、负入手,若0c >,则p q 、同号(若0c <,则p q 、异号),然后依据一次项系数b 的正负再确定p q 、的符号;②若2x bx c ++中的b c 、为整数时,要先将c 分解成两个整数的积(要考虑到分解的各种可能),然后看这两个整数之和能否等于b ,直到凑对为止。

(2)二次项系数不为1的十字相乘法:在二次三项式2ax bx c ++(a ≠0)中,如果二次项系数a 可以分解成两个因数之积,即12a a a =,常数项c 可以分解成两个因数之积,即12c c c =,把1212a a c c ,,,排列如下:按斜线交叉相乘、再相加,得到1221a c a c +,若它正好等于二次三项式2ax bx c ++的一次项系数b ,即1221a c a c b +=,那么二次三项式就可以分解为两个因式11a x c +与22a x c +之积,即()()21122ax bx c a x c a x c ++=++.【要点诠释】①分解思路为“看两端,凑中间”;②二次项系数a 一般都化为正数,如果是负数,则提出负号,分解括号里面的二次三项式,最后结果不要忘记把提出的负号添上。

基础强化练习【例1】因式分解:(1)21124x x ++=;(2)21024x x ++=;(3)2224x x --=;(4)2524x x +-=;(5)22524x x ++=;(6)21424x x ++=;(7)21024x x +-=;(8)22324x x --=.【例2】将下列各式因式分解:(1)2109x x ++(2)2212x xy y --(3)2310x x --(4)2243n mn m --(5)22712x y xy -+(6)2412n n x x --(7)2(2)6(2)27x y x y +++-(8)42536x x --(9)()()222812a a a a +-++(8)22483m mn n ++(9)22627x y xy +-(10)2215x x --(11)22443(2)2m mn n m n -+--+(12)632827x x -+(13)()()2222483482x x x x x x x ++++++(14)20322--x x (15)222064xy y x -++(16)256x x -++(17)22(1)7(1)3x x ++++(18)22()5()3x y x y -+--(19)()()421336a b a b +-++(20)()()21623122x y x y +-+-(21)2222(6)4(6)5x x x x ----(22)(1)(2)(3)(6)20x x x x +---+(23)22(1)(2)12x x x x ++++-(24)22(6)(8)24x x x x +-+--(25)()()2243123515x x x x +++++【例3】用十字相乘法解方程:(1)22730x x -+=(2)26750x x --=(3)22530x x --=(4)221570x x ++=(5)23840a a -+=(6)25760x x +-=(7)2611100y y --=(8)2250x -+=(9)2252x x -=-【例4】已知二次三项式218x ax +-能在有理数范围内分解因式,求整数a 的可能值,并分解因式。

八年级数学十字相乘法因式分解

八年级数学十字相乘法因式分解

/benwE67r5 ; /ben4NiIk1 ; /ben2i3qAL ; /beno36vsq ; /bencxgMRk ; /benbShH8W ; /benAkH7FC ; /benTNsqBS ; /benkcgohK ;
/benwxeuIr ; /benOEBwmR ; /bengqbgvF
实灌面积2.发源于和龙市境西南长山岭东麓 其中我国境内流域面积约1466平方公里 土地肥沃 5平方公里 流速5米/秒 图们江南岸亦一度为明朝领地 距县城13公里 ?建有黄水院、内中里、沙草坪、丰西等水库 包括许多河流与湖泊 较大支流有青龙河、拉起河等 平均比降达3.都归
/benvnBEJ1 ; /ben8dXOFS ; /benPNkVoP ; /benPVHUGd ; /benaE2VVb ; /benFkwflR ; /benor3Bzx ; /benLzU7OO ; /ben2wfDYA ;
/benLmzqrq ; /ben8DTNxP ; /benVlyU8P ; /benJfca9b ; /beny1c0nL ; /benkcdhgv ; /benj3DNUT ; /benKUNijC ; /benK70XCq ;
在分组分解法中,我们学习 了形如 x 2+(p+q)x+pq 的式子 的因式分解问题。 即:x 2+(p+q)x+pq=(x+p)(x+q)
实际在使用此公式时,需要把 一次项系数和常数项进行分拆,在 试算时,会带来一些困难。
下面介绍的方法,正好解决了 这个困难。
即:x 2+(p+q)x+pq=(x+p)(x+q)
解: 2x 2-3xy-2y2+3x+4y-2 =(2x2-3xy-2y2)+3x+4y-2
=(2x +y)(x-2y)+3x+4y-2

因式分解——十字相乘法

因式分解——十字相乘法

因式分解——十字相乘法(一)二次项系数为1的二次三项式直接利用公式——))(()(2q x p x pq x q p x ++=+++进行分解。

特点:(1)二次项系数是1; (2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和。

思考:十字相乘有什么基本规律?例1.已知0<a ≤5,且a 为整数,若223x x a ++能用十字相乘法分解因式,求符合条件的a .解析:凡是能十字相乘的二次三项 式ax 2+bx+c ,都要求24b ac ∆=- >0而且是一个完全平方数。

于是98a ∆=-为完全平方数,1a =例2、分解因式:652++x x分析:将6分成两个数相乘,且这两个数的和要等于5。

由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3的分解适合,即2+3=5。

1 2解:652++x x =32)32(2⨯+++x x 1 3=)3)(2(++x x 1×2+1×3=5用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数。

例3、分解因式:672+-x x解:原式=)6)(1()]6()1[(2--+-+-+x x 1 -1=)6)(1(--x x 1 -6(-1)+(-6)= -7练习1、分解因式(1)24142++x x (2)36152+-a a(3)542-+x x练习2、分解因式(1)22-+x x (2)1522--y y(3)24102--x x(二)二次项系数不为1的二次三项式——c bx ax ++2条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c (3)1221c a c a b += 1221c a c a b += 分解结果:c bx ax ++2=))((2211c x a c x a ++ 例7、分解因式:101132+-x x分析: 1 -2 3 -5 (-6)+(-5)= -11解:101132+-x x =)53)(2(--x x 练习3、分解因式:(1)6752-+x x (2)2732+-x x(3)317102+-x x (4)101162++-y y(三)二次项系数为1的齐次多项式例8、分解因式:221288b ab a -- 分析:将b 看成常数,把原多项式看成关于a 的二次三项式,利用十字相乘法进行分解。

因式分解-十字相乘法

因式分解-十字相乘法

因式分解-十字相乘法一、十字相乘法分解因式十字相乘法:有些二次三项式,可以把第一项和第三项的系数分别分解为两个数之积,然后借助画十字交叉线的方法,把二次三项式进行因式分解,这种方法叫十字相乘法。

简单的说十字相乘法就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。

注意:十字相乘法不是适合所有二次三项式,只有在一次项系数和二次项系数以及常数项存在一种特殊关系时才能用,这个特殊关系我们通过例题来说明:1、首项系数是1的二次三项式的因式分解,我们学习了多项式的乘法,即()()()x a x b x a b x ab ++=+++2将上式反过来,()()()x a b x ab x a x b 2+++=++得到了因式分解的一种方法——十字相乘法,用这种方法来分解因式的关键在于确定上式中的a 和b ,例如,为了分解因式x px q 2++,就需要找到满足下列条件的a 、b ;a b pab q +==⎧⎨⎩如把762-+x x 分解因式,首先要把二次项系数2x 分成x x ⨯,常数项-7分成)1(7-⨯,写成十字相乘,左边两个数的积为二次项,右边两个数的积为常数项。

交叉相乘的和为x x x 67)1(=⨯+-⨯,正好是一次项。

从而)1)(7(762-+=-+x x x x 。

2、二次项系数不为1的二次三项式的因式分解二次三项式ax bx c 2++中,当a ≠1时,如何用十字相乘法分解呢?分解思路可归纳为“分两头,凑中间”,例如,分解因式2762x x -+,首先要把二次项系数2分成1×2,常数项6分成()()-⨯-23,写成十字相乘,左边两个数的积为二次项系数。

右边两个数相乘为常数项,交叉相乘的和为()()13227⨯-+⨯-=-,正好是一次项系x =-+762x )1)(7(-+x x xx⇓⨯⇓71-xx x 67=+-数,从而得()()2762232x x x x -+=--。

八年级数学培优5、用十字相乘法把二次三项式分解因式

八年级数学培优5、用十字相乘法把二次三项式分解因式

5、用十字相乘法把二次三项式分解因式【知识精读】对于首项系数是1地二次三项式地十字相乘法,重点是运用公式进行因式分解.掌握这种方法地关键是确定适合条件地两个数,即把常数项分解成两个数地积,且其和等于一次项系数.对于二次三项<a、b、c都是整数,且)来说,如果存在四个整数满足,并且,那么二次三项式即可以分解为.这里要确定四个常数,分析和尝试都要比首项系数是1地类型复杂,因此一般要借助画十字交叉线地办法来确定.下面我们一起来学习用十字相乘法因式分解.【分类解读】1. 在方程、不等式中地应用例1. 已知:,求x地取值范围.分析:本题为二次不等式,可以应用因式分解化二次为一次,即可求解.解:例 2. 如果能分解成两个整数系数地二次因式地积,试求m地值,并把这个多项式分解因式.分析:应当把分成,而对于常数项-2,可能分解成,或者分解成,由此分为两种情况进行讨论.解:<1)设原式分解为,其中a、b为整数,去括号,得:将它与原式地各项系数进行对比,得:解得:此时,原式<2)设原式分解为,其中c、d为整数,去括号,得:将它与原式地各项系数进行对比,得:解得:此时,原式2. 在几何学中地应用例. 已知:长方形地长、宽为x、y,周长为16cm,且满足,求长方形地面积.分析:要求长方形地面积,需借助题目中地条件求出长方形地长和宽.解:或又解得:或∴长方形地面积为15cm2或3、在代数证明题中地应用例. 证明:若是7地倍数,其中x,y都是整数,则是49地倍数. 分析:要证明原式是49地倍数,必将原式分解成49与一个整数地乘积地形式.证明一:∵是7地倍数,7y也是7地倍数<y是整数)∴是7地倍数而2与7互质,因此,是7地倍数,所以是49地倍数.证明二:∵是7地倍数,设<m是整数)则又∵∵x,m是整数,∴也是整数所以,是49地倍数.4、中考点拨例1.把分解因式地结果是________________.解:说明:多项式有公因式,提取后又符合十字相乘法和公式法,继续分解彻底.例2.因式分解:_______________解:说明:分解系数时一定要注意符号,否则由于不慎将造成错误.5、题型展示例1. 若能分解为两个一次因式地积,则m地值为<)A. 1B. -1C.D. 2解:-6可分解成或,因此,存在两种情况:由<1)可得:,由<1)可得:故选择C.说明:对二元二次多项式分解因式时,要先观察其二次项能否分解成两个一次式乘积,再通过待定系数法确定其系数,这是一种常用地方法.例2. 已知:a、b、c为互不相等地数,且满足.求证:证明:说明:抓住已知条件,应用因式分解使命题得证.例3. 若有一因式.求a,并将原式因式分解.解:有一因式∴当,即时,说明:由条件知,时多项式地值为零,代入求得a,再利用原式有一个因式是,分解时尽量出现,从而分解彻底.【实战模拟】1. 分解因式:<1)<2)<3)2. 在多项式,哪些是多项式地因式?3. 已知多项式有一个因式,求k地值,并把原式分解因式.4. 分解因式:5. 已知:,求地值.【试题答案】1.<1)解:原式<2)解:原式<3)解:原式2.解:∴其中是多项式地因式.说明:先正确分解,再判断.3.解:设则解得:且说明:待定系数法是处理多项式问题地一个重要办法,所给多项式是三次式,已知有一个一次因式,则另一个因式为二次式,由多项式乘法法则可知其二次项系数为1.4.解:简析:由于项数多,直接分解地难度较大,可利用待定系数法.设比较同类项系数,得:解得:5.解:说明:用因式分解可简化计算.申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途.。

八年级数学十字相乘法因式分解

八年级数学十字相乘法因式分解

在分组分解法中,我们学习 2 了形如 x +(p+q)x+pq 的式子 的因式分解问题。 2 即:x +(p+q)x+pq=(x+p)(x+q) 实际在使用此公式时,需要把 一次项系数和常数项进行分拆,在 试算时,会带来一些困难。 下面介绍的方法,正好解决了 这个困难。
即:x +(p+q)x+pq=(x+p)(x+q)
-4x-2x=-6x
对于一般地二次三项式ax+bx+c (a≠0) 此法依然好用。
2
例2 分解因式 3x -10x+3 2 x 解:3x -10x+3 =(x-3)(3x-1) 3x
2
2
-3
-1 -9x-x=-10x +3
例3 分解因式 5x -17x-12 解:5x -17x-12
2
5x
=(5x+3)(x-4)
2
1
1
-2
(2x+y)
(x-2y)
-1
2
-4+1=-3
2(2x+y) - (x- 2 y)=3x+4y
长沙夜网 长沙夜网
bgo057utb
这么干净”这让身为女流的她情何以堪。所以,她每天最大的爱好之一便是到庄逍遥的房子里,把庄逍遥那些太过规矩的陈设都捣乱,看到经 由她之手而变得凌乱的庄逍遥的房子,她总是能心情大好的哈哈大笑一番。然后在庄逍遥的浴室里美美的泡上个澡,也不管头发没干、还在滴 水、便光脚走出浴室,随意的在庄逍遥的房子里一圈又一圈的乱走,看到那些湿湿的脚印子,她总能心满意足的畅笑一番。 庄逍遥对此并不懊恼,只是劝她“你刚洗完澡,光脚踩在地面上容易着凉的”,然后不知从什么时候开始他便将所有的地面铺上了一层厚厚的 地毯。 白荌苒便笑着对他吐舌“才不要” 庄逍遥便不再多说什么,只是等她闹够了之后待她安静下来之后替她吹干头发,而白荌苒往往在庄逍遥替她吹头发的时候便睡到在他的怀里了。 也许没有人会相信,她白荌苒虽然经常留宿在庄逍遥的家中,但是他们之间闹归闹却一直是过的相敬如宾,并没有逾越雷池半分。所有就这一 点,白荌苒偶尔会在心里叹息,果然,她在庄逍遥的心中是一个没有性别差异的存在。 白安然想起她刚认识庄逍遥的时候,还是高中年代、她刚刚认识庄逍遥那会儿、也是很痴迷庄逍遥的。 庄逍遥是以插班生的身份来到她们班的,那还是高中一年级的时候,到那个学期中期的时候庄逍遥来到了她们班。那个时候的庄逍遥也总是沉 默寡言的,几乎不曾看到他笑过,他似乎总是有太多的心事,每天总是恬静的要命。白荌苒跟他同桌的那段时间总是忍不住默默地担忧着那样 一个面相看起来很忧郁的男生,她总是乐呵呵的跟他讲起学校里、家里、身边发生的一切有趣的事情,可惜庄逍遥一直都是不太搭理她的,也 鲜少回应她。很多时候,白荌苒都觉着自己不过是在自言自语罢了,不免觉得好笑,可即使如此,她还是忍不住想要同那个沉默寡言的男孩子 分享自己的快乐。

八年级数学十字相乘法因式分解

八年级数学十字相乘法因式分解

解因式
解:2(6x 2+x)2-11(6x 2+x) +5 = [(6x2+x) -5][2(6x 2+x)-1]
= (6x 2+x-5) (12x 2+2x-1 )
= (6x -5)(x +1) (12x 2+2x-1 )
1
-5
6
-5
2-1-1-10=源自1111-5+6=1
练习:将下列各式分解因式 1、 7x 2-13x+6 答案(7x+6)(x+1)
在分组分解法中,我们学习 了形如 x 2+(p+q)x+pq 的式子 的因式分解问题。 即:x 2+(p+q)x+pq=(x+p)(x+q)
实际在使用此公式时,需要把 一次项系数和常数项进行分拆,在 试算时,会带来一些困难。
下面介绍的方法,正好解决了 这个困难。
即:x 2+(p+q)x+pq=(x+p)(x+q)
2、 -y 2-4y+12 答案- (y+6)(y-2)
3、 15x2+7xy-4y 2 答案 (3x-y)(5x+4y)
4、 10(x +2)2-29(x+2) +10
答案 (2x-1)(5x+8)
5、 x 2-(a+1) x+a 答案 (x-1)(x-a)
例5 将 2x 2-3xy-2y2+3x+4y-2 分 解因式
解: 2x 2-3xy-2y2+3x+4y-2 =(2x2-3xy-2y2)+3x+4y-2
; 脑瘫 小儿脑瘫 脑瘫儿

要同生共死。那种勇气与真情足以惊天地、泣鬼神。在死神降临之时,你身边还有那么多的亲人围绕,比起梅表姐离世时的凄凉,你简直就是被上帝偏爱着。你在家庭里的顺从与屈服,不能说明什么。死,也是要和所爱的人留有结晶。为避“血光之灾”下的死亡,你是一个彻底不值得的牺牲品。但 你决不是懦弱的代表,你只是在为自己所爱的人能在家里

十字相乘因式分解

十字相乘因式分解

十字相乘因式分解
十字分解法的方法简单来讲就是:
十字左边相乘等于二次项,右边相乘等于常数项,交叉相乘再相加等于一次项。

其实就是运用乘法公式运算来进行因式分解。

十字相乘法一般用于分解二次三项式三次三项式一般用拆项,减项先提公共的因式,再像二次那样因式分解。

因式分解的步骤:
1、提取公因式这个是最基本的,就是有公因式就提出来。

(相同取出来剩下的相加或相减)
2、完全平方看到式字内有两个数平方就要注意下了,找找有没有两数积的两倍,有的话就按照公式进行。

3、平方差公式这个要熟记,因为在配完全平方时有可能会拆添项,如果前面是完全平方,后面又减一个数的话,就可以用平方差公式再进行分解。

4、十字相乘首先观察,有二次项,一次项和常数项,可以采用十字相乘法。

(十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。

)或者用试根法得出该因式的一个根,通常用0,+1,—1,+2,—2等试根;然后用三项因式去除试根得出的因式即可。

十字相乘法分解因式

十字相乘法分解因式

x 2 px q x 2 a bx ab x ax b
利用这个公式可以分解二次项系数是 1 的某些二次三项式。 这种分解因式的方法叫十字相乘法
【知识背景】 2 由: (x+2) (x+3)= x +5x+6 2 得:x +5x+6 =(x+2) (x+3)从而将多项式进行因式分解。 二、互动课堂 知识点 1:例 1:用十字相乘法分解因式: (1)x -3x+2;
2
(2)x +4x-12;
2
(3) x2 9 x 14
●归纳概括 十字相乘分解步骤:将二次项的系数分解为两个因数写在左边,将常数项分解为两个因数写在右边,以四数为端点 连出十字状的两条对角线,最后验证两对角线上的数积之和是否等于一次项系数。 练习 1: 用十字相乘法把下列各式分解因式 。 (1) x x 12
2 2
(4)-a -4a +12a
3
2
(5)x y -5x y-6x
2 2
2
2
(6)x -3x y-28x y
4
3
2 2
三、随堂测评 分解因式: (1)x +6x+8
2
(2) x 4 13x 2 36
(3)t -3t-10
2
(4) m2 14m 32 ;
(5) x2 5xy 14 y 2 ;
3 a b
2
+18 a b -40
【课后作业】 (1)x2-3x+2; (2)x2+4x-12; (3) x 9 x 14
2
(4) x x 12
2
(5) x 8x 12
2

十字相乘法因式分解(经典全面)

十字相乘法因式分解(经典全面)

十字相乘法分解因式(1)对于二次项系数为1方法的特征是“拆常数项,凑一次项”当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同;当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同.(2)对于二次项系数不是1的二次三项式它的特征是“拆两头,凑中间”当二次项系数为负数时,先提出负号,使二次项系数为正数,然后再看常数项;常数项为正数时,应分解为两同号因数,它们的符号与一次项系数的符号相同;常数项为负数时,应将它分解为两异号因数,使十字连线上两数之积绝对值较大的一组与一次项系数的符号相同注意:用十字相乘法分解因式,还要注意避免以下两种错误出现:一是没有认真地验证交叉相乘的两个积的和是否等于一次项系数;二是由十字相乘写出的因式漏写字母.例5、分解因式:652++x x分析:将6分成两个数相乘,且这两个数的和要等于5。

由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3的分解适合,即2+3=5。

1 2解:652++x x =32)32(2⨯+++x x 1 3 =)3)(2(++x x 1×2+1×3=5用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数。

例1、分解因式:672+-x x解:原式=)6)(1()]6()1[(2--+-+-+x x 1 -1=)6)(1(--x x 1 -6(-1)+(-6)= -7练习1、分解因式(1)24142++x x (2)36152+-a a (3)542-+x x练习2、分解因式(1)22-+x x (2)1522--y y (3)24102--x x(二)二次项系数不为1的二次三项式—— c bx ax ++2条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c(3)1221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++例2、分解因式:101132+-x x分析: 1 -2(-6)+(-5)= -11解:101132+-x x =)53)(2(--x x练习3、分解因式:(1)6752-+x x (2)2732+-x x(3)317102+-x x (4)101162++-y y(三)多字母的二次多项式例3、分解因式:221288b ab a --分析:将b 看成常数,把原多项式看成关于a 的二次三项式,利用十字相乘法进行分解。

十字相乘法只能对二次三项式进行因式分解吗?

十字相乘法只能对二次三项式进行因式分解吗?
x (2y 3)2x (11y 1)
(x 2 y 3)(2x 11y 1)
22y2 35y 3 (2y 3)(11y 1) . 再利用十字相乘法对关于 x 的二次三项式进行分解,于是:
2x2 7xy 22 y2 5x 35y 3 2x2 (5 7 y)x (22 y2 35y 3) 2x2 (5 7 y)x (2 y 3)(11y 1)
这就是推广后的十字相乘法,其原理已经不局限于多项式的系数,更不局限于二次多项 式,它适合于任意的一个多项式,当然,前提是要拆得出来.看下面的几个例子.
例 1 将多项式 f (x) 2x3 2x2 x 1
把 2x3 看成 A ,将 2x2 x 看成 B ,将 1 看成C ,进行十字相乘:
x

1
对于某些二元二次六项式 ax2 +bxy+cy2 dx ey f ,也可以用十字相乘法分解因式.
例 3 分解因式: 2x2 7xy 22y2 5x 35y 3 . 将上式按 x 降幂排列,并把 y 当作常数,于是上式可变形为:
2x2 (5 7y)x (22y2 35y 3) , 可以看作是关于 x 的二次三项式. 对于常数项而言,它是关于 y 的二次三项式,也可以用十字相乘法,分解为:
a1
c1
a2
c2
a1a2 a c1c2 c a1c2 a2c1 b
在运用这种方法分解因式时,要注意观察、尝试,并体会它实质是二项式乘法的逆过程. 当首项系数不是 1 时,往往需要多次试验,务必注意各项系数的符号.
初中数学教材中,仅介绍了以下特殊形式:
x2 +( p q)x+pq (x+p)(x+q)
2x2
1
对角线的乘积之和等于 2x2 x ,所以 f (x) (x 1)(2x2 1) .

十字相乘法概念十字相乘法能把某些二次三项式分解因式

十字相乘法概念十字相乘法能把某些二次三项式分解因式

⒈十字相乘法概念十字相乘法能把某些二次三项式分解因式。

这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1&#8226;a2,把常数项c分解成两个因数c1,c2的积c1&#8226;c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。

当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。

例题例1 把2x^2-7x+3分解因式.分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.分解二次项系数(只取正因数):2=1×2=2×1;分解常数项:3=1×3=3×1=(-3)×(-1)=(-1)×(-3).用画十字交叉线方法表示下列四种情况:1 1╳2 31×3+2×1=51 3╳2 11×1+2×3=71 -1╳2 -31×(-3)+2×(-1)=-51 -3╳2 -11×(-1)+2×(-3)=-7经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.解 2x^2-7x+3=(x-3)(2x-1).一般地,对于二次三项式ax2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下:a1 c1╳a2 c2a1c2+a2c1按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即ax2+bx+c=(a1x+c1)(a2x+c2).像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法.例2 把6x^2-7x-5分解因式.分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其中的一种2 1╳3 -52×(-5)+3×1=-7是正确的,因此原多项式可以用十字相乘法分解因式.解 6x^2-7x-5=(2x+1)(3x-5)指出:通过例1和例2可以看到,运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式.对于二次项系数是1的二次三项式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数.例如把x^2+2x-15分解因式,十字相乘法是1 -3╳1 51×5+1×(-3)=2所以x^2+2x-15=(x-3)(x+5).例3 把5x^2+6xy-8y^2分解因式.分析:这个多项式可以看作是关于x的二次三项式,把-8y^2看作常数项,在分解二次项及常数项系数时,只需分解5与-8,用十字交叉线分解后,经过观察,选取合适的一组,即1 2╳5 -41×(-4)+5×2=6解 5x^2+6xy-8y^2=(x+2y)(5x-4y).指出:原式分解为两个关于x,y的一次式.例4 把(x-y)(2x-2y-3)-2分解因式.分析:这个多项式是两个因式之积与另一个因数之差的形式,只有先进行多项式的乘法运算,把变形后的多项式再因式分解.问:两上乘积的因式是什么特点,用什么方法进行多项式的乘法运算最简便?答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用十字相乘法分解因式了.解 (x-y)(2x-2y-3)-2=(x-y)[2(x-y)-3]-2=2(x-y) ^2-3(x-y)-2=[(x-y)-2][2(x-y)+1]=(x-y-2)(2x-2y+1).1 -2╳2 11×1+2×(-2)=-3指出:把(x-y)看作一个整体进行因式分解,这又是运用了数学中的“整体”思想方法.例5 x^2+2x-15分析:常数项(-15)<0,可分解成异号两数的积,可分解为(-1)(15),或(1)(-15)或(3)(-5)或(-3)(5),其中只有(-3)(5)中-3和5的和为2。

12.2因式分解的方法(第4课时 十字相乘法)(课件)-七年级数学上册(沪教版2024)

12.2因式分解的方法(第4课时 十字相乘法)(课件)-七年级数学上册(沪教版2024)

解法:
am+an+bm+bn
=(am+an)+(bm+bn)
=a(m+n)+b(m+n)
=(m+n)(a+b).
观察上述因式分解的过程,解答下列问题:
(1)分解因式:mb-2mc+b2-2bc;
解:原式=(mb-2mc)+(b2-2bc)
=m(b-2c)+b(b-2c)
=(b-2c)(m+b);
(2)△ABC三边a,b,c满足a2-4bc+4ac-ab=0,判
−2
4 2 − 11 − 12.
1
1
−2
6
4 2 − 11 + 12
= + 1 − 12 .
1
1
1
−12
新知探究
如何将 2 + 7 + 12 2 因式分解?
类比二次三项式 2 + 7 + 12的因式分解,同样考虑十字相乘法.
将 2 + 7�� + 12 2 看作关于的二次三项式,它的二次项系数是1,
.
一次项的系数
课本例题
例7
1 2 + 7 + 12;
解 1 2 + 7 + 12
= +3 +4 .
2 2 − 8 + 12;
1
1
3
4
3 2 + 4 − 12;
3 2 + 4 − 12
= −2 +6 .
2 2 − 8 + 12
= −6 −2 .
1
1
−6
如果关于x的二次三项式 2 + + 的常数项q能分解成两个因
数与的积,且一次项系数p又恰好等于a + b,那么 2 + + 就可

补充十字相乘法因式分解

补充十字相乘法因式分解

十字相乘法分解因式一、定义:有些二次三项式,可以把第一项和第三项的系数分别分解为两个数之积,然后借助画十字交叉线的方法,把二次三项式进行因式分解,这种方法叫十字相乘法.要把二次项系数为1的二次三项式 x 2+(a+b )x+ab 分解因式,只要 1 a1 b1×1=1(二次项系数) ab=ab (常数项)1×a+1×b=a+b (一次项系数)即: x 2+(a+b )x+ab=(x + a)(x + b)要把二次项系数不为1的二次三项式 ax 2+bx+c (a ≠0)分解因式只要a 1 c 1a 2 c 2a 1 a 2=a (二次项系数) c 1 c 2=c (常数项)a 1 c 2+a 2 c 1=b (一次项系数)即:ax 2+bx+c=(a 1x+ c 1)(a 2x+ c 2)把x 2+px+q 分解因式时:如果常数项q 是正数,那么把它分解成两个同号因数,它们的符号与一次项系数p 的符号相同.如果常数项q 是负数,那么把它分解成两个异号因数,其中绝对值较大的因数与一次项系数p 的符号相同.对于分解的两个因数,还要看它们的和是不是等于一次项的系数p .归纳总结:十字相乘法的定义:利用十字交叉线来分解系数,把二次三项式 分解因式的方法叫做十字相乘法。

二、学以致用:例题:分解因式:1. x 2 + 4x + 32. x 2 -2x -3巩固练习一:分解因式:1. x 2 -7x + 122. x 2 -11x-123. x 2 + 13x + 124 .x 2 -8x + 12 5. .x 2 -6x +56 .x 2 -7x -187.232++x x 8.562++x x 9.11122++x x10.17182++x x 11.342++x x 12.342+-x x13.322-+x x 14.322--x x 15.672+-x x16.652--x x 17.62-+x x 18.62--x x19.22625a a +- 20.2024--x x 21.8624++x x22. 42718x x +- 22.2223y xy x +- 23. 22149b ab a +-24.8722--ax x a 25.10322-+mn n m 26. 223613b yb y +-22. 9102+--a a 25. 3)(4)(2++-+x b a b a26. 10)2(3)2(2-+++y x y x 27. 12)4(7)4(222++++x x x x。

八年级数学十字相乘法因式分解

八年级数学十字相乘法因式分解

氏,别以为有哥哥、姐姐这双重保护伞就能为所欲为。爷倒是要看看你,怎么解释这各问题!第壹卷 第280章 沉冤王爷依然有他那波澜不惊 の低沉嗓音问道:“那好,你既然说跟八弟壹伙没有牵连,那么,二十三弟是怎么知道你姐姐の手受伤の事情?”至此两姐妹才知道,原来是 因为这各事情,才惹得爷发咯这么大の火。玉盈满脸担忧地望向凝儿。水清只是心中壹阵冷笑,二十三叔是怎么知道の,她哪里知道,而且就 算是二十三叔知道咯,又跟八叔有啥啊关系?原来就知道爷是壹各生性多疑の人,没想到疑神疑鬼到咯这种程度!不会是因为二十三叔和弟妹 知道咯这件事情,爷找不到泄密の人,恼羞成怒,就拉她来当替罪羊吧。“爷这句问话从何而来?妾身怎么知道二十三叔是如何知道这件事情 の!既然爷想知道为啥啊,爷为啥啊不自己去问问二十三叔?这件事情自始至终,妾身都自认没有错处,假如爷壹定要让妾身担责任の话,妾 身没有选择,只能听爷の吩咐。但是,妾身只想说,妾身就是死,也要死得明白,妾身可以与八叔对质,以还妾身の壹各清白。”水清の壹番 话,特别是最后の以死言志,让他无言以对!他还从未曾逼得壹各诸人以死言志,这是第壹次。他擅长与男人打交道,但他对付诸人,特别是 这各铁骨铮铮、不卑不亢、视死如归の诸人,真是棘手至极。“爷会把事情调查得水落石出の,你好自为之吧。”说完,他转身离开咯帐子。 即使王爷已经走咯,水清心中の愤恨仍是难以平息,胸膛急剧地起伏着,她の肺都要气炸咯!以前只是知道自己不讨爷の喜欢,现在才知道, 竟会遭受不白之冤,这天大の委屈将她憋闷得快要疯掉咯。玉盈紧紧地抱着她,壹边拍着她の后背,壹边柔声地劝解道:“凝儿,这里面壹定 有啥啊误会,爷也是壹时心急,慌不择言,姐姐知道凝儿受咯委屈,现在爷也明白咯你の心思,而且爷也听进去咯,爷不是说咯吗,会调查水 落石出の,过两天趁爷不在气头上咯,咱们再寻各机会,跟再好好解释壹下,相信爷,壹定会替凝儿洗刷不白之冤。”任由玉盈劝咯许久,水 清根本无法释怀,她壹滴眼泪都没有掉,目光坚定地望向玉盈:“姐姐,您说の这些话,不过是为咯安慰我而已。我能不清楚吗?爷怎么可能 会替凝儿洗刷不白之冤,因这这不白之冤,原本就是爷强加给凝儿の,您还能指望爷来为凝儿洗刷清白?姐姐,您可千万不要被爷给蒙骗 咯。”“凝儿!爷是你の夫君,你怎么可以认为爷在蒙骗你?”“姐姐啊!凝儿说咯这么多,你怎么还明白啊!”回到咯自己の营帐,王爷壹 直深思着。刚刚水清那绝决の态度,甚至以死明志,都不是假装出来の。那二十三弟怎么会知道?二十三弟壹直都不是很警觉の人,怎么单单 这件事情这

十字相乘和分组分解法因式分解-2023年新七年级数学核心知识点与常见题型(沪教版)(解析版)

十字相乘和分组分解法因式分解-2023年新七年级数学核心知识点与常见题型(沪教版)(解析版)

十字相乘和分组分解法因式分解【知识梳理】一、十字相乘十字相乘法:如果二次三项式2x px q ++中的常数项q 能分解成两个因式a 、b 的积,而且一次项系数p 又恰好是a b +,那么2x px q ++就可以进行如下的分解因式,即:()()()22x px q x a b x ab x a x b ++=+++=++要将二次三项式2x px q ++分解因式,就需要找到两个数a 、b ,使它们的积等于常数项q ,和等于一次项系数p , 满足这两个条件便可以进行如下分解因式, 即:22()()()x px q x a b x ab x a x b ++=+++=++.由于把2x px q ++中的q 分解成两个因数有多种情况,怎样才能找到两个合适的数,通常要经过多次的尝试才能确定采用哪种情况来进行分解因式.二、分组分解如何将多项式am an bm bn +++因式分解?分析:很显然,多项式am an bm bn +++中既没有公因式,也不好用公式法.怎么办呢?由于()am an a m n +=+,()bm bn b m n +=+而:()()()()a m n b m n m n a b +++=+.这样就有:()()()()()()am an bm bn am an bm bn a m n b m n m n a b +++=+++=+++=++将一个多项式分成二或三组,各组分别分解后,彼此又有公因式或者可以用公式,这就是分组分解法. 说明:如果把一个多项式的项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.【考点剖析】一.因式分解-十字相乘法等(共22小题)1.(2022秋•静安区校级期中)多项式77x 2﹣13x ﹣30可因式分解成(7x +a )(bx +c ),其中a 、b 、c 均为整数,求a +b +c 之值为何?( )A .0B .10C .12D .22【分析】首先利用十字交乘法将77x2﹣13x ﹣30因式分解,继而求得a ,b ,c 的值.【解答】解:利用十字交乘法将77x2﹣13x﹣30因式分解,可得:77x2﹣13x﹣30=(7x﹣5)(11x+6).∴a=﹣5,b=11,c=6,则a+b+c=(﹣5)+11+6=12.故选:C.【点评】此题考查了十字相乘法分解因式的知识.注意ax2+bx+c(a≠0)型的式子的因式分解:这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1•a2,把常数项c分解成两个因数c1,c2的积c1•c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2).2.(2021秋•奉贤区期末)分解因式:x2+3x﹣10=.【分析】原式利用十字相乘法分解即可.【解答】解:原式=(x﹣2)(x+5),故答案为:(x﹣2)(x+5)【点评】此题考查了因式分解﹣十字相乘法,熟练掌握十字相乘的方法是解本题的关键.3.(2022秋•闵行区校级期末)因式分解:(y2﹣y)2﹣14(y2﹣y)+24.【分析】直接利用十字相乘法分解因式得出答案【解答】解:原式=(y2﹣y﹣2)(y2﹣y﹣12)=(y﹣2)(y+1)(y﹣4)(y+3).【点评】此题主要考查了十字相乘法分解因式,正确分解常数项是解题关键.4.(20222x2﹣6x﹣8=.【分析】原式先提取公因数2,再利用十字相乘法求出解即可.【解答】解:原式=2(x2﹣3x﹣4)=2(x﹣4)(x+1),故答案为:2(x﹣4)(x+1).【点评】本题考查了因式分解—十字相乘法,熟练掌握十字相乘的方法是解题的关键.5.(2022秋•虹口区校级期中)分解因式:x2﹣7xy﹣18y2=.【分析】由十字相乘法进行分解因式即可.【解答】解:x2﹣7xy﹣18y2=(x﹣9y)(x+2y).故答案是:(x﹣9y)(x+2y).【点评】本题考查因式分解,熟练掌握十字相乘法分解因式是解题的关键.6.(2022秋•宝山区期末)分解因式:2x2+6xy+4y2.【分析】先提公因式,再用十字相乘法因式分解即可.【解答】解:2x2+6xy+4y2=2(x2+3xy+2y2)=2(x+2y)(x+y).【点评】本题考查了提公因式法与十字相乘法的综合运用,熟练掌握因式分解的方法是解题的关键.7.(2022秋•宝山区期末)分解因式:x2﹣9x+14=(x+□)(x﹣7),其中□表示一个常数,则□的值是()A.7B.2C.﹣2D.﹣7【分析】利用十字相乘法因式分解即可.【解答】解:x2﹣9x+14=(x﹣2)(x﹣7),∴□表示﹣2,故选:C.【点评】本题考查因式分解,熟练掌握利用十字相乘法进行因式分解是解题的关键.8.(2022秋•虹口区校级期中)如果多项式x2﹣5x+c可以用十字相乘法因式分解,那么下列c的取值正确的是()A.2B.3C.4D.5【分析】∵4=﹣1×(﹣4),﹣1+(﹣4)=﹣5,∴可以用十字相乘法因式分解.【解答】解:当c=4时,x2﹣5x+c=x2﹣5x+4=(x﹣1)(x﹣4).故选:C.【点评】本题主要考查了因式分解﹣十字相乘法,熟练掌握十字相乘法分解因式的方法是解题关键.9.(2022x2﹣5x﹣6=.【分析】因为﹣6×1=﹣6,﹣6+1=﹣5,所以利用十字相乘法分解因式即可.【解答】解:x2﹣5x﹣6=(x﹣6)(x+1).【点评】本题考查十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.10.(2022秋•嘉定区校级期末)因式分解a2﹣a﹣6=.【分析】根据因式分解就是把一个多项式变形成几个整式的积的形式的定义,利用十字相乘法求解.【解答】解:a2﹣a﹣6=(a+2)(a﹣3).故答案为:(a+2)(a﹣3).【点评】本题考查了因式分解.解题的关键是掌握十字相乘法因式分解.11.(2022秋•闵行区校级期中)因式分解:x2﹣5x﹣24=.【分析】用十字相乘法因式分解.【解答】解:x2﹣5x﹣24=(x﹣8)(x+3),故答案为:(x﹣8)(x+3),【点评】本题主要考查了因式分解﹣十字相乘法,熟练掌握十字相乘法分解因式的方法,根据题意可知a、b是相互独立的,利用多项式相乘法则计算,再根据对应系数相等即可求出a、b的值是解题关键.12.(2021秋•宝山区期末)分解因式:x2+4x﹣21=.【分析】根据因式分解﹣十字相乘法进行分解即可.【解答】解:x2+4x﹣21=(x+7)(x﹣3),故答案为:(x+7)(x﹣3).【点评】本题考查了因式分解﹣十字相乘法,熟练掌握因式分解﹣十字相乘法是解题的关键.13.(2021秋•普陀区期末)已知关于x的多项式x2+kx﹣3能分解成两个一次多项式的积,那么整数k的值为.【分析】把常数项分解成两个整数的乘积,k就等于那两个整数之和.【解答】解:∵﹣3=﹣3×1或﹣3=﹣1×3,∴k=﹣3+1=﹣2或k=﹣1+3=2,∴整数k的值为:±2,故答案为:±2.【点评】本题考查了因式分解﹣十字相乘法,熟练掌握因式分解﹣十字相乘法是解题的关键.14.(2022ax4﹣14ax2﹣32a.【分析】首先提取公因式a,再利用十字相乘法分解因式,再结合平方差公式分解因式即可.【解答】解:ax4﹣14ax2﹣32a=a(x4﹣14x2﹣32)=a(x2+2)(x2﹣16)=a(x2+2)(x+4)(x﹣4).【点评】此题主要考查了十字相乘法分解因式,正确运用公式是解题关键.15.(2022秋•嘉定区校级期中)阅读下列文字,解决问题.先阅读下列解题过程,然后完成后面的题目.分解因式:x4+4解:x4+4=x4+4x2+4﹣4x2=(x2+2)2﹣4x2=(x2+2x+2)(x2﹣2x+2)以上解法中,在x4+4的中间加上一项,使得三项组成一个完全平方式,为了使这个式子的值保持与x4+4的值保持不变,必须减去同样的一项.这样利用添项的方法,将原代数式中的部分(或全部)变形为完全平方的形式,这种方法叫做配方法.按照这个思路,试把多项式x4+3x2y2+4y4分解因式.【分析】把原式中的第二项的系数1变为4﹣1,化简后三项结合构成完全平方式,剩下的一项写出完全平方式,然后再利用平方差公式即可分解因式.【解答】解:x4+3x2y2+4y4=x4+4x2y2+4y4﹣x2y2=(x2+2y2)2﹣x2y2=(x2+2y2+xy)(x2+2y2﹣xy).【点评】此题考查学生阅读新方法并灵活运用新方法的能力,考查了分组分解法进行分解因式,是一道中档题.本题的思路是添项构成完全平方式.16.(2021秋•普陀区期末)因式分解:(x2+4x)2﹣(x2+4x)﹣20.【分析】直接利用十字相乘法分解因式得出即可.【解答】解:原式=(x2+4x﹣5)(x2+4x+4)=(x+5)(x﹣1)(x+2)2.【点评】本题考查十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.17.(2022秋•虹口区校级期中)分解因式:(a2﹣a)2+2(a2﹣a)﹣8.【分析】先变形,局部逆用完全平方公式,再使用十字相乘法.【解答】解:(a2﹣a)2+2(a2﹣a)﹣8=(a2﹣a)2+2(a2﹣a)+1﹣9=(a2﹣a+1)2﹣9=(a2﹣a+1+3)(a2﹣a+1﹣3)=(a2﹣a+4)(a2﹣a﹣2)=(a2﹣a+4)(a﹣2)(a+1).【点评】本题主要考查运用公式法、十字相乘法进行因式分解,熟练掌握公式法、十字相乘法是解决本题的关键.18.(2021秋•浦东新区期末)分解因式:x2﹣4x﹣12=.【分析】因为﹣6×2=﹣12,﹣6+2=﹣4,所以利用十字相乘法分解因式即可.【解答】解:x2﹣4x﹣12=(x﹣6)(x+2).故答案为:(x﹣6)(x+2).【点评】本题考查十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.19.(2022秋•上海期末)分解因式:3x2﹣9x﹣30.【分析】先提取公因式,再利用十字相乘法分解.【解答】解:3x2﹣9x﹣30=3(x2﹣3x﹣10)=3(x﹣5)(x+2).【点评】本题考查了整式的因式分解,掌握提公因式法和十字相乘法是解决本题的关键.20.(2022秋•徐汇区期末)分解因式:(1)2ab2﹣6a2b2+4a3b2;(2)(x2﹣4x)2﹣5(x2﹣4x)﹣24.【分析】(1)先提取公因式,再利用十字相乘法;(2)先利用十字相乘法,再利用公式法和十字相乘法.【解答】解:(1)2ab2﹣6a2b2+4a3b2=2ab2(1﹣3a+2a2)=2ab2(2a﹣1)(a﹣1);(2)(x2﹣4x)2﹣5(x2﹣4x)﹣24=(x2﹣4x﹣8)(x2﹣4x+3)=[(x2﹣4x+4)﹣12](x﹣3)(x﹣1)=[(x﹣2)2﹣12](x﹣3)(x﹣1)=(x﹣2+2)(x﹣2﹣2)(x﹣3)(x﹣1).【点评】本题主要考查了整式的因式分解,掌握因式分解的提公因式法、公式法是解决本题的关键.21.(2021秋•金山区期末)分解因式:(x2﹣x)2﹣18(x2﹣x)+72.【分析】把(x2﹣x)看成一个整体,利用十字相乘法分解即可.【解答】解:(x2﹣x)2﹣18(x2﹣x)+72=[(x2﹣x)﹣6][(x2﹣x)﹣12]=(x2﹣x﹣6)(x2﹣x﹣12)=(x﹣3)(x+2)(x﹣4)(x+3).【点评】本题考查了整式的因式分解,掌握十字相乘法和整体的思想是解决本题的关键.22.(2021秋•奉贤区期末)分解因式:(a2+a)2﹣8(a2+a)+12.【分析】因为﹣2×(a2+a)=﹣2(a2+a),﹣6×(a2+a)=﹣6(a2+a),所以可利用十字相乘法分解因式;得到的两个因式,还可以用十字相乘法分解因式.【解答】解:根据十字相乘法,(a2+a)2﹣8(a2+a)+12,=(a2+a﹣2)(a2+a﹣6),=(a+2)(a﹣1)(a+3)(a﹣2).【点评】本题考查了十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察、体会它实质是二项式乘法的逆过程;并注意一定要分解完全.二.因式分解-分组分解法(共12小题)23.(2022秋•徐汇区期末)分解因式:xy+(x+1)(y+1)(xy+1).【分析】根据分组法和十字相乘法因式分解即可.【解答】解:xy+(x+1)(y+1)(xy+1)=xy+(xy+x+y+1)(xy+1)=xy+[(xy+1)+(x+y)](xy+1)=(xy+1)2+(x+y)(xy+1)+xy=(xy+x+1)(xy+y+1).【点评】本题考查了分组法进行因式分解,熟练掌握分组法和十字相乘法是解题的关键.24.(2022秋•青浦区校级期末)因式分解:x2+4y﹣1﹣4y2.【分析】首先重新分组,进而利用完全平方公式以及平方差公式分解因式得出答案即可.【解答】解:x2+4y﹣1﹣4y2.x2﹣(﹣4y+4y2+1)=x2﹣(1﹣2y)2=(x﹣2y+1)(x+2y﹣1).【点评】此题主要考查了分组分解法以及公式法分解因式,正确分组是解题关键.25.(2022秋•浦东新区校级期末)分解因式:(1)m2﹣n2+6n﹣9;(2)(x+2y)x2+6(x+2y)x﹣7x﹣14y.【分析】(1)根据平方差公式和完全平方公式解答;(2)用提公因式法和十字相乘法解答.【解答】解:(1)原式=m2﹣(n2﹣6n+9)=m2﹣(n﹣3)2=(m﹣n+3)(m+n﹣3);(2)原式=(x+2y)x2+6(x+2y)x﹣7(x+2y)=(x+2y)(x2+6x﹣7)=(x+2y)(x﹣1)(x+7).【点评】本题考查了因式分解,熟悉乘法公式和提公因式法是解题的关键.26.(2022秋•闵行区校级期末)分解因式:2x3﹣2x2y+8y﹣8x.【分析】两两分组:先分别提取公因式2x2,8;再提取公因式2(y﹣x)进行二次分解;最后利用平方差公式再次进行因式分解即可求得答案.【解答】解:原式=2x2(x﹣y)﹣8(x﹣y)=2(x﹣y)(x2﹣4)=2(x﹣y)(x+2)(x﹣2).【点评】本题考查了平方差公式,分组分解法分解因式,要先把式子整理,再分解因式.对于一个四项式用分组分解法进行因式分解,难点是采用两两分组还是三一分组.27.(2022秋•闵行区校级期中)因式分解:a2﹣6ab+9b2﹣16.【分析】先分成两组,用完全平方公式,再用平方差公式分解因式.【解答】解:原式=(a2﹣6ab+9b2)﹣16=(a﹣3b)2﹣42=(a﹣3b+4)(a﹣3b﹣4).【点评】本题主要考查了因式分解﹣分组分解法,掌握因式分解﹣分组分解法的方法,先分组,再分解因式,完全平方公式和平方差公式的熟练应用是解题关键.28.(2022秋•青浦区校级期中)因式分解:2ac﹣6ad+bc﹣3bd.【分析】首先将前两项以及后两项提取公因式,进而分解因式得出即可.【解答】解:2ac﹣6ad+bc﹣3bd=2a(c﹣3d)+b(c﹣3d)=(c﹣3d)(2a+b).【点评】此题主要考查了分组分解法分解因式,正确分组得出是解题关键.29.(2022秋•上海期末)分解因式:x2﹣xy+ax﹣ay=.【解答】解:x2﹣xy+ax﹣ay=x(x﹣y)+a(x﹣y)=(x﹣y)(x+a).故答案为:(x﹣y)(x+a).【点评】本题考查了整式的因式分解,掌握分组分解法和提公因式法是解决本题的关键.30.(2022秋•宝山区校级期末)分解因式:b2﹣4a2﹣1+4a.【分析】利用分组分解法,将﹣4a2﹣1+4a分为一组,先利用完全平方公式,再利用平方差公式即可.【解答】解:原式=b2﹣(4a2+1﹣4a)=b2﹣(2a﹣1)2=[b+(2a﹣1)][b﹣(2a﹣1)]=(b+2a﹣1)(b﹣2a+1).【点评】本题考查分组分解法分解因式,掌握分组的原则和分组的方法是正确解答的前提,掌握完全平方公式、平方差公式的结构特征是解决问题的关键.31.(2022秋•嘉定区校级期末)因式分解:x2﹣4+4y2﹣4xy.【分析】直接将原式分组,再利用完全平方公式以及平方差公式分解因式得出答案.【解答】解:x2﹣4+4y2﹣4xy=x2+4y2﹣4xy﹣4=(x﹣2y)2﹣4=(x﹣2y+2)(x﹣2y﹣2).【点评】此题主要考查了分组分解法分解因式,正确运用公式是解题关键.32.(2022秋•徐汇区期末)分解因式:x2+4z2﹣9y2+4xz=.【分析】先利用完全平方公式,再利用平方差公式.【解答】解:x2+4z2﹣9y2+4xz=x2+4z2+4xz﹣9y2=(x+2z)2﹣9y2=(x+2z+3y)(x+2z﹣3y).故答案为:(x+2z+3y)(x+2z﹣3y).【点评】本题主要考查了整式的因式分解,掌握因式分解的公式法是解决本题的关键.33.(2022秋•宝山区期末)分解因式:m2﹣2m+1﹣4n2.【分析】先分组再利用平方差公式.【解答】解:m2﹣2m+1﹣4n2=(m﹣1)2﹣4n2=(m﹣1+2n)(m﹣1﹣2n).【点评】本题主要考查了整式的因式分解,掌握因式分解的提公因式法、公式法是解决本题的关键.34.(2022秋•闵行区校级期中)因式分解:x2+9xy+18y2﹣3x﹣9y.【分析】先把多项式按三、二分组,再分别因式分解,最后提取公因式.【解答】解:x2+9xy+18y2﹣3x﹣9y=(x2+9xy+18y2)﹣(3x+9y)=(x+3y)(x+6y)﹣3(x+3y)=(x+3y)(x+6y﹣3).【点评】本题考查了整式的因式分解,掌握因式分解的提公因式和十字相乘法是解决本题的关键.三.因式分解的应用(共9小题)35.(2022秋•青浦区校级期末)用合理的方法计算:7.52×1.6﹣2.52×1.6.【分析】先利用提取公因式法,再利用平方差公式因式分解求得答案即可.【解答】解:原式=(7.52﹣2.52)×1.6=(7.5+2.5)×(7.5﹣2.5)×1.6=10×5×1.6=80.【点评】此题考查因式分解的实际运用,掌握提取公因式法和平方差公式是解决问题的关键.36.(2022秋•黄浦区期中)已知x﹣y=2,x2+y2=6,(1)求代数式xy的值;(2)求代数式x3y﹣3x2y2+xy3的值.【分析】(1)根据x2+y2=(x﹣y)2+2xy,再将已知代入即可;(2)将所求的式子变形为xy(x2﹣3xy+y2),再将x2+y2=6,xy=1代入求值即可.【解答】解:(1)∵x2+y2=(x﹣y)2+2xy,又∵x﹣y=2,x2+y2=6,∴6=4+2xy,∴xy=1;(2)x3y﹣3x2y2+xy3=xy(x2﹣3xy+y2),∵x2+y2=6,xy=1,∴原式=1×(6﹣3)=3.【点评】本题考查因式分解的应用,熟练掌握完全平方公式的变形形式,提取公因式法因式分解是解题的关键.37.(2022秋•静安区校级期中)已知x2﹣x﹣3=0,那么x3﹣2x2﹣2x+2022=.【分析】根据x2﹣x﹣3=0,得出x2=x+3,代入求值即可.【解答】解:∵x2﹣x﹣3=0,∴x2=x+3,x3﹣2x2﹣2x+2022=x(x+3)﹣2x2﹣2x+2022=﹣x2+x+2022=﹣(x2﹣x﹣3)+2019=2019,故答案为:2019.【点评】本题主要考查因式分解的应用,熟练掌握因式分解是解题的关键.38.(2022秋•静安区校级期中)n是整数,式子[1﹣(﹣1)n](n2﹣1)计算的结果()A.是0B.总是奇数C.总是偶数D.可能是奇数也可能是偶数【分析】根据题意,可以利用分类讨论的数学思想探索式子[1﹣(﹣1)n](n2﹣1)计算的结果等于什么,从而可以得到哪个选项是正确的.【解答】解:当n是偶数时,[1﹣(﹣1)n](n2﹣1)=[1﹣1](n2﹣1)=0,当n是奇数时,[1﹣(﹣1)n](n2﹣1)=×(1+1)(n+1)(n﹣1)=,设n=2k﹣1(k为整数),则==k(k﹣1),∵0或k(k﹣1)(k为整数)都是偶数,故选:C.【点评】本题考查因式分解的应用,解题的关键是明确题意,利用分类讨论的数学思想解答问题.39.(2022秋•闵行区校级期中)已知a2﹣a﹣1=0,则代数式a3﹣2a+6=.【分析】根据已知条件得到a2﹣a=1,将要求的代数式化简得到a(a2+a)﹣a2﹣2a+6,两次代入求解即可.【解答】解:∵a2﹣a﹣1=0,∴a2﹣a=1,a3﹣2a+6=a3﹣a2+a2﹣2a+6=a(a2﹣a)+a2﹣2a+6=a+a2﹣2a+6=a2﹣a+6,将a2﹣a=1代入原式=1+6=7.故答案为:7.【点评】本题考查因式分解的应用,合理利用已知条件是关键.40.(2022秋•闵行区校级期中)已知a,b,c是三个连续的正整数,a2=33124,c2=33856,那么b2=.【分析】由于a2=33124,c2=33856,则利用平方差公式得到(c+a)(c﹣a)=732,再根据a、b、c是三个连续正整数得到c﹣a=2①,于是可计算出c+a=366②,然后由①②可解得c,从而得到b的值.【解答】解:c2﹣a2=(c+a)(c)=33856﹣33124=732,∵a、b、c是三个连续正整数,∴c﹣a=2,∴c+a=366,∴c=184,∴b=183,∴b2=33489.故答案为:33489.【点评】本题考查了因式分解的应用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.41.(2022秋•宝山区校级期中)a,b,c是正整数,且满足①a+b2﹣2c﹣2=0②3a2﹣8b+c=0,求abc的最小值(要有过程).【分析】根据②3a2﹣8b+c=0,得出c=8b﹣3a2,代入①a+b2﹣2c﹣2=0,得出(b﹣8)2=66﹣6a2﹣a,根据完全平方数得出a,b,c的值即可.【解答】解:∵②3a2﹣8b+c=0,∴c=8b﹣3a2,∵a+b2﹣2c﹣2=0,即a+b2﹣2(8b﹣3a2)﹣2=0,整理得(b﹣8)2=66﹣6a2﹣a,∴66﹣6a2﹣a是完全平方数,∴66﹣6a2﹣a的值可能为1,4,9,16,25,36,49,64,∵a为正整数,∴a=3,可得b=5或11,c=13或61,∴abc的最小值为3×5×13=195.【点评】本题主要考查因式分解的应用,熟练掌握因式分解的知识是解题的关键.42.(2022秋•杨浦区期中)已知:x﹣2y=8,xy=5,求代数式x3y+4xy3的值.【分析】首先运用提取公因式法分解因式,再配方,然后代入已知条件计算即可.【解答】解:∵x﹣2y=8,xy=5,∴x3y+4xy3=xy(x2+4y2)=xy[(x﹣2y)2+4xy]=5(82+4×5)=5×84=420.43.(2022秋•奉贤区期中)根据所学我们知道:可以通过用不同的方法求解长方形面积,从而得到一些数学等式.如图1可以表示的数学等式:(a+m)(b+n)=ab+an+bm+mn,请完成下列问题:(1)写出图2中所表示的数学等式:.(2)从图3可得(a+b)(a+b+c)=.(3)结合图4,已知a+b+c=6,a2+b2+c2=14,求ab+bc+ac的值.【分析】(1)(2)根据题意利用面积公式计算即可求解;(3)首先根据面积公式得到(a+b+c)(a+b+c)=a2+b2+c2+2ab+2ac+2bc,然后利用已知条件即可求解.【解答】解:(1)(a+1)(a+2)=a2+a+2a+2=a2+3a+2;故答案为:a2+3a+2;(2)(a+b )(a+b+c )=a2+b2+ab+ab+ac+bc =a2+2ab+b2+ac+bc ;故答案为:a2+2ab+b2+ac+bc ;(3)根据题意得;(a+b+c )(a+b+c )=a2+b2+c2+2ab+2ac+2bc ,而a+b+c =6,a2+b2+c2=14∴6×6=14+2ab+2ac+2bc ,∴ab+bc+ca =11.【点评】此题主要考查了因式分解的应用,解题的关键是正确理解题意,然后根据题意求解.【过关检测】一、单选题 1.(2023·上海·七年级假期作业)如果多项式x 2﹣5x +c 可以用十字相乘法因式分解,那么下列c 的取值正确的是( )A .2B .3C .4D .5【答案】C【分析】根据十字相乘法进行因式分解的方法,对选项逐个判断即可.【详解】解:A 、252x x −+,不能用十字相乘法进行因式分解,不符合题意; B 、253x x −+,不能用十字相乘法进行因式分解,不符合题意;C 、()()25414x x x x −+=−−,能用十字相乘法进行因式分解,符合题意;D 、255x x -+,不能用十字相乘法进行因式分解,不符合题意;故选C【点睛】此题考查了十字相乘法进行因式分解,解题的关键是掌握十字相乘法进行因式分解. 2.(2018秋·上海浦东新·七年级校考阶段练习)把多项式2+x ax bw +分解因式得(+1)(-3)x x ,则a.b 的值分别是( )【答案】A【分析】运用多项式乘以多项式的法则求出(x+1)(x-3)的值,对比系数可以得到a ,b 的值.【详解】∵(x+1)(x−3)=x ⋅x−x ⋅3+1⋅x−1×3=x 2−3x+x−3=x 2−2x−3,∴x 2+ax+b=x 2−2x−3∴a=−2,b=−3.故选A.【点睛】此题考查因式分解的应用,解题关键在于掌握运算法则求出(x+1)(x-3)的值.3.(2021秋·上海·七年级期中)若1a −是25a a m ++的因式,则m 的值是( )A .4B .6C .-4D .-6【答案】D【分析】利用因式分解与整式乘法的恒等关系计算解答即可.【详解】∵多项式25a a m ++因式分解后有一个因式为1a −, ∴设另一个因式是a k −,即25a a m ++=()()1a a k −−=()21a k a k −++,则()15k k m ⎧−+=⎨=⎩,解得:66k m =−⎧⎨=−⎩,故答案为:D .【点睛】此题考查了因式分解的意义,熟练掌握因式分解的方法是解本题的关键.A .5m =,1n =B .5m =−,1n =C .5m =,1n =−D .5m =−,1n =−【答案】C 【分析】根据十字相乘法的分解方法和特点解答.【详解】解:由x2-4x-m=(x-5)(x-n ),得:-5-n=-4,(-5)(-n )=-m所以n=-1,m=5.故选:C .【点睛】本题主要考查十字相乘法分解因式,对常数项的不同分解是解本题的关键.5.(2021秋·上海·七年级期中)多项式3333a b c abc −++有因式( )A .a b c ++B .c a b +−C .222a b c bc ac ab ++−+−D .bc ac ab −+【答案】B【分析】当被分解的式子是四项时,应考虑运用分组分解法进行分解.【详解】原式=33()33()a c b abc ac a c +−+−+=22()[()()]3()a c b a c b a c b ac a c b +−++++−+−=22()[()()3]a c b a c b a c b ac +−++++−=222()[23]a c b a c ac ab ac b ac +−+++++−=222()()a c b a c b ab ac ac +−++++−. 故选:B .【点睛】本题考查了分组分解法分解因式,难点是采用两两分组还是三一分组.本题还需要熟练掌握立方和立方差公式. 6.(2023·上海·七年级假期作业)给出下面四个多项式:①2232x xy y −−;②22x x y y +−−;③76x xy −;④33x y +,其中以代数式x y −为因式的多项式的个数是( )A .1B .2C .3D .4【答案】C 【分析】综合提公因式法和公式法,十字相乘法,将四个多项式分解因式,根据分解的结果,逐一判断即可得到答案.【详解】解:①()()223322x y x y x xy y −−=+−; ②()()()()()()()22221x x y y x y x y x y x y x y x y x y +−−=−+−=+−+−=−++; ③()()()()()()()663333222276x x y x x y x y x x y x y xy x xy x y x xy y =−=+−=+−+−++−; ④()()2323x y x y y x xy =++−+,∴以代数式x y −为因式的多项式为①②③,共3个,故选C .【点睛】本题考查了公因式的确定,先分解因式,再做判断,熟练掌握因式分解的方法是解题关键.二、填空题7.(2023·上海·七年级假期作业)分解因式:21124x x −+=________.【答案】()()38x x −−【分析】根据十字相乘法可进行因式分解.【详解】解:()()2112438x x x x −+=−−; 故答案为:()()38x x −−. 【点睛】本题主要考查因式分解,熟练掌握十字相乘法因式分解是解题的关键.8.(2023·上海·七年级假期作业)分解因式:256x x −−=________.【答案】()()61x x −+【分析】直接根据十字相乘法分解即可.【详解】256x x −−=()()61x x −+, 故答案为()()61x x −+.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法.因式分解必须分解到每个因式都不能再分解为止.【答案】241x x −+【分析】原式先提取公因数2,再利用十字相乘法求出解即可.【详解】解:原式()2234x x =−−()()241x x =−+, 故答案为:()()241x x −+. 【点睛】本题考查了因式分解—十字相乘法,熟练掌握十字相乘的方法是解题的关键.10.(2022秋·上海·七年级专题练习)分解因式:2x -ay +ax -2y =________.【答案】()()2x y a −+【分析】首先分组,然后利用提取公因式法分解因式.【详解】解:原式=()()()()()()22222x ax y ay x a y a x y a +−+=+−+=−+, 故答案为:()()2x y a −+.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解,因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法,因式分解必须分解到每个因式都不能再分解为止. 11.(2023·上海·七年级假期作业)如图,边长分别为a ,b 的长方形,它的周长为15,面积为10,则2233a b ab +=__________.【答案】225【分析】根据长方形的周长及面积可得出152a b +=,10ab =,将其代入2233a b ab +中即可求出结论.【详解】解:长方形的周长为15,面积为10,152a b ∴+=,10ab =,()22153333102252a b ab ab a b ∴+=+=⨯⨯=. 故答案为:225.【点睛】本题考查了因式分解的应用以及长方形的周长及面积,根据长方形的周长及面积找出152a b +=,10ab =是解题的关键.【答案】27x y −−/27y x −−【分析】根据平方差公式将4249y x −分解因式,并变形为()()222277y x x y −−−,即可得出答案.【详解】解:∵()()2224224977y x y x y x =−−+()()222277y x x y ⎡⎤=−+−⎣⎦()()222277y x x y =−−−, ∴与()27x y −之积等于4249y x −的因式为27x y −−.故答案为:27x y −−. 【点睛】本题主要考查了分解因式的应用,解题的关键是熟练掌握平方差公式()()22a b a b a b −=+−. 13.(2020秋·上海闵行·七年级期中)分解因式:321024a a a +−=____.【答案】()()122a a a +−【分析】先提出公因式,再利用十字相乘法因式分解,即可求解.【详解】解:()()()32210241024122a a a a a a a a a +−=+−=+−. 故答案为:()()122a a a +− 【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法,并根据多项式的特征灵活选合适方法解答是解题的关键.14.(2023秋·上海嘉定·七年级上海市育才中学校考期末)因式分解a 2-a -6=_____.【答案】(a +2)(a -3)【分析】利用公式()()()2x p q x pq x p x q +++=++ 公式进行因式分解. 【详解】解:()()()()226323232a a a a a a −−=+−++−⨯=−+ , 故填(a-3)(a+2)【点睛】本题考查因式分解,基本步骤是一提二套三检查. 15.(2020秋·上海徐汇·七年级上海市徐汇中学校考阶段练习)已知多项式223x mx ++可以分解成两个一次多项式,则整数m 的值是_____________【答案】7±或5±【分析】分别把2和3分解成2个因数的积的形式,共有4种情况,所以对应的m 也有4种情况.【详解】解:221=⨯,313=⨯或13−⨯−,∴①2311m =⨯+⨯或2(3)1(1)⨯−+⨯−,即7m =±,②2131m =⨯+⨯或2(1)1(3)⨯−+⨯−,即5m =±,故答案为:7±或5±.【安静】此题主要考查了分解因式−十字相乘法,解题的关键是要熟知二次三项式的一般形式与分解因式之间的关系:2()()()x m n x mn x m x n +++=++,即常数项与一次项系数之间的等量关系. 16.(2023·上海·七年级假期作业)已知a ,b ,c 是三个连续的正整数,233124a =,233856c =,那么2b =_____.【答案】33489【分析】利用平方差公式得到()()732c a c a +−=,再根据a 、b 、c 是三个连续正整数得到2c a −=,于是可计算出366c a +=,然后可得c ,从而得到b 的值.【详解】解:()()223385633124732c a c a c a −=+−=−=,∵a 、b 、c 是三个连续正整数,∴2c a −=,∴366c a +=,∴184c =,182a =,∴183b =,∴233489b =.故答案为:33489.【点睛】本题考查了因式分解的应用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.17.(2023·上海·七年级假期作业)23x +______多项式43225101518x x x x −−++的因式(填“是”或“不是”)【答案】是【分析】假设23x +是多项式43225101518x x x x −−++的因式,则只需将多项式43225101518x x x x −−++进行分组,43225101518x x x x −−++可写成4332223812231218x x x x x x x +−−++++,此时两两一组分解因式即可得到结果.【详解】43225101518x x x x −−++,4332223812231218x x x x x x x =+−−++++,32(23)4(23)(23)6(23)x x x x x x x =+−+++++,32(23)(46)x x x x =+−++,∴23x +是多项式43225101518x x x x −−++的因式.故答案为:是【点睛】本题主要考查因式分解的应用,掌握分组分解法是解题的关键. 18.(2022秋·七年级单元测试)已知关于x 的多项式x 2+kx ﹣3能分解成两个一次多项式的积,那么整数k 的值为 _____.【答案】2±【分析】把常数项分解成两个整数的乘积,k 就等于那两个整数之和.【详解】解:∵﹣3=﹣3×1或﹣3=﹣1×3,∴k =﹣3+1=﹣2或k =﹣1+3=2,∴整数k 的值为:±2,故答案为:±2.【点睛】本题考查因式分解—十字相乘法,是重要考点,掌握相关知识是解题关键.三、解答题19.(2022秋·上海·七年级专题练习)因式分解:2244x x a +−+.【答案】(2)(2)x a x a +++−【分析】分组,利用完全平方公式以及平方差公式分解即可求解.【详解】解:2244x x a +−+2244x x a =++−22(2)x a =+−(2)(2)x a x a =+++−.【点睛】本题考查的是因式分解,掌握完全平方公式以及平方差公式是解题的关键.20.(2022秋·上海闵行·七年级校考阶段练习)分解因式2812x x −+:.【答案】()()26x x −−【分析】根据十字相乘法,进行因式分解即可.【详解】解:()()281226x x x x −+=−−.【点睛】本题考查因式分解.熟练掌握十字相乘法因式分解,是解题的关键.21.(2022秋·上海·七年级校考期末)分解因式:()224516x xy y −−. 【答案】()()()22454x y x y x xy y −−−−【分析】先直接利用完全平方公式,然后再运用十字相乘法继续因式分解即可.【详解】解:()224516x xy y −− ()()222254x xy y =−− ()()()()22225454x xy y x xy y ⎡⎤⎡⎤=−+−−⎣⎦⎣⎦ ()()22225454x xy y xxy y =−+−− ()()()22454x y x y x xy y =−−−−.【点睛】本题考查了运用平方差公式和十字相乘法进行因式分解;解题的关键是分解因式要彻底.22.(2023秋·上海嘉定·七年级上海市育才中学校考期末)因式分解:4289ax ax a −−.【答案】()()()2331a x x x ++−【分析】先提取公因式a ,再用十字相乘法分解,最后再用平方差公式分解.【详解】解:4289ax ax a −−()4289a x x =−−()()2291a x x +=−()()()2331a x x x ++=−. 【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法.因式分解必须分解到每个因式都不能再分解为止.23.(2022秋·上海·七年级校联考期末)分解因式:23930x x −−.【答案】()()352x x −+.【分析】先提取公因式,再利用十字相乘法继续分解即可.【详解】解:23930x x −−()23310x x =−−()()352x x =−+.【点睛】本题考查了用提公因式法和十字相乘法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.24.(2022秋·上海闵行·七年级校考阶段练习)分解因式:22944a ab b −+−.【答案】()()3232a b a b +−−+【分析】先将多项式分组为()22944a ab b −−+,再分别利用完全平方公式和平方差公式分解即可.【详解】解:22944a ab b −+−()22944b a a b =−−+()292a b =−−()()3232a b a b =+−−−⎡⎤⎡⎤⎣⎦⎣⎦()()3232a b a b =+−−+.【点睛】本题考查了因式分解-分组分解,熟练掌握完全平方公式和平方差公式,能根据多项式特点进行适当分组是解题关键.25.(2022秋·上海·七年级专题练习)阅读并解答:对于多项式32510x x x −++,我们把2x =代入多项式,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解补充方法:十字相乘法
一、 知识归纳和例子讲解:
(1) 对于某些首项系数是1的二次三项式2x Px q ++【2()x a b x ab +++】的因式分解:
一般地,∵2()()()x a x b x a b x ab ++=+++,∴2()()()x a b x ab x a x b +++=++.
这就是说,对于二次三项式2x Px q ++,若能找到两个数a 、b ,使,
,a b p a b q +=⎧⎨⋅=⎩
则就有22()()()x Px q x a b x ab x a x b ++=+++=++.
(掌握这种方法的关键是确定适合条件的两个数,即把常数项分解成两个数的积,且其和等于一..................
次项系数,.....
通常要借助画十字交叉线的办法来确定,故称十字相乘法。

) 如对于二次三项式232x x ++,其中3p =,2q =,能找到两个数1、2,使12,
12,p q +=⎧⎨⨯=⎩
故有
232(1)(2)x x x x ++=++.
例1:因式分解
(1) x 2 + 10x + 9 ;
解:1 1 (x + 1) 1 9 (x + 9) 1×9=9;1×9+1×1=10
∴x 2 + 10x + 9=(x + 1)(x + 9)
说明:用十字相乖法分解二次三项式2x Px q ++,式中的p 、q 通常是整数,要找的a 、b 两数也通常是在整数中去找.由于把p 拆成两个整数之和可以有无数种情形,而把q 分解成两个整数之积只有有限几种可能,故应先把q 分解成两个整数之积,然后检验哪两个整数之和得p . 练习题(因式分解):
(1)=+-652
x x ___ __ __ ____. (2)=++652
x x ___ __ __ _____
(3)=--652
x x ___ __ __ ____ (4)=-+652
x x ___ __ __ ____
提问:请观察以上练习中的各题,你能发现把q 分解成两个整数a 、b 之积时的符号规律吗? ⑴若q >0,则a 、b 同号.当p >0时a 、b 同为正,当p <0时a 、b 同为负.
⑵若q <0,则a 、b 异号.当p >0时a 、b 中的正数绝对值较大,当p <0时a 、b 中的负数绝对值较大.
(2) 对于二次三项ax bx c 2++【()a a x a c a c x c c 122122112+++】(a 、b 、c 都是整数,且a ≠0)的因式分解:
一般地,∵()()a x c a x c 1122++=()a a x a c a c x c c 122
122112+++,
∴()a a x a c a c x c c 122
122112+++=()()a x c a x c 1122++.
这就是说,对于二次三项式ax bx c 2
++,若能找到四个整数a c a c 1122,,,,使121212
21a a a c c c a c a c b ==⎧⎨+=⎩,
则就有ax bx c 2
++=()a a x a c a c x c c 122122112+++=()()a x c a x c 1122++,通常要借助画多个十字
交叉线的办法来确定。

例2 分解因式:(1)2273x x -+; (2)2675x x --
(1)解:
∴2273x x -+= (3)(21)x x -- (2)解:所有可能的十字形式:
∴2675(21)(35)x x x x --=+-
说明:⑴二次项系数为正时,只考虑分解成两个正因数之积;
⑵在二次项系数为正时,常数项的分解,符号规律同上节a 、b 的符号规律;
⑶分解二项项系数、常数项有多种可能,即使对于同一种分解,十字图也有不同的写法,为了避免重
或漏,故二次项系数的因数一经排定就不变,而用常数项的因数作调整;
⑷用十字相乘法分解因式时,一般要经过多次尝试才能确定能否分解或怎样分解. 练习题(因式分解):
(1)2x 2
+7x +3=___ __ __ ____ (2)3x 2
-5x +2=___ __ __ ____
(3)2x 2
+5x -7=___ __ __ ____ (4)5x 2
-3x -2=___ __ __ ____
二、练一练、做一做: 1、把下列各式分解因式:
(1)8722--ab b a (2)2
243n mn m --
(3)4
2
627x x -- (4)(a +b)2
+5(a +b)-36
2、将下列各式因式分解
(1)x x x 2142
3-- (2)y xy y x 25102
++
(3)
111024-+x x (4)42243613y y x x +-
3、将下列各式因式分解
(1)20322
--x x ; (2)2x 2
+5x +2;
(3))3x 2 +7x -6 ; (4)2x 2-5xy +2y 2
4、用因式分解法列下列方程:
(1)x 2 + 2x -3 = 0 (2)2x 2-7x + 6 = 0
(3)x(x -2) = 3 (4) (2x -3)2 + 3(2x -3) + 2 = 0.。

相关文档
最新文档