特殊平行四边形矩形的性质及判定习题练习
北师大版九年级数学上册第一章特殊平行四边形《矩形的性质与判定》同步练习(解析版) (5)
矩形的性质与判定专项训练(典型题汇总)一.选择题(共15小题)1.已知一矩形的周长是24cm,相邻两边之比是1:2,那么这个矩形的面积是()A.24cm2B.32cm2C.48cm2D.128cm22.下面对矩形的定义正确的是()A.矩形的四个角都是直角B.矩形的对角线相等C.矩形是中心对称图形D.有一个角是直角的平行四边形3.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、P D.若AE=2,PF=8.则图中阴影部分的面积为()A.10 B.12 C.16 D.184.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC,若AC=6cm,则四边形CODE 的周长为()A.6 B.8 C.10 D.125.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD,垂足为E,AE=3,ED=3BE,则AB的值为()A.6 B.5 C.2D.36.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE垂直平分BO,AE=cm,则OD=()A.1cm B.1.5cm C.2cm D.3cm7.下列命题中正确的是()A.对角线相等的四边形是矩形;B.对角线互相垂直的四边形是矩形;C.对角线相等的平行四边形是矩形;D.对角线互相垂直的平行四边形是矩形8.如图,在平行四边形ABCD中,AC、BD是它的两条对角线,下列条件中,能判断这个平行四边形是矩形的是()A.∠BAC=∠ACB;B.∠BAC=∠ACD;C.∠BAC=∠DAC;D.∠BAC=∠ABD9.如图,平行四边形ABCD的对角线AC与BD相交于点O,要使它成为矩形,需再添加的条件是()A.AO=OC B.AC=BD C.AC⊥BD D.BD平分∠ABC10.如图,为了检验教室里的矩形门框是否合格,某班的四个学习小组用三角板和细绳分别测得如下结果,其中不能判定门框是否合格的是()A.AB=CD,AD=BC,AC=BD B.AC=BD,∠B=∠C=90°C.AB=CD,∠B=∠C=90°D.AB=CD,AC=BD11.在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是()A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形12.如图,在Rt△ABC中,AC=3,BC=4,D为斜边AB上一动点,DE⊥BC,DF⊥AC,垂足分别为E、F.则线段EF的最小值为()A.B.C.D.13.如图,在矩形COED中,点D的坐标是(1,3),则CE的长是()A.3 B.C.D.414.如图,D、E、F分别是△ABC各边的中点.添加下列条件后,不能得到四边形ADEF是矩形的是()A.∠BAC=90°B.BC=2AE C.DE平分∠AEB D.AE⊥BC15.已知四边形ABCD中,对角线AC与BD相交于点O,AD∥BC,下列判断中错误的是()A.如果AB=CD,AC=BD,那么四边形ABCD是矩形B.如果AB∥CD,AC=BD,那么四边形ABCD是矩形C.如果AD=BC,AC⊥BD,那么四边形ABCD是菱形D.如果OA=OC,AC⊥BD,那么四边形ABCD是菱形二.填空题(共6小题)16.矩形ABCD中,AB=3,BC=4,则AC=,矩形的面积为.17.如图,在▱ABCD中,再添加一个条件(写出一个即可),▱ABCD是矩形(图形中不再添加辅助线)18.如图,设矩形ABCD和矩形AEFC的面积分别为S1、S2,则二者的大小关系是:S1S2.19.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=5cm,BC=12cm,则EF=cm.20.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加条件,才能保证四边形EFGH 是矩形.21.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为.三.解答题(共5小题)22.如图,在矩形ABCD中,对角线AC与BD相交于点O,∠AOD=120°,BD=6,求矩形ABCD的面积.23.如图,DB∥AC,且DB=AC,E是AC的中点.(1)求证:BC=DE;(2)连接AD、BE,若∠BAC=∠C,求证:四边形DBEA是矩形.24.已知:如图,菱形ABCD,分别延长AB,CB到点F,E,使得BF=BA,BE=BC,连接AE,EF,FC,C A.(1)求证:四边形AEFC为矩形;(2)连接DE交AB于点O,如果DE⊥AB,AB=4,求DE的长.25.如图,四边形ABCD为平行四边形纸片.把纸片ABCD折叠,使点B恰好落在CD边上,折痕为AF.且AB=10cm、AD=8cm、DE=6cm.(1)求证:平行四边形ABCD是矩形;(2)求BF的长;(3)求折痕AF长.26.已知矩形ABCD和点P,当点P在图1中的位置时,则有结论:S△PBC=S△PAC+S△PCD理由:过点P作EF垂直BC,分别交AD、BC于E、F两点.∵S△PBC+S△PAD=BC•PF+AD•PE=BC(PF+PE)=BC•EF=S矩形ABC D.(1)请补全以上证明过程.(2)请你参考上述信息,当点P分别在图1、图2中的位置时,S△PBC、S△PAC、S PCD又有怎样的数量关系?请写出你对上述两种情况的猜想,并选择其中一种情况的猜想给予证明.参考答案一.选择题(共15小题)1.B.2.D.3.C.4.D.5.C.6.C.7.C.8.D.9.B.10.D.11.D.12.D.13.C.14.D.15.A.二.填空题(共6小题)16.5,12.17.AC=BD18.=.19..20.AC⊥B D.21..三.解答题(共5小题)22.解:∵四边形ABCD是矩形,∴∠BAD=90°,AC=BD,OA=AC,OD=BD,∴OA=OD,∵∠AOD=120°,∴∠ADO=30°∴AB=B D.在直角三角形ABD中,由勾股定理,得AD===3∴S=AB•AD=3×3=9.矩形ABCD23.(1)证明:∵E是AC中点,∴EC=A C.∵DB=AC,∴DB=E C.又∵DB∥EC,∴四边形DBCE是平行四边形.∴BC=DE.(2)证明:∵DB∥AE,DB=AE,∴四边形DBEA是平行四边形.∵∠BAC=∠C,∴BA=BC,∵BC=DE,∴AB=DE.∴▭ADBE是矩形.24.证明:(1)∵BF=BA,BE=BC,∴四边形AEFC为平行四边形,∵四边形ABCD为菱形,∴BA=BC,∴BE=BF,∴BA+BF=BC+BE,即AF=EC,∴四边形AEFC为矩形;(2)连接DB,由(1)可知,AD∥EB,且AD=EB,∴四边形AEBD为平行四边形,∵DE⊥AB,∴四边形AEBD为菱形,∴AE=EB,AB=2AG,ED=2EG,∵矩形ABCD中,EB=AB,AB=4,∴AG=2,AE=4,∴在Rt△AEG中,EG=2,∴ED=4.25.(1)证明:∵把纸片ABCD折叠,使点B恰好落在CD边上,∴AE=AB=10,AE2=102=100,又∵AD2+DE2=82+62=100,∴AD2+DE2=AE2,∴△ADE是直角三角形,且∠D=90°,又∵四边形ABCD为平行四边形,∴平行四边形ABCD是矩形(有一个角是直角的平行四边形是矩形);(2)解:设BF=x,则EF=BF=x,EC=CD﹣DE=10﹣6=4cm,FC=BC﹣BF=8﹣x,在Rt△EFC中,EC2+FC2=EF2,即42+(8﹣x)2=x2,解得x=5,故BF=5cm;(3)解:在Rt△ABF中,由勾股定理得,AB2+BF2=AF2,∵AB=10cm,BF=5cm,∴AF==5cm.26.证明:(1)∵S△PAC+S△PCD+S△PAD=S矩形ABCD∴S△PBC+S△PAD=S△PAC+S△PCD+S△PAD,∴S△PBC=S△PAC+S△PCD;(2)猜想结果:图2结论S△PBC=S△PAC+S△PCD;图3结论S△PBC=S△PAC﹣S△PC D.证明:如图,过点P作EF垂直AD,分别交AD、BC于E、F两点.∵S△PBC=BC•PF=BC•PE+BC•EF=AD•PE+BC•EF=S△PAD+S矩形ABCDS△PAC+S△PCD=S△PAD+S△ADC=S△PAD+S矩形ABCD∴S△PBC=S△PAC+S△PC D.矩形的性质与判定专项训练(典型题汇总)一、填空题:1.矩形的对边,对角线且,四个角都是,即是图形又是图形。
九年级数学 第一章 特殊平行四边形2 矩形的性质与判定第2课时 矩形的判定作业
A.4 B.4.8 C.5.2 D.6
第10题图
11.如图,在△ABC 中,AC 的垂直平分线分别交 AC,AB 于点 D, F,BE⊥DF 交 DF 的延长线于点 E,已知∠A=30°,BC=2,AF=BF, 则四边形 BCDE 的面积是_2___3____.
第11题图
12.如图,在矩形ABCD中,AE=AF,过点E作EH⊥EF交DC于点H,过F 作FG⊥EF交BC于点G,连接GH,当AD,AB满足______A__B_=__A(D关系)时, 四边形EFGH为矩形.
第12题图
13.如图,AB∥CD,PM,PN,QM,QN分别为∠APQ,∠BPQ,∠CQP, ∠DQP的平分线.求证:四边形PMQN是矩形.
证明:∵PM,PN,QM 分别平分∠APQ,∠BPQ,∠CQP,∴∠MPQ
=21 ∠APQ,∠NPQ=21 ∠BPQ,∠MQP=21 ∠CQP.∵∠APQ+∠BPQ =180°,∴∠MPQ+∠NPQ=90°,即∠MPN=90°.同理可证∠MQN =90°.∵AB∥CD,∴∠APQ+∠CQP=180°,∴∠MPQ+∠MQP=90 °,即∠PMQ=90°,∴四边形 PMQN 是矩形
9.如图,顺次连接四边形ABCD各边的中点,得到四边形EFGH,在下列
条件中,能使四边形EFGH为矩形的是( C)
A.AB=CD B.AC=BD C.AC⊥BD D.AD∥BC
第9题图
10.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且 点P不与点B,C重合),PE⊥AB于点E,PF⊥AC于点F,则EF的最小值为
第5题图
6.(2019·江西)如图,四边形ABCD中,AB=CD,AD=BC,对角线AC, BD相交于点O,且OA=OD.求证:四边形ABCD是矩形.
初中数学特殊的平行四边形50题(含答案)
特殊的平行四边形练习题(50题)菱形、矩形、正方形一、单选题(共18题;共36分)1.下列条件中,能判定一个四边形为矩形的条件是( )A. 对角线互相平分的四边形B. 对角线相等且平分的四边形C. 对角线相等的四边形D. 对角线相等且互相垂直的四边形【答案】B【解析】【解答】解:A、对角线互相平分的四边形是平行四边形,故A不符合题意;B、对角线相等且平分的四边形是矩形,故B符合题意;C、对角线相等的四边形不是矩形,故C不符合题意;D、对角线相等且互相垂直的四边形不是矩形,故D不符合题意.故答案为:B.【分析】根据矩形的判定方法,逐项进行判断,即可求解2.如图,点A、D、G、M在半圆上,四边形ABOC、DEOF、HNMO均为矩形,设BC=a ,EF=b ,NH= c ,则下列各式中正确的是()A. a > b > cB. a =b =cC. c > a > bD. b > c > a【答案】B【解析】【解答】解:连接OA、OD、OM,如图所示:则OA=OD=OM,∵四边形ABOC、DEOF、HNMO均为矩形,∴OA=BC=a,OD=EF=b,OM=NH=c,∴a=b=c;故答案为:B.【分析】连接OA、OD、OM,则OA=OD=OM,由矩形的对角线相等得出OA=BC=a,OD=EF=b,OM=NH=c,再由同圆的半径相等即可得出a=b=c.3.如图,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是( )A. 1B. 2C.D.【答案】 D【解析】【解答】解:连接DE交AC于P,连接BD,BP,由菱形的对角线互相垂直平分,可得B、D关于AC对称,则PD=PB,∴PE+PB=PE+PD=DE,即DE就是PE+PB的最小值,∵∠BAD=60°,AD=AB,∴△ABD是等边三角形,∴AD=BD,∵AE=BE=AB=1,∴DE⊥AB,在Rt△ADE中,DE=,∴ PE+PB的最小值是.故答案为:D.【分析】连接DE交AC于P,连接BD,BP,根据菱形的性质得出B、D关于AC对称,得出DE就是PE+PB 的最小值,根据等边三角形的判定与性质得出DE⊥AB,再根据勾股定理求出DE的长,即可求解.4.若正方形的对角线长为2 cm,则这个正方形的面积为()A. 4B. 2C.D.【答案】B【解析】【解答】解:设正方形的边长为xcm,根据题意得:x2+x2=22,∴x2=2,∴正方形的面积=x2=2(cm2).故答案为:B.【分析】设正方形的边长为xcm,利用勾股定理列出方程,求出x2=2,即可求出正方形的面积为2.5.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,OH=4,则菱形ABCD的面积为()A. 72B. 24C. 48D. 96【答案】C【解析】【解答】解:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,∵DH⊥AB,∴∠BHD=90°,∴BD=2OH,∵OH=4,∴BD=8,∵OA=6,∴AC=12,∴菱形ABCD的面积= AC•BD=×12×8=48.故答案为:C.【分析】根据菱形的性质得O为BD的中点,再由直角三角形斜边上的中线等于斜边的一半,得BD的长度,最后由菱形的面积公式求得面积.6.将一张长方形纸片折叠成如图所示的形状,则∠ABC等于( )A. 73°B. 56°C. 68°D. 146°【答案】A【解析】【解答】如图,∵∠CBD=34°,∴∠CBE=180°﹣∠CBD=146°,由折叠的性质可得∠ABC=∠ABE= ∠CBE=73°.故答案为:A【分析】根据补角的知识可求出∠CBE,从而根据折叠的性质∠ABC=∠ABE= ∠CBE,可得出∠ABC的度数.7.如图,已知矩形AOBC的顶点O(0,0),A(0,3),B(4,0),按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OC,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠BOC内交于点F;③作射线OF,交边BC于点G,则点G的坐标为()A. (4,1)B. (4,)C. (4,)D. (4,)【答案】B【解析】【解答】解:∵四边形AOBC是矩形,A(0,3),B(4,0),∴OB=4,OA=BC=3,∠OBC=90°,∴OC==5,作GH⊥OC于H,如图,由题意可知:OG平分∠BOC,∵GB⊥OB,GH⊥OC,∴GB=GH,设GB=GH=x,由S△OBC=×3×4=×5×x+ ×4×x,解得:x=,∴G(4,).故答案为:B.【分析】根据勾股定理可得OC的长,作GH⊥OC于H,根据角平分线的性质可得GB=GH,然后利用面积法求出GB即可.8.如图1,在矩形ABCD中,点E在CD上,∠AEB=90°,点P从点A出发,沿A→E→B的路径匀速运动到点B停止,作PQ⊥CD于点Q,设点P运动的路程为x,PQ长为y,若y与x之间的函数关系图象如图2所示,当x=6时,PQ的值是( )A. 2B.C.D. 1【答案】B【解析】【解答】解:由图象可知:AE=3,BE=4,在Rt ABE中,∠AEB=90°AB= =5当x=6时,点P在BE上,如图,此时PE=4-(7-x)=x-3=6-3=3∵∠AEB=90°, PQ⊥CD∴∠AEB=∠PQE=90°,在矩形ABCD中,AB//CD∴∠QEP=∠ABE∴PQE BAE, ∴=∴=∴PQ=故答案为:B.【分析】由图象可知:AE=3,BE=4,根据勾股定理可得AB=5,当x=6时,点P在BE上,先求出PE的长,再根据△ PQE ∽△ BAE,求出PQ的长.9.如图,在平面直角坐标系中,已知点,.若平移点到点,使以点,,,为顶点的四边形是菱形,则正确的平移方法是()A. 向左平移1个单位,再向下平移1个单位B. 向左平移个单位,再向上平移1个单位C. 向右平移个单位,再向上平移1个单位D. 向右平移1个单位,再向上平移1个单位【答案】 D【解析】【解答】解:因为B(1,1)由勾股定理可得OB=,所以OA=OB,而AB<OA.故以AB为对角线,OB//AC,由O(0,0)移到点B(1,1)需要向右平移1个单位,再向上平移1个单位,由平移的性质可得由A(,0)移到点C需要向右平移1个单位,再向上平移1个单位,故选D.【分析】根据平移的性质可得OB//AC,平移A到C,有两种平移的方法可使O,A,B,C四点构成的四边形是平行四边形;而OA=OB>AB,故当OA,OB为边时O,A,B,C四点构成的四边形是菱形,故点A平移到C的运动与点O平移到B的相同.10.如图,把长方形ABCD沿EF对折,若∠1=500,则∠AEF的度数等于()A. 25ºB. 50ºC. 100ºD. 115º【答案】 D【解析】解析:∵把矩形ABCD沿EF对折,∴AD∥BC,∠BFE=∠2,∵∠1=50°,∠1+∠2+∠BFE=180°,∴∠BFE==65°,∵∠AEF+∠BFE=180°,∴∠AEF=115°.故选D11.在矩形ABCD中,AB=1,AD=,AF平分∠DAB,过C点作CE⊥BD于E,延长AF.EC交于点H,下列结论中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED.正确的是()A. ②③B. ③④C. ①②④D. ②③④【答案】 D【解析】【解答】∵AB=1,AD=,∴BD=AC=2,OB=OA=OD=OC=1.∴△OAB,△OCD为正三角形.AF平分∠DAB,∴∠FAB=45°,即△ABF是一个等腰直角三角形.∴BF=AB=1,BF=BO=1.∵AF平分∠DAB,∴∠FAB=45°,∴∠CAH=45°﹣30°=15°.∵∠ACE=30°(正三角形上的高的性质)∴∠AHC=15°,∴CA=CH由正三角形上的高的性质可知:DE=OD÷2,OD=OB,∴BE=3ED.所以正确的是②③④.故选D.【分析】这是一个特殊的矩形:对角线相交成60°的角.利用等边三角形的性质结合图中的特殊角度解答.本题主要考查了矩形的性质及正三角形的性质.12.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB 上,当△CDE的周长最小时,点E的坐标为()A. (3,1)B. (3,)C. (3,)D. (3,2)【答案】B【解析】【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y= ,∴点E坐标(3,)故选:B.【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.本题考查矩形的性质、坐标与图形的性质、轴对称﹣最短问题、一次函数等知识,解题的关键是利用轴对称找到点E位置,学会利用一次函数解决交点问题,属于中考常考题型.13.如图,正方形ABCD的边长为4,M在DC上,且DM=1,N是AC上一动点,则DN+MN的最小值为().A. 3B. 4C. 5D.【答案】C【解析】【分析】由正方形的对称性可知点B与D关于直线AC对称,连接BM交AC于N′点,N′即为所求在Rt△BCM中利用勾股定理即可求出BM的长即可.【解答】∵四边形ABCD是正方形,∴点B与D关于直线AC对称,连接BD,BM交AC于N′,连接DN′,N′即为所求的点,则BM的长即为DN+MN的最小值,∴AC是线段BD的垂直平分线,又CM=CD-DM=4-1=3,在Rt△BCM中,BM==5,故DN+MN的最小值是5.故选C.【点评】本题考查的是轴对称-最短路线问题及正方形的性质,先作出M关于直线AC的对称点M′,由轴对称及正方形的性质判断出点M′在BC上是解答此题的关键.14.将矩形OABC如图放置,O为原点.若点A(﹣1,2),点B的纵坐标是,则点C的坐标是()A. (4,2)B. (2,4)C. (,3)D. (3,)【答案】 D【解析】【解答】解:过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F,过点A作AN⊥BF于点N,过点C作CM⊥x轴于点M,∵∠EAO+∠AOE=90°,∠AOE+∠MOC=90°,∴∠EAO=∠COM,又∵∠AEO=∠CMO,∴∠AEO∽△COM,∴=,∵∠BAN+∠OAN=90°,∠EAO+∠OAN=90°,∴∠BAN=∠EAO=∠COM,在△ABN和△OCM中∴△ABN≌△OCM(AAS),∴BN=CM,∵点A(−1,2),点B的纵坐标是,∴BN= ,∴CM= ,∴MO==2CM=3,∴点C的坐标是:(3, ).故选:D.【分析】次题主要考查了矩形的性质以及相似三角形的判定与性质以及结合全等三角形的判定与性质等知识.构造直角三角形,正确得出CM的长是解题的关键.15.如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是()A. 1B. 2C. 3D. 4【答案】 D【解析】【解答】解:∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠C=90°=∠ACB,∴∠CAD=∠AFG,在△FGA和△ACD中,,∴△FGA≌△ACD(AAS),∴AC=FG,①正确;∵BC=AC,∴FG=BC,∵∠ACB=90°,FG⊥CA,∴FG∥BC,∴四边形CBFG是矩形,∴∠CBF=90°,S△FAB= FB•FG= S四边形CBFG,②正确;∵CA=CB,∠C=∠CBF=90°,∴∠ABC=∠ABF=45°,③正确;∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,∴△ACD∽△FEQ,∴AC:AD=FE:FQ,∴AD•FE=AD2=FQ•AC,④正确;故选:D.【分析】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明△FGA≌△ACD,得出AC=FG,①正确;证明四边形CBFG是矩形,得出S△FAB= FB•FG= S四边形CEFG,②正确;由等腰直角三角形的性质和矩形的性质得出∠ABC=∠ABF=45°,③正确;证出△ACD∽△FEQ,得出对应边成比例,得出D•FE=AD2=FQ•AC,④正确.16.如图,在矩形ABCD中,AB=4,AD=6,点F是AB的中点,E为BC边上一点,且EF⊥ED,连结DF,M 为DF的中点,连结MA,ME.若AM⊥ME,则AE的长为()A. 5B.C.D.【答案】B【解析】【解答】设BE=x,则CE=6-x,∵四边形ABCD矩形,AB=4,∴AB=CD=4,∠C=∠B=90°,∴∠DEC+∠CDE=90°,又∵F是AB的中点,∴BF=2,又∵EF⊥ED,∴∠FED=90°,∴∠FEB+∠DEC=90°,∴∠FEB=∠CDE,∴△BFE∽△CED,∴=,∴=,∴(x-2)(x-4)=0,∴x=2,或x=4,①当x=2时,∴EF=2,DE=4,DF=2,∴AM=ME=,∴AE===2,②当x=4时,∴EF=2,DE=2,DF=2,∴AM=ME=,∴AE==2,AE==4,∴x=4不合题意,舍去故答案为:B.【分析】设BE=x,则CE=6-x,由矩形性质得出AB=CD=4,∠C=∠B=90°,又由EF⊥ED,根据同角的余角相等可得出∠FEB=∠CDE;由相似三角形的判定得出△BFE∽△CED,再根据相似三角形的性质得出=,由此列出方程从而求出x=2或x=4,分情况讨论:①当x=2时,由勾股定理算出AE===2,②当x=4时,由勾股定理算出AE==2,AE==4,故x=4不合题意,舍去.17.如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH,其中,正确的结论有()A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【解答】∵四边形ABCD是正方形,∴∠B=∠DCB=90°,AB=BC,∵AG=CE,∴BG=BE,由勾股定理得:BE=GE,∴①错误;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中∴△GAE≌△CEF,∴②正确;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正确;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④错误;即正确的有2个.故选B.【分析】根据正方形的性质得出∠B=∠DCB=90°,AB=BC,求出BG=BE,根据勾股定理得出BE=GE,即可判断①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根据SAS推出△GAE≌△CEF,即可判断②;求出∠AGE=∠ECF=135°,即可判断③;求出∠FEC<45°,根据相似三角形的判定得出△GBE和△ECH不相似,即可判断④.18.如图,P是正方形ABCD内一点,∠APB=135,BP=1,AP=,求PC的值()A. B. 3 C. D. 2【答案】B【解析】【分析】解答此题的关键是利用旋转构建直角三角形,由勾股定理求解.如图,把△PBC绕点B逆时针旋转90°得到△ABP′,点C的对应点C′与点A重合.根据旋转的性质可得AP′=PC,BP′=BP,△PBP′是等腰直角三角形,利用勾股定理求出,然后由∠APB=135,可得出∠APP′=90°,再利用勾股定理列式计算求出.故选B.二、填空题(共15题;共16分)19.如图所示,△ABC为边长为4的等边三角形,AD为BC边上的高,以AD为边的正方形ADEF的面积为________。
特殊的平行四边形专题练习
第十八章 平行四边形18.2 特殊的平行四边形1.矩形的定义:(1)有一个角是直角的平行四边形叫做__________,也称为长方形.(2)矩形的定义有两个要素:①四边形是__________;②有一个角是__________.二者缺一不可. 【注意】不要错误地把定义理解为有一个角是直角的四边形是矩形,矩形是特殊的平行四边形.2.矩形的性质:(1)矩形是特殊的平行四边形,具有平行四边形的所有性质,即对边互相平行,对边相等,对角相等,对角线互相平分.(2)矩形的性质可综述为:①矩形的对边__________; ②矩形的对角相等且四个角都是__________; ③矩形的对角线__________;④矩形是__________,对边中点所确定的直线是它的__________,矩形有__________对称轴. (3)矩形的两条对角线将矩形分成两对全等的等腰三角形,因此在解决相关问题时,常常用到等腰三角形的性质,并且分成的四个等腰三角形的面积相等.3.直角三角形斜边上的中线的性质:直角三角形斜边上的中线等于__________.【注意】定理的条件有两个:一是直角三角形;二是斜边上的中线.4.矩形的判定:(1)有一个角是直角的__________是矩形; (2)有三个角是__________的四边形是矩形; (3)对角线__________的四边形是矩形. 【注意】(1)判定矩形的常见思路有三个角是直角→矩形四边形对角线相等→矩形平行四边形有一个角是直角→矩形⎧⎪⎧⎨⎨⎪⎩⎩(2)用定义判定一个四边形是矩形必须满足两个条件:一是有一个角是直角;二是平行四边形.也就是说,有一个角是直角的四边形不一定是矩形,必须加上“平行四边形”这个条件,它才是矩形.(3)用对角线判定一个四边形是矩形,也必须满足两个条件:一是对角线;二是平行四边形.也就是说,对角线相等的四边形不一定是矩形,必须加上“平行四边形”这个条件,它才是矩形.5.菱形的定义:(1)有一组邻边相等的平行四边形叫做__________.菱形必须满足两个条件:一是四边形必须是平行四边形;二是邻边相等.不要错误地认为有一组邻边相等的四边形是菱形.(2)菱形是除矩形外的又一种特殊的平行四边形,即有一组邻边相等的平行四边形.菱形的定义既是菱形的性质,也是菱形的判定方法.6.菱形的性质:(1)菱形具有平行四边形的所有性质.(2)菱形的四条边都__________.学-科网(3)菱形的两条对角线__________,并且每一条对角线__________一组对角.(4)菱形是轴对称图形,它的两条对角线所在的直线即是它的对称轴.【注意】菱形的两条对角线不是对称轴,对角线所在直线才是菱形的对称轴.因为对称轴是直线,对角线是线段.菱形既是轴对称图形又是中心对称图形,菱形被两条对角线所分得的四个直角三角形全等.(5)菱形的面积等于__________乘积的一半.7.菱形的判定:(1)一组邻边__________的平行四边形是菱形.(2)对角线__________的平行四边形是菱形.(3)四条边__________的四边形是菱形.(4)对角线__________的四边形是菱形.【注意】上述菱形的判定方法中,(1)和(2)是以平行四边形为基础的,(3)和(4)是以四边形为基础的.8.正方形的定义:(1)有一组邻边__________并且有一个角是__________的平行四边形叫做正方形.(2)正方形是在平行四边形的前提下定义的,它包含两层意思:①有一组邻边相等的平行四边形(即菱形);②并且有一个角是直角的平行四边形(即矩形).(3)正方形不仅是特殊的平行四边形,而且是特殊的矩形,又是特殊的菱形.9.正方形的性质:(1)正方形具有平行四边形、矩形、菱形的一切性质,特别地: ①正方形的四个角都是__________,四条边都__________;②正方形的两条对角线__________并且互相__________,每条对角线__________一组对角.(2)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;正方形的两条对角线把它分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.10.正方形的判定:(1)根据正方形的定义;(2)有一组邻边相等的__________是正方形; (3)有一个角是直角的__________是正方形; (4)既是矩形又是菱形的四边形是正方形.一、矩形的性质1.有一个角是直角的平行四边形叫做矩形,即:矩形=平行四边形+一个内角是直角.2.矩形是特殊的平行四边形,具有平行四边形的所有性质,即对边互相平行,对边相等,对角相等,对角线互相平分.【例1】如图,在矩形ABCD 中,1205BOC AB ︒∠==,,则BD 的长为A .5B .10C .12D .13二、矩形的判定1.定义法;2.对角线相等的平行四边形是矩形; 3.对角线平分且相等的四边形是矩形; 4.有三个角是直角的三角形是矩形.【例2】下列说法正确的是A .有一组对角是直角的四边形一定是矩形B .有一组邻角是直角的四边形一定是矩形C .对角线互相平分的四边形是矩形D .对角互补的平行四边形是矩形三、直角三角形斜边中线的性质1.直角三角形斜边上的中线等于斜边的一半;2.直角三角形斜边上的中线把直角三角形分成两个等腰三角形,这两个等腰三角形的面积相等; 3.在直角三角形中,如果遇到斜边的中点,可以考虑利用此性质,注意直角边上的中线不具备这一性质. 【例3】已知直角三角形的两直角边长分别为5和12,则此直角三角形斜边上的中线长为 A .52B .6C .13D .132四、矩形中的折叠问题矩形折叠问题中,折叠前后的两个图形对应边相等,通常建立模型利用勾股定理进行求解.【例4】如图,长方形纸片ABCD 中,4AB =,3AD =,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则AG 的长为A .1B .32C .43D .2五、菱形的性质及应用1.菱形具有平行四边形的一切性质.2.菱形的四条边都相等,菱形的对角线互相垂直,并且每一条对角线平分一组对角.【例5】在菱形ABCD 中,M ,N 分别是边BC ,CD 上的点,且AM =AN =MN =AB ,则∠C 的度数为A .120°B .100°C .80°D .60°六、菱形的面积菱形的面积=底×高=对角线乘积的一半.【例6】已知一个菱形的周长是20cm ,两条对角线的比是4∶3,则这个菱形的面积是 A .212cm B .224cmC .248cmD .296cm七、菱形的判定菱形四种判定方法中,两种是以平行四边形为基础的,另两种是以四边形为基础的. 【例7】如图,在四边形ABCD 中,AB =AD,CB =CD,E 是CD 上一点,BE 交AC 于F ,连接DF . (1)求证:∠BAC =∠DAC ,∠AFD =∠CFE ; (2)若AB ∥CD ,试证明四边形ABCD 是菱形.八、正方形的性质正方形具有平行四边形、矩形、菱形的一切性质,正方形的四个角都是直角,四条边都相等,正方形的两条对角线相等并且互相垂直平分,每条对角线平分一组对角.【例8】如图,正方形ABCD满足∠AEB=90°,AE=12,BE=16,则阴影部分的面积是A.400 B.192C.208 D.304九、正方形的判定1.对角线互相垂直平分且相等的四边形是正方形;2.对角线互相垂直且相等的平行四边形是正方形;3.对角线互相垂直的矩形是正方形;4.对角线相等的菱形是正方形.【例9】如图,在△ABC中,∠ACB=90°,BC垂直平分线分别交BC,AB于D、E,过C作CF∥AB,交BC的垂直平分线于F,连接BF.(1)判定四边形BECF的形状,并证明;(2)当∠A满足什么条件时,四边形BECF是正方形?证明你的结论.1.下列条件中,能判定一个四边形为菱形的条件是 A .对角线互相平分的四边形 B .对角线互相垂直且平分的四边形 C .对角线相等的四边形D .对角线相等且互相垂直的四边形2.菱形的对角线长分别为3和4,则该菱形的面积是 A .6B .8C .12D .243.在四边形中,能判定这个四边形是正方形的条件是 A .对角线相等,对边平行且相等 B .一组对边平行,一组对角相等C .对角线互相平分且相等,对角线互相垂直D .一组邻边相等,对角线互相平分4.如图,矩形ABCD 的对角线AC 与BD 相交于点O ,∠ADB =30°,AB =4,则OC =A .5B .4C .3.5D .35.如图,已知在矩形ABCD 中,对角线AC ,BD 相交于点O ,AE ⊥BD 于点E ,若∠DAE ∶∠BAE =3∶1,则∠EAC 的度数是A .18°B .36°C .45°D .72°6.在一个直角三角形中,已知两直角边分别为6 cm ,8 cm ,则下列结论不正确的是 A .斜边长为10 cmB .周长为25 cmC .面积为24 cm 2D .斜边上的中线长为5 cm7.在四边形ABCD 中,对角线,AC BD 互相平分,若添加一个条件使得四边形ABCD 是矩形,则这个条件可以是A .90ABC ∠=︒B .AC BD ⊥C .AB CD =D .AB CD ∥8.如图,在长方形ABCD中,AB=3,BC=4,若沿折痕EF折叠,使点C与点A重合,则折痕EF的长为A.158B.154C.152D.159.如图,菱形ABCD的对角线交于点O,AC=8 cm,BD=6 cm,则菱形的高为A.485cm B.245cm C.125cm D.105cm10.如图,在菱形ABCD中,P、Q分别是AD、AC的中点,如果PQ=3,那么菱形ABCD的周长是A.30 B.24 C.18 D.611.在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,则∠EAF等于A.60°B.55°C.45°D.30°12.如图,四边形ABCD是正方形,以CD为边作等边三角形CDE,BE与AC相交于点M,则∠AMD的度数是A.75°B.60°C.54°D.67.5°13.如图,平行四边形ABCD中,AD=5,AB=3,若AE平分∠BAD交边BC于点E,则线段EC的长度为_________.14.如图是一个平行四边形,当∠α的度数为________度时,两条对角线长度相等.15.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6 cm,BC=8 cm,则△AEF的周长为________cm.16.如图,在菱形ABCD中,AB=4,线段AD的垂直平分线交AC于点N,△CND的周长是10,则AC的长为__________.17.如图,菱形ABCD的边长为2,∠ABC=45°,则点D的坐标为__________.18.如图,等边三角形EBC在正方形ABCD内,连接DE,则ADE∠=__________.19.已知菱形ABCD中,对角线AC=16 cm,BD=12 cm,BE⊥DC于点E,求菱形ABCD的面积和BE的长.20.如图,已知四边形ABCD是正方形,延长BC到E,在CD上截取CF=CE,BF交DE于G,求证:BG ⊥DE.21.已知:如图,在四边形ABCD中,∠ABC=∠ADC=90°,点E是AC的中点.(1)求证:△BED是等腰三角形:(2)当∠BCD=________°时,△BED是等边三角形.22.如图,四边形ABCD 中,90A ABC ∠=∠=︒,1AD =,3BC =,E 是边CD 的中点,连接BE 延长与AD 的延长线相交于点F ,连接CF . (1)求证:四边形BDFC 是平行四边形. (2)已知CB CD =,求四边形BDFC 的面积.23.如图,在矩形ABCD 中,AD =12,AB =7,DF 平分∠ADC ,AF ⊥EF .(1)求证:AF =EF ; (2)求EF 长.24.如图,在矩形ABCD 中,M ,N 分别是边AD ,BC 的中点,E ,F 分别是线段BM ,CM 的中点. (1)求证:△ABM ≌△DCM ;(2)当AB ∶AD =__________时,四边形MENF 是正方形,并说明理由.25.如图,矩形ABCD 沿着AE 折叠,使D 点落在BC 边上的F 点处,如果60BAF ∠=︒,则DAE ∠等于A .15°B .30°C .45°D .60°26.如图,在△ABC 中,∠BAC =90°,AD 是BC 边上的高,E 、F 分别是AB 、AC 边的中点,若AB =8,AC =6,则△DEF 的周长为A .12B .13C .14D .1527.如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,DH ⊥AB 于H ,连接OH ,∠DHO =20°,则∠CAD 的度数是A .20°B .25°C .30°D .40°28.如图,以A 点为圆心,以相同的长为半径作弧,分别与射线AM ,AN 交于B ,C 两点,连接BC ,再分别以B ,C 为圆心,以相同长(大于12BC )为半径作弧,两弧相交于点D ,连接AD ,BD ,CD .则下列结论错误的是A .AD 平分∠MANB .AD 垂直平分BC C .∠MBD =∠NCD D .四边形ACDB 一定是菱形29.如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH,若BE∶EC=2∶1,则线段CH的长是A.3 B.4 C.5 D.630.如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边正方形EFGH的周长为A.2B.22C.2+1 D.22+131.如图,在矩形ABCD中,E是AB边上的中点,将△BCE沿CE翻折得到△FCE,连接AF.若∠EAF=75°,那么∠BCF的度数为__________.32.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为____________.33.如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接EF.给出下列五个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=2EC.其中正确结论的序号是____________.34.如图,正方形ABCD中,AB=3,点E、F分别在BC、CD上,且∠BAE=30°,∠DAF=15°.(1)求证:DF+BE=EF;(2)求∠EFC的度数;(3)求△AEF的面积.36.(2018·浙江台州)下列命题正确的是A.对角线相等的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的平行四边形是菱形D.对角线互相垂直且相等的四边形是正方形37.(2018·江苏淮安)如图,菱形ABCD的对角线AC、BD的长分别为6和8,则这个菱形的周长是A.20 B.24 C.40 D.4838.(2018·山东烟台)对角线长分别为6和8的菱形ABCD如图所示,点O为对角线的交点,过点O折叠菱形,使B,B′两点重合,MN是折痕.若B'M=1,则CN的长为A.7 B.6 C.5 D.439.(2018·四川内江)如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为A.31°B.28°C.62°D.56°40.(2018·湖北宜昌)如图,正方形ABCD的边长为1,点E,F分别是对角线AC上的两点,EG⊥A B.EI ⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.则图中阴影部分的面积等于A.1 B.12C.13D.1441.(2018·黑龙江牡丹江)如图,E为矩形ABCD的边AB上一点,将矩形沿CE折叠,使点B恰好落在ED上的点F处,若BE=1,BC=3,则CD的长为A.6 B.5 C.4 D.342.(2018·广西贵港)如图,在菱形ABCD 中,AC =62,BD =6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE +PM 的最小值是A .6B .33C .26D .4.543.(2018·湖南湘潭)如图,已知点E 、F 、G .H 分别是菱形ABCD 各边的中点,则四边形EFGH 是A .正方形B .矩形C .菱形D .平行四边形44.(2018·浙江嘉兴)用尺规在一个平行四边形内作菱形ABCD ,下列作法中错误的是A .B .C .D .45.(2018·四川甘孜州)如图,在菱形ABCD 中,对角线AC 与BD 相交于点86O AC BD ==,,, OE AD ⊥于点E ,交BC 于点F ,则EF 的长为__________.46.(2018·辽宁锦州)如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH.若OB=4,S菱形ABCD=24,则OH的长为__________.47.(2018·四川攀枝花)如图,在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P满足S△PAB=13S矩形ABCD,则点P到A、B两点的距离之和PA+PB的最小值为__________.48.(2018·辽宁葫芦岛)如图,在菱形OABC中,点B在x轴上,点A的标为(2,3),则点C的坐标为__________.49.(2018·四川广安)如图,四边形ABCD是正方形,M为BC上一点,连接AM,延长AD至点E,使得AE=AM,过点E作EF⊥AM,垂足为F,求证:AB=EF.50.(2018·湖南郴州)如图,在ABCD中,作对角线BD的垂直平分线EF,垂足为O,分别交AD,BC 于E,F,连接BE,DF.求证:四边形BFDE是菱形.51.(2018·辽宁沈阳)如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,ABCD的面积是__________.。
2018-2019学年九年级数学上册 第一章 特殊平行四边形 1.2 矩形的性质与判定作业设计 (新版)北师大版
1.2矩形的性质与判定一、选择题(本题包括11个小题.每小题只有1个选项符合题意)1. 如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,观察所得四边形的变化,下列判断错误的是()A. 四边形ABCD由矩形变为平行四边形B. BD的长度增大C. 四边形ABCD的面积不变D. 四边形ABCD的周长不变2. 如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法错误的是()A. ∠ABC=90°B. AC=BDC. OA=OBD. OA=AD3. 如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为()A. 17B. 18C. 19D. 204. 如图,矩形的两条对角线的一个交角为60°,两条对角线的长度的和为20cm,则这个矩形的一条较短边的长度为()A. 10cmB. 8cmC. 6cmD. 5cm5. 如图,在矩形ABCD中,对角线AC、BD相交于点O,若∠ACB=30°,AB=2,则BD的长为()A. 4B. 3C. 2D. 16. 一个矩形被分成不同的4个三角形,其中绿色三角形的面积占矩形面积的15%,黄色的三角形的面积是212,则该矩形的面积为()A. 602B. 702C. 1202D. 14027. 如图,矩形ABCD中,AC交BD于点O,∠AOD=60°,OE⊥AC.若AD=,则OE=()A. 1B. 2C. 3D. 48. 矩形具有而菱形不具有的性质是()A. 对角线相等B. 两组对边分别平行C. 对角线互相平分D. 两组对角分别相等9. 矩形的一内角平分线把矩形的一条边分成3cm和5cm的两部分,则此矩形的周长为()A. 16cmB. 22cmC. 26cmD. 22cm或26cm10. 矩形的对角线所成的角之一是65°,则对角线与各边所成的角度是()A. 57.5°B. 32.5°C. 57.5°,23.5°D. 57.5°,32.5°11. 过四边形的各个顶点分别作对角线的平行线,若这四条平行线围成一个矩形,则原四边形一定是()A. 对角线相等的四边形B. 对角线垂直的四边形C. 对角线互相平分且相等的四边形D. 对角线互相垂直平分的四边形二、填空题(本题包括3个小题)12. 如图,平行四边形ABCD的对角线相交于点O,请你添加一个条件__________(只添一个即可),使平行四边形ABCD是矩形.13. 平行四边形ABCD的对角线相交于点O,分别添加下列条件:①∠ABC=90°;②AC⊥BD;③AB=BC;④AC 平分∠BAD;⑤AO=DO.使得四边形ABCD是矩形的条件有________14. 木工做一个长方形桌面,量得桌面的长为15cm,宽为8cm,对角线为17cm,这个桌面_________(填”合格”或”不合格”)三、解答题(本题包括5个小题)15. 如图,平行四边形ABCD中,点E、F、G、H分别在AB、BC、CD、AD边上且AE=CG,AH=CF.(1)求证:四边形EFGH是平行四边形;(2)如果AB=AD,且AH=AE,求证:四边形EFGH是矩形16. 如图,在△ABC中,AB=AC=5,BC=6,AD为BC边上的高,过点A作AE∥BC,过点D作DE∥AC,AE与DE交于点E,AB与DE交于点F,连结BE.求四边形AEBD的面积17. 如图,在平行四边形ABCD中,∠BAD的平分线交CD于点E,交BC的延长线于点F,连接BE,∠F=45°.求证:四边形ABCD是矩形18. 有一块形状如图所示的玻璃,不小心把DEF部分打碎,现在只测得AB=60cm,BC=80cm,∠A=120°,∠B=60°,∠C=150°,你能设计一个方案,根据测得的数据求出AD的长吗?19. 如图,△ABC中,AB=AC,AD、AE分别是∠BAC与∠BAC的外角的平分线,BE⊥AE.求证:AB=DE答案一、选择题1. 【答案】C【解析】由题意可知,当向右扭动框架时,BD可伸长,故BD的长度变大,四边形ABCD由矩形变为平行四边形,因为四条边的长度不变,所以四边形ABCD的周长不变.原来矩形ABCD的面积等于BC乘以AB,变化后平行四边形ABCD的面积等于底乘以高,即BC乘以BC边上的高,BC边上的高小于AB,所以四边形ABCD 的面积变小了,故A,B,D说法正确,C说法错误.故正确的选项是C.考点:1.四边形面积计算;2.四边形的不稳定性.2. 【答案】D【解析】本题考查了矩形的性质;熟练掌握矩形的性质是解决问题的关键.矩形的性质:四个角都是直角,对角线互相平分且相等;由矩形的性质容易得出结论.∵四边形ABCD是矩形,∴∠ABC=∠BCD=∠CDA=∠BAD=90°,AC=BD,OA=AC,OB=BD,∴OA=OB,∴A、B、C正确,D错误考点:矩形的性质3. 【答案】D【解析】∵O是矩形ABCD的对角线AC的中点,M是AD的中点,∴∠ABC=∠D=90°,CD=AB=5,BC=AD=12,OA=OB,OM为△ACD的中位线,∴OM=CD=2.5,AC==13,∵O是矩形ABCD的对角线AC的中点,∴BO=AC=6.5,∴四边形ABOM的周长为AB+AM+BO+OM=5+6+6.5+2.5=20,故选D.考点:矩形的性质.4. 【答案】D【解析】∵四边形ABCD是矩形,∴OA=OC=AC,OD=OB=BD,AC=BD,∴OA=OB,∵AC+BD=20,∴AC=BD=10cm,∴OA=O B=5cm,∵OA=OB,∠AOB=60°,∴△OAB是等边三角形,∴AB=OA=5cm,故选D.考点:1.矩形的性质;2.等边三角形的判定与性质.5. 【答案】A【解析】在矩形ABCD中,∠ABC=90°,∵∠ACB=30°,AB=2,∴AC=2AB=2×2=4,∵四边形ABCD是矩形,∴BD=AC=4.故选A.6. 【答案】A【解析】黄色三角形与绿色三角形面积之和是矩形面积的50%,而绿色三角形面积占矩形面积的15%,所以黄色三角形面积占矩形面积的(50%-15%)=35%,已知黄色三角形面积是21平方厘米,故矩形的面积=21÷(50%-15%)=21÷35%=60(cm2).故选A.考点:矩形的性质.7.【答案】A【解析】∵四边形ABCD是矩形,∠AOD=60°,∴△ADO是等边三角形,∴OA=,∠OAD=60°,∴∠OAE= 30°,∵OE⊥AC,∴△OAE是一个含30°的直角三角形,∴OE=1,故选A.8.【答案】A【解析】∵矩形具有的性质是:对角线相等且互相平分,两组对边分别平行,两组对角分别相等;菱形具有的性质是:两组对边分别平行,对角线互相平分,两组对角分别相等;∴矩形具有而菱形不具有的性质是:对角线相等.故选A.9. 【答案】D【解析】∵四边形ABCD是矩形,∴AD=BC,AB=CD,AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AB=AE,当AE=3cm时,AB=AE=3=CD,AD=3cm+5cm=8cm=BC,∴此时矩形ABCD的周长是AB+BC+CD+AD=3cm+8cm+3cm+8cm=22cm;当AE=5cm时,AB=AE=5cm=CD,AD=3cm+5cm=8cm=BC,∴此时矩形ABCD的周长是AB+BC+CD+AD=5cm+8cm+5cm+8cm=26cm;故选D.考点:矩形的性质.10. 【答案】D【解析】∵四边形ABCD是矩形,∴∠ABC=90°,AD∥BC,AB∥CD,AC=BD,AO=OC,OB=OD,∴OB=OA=OC=OD,∠OAB=∠OCD,∠DAO=∠OCB,∴∠OAD=∠ODA,∠OCB=∠OBC,∠ODC=∠OCD,∠OAB=∠OBA=×(180°﹣∠AOB)=×(180°﹣65°)=57.5°,∵∠ABC=90°,∴∠ACB=90°﹣57.5°=32.5°,即∠OAD=∠ODA=∠OBC=∠OCB=32.5°,∠OAB=∠OBA=∠ODC=∠OCD=57.5°,对角线与各边所成的角度是57.5°和32.5°,故选D.点睛:本题考查了矩形的性质,三角形的内角和定理,等腰三角形的性质的应用,能正确运用矩形的性质进行推理是解此题的关键,注意:矩形的对角线相等且互相平分.11. 【答案】B【解析】∵四边形EFGH是矩形,∴∠E=90°,∵EF∥AC,EH∥BD,∴∠E+∠EAG=180°,∠E+∠EBO=180°,∴∠EAO=∠EBO=90°,∴四边形AEBO是矩形,∴∠AOB=90°,∴AC⊥BD,故选B.二、填空题12. 【答案】AC=BD.答案不唯一【解析】添加的条件是AC=BD,理由是:∵AC=BD,四边形ABCD是平行四边形,∴平行四边形ABCD是矩形,故答案为:AC=BD.答案不唯一.点睛:本题考查了矩形的判定定理的应用,注意:对角线相等的平行四边形是矩形,此题是一道开放型的题目,答案不唯一.13.【答案】①⑤【解析】要使得平行四边形ABCD为矩形添加:①∠ABC=90°;⑤AO=DO2个即可;故答案为:①⑤.14. 【答案】合格【解析】勾股定理的逆定理:若一个三角形的两边长的平方和等于第三边的平方,则这个三角形的直角三角形.∵∴这个桌面合格.考点:勾股定理的逆定理点评:本题属于基础应用题,只需学生熟练掌握勾股定理的逆定理,即可完成.三、解答题15. 【答案】(1)证明见解析;(2)证明见解析.【解析】(1)易证得△AEH≌△CGF,从而证得BE=DG,DH=BF.故有,△BEF≌△DGH,根据两组对边分别相等的四边形是平行四边形而得证.(2)由题意知,平行四边形ABCD是菱形,连接AC,BD,则有AC⊥B D,由AB=AD,且AH=AE可证得HE∥BD,同理可得到HG∥AC,故HG⊥HE,又由(1)知四边形HGFE是平行四边形,故四边形HGFE是矩形.证明:(1)在平行四边形ABCD中,∠A=∠C,又∵AE=CG,AH=CF,∴△AEH≌△CGF.∴EH=GF.在平行四边形ABCD中,AB=CD,AD=BC,∴AB-AE=CD-CG,AD-AH=BC-CF,即BE=DG,DH=BF.又∵在平行四边形ABCD中,∠B=∠D,∴△BEF≌△DGH.∴GH=EF.∴四边形EFGH是平行四边形.(2)在平行四边形ABCD中,AB∥CD,AB=CD.设∠A=α,则∠D=180°-α.∵AE=AH,∴∠AHE=∠AEH=.∵AD=AB=CD,AH=AE=CG,∴AD-AH=CD-CG,即DH=DG.∴∠DHG=∠DGH=.∴∠EHG=180°-∠DHG-∠AHE=90°.又∵四边形EFGH是平行四边形,∴四边形EFGH是矩形.考点:1.矩形的判定与性质;2.全等三角形的判定与性质;3.平行四边形的判定与性质.16. 【答案】12.【解析】利用平行四边形的性质和矩形的判定定理推知平行四边形AEBD是矩形.在Rt△ADC中,由勾股定理可以求得AD的长度,由等腰三角形的性质求得CD(或BD)的长度,则矩形的面积=长×宽=AD•BD=AD•CD.解:∵AE∥BC,BE∥AC,∴四边形AEDC是平行四边形,∴AE=CD.在△ABC中,AB=AC,AD为BC边上的高,∴∠ADB=90°,BD=CD,∴BD=AE,∴平行四边形AEBD是矩形.在Rt△ADC中,∠ADB=90°,AC=5,CD=BC=3,∴AD==4,∴四边形AEBD的面积为:BD•AD=CD•AD=3×4=12.点睛:本题考查了矩形的判定与性质和勾股定理,根据“等腰三角形的性质和有一内角为直角的平行四边形为矩形”推知平行四边形AEBD是矩形是解题的难点.17. 【答案】证明见解析.【解析】欲证明四边形ABCD是矩形,只需推知∠DAB是直角.证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAF=∠F.∵∠F=45°,∴∠DAE=45°.∵AF是∠BAD的平分线,∴∠EAB=∠DAE=45°,∴∠DAB=90°.又∵四边形ABCD是平行四边形,∴四边形ABCD是矩形.18. 【答案】AD=140cm.【解析】过C作CM∥AB,交AD于M,推出平行四边形ABCM,推出AM=BC=80cm,AB=CM=60cm,∠B=∠AMC,求出∠D=∠MCD,求出CM=DM=60cm,代入AD=AM+DM求出即可.解:过C作CM∥AB,交AD于M,∵∠A=120°,∠B=60°,∴∠A+∠B=180°,∴AM∥BC,∵AB∥CM,∴四边形ABCM是平行四边形,∴AB=CM=60cm,BC=AM=80cm,∠B=∠AMC=60°,∵AD∥BC,∠C=150°,∴∠D=180°﹣150°=30°,∴∠MCD=60°﹣30°=30°=∠D,∴CM=DM=60cm,∴AD=60cm+80cm=140cm.19. 【答案】证明见解析.【解析】先由角平分线和等腰三角形的性质证明AE∥BD,再由AD、AE分别是∠BAC与∠BAC的外角的平分线可证得DA⊥AE,可得AD∥BE,可证得四边形ADBE为矩形,可得结论.证明:∵AD、AE分别是∠BAC与∠BAC的外角的平分线,∴∠BAD+∠EAB=(∠BAC+∠FAB)=90°,∵BE⊥AE,∴DA∥BE,∵AB=AC,∴∠ABC=∠ACB,∵∠FAB=∠ABC+∠ACB=2∠ABC,且∠FAB=2∠EAB,∴∠ABC=∠EAB,∴AE∥BD,∴四边形AEBD为平行四边形,且∠BEA=90°,∴四边形AEBD为矩形,∴AB=DE.点睛:本题主要考查矩形的判定和性质,由角平分线及等腰三角形的性质证明AE∥BD是解题的关键.。
特殊平行四边形(习题及答案)
12. 如图,两张等宽的纸条交叉重叠在一起,重叠的部分 ABCD 是菱形吗?为什么? 【思路分析】 ①读题标注: ②梳理思路: 要证四边形 ABCD 是菱形,根据题目中已有的条件选择判定 定理:_____________________________________________. 【过程书写】
7. 已知四边形 ABCD 是平行四边形,对角线 AC,BD 相交于点 O, 则下列结论不正确的是( ) A.当 AB=BC 时,四边形 ABCD 是菱形 B.当 AC⊥BD 时,四边形 ABCD 是菱形 C.当 OA=OB 时,四边形 ABCD 是矩形 D.当∠ABD=∠CBD 时,四边形 ABCD 是矩形
如图在正方形abcd中对角线acbd相交于点o则图中的等腰三角形共有a4个b6个c8个d10个aadbdbcc第5题图第7题图6
特殊平行四边形(习题)
例题示范
例 1:如图,在矩形 ABCD 中,BE 平分∠ABC,CE 平分∠DCB, BF∥CE,CF∥BE. 求证:四边形 BECF 是正方形.
【思路分析】 ①读题标注:
A.对角线互相平分
B.对角线互相垂直
C.对角线相等
D.每条对角线平分一组对角
5. 符合下列条件之一的四边形不一定是菱形的是( ) A.四条边都相等 B.两组邻边分别相等 C.对角线互相垂直平分 D.两条对角线分别平分一组对角
6. 下列命题错误的是( ) A.矩形的对角线相等 B.对角线互相垂直的四边形是菱形 C.平行四边形的对边相等 D.两组对边分别相等的四边形是平行四边形
13. 如图,在四边形 ABCD 中,AB=BC,对角线 BD 平分∠ABC. P 是 BD 上一点,过点 P 作 PM⊥AD,PN⊥CD,垂足分别为 点 M,N. (1)求证:∠ADB=∠CDB; (2)若∠ADC=90°,求证:四边形 MPND 是正方形.
矩形的性质及判定练习
矩形的性质及判定练习第六课时特殊平⾏四边形------矩形(1)【知识梳理】1.矩形的定义:2.矩形的性质:(1)(2)(3)3.相关结论:已知四边形ABCD是矩形(1)图中相等的线段有:_______________________________________(2)图中相等的⾓有:_______________________________________(3)图中等腰三⾓形有:_______________________________________(4)图中直⾓三⾓形有:_______________________________________(5)图中全等三⾓形有:_______________________________________(6)图中线段之间的关系:_______________________________________4.对称性:(1)_______________________________________(2)_______________________________________5.直⾓三⾓形斜边中线定理:6.矩形的判定:(1)(2)(3)【巩固练习】重点内容: ①具有的⼀切性质;②内⾓都是直⾓;③对⾓线相等;④全等三⾓形的个数;⑤等腰三⾓形的个数;⑥轴对称、中⼼对称;⑦斜边中线定理;⑧平⽅等式;⑨两种⾯积计算⽅法;⑩有⼀个直⾓的→矩形;⑾有三个直⾓的四边形→矩形;⑿对⾓线相等的→矩形.1.矩形具有⽽平⾏四边形不具有的性质是( )A.对⾓线互相平分B.邻⾓互补C.对⾓线相等D.对⾓相等2.在数学活动课上,⽼师和同学们判断⼀个四边形门框是否为矩形,下⾯是某合作学习⼩组的4位同学拟定的⽅案,其中正确的是( )A.测量对⾓线是否相互平分B.测量两组对边是否分别相等C.测量⼀组对⾓是否都为直⾓D.测量其中三个⾓是否都为直⾓3.下列命题中正确的是()A.对⾓线相等的四边形是矩形 B.对⾓相等且有⼀个⾓是直⾓的四边形是矩形C.有⼀个⾓是直⾓的四边形是矩形 D.内⾓都相等的四边形是矩形4.下列性质中,矩形具有⽽平⾏四边形不⼀定具有的是()A、对边相等B、对⾓相等C、对⾓线相等D、对边平⾏5.平⾏四边形的四个内⾓⾓平分线相交所构成的四边形⼀定是()A.⼀般平⾏四边形 B.⼀般四边形 C.对⾓线垂直的四边形 D.矩形6.把⼀张长⽅形的纸⽚按如图所⽰的⽅式折叠,EM、FM为折痕,折叠后的C点落在B′M或B′M 的延长线上,那么∠EMF的度数是( )A.85°B.90°C.95°D.100°7.在矩形ABCD中,∠AOD=130°,则∠ACB=__ _8.已知矩形的⼀条对⾓线长是8cm,两条对⾓线的⼀个交⾓为60°,则矩形的周长为______9.矩形ABCD被两条对⾓线分成四个⼩三⾓形,如果四个⼩三⾓形的周长的和是86cm,对⾓线是13cm,那么矩形的周长是____________10.如图所⽰,矩形ABCD中,AE⊥BD于E,∠BAE=30°,BE=1cm,那么DE的长为.6题图10题图13题图14题图11.直⾓三⾓形斜边上的⾼与中线分别是5cm和6cm,则它的⾯积为___12.已知,在Rt△ABC中,BD为斜边AC上的中线,若∠A=35°,那么∠DBC=13.如图,在△ABC中,∠C=90°,D是AB边的中点,AC=3,BC=4,则CD=__________.14.如图,矩形纸⽚ABCD中,AD=4 cm,AB=10 cm,按如图⽅式折叠,使点B与点D重合,折痕为EF,则DE=______________________cm.15.矩形ABCD的两对⾓线AC、BD相交于点O,∠AOB=60°,OA=3,则AC=_______________,AB=_________________.16.如图,矩形ABCD中,M是CD的中点.求证:(1)△ADM≌△BCM;(2)∠MAB=∠MBA.17.如图所⽰,在四边形ABCD中,∠A=∠ABC=90°,BD=CD,E是BC的中点,求证:?四边形ABED 是矩形.18.如图所⽰,延长等腰△ABC的腰BA⾄点D,使AD=BA,延长腰CA⾄点E,使AE=CA,?连结CD,DE,EB,求证:四边形BCDE是矩形.19.如图所⽰,在平⾏四边形ABCD中,M是BC的中点,∠MAD=∠MDA,求证:四边形ABCD是矩形.20.如图,矩形ABCD中,AC与BD交于O点,BE⊥AC于E,CF⊥BD于F.求证:BE=CF.BA D12第七课时特殊平⾏四边形------矩形(2)1.在矩形ABCD 中AB=4,BC=3,按下列要求折叠,试求出所要求结果(1)如图,把矩形ABCD 沿着对⾓线BD 折叠得△EBD ,BE 交CD 于点F ,求S △BFD ;(2)如图,折叠矩形ABCD ,使AD 与对⾓线BD 重合,求折痕DE 的长;(3)如图,折叠矩形ABCD ,使点D 与点B 重合,求折痕EF 的长;(4)如图,E 是AD 上⼀点,把矩形ABCD 沿着BE 折叠,若点A 恰好落在CD 上的点F 处,求AE的长。
特殊平行四边形的性质和判定(一)(人教版)(含答案)
特殊平行四边形的性质和判定(一)(人教版)一、单选题(共10道,每道10分)1.已知四边形ABCD的两条对角线AC与BD互相垂直,则下列结论正确的是( )A.当AC=BD时,四边形ABCD是矩形B.当AB=AD,CB=CD时,四边形ABCD是菱形C.当AB=AD=BC时,四边形ABCD是菱形D.当AC=BD,AD=AB时,四边形ABCD是正方形答案:C解题思路:选项A:对角线AC与BD互相垂直,AC=BD时,无法得出四边形ABCD是矩形,如图,故此选项错误;选项B:当AB=AD,CB=CD时,无法证明四边形ABCD是菱形,如图,故此选项错误;选项C:如图,当两条对角线AC与BD互相垂直,AB=AD=BC时,∴BO=DO,AO=CO,∴四边形ABCD是平行四边形,又∵AC⊥BD∴平行四边形ABCD是菱形,故此选项正确;选项D:当AC=BD,AD=AB时,无法得到四边形ABCD是正方形,如图,故此选项错误;故选C.试题难度:三颗星知识点:正方形的判定2.如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点处,折痕与边BC交于点E,则CE的长为( )A.6cmB.4cmC.2cmD.1cm答案:C解题思路:∵沿AE对折,点B落在边AD上的点处,∴,,又∵∠BAD=90°,∴四边形是正方形,∴BE=AB=6,∴CE=BC-BE=8-6=2(cm).故选C.试题难度:三颗星知识点:折叠问题3.如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为( )A. B.C. D.答案:D解题思路:在正方形ABCD中,M为边AD的中点,∴,∴,∴,∵,∵四边形EDGF是正方形,∴.故选D.试题难度:三颗星知识点:正方形的性质4.如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.乙:分别作∠BAD,∠ABC的平分线AE,BF,交BC,AD于E,F,连接EF,则四边形ABEF 是菱形.根据两人的作法可判断( )A.甲正确,乙错误B.乙正确,甲错误C.甲、乙均正确D.甲、乙均错误答案:C解题思路:解:甲的作法正确;在平行四边形ABCD中,AD∥BC,∴∠DAC=∠ACN,∵MN是AC的垂直平分线,∴AO=CO,又∵∠AOM=∠CON∴△AOM≌△CON(ASA),∴MO=NO,∴四边形ANCM是平行四边形,∵AC⊥MN,∴四边形ANCM是菱形;乙的作法正确;如图,在平行四边形ABCD中,AD∥BC,∴∠1=∠2,∠6=∠7,∵BF平分∠ABC,AE平分∠BAD,∴∠2=∠3,∠5=∠6,∴∠1=∠3,∠5=∠7,∴AB=AF,AB=BE,∴AF=BE∵AF∥BE,且AF=BE,∴四边形ABEF是平行四边形,∵AB=AF,∴平行四边形ABEF是菱形;故选C.试题难度:三颗星知识点:菱形的判定5.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( )A.1B.C. D.答案:C解题思路:在正方形ABCD中,∠ABD=∠ADB=45°,∵∠BAE=22.5°,∴∠DAE=67.5°,在△ADE中,∠AED=180°-45°-67.5°=67.5°,∴∠DAE=∠DEA,∴AD=DE=4,∵正方形的边长为4,∴,∴,∵EF⊥AB,∠ABD=45°,∴△BEF是等腰直角三角形,∴.故选C.试题难度:三颗星知识点:正方形的性质6.如图,在△ABC中,AC的垂直平分线分别交AC,AB于点D,F,BE⊥DF交DF的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是( )A. B.C.4D.答案:A解题思路:∵DE是AC的垂直平分线,F是AB的中点,∴DF是△ABC的中位线,∴DF∥BC,∴∠C=90°,∴四边形BCDE是矩形.∵∠A=30°,∠C=90°,BC=2,∴AB=4,∴.∴.∴.故选A.试题难度:三颗星知识点:矩形的判定与性质7.如图,矩形ABCD的对角线相交于点O,AE平分∠BAD交BC于E,连接OE,若∠CAE=15°,则∠AEO=( )A.30°B.25°C.22.5°D.20°答案:A解题思路:在矩形ABCD中,∵AE平分∠BAD交BC于E,∴∠AEB=45°,AB=BE,∵∠CAE=15°,∴∠ACB=30°,∴∠BAO=60°,又∵OA=OB,∴△BOA是等边三角形,∴OA=OB=AB,即OB=AB=BE,∴△BOE是等腰三角形,且∠OBE=∠OCB=30°,∴∠BOE=∠BEO=75°,∴∠AEO=∠BEO-∠BEA=75°-45°=30°,故选A.试题难度:三颗星知识点:矩形的性质8.如图所示,在平行四边形ABCD中,AE是∠DAB的平分线,EF∥AD交AB于点F,若AB=9,CE=4,AE=8,则DF等于( )A.4B.8C.6D.9答案:C解题思路:∵AB∥CD,∴∠EAF=∠AED.又AE是∠DAB的平分线,∴∠DAE=∠AED,∴AD=ED.∵AB∥CD,EF∥AD∥BC,∴四边形ADEF和四边形BCEF是平行四边形.∴四边形ADEF是菱形.∴AD=DE=DC-EC=5,,AE⊥DF.∴∴DF=2DO=6.故选C.试题难度:三颗星知识点:菱形的判定9.如图,在菱形ABCD中,延长AD到点E,连接BE交CD于点H,交AC于点F,且BF=DE,若DH=2,则FH的长为( )A.1B.C.2D.答案:C解题思路:如图,连接DF,在菱形ABCD中,AB=AD,∠BAF=∠DAF,又∵AF=AF,∴△ABF≌△ADF(SAS),∴∠ABF=∠ADF,BF=DF,∵∠ABC=∠ADC,∴∠CBH=∠CDF,∵BF=DE,∴DE=DF,∴∠DFE=∠E,∵BC∥AE,∴∠CBE=∠E,∴∠DFE=∠CDF,∴FH=DH=2.故选C试题难度:三颗星知识点:菱形的性质10.如图,在△ABC中,AB=AC,点D,E分别是边AB,AC的中点,点G,F在BC边上,四边形DEFG是正方形.若DE=2cm,则AC的长为( )A.cmB.4cmC.cmD.cm答案:D解题思路:∵点D,E分别是边AB,AC的中点,∴DE是△ABC的中位线,∴,∵DE=2,∴BC=4,∵AB=AC,∴DB=EC,在正方形DEFG中,DG=EF,∠DGF=∠EFG=90°,∴∠DGB=∠EFC=90°,∴△BDG≌△CEF(HL),∴BG=CF=1,∴,∴.故选D.试题难度:三颗星知识点:正方形的性质。
北师大版数学九年级上册矩形的性质与判定 同步练习题 含答案
第一章特殊平行四边形 1.2 矩形的性质与判定1. 如图,在△ABC中,BD,CE是高,点G,F分别是BC,DE的中点,则下列结论中错误的是( )A.∠DGE=60° B.GF⊥DE C.GF平分∠DGE D.GE=GD2. 如图,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别是AO,AD 的中点,若AB=6 cm,BC=8 cm,则△AEF的周长等于( )A. 7cmB. 8cmC. 9cmD. 10cm3. 如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为( )A. 13B. 14 C, 15 D. 164. 如图,在△ABC中,点D,E,F分别为边BC,AC,AB的中点,AH⊥BC于点H,若FD=8 cm,则HE等于( )A. 11cmB. 10cmC. 9cmD. 8cm5. 矩形具有而一般平行四边形不具有的性质是( )A.对边相等 B.对角线相等 C.对角相等 D.对角线互相平分6. 下列四边形不是矩形的是( )A.有三个角都是直角的四边形B.四个角都相等的四边形C.对角线相等且互相平分的四边形D.一组对边平行,且对角相等的四边形7. 如图,顺次连接四边形ABCD各边中点得四边形EFGH,要使四边形EFGH为矩形,应添加的条件是( )A.AC⊥BD B.AC=BD C.AB∥DC D.AB=DC8. 在数学活动课上, 老师和同学们判断一个四边形门框是否为矩形, 下面是某合作学习小组的4位同学拟订的方案, 其中正确的是( ) A .测量两组对边是否分别相等 B .测量对角线是否相互平分 C .测量其内角是否都为直角 D . 测量对角线是否垂直9. 如图,在矩形ABCD 中(AD >AB),点E 是BC 上一点,且DE =DA ,AF ⊥DE ,垂足为点F ,在下列结论中,不一定正确的是( )A .BE =AD -DFB .AF =12ADC .AB =AFD .△AFD ≌△DCE10. 如图,点P 是矩形ABCD 的边AD 上的一动点,矩形的两条边AB ,BC 的长分别是6和8,则点P 到矩形的两条对角线AC 和BD 的距离之和是( )A .4.8B .5C .6D .7.211. 如图,矩形ABCD 的顶点A ,C 分别在直线a ,b 上,且a∥b,∠1=60°,则∠2=12. 如图,矩形ABCD的两条对角线相交于点O,∠AOB=120°,AD=2,则矩形ABCD的面积=13. 如图,四边形ABCD的对角线AC,BD相交于点O,已知条件:①AB∥CD;②AB=DC;③AC=BD;④∠ABC=90°;⑤OA=OC;⑥OB=OD,则下列条件的组合不能使四边形ABCD成为矩形的选项是 (填序号)14. 在平面直角坐标系中,A点坐标为(3,0),B点坐标为(0,2),要使四边形OBCA为矩形,则C点的坐标为________.15. 已知一直角三角形的周长是4+26,斜边的中线长是2,则这个三角形的面积是16. 如图,将△ABC绕AC的中点O顺时针旋转180°得到△CDA,添加一个条件,使四边形ABCD为矩形.17. 如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形OCED的周长为18. 如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平;再一次折叠,使点D落到EF上点G处,并使折痕经过点A,展平纸片后∠DAG的大小为19. 矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D 是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为20. 如图,在矩形ABCD中,AB=1,点E,F分别为AD,CD的中点,沿BE将△ABE折叠,若点A恰好落在BF上,则AD=________.21. 如图,四边形ABCD是矩形,把矩形沿AC折叠,点B落在点E处,AE与DC 的交点为点O,连接DE.(1)求证:△ADE≌△CED;(2)求证:DE∥AC.22. 如图,在▱ABCD中,E是BC的中点,且EA=ED.(1)求证:四边形ABCD是矩形;(2)若BC=6 cm,AE=5 cm,求S▱ABCD.23. 如图,在矩形ABCD中,点E,F分别是边BC,AB上的点,且EF=ED,EF⊥ED.求证:AE平分∠BAD.24. 如图,四边形ABCD 的对角线AC ,BD 相交于点O ,已知O 是AC 的中点,AE =CF ,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD =12AC ,则四边形ABCD 是什么特殊四边形?请证明你的结论.25. 如图,△ABC中,点O是边AC上一个动点,过点O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=8,CF=6,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.答案:1---10 ACBDB DADBA 11. 60° 12. 4 3 13. ② ⑤ ⑥ 14. (3,2) 15. 5216. ∠B=90°或∠BAC+∠BCA=90° 17. 818. 60°19. (3,43) 20. 221. 解:(1)∵四边形ABCD 是矩形,∴AD =BC ,AB =CD ,由折叠知BC =CE =AD ,AB =AE =CD ,又∵DE =ED ,∴△ADE ≌△CED(SSS ).(2)∵△ADE ≌△CED ,∴∠EDC =∠DEA ,由折叠知∠OAC =∠CAB ,又∵∠OCA =∠CAB ,∴∠OAC =∠OCA ,∵∠EOC =∠EAB ,∴2∠OAC =2∠DEA ,∴∠OAC =∠DEA ,∴DE ∥AC.22. (1)证明:∵四边形ABCD 是平行四边形,∴AB=CD ,又∵EA=ED , BE =EC ,∴△ABE≌△DCE,∴∠B=∠C,∵AB∥CD,∴∠B+∠C=180°,∴∠B=12×180°=90°,∴▱ABCD 是矩形 (2)在Rt△ABE 中,BE =12BC =3(cm), ∴AB=AE 2-BE 2=4(cm),∴S ▱ABCD =AB·BC=4×6=24(cm 2).23. 证明:∵四边形ABCD 是矩形,∴∠B=∠C=∠BAD=90°,AB =CD , ∴∠BEF+∠BFE=90°,∵EF⊥ED,∴∠BEF+∠CED=90°,∴∠BFE=∠CED,同理∠BEF=∠EDC.在△EBF 与△DCE 中,⎩⎪⎨⎪⎧∠BFE=∠CED,EF =ED ,∠BEF=∠EDC,∴△EBF≌△DCE(ASA ).∴BE=CD.∴BE=AB.∴∠BAE=∠BEA=45°.∴∠EAD=45°.∴∠BAE=∠EAD,即AE 平分∠BAD.24. (1)证明:∵DF∥BE,∴∠FDO=∠EBO,∠DFO=∠BEO,∵OA=OC , AE =CF ,∴OE=OF ,∴△BOE≌△DOF(AAS ).(2)若OD =12AC ,则四边形ABCD 是矩形.证明如下:∵△BOE≌△DOF, ∴OB=OD ,又∵OD=12AC ,OA =OC ,∴OA=OB =OC =OD , ∴BD=AC ,∴四边形ABCD 为矩形.25. (1)证明:如图所示,∵MN 交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于点F ,∴∠2=∠5,∠4=∠6,∵MN ∥BC ,∴∠1=∠5,∠3=∠6,∴∠1=∠2,∠3=∠4,∴EO =CO ,FO =CO ,∴OE =OF.(2)∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°,∵CE=8,CF =6,∴EF=82+62=10,∴OC=12EF =5. (3)当点O 在边AC 上运动到AC 中点时,四边形AECF 是矩形.理由如下:当O 为AC 的中点时,AO =CO ,∵EO =FO ,∴四边形AECF 是平行四边形,∵∠ECF =90°,∴平行四边形AECF 是矩形.1、最困难的事就是认识自己。
特殊平行四边形练习题
特殊平行四边形练习题〔矩形,菱形,正方形〕矩形的习题精选一、性质1、以下性质中,矩形具有而平行四边形不一定具有的是〔 〕A 、对边相等B 、对角相等C 、对角线相等D 、对边平行2.在矩形ABCD 中,∠AOD=130°,那么∠ACB=__ _3.矩形的一条对角线长是8cm ,两条对角线的一个交角为60°,那么矩形的周长为______4.矩形ABCD 被两条对角线分成四个小三角形,如果四个小三角形的周长的和是86cm ,对角线是13cm ,那么矩形的周长是____________5.如下图,矩形ABCD 中,AE ⊥BD 于E ,∠BAE=30°,BE=1cm ,那么DE 的长为_____6、直角三角形斜边上的高与中线分别是5cm 和6cm ,那么它的面积为___7、,在Rt △ABC 中,BD 为斜边AC 上的中线,假设∠A=35°,那么∠DBC= 。
8、如图,矩形ABCD 中,AC 与BD 交于O 点,BE ⊥AC 于E ,CF ⊥BD 于F.求证:BE=CF.9.如图,△ABC 中,∠ACB=900,点D 、E 分别为AC 、AB 的中点,点F 在BC 延长线上,且∠CDF=∠A ,求证:四边形DECF 是平行四边形;:如图,在△ABC 中,∠BAC ≠90° ∠ABC=2∠C ,AD ⊥AC ,交BC 或CB 的延长线D 。
试说明:DC=2AB.11、在△ABC 中,∠C=90O ,AC=BC ,AD=BD ,PE ⊥AC 于点E , PF ⊥BC 于点F 。
求证:DE=DF二、判定1、以下检查一个门框是否为矩形的方法中正确的选项是〔 〕A .测量两条对角线,是否相等B .测量两条对角线,是否互相平分C .用曲尺测量门框的三个角,是否都是直角D .用曲尺测量对角线,是否互相垂直2、平行四边形ABCD ,E 是CD 的中点,△ABE 是等边三角形,求证:四边形ABCD 是矩形A B E F O3、在平行四边形ABCD 中,对角线AC 、BD 相交于O ,EF 过点O ,且AF ⊥BC ,求证:四边形AFCE 是矩形4、平行四边形ABCD 中,对角线AC 、BD 相交于点O,点P是四边形外一点,且PA ⊥PC ,PB ⊥PD ,垂足为P。
初中数学特殊平行四边形的性质与判定基础题(含答案)
初中数学特殊平行四边形的性质与判定基础题一、单选题(共12道,每道8分)1.菱形具有而一般平行四边形不具有的性质是()A.两组对边分别平行B.两组对边分别相等C.一组邻边相等D.对角线相互平分答案:C试题难度:三颗星知识点:菱形的性质2.菱形的两对角线的长分别为12、16,那么菱形的面积是()A.192B.96C.48D.24答案:B试题难度:三颗星知识点:菱形的面积3.已知菱形周长是24,一个内角为60°,则菱形的面积为()A.6B.18C. D.答案:C试题难度:三颗星知识点:菱形的性质4.下列命题正确的是(__)A.邻角相等的四边形是菱形B.有一组邻边相等的四边形是菱形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是菱形答案:D试题难度:三颗星知识点:菱形的判定5.平行四边形ABCD的对角线AC,BD相交于点O,且AB=5,AO=4,BO=3,则四边形ABCD 是()A.菱形B.矩形C.正方形D.梯形答案:A试题难度:三颗星知识点:菱形的判定6.矩形具有而平行四边形不具有的性质()A.两组对角分别相等B.对角线相等C.对角线互相平分D.两组对边分别相等答案:B试题难度:三颗星知识点:矩形的性质7.下列说法中不能判定四边形是矩形的是(__)A.四个角都相等的四边形B.有一个角为90°的平行四边形C.对角线相等的平行四边形D.对角线互相平分的四边形答案:D试题难度:三颗星知识点:矩形的判定8.如图,四边形ABCD是矩形,且∠AOB=60°,AB=4,则BD的长为()A.4B.6C.8D.10答案:C试题难度:三颗星知识点:矩形的计算9.正方形ABCD的两条对角线AC,BD相交于点O,则图中共有()个等腰直角三角形A.6B.8C.10D.4答案:B试题难度:三颗星知识点:正方形性质10.能判定四边形是正方形的是()A.对角线互相垂直且相等的四边形B.对角线互相垂直的平行四边形C.对角线相等的菱形D.对角线互相垂直平分的四边形答案:C试题难度:三颗星知识点:正方形判定11.将4个边长都为1cm的正方形按如图所示摆放,点A1,A2,…,A4分别是正方形的中心,则这4个正方形重叠形成的重叠部分的面积和为(__)cm2.A.2B.1C.4D.答案:B试题难度:三颗星知识点:正方形的性质与计算112.已知如图,AD是△ABC的角平分线,DE∥AC交AB于E,DF∥AB交AC于F,求证:四边形AEDF是菱形.证明:如图,∵DE∥AC交AB于E,DF∥AB交AC于F∴_______________________________∵AD是△ABC的角平分线∴∠1=∠2∵______________________________∴∠1=∠3∴___________________________∴AF=DF∴__________________________下列选项填入以上空格,正确的是()①四边形AEDF是菱形;②∠2=∠3;③四边形AEDF为平行四边形;④DF∥AB.A.③④①②B.③①②④C.③①④②D.③④②①答案:D试题难度:三颗星知识点:特殊平行四边形的证明题规范书写。
八下第5章特殊平行四边形5-1矩形5-1-1矩形的概念与性质习题新版浙教版
10 如图,在矩形ABCD中,点E在边BC的延长线上,且 CE=BD,连结AE交BD于F,如果∠E=20°,那么 ∠AFB的度数为____6_0_°__.
【点拨】
连结AC交BD于点O, ∵四边形ABCD是矩形,
∴OA=OC=
12AC,OB=OD=
1 2
BD,AC=BD,
∴OB=OC,∴∠OBC=∠OCB.
D. 4
【点拨】
∵四边形 ABCD 是矩形,AB=5,AD=12, ∴∠C=90°,CD=AB=5,BC=AD=12, ∴BD= CB2+CD2=13.过点 E 作 EH⊥BD 于点 H, ∴∠DHE=90°. ∵DE 平分∠BDC,∴EH=EC.
【点拨】
在 Rt△ CDE 与 Rt△HDE 中,DCEE==HDEE,, ∴Rt△ CDE≌Rt△ HDE(HL),∴DH=CD=5, ∴BH=8,设 BE=x,∴EH=CE=12-x. ∵BE2=BH2+EH2,∴x2=82+(12-x)2, 解得 x=236,∴线段 BE 的长为236.
4 平行四边形没有而矩形具有的性质是( A )
A. 对角线相等
B. 对角线互相垂直
C. 对角线互相平分
D. 对角相等
5 【2023·宁波模拟】如图,点E在矩形ABCD边BC的 延长线上,连结AC,DE,BE=AC,若∠E=70°, 则∠ACB的度数是( A ) A. 40° B. 50° C. 70° D. 30°
【点拨】 又∵AE=BF,∴Rt△ AME≌Rt△ BNF(HL), ∴ME=FN. 设 ME=FN=x, 在 Rt△ AMB 和 Rt△ BNA 中,AABM==BBAN,, ∴Rt△ AMB≌Rt△ BNA(HL),∴BM=AN, ∴BE-ME=AF+FN,即 3-x=1+x, 解得 x=1,∴ME=1,BM=2.
矩形的性质和判定练习题
矩形的性质和判定练习题1、如图,矩形ABCD,E是BC的中点,且∠AED=90°,当AD=10cm时,AB=_______ 1题2、如果一个矩形较短的边长是5cm,两条对角线所夹的角为60°,则这个矩形的面积是________3、矩形具有而一般平行四边形不具有的性质是()A、对边平且相等B、对角相等C、对角线互相平分D、对角互补4、在矩形ABCD中,对角线AC、BD相交于点O,以下说法错误的是()A、∠ABC=90°B、AC=BDC、OA=OBD、OA=AD5、如图,将矩形ABCD沿对角线BD折叠,使点C与C′重合,若AB=3,则C′D的长为_____5题 6题6、如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为_______7、若直角三角形的两直角边长分别是5和12,则斜边上的中线长是______8、如图,在Rt△ABC中,斜边上的中线CF=8cm,则中位线DE=______9、下列命题错误的是()A、对角线相等且互相平分的四边形是矩形 8题B、矩形的每条对角线分矩形所得的三角形都全等C、对角线相等且有一个角是直角的四边形是矩形D、四个角都相等的四边形是矩形10、如图,平行四边形ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,AB=4cm,(1)求四边形ABCD是矩形(2)求矩形ABCD的面积11、如图,在矩形ABCD中,对角线AC、BD交于点O,过顶点C 作BD的平行线交AD的延长线于点E,△ACE是什么三角形?说明你的理由。
12、如图,将矩形ABCD沿BD对折,点A落在点E处,BE与CD相交于点F,若AD=3,BD=6(1)求证:△EDF≌△CBF(2)求∠EBC的度数13、如图,在矩形ABCD中,BE平分∠ABC,交CD于点E,点F在边BC上。
(1)如果FE⊥AE,求证:FE=AE(2)如果FE=AE,你能证明FE⊥AE吗?14、如图,四边形ABCD是矩形,对角线AC、BD相交于点O,CE∥BD,交AB的延长线于点E(1)求证:AC=CE(2)若∠ACB=30°,BO=4,求四边形AECD的面积15、如图,在四边形ABCD中,对角线AC、BD相交于点O,AD∥BC,∠ABC=∠ADC,OA=OB,点P在边AD上,过点P作PE⊥BD于点E,PF⊥AC于点F。
2022年北师大版九年级数学中考复习《特殊平行四边形》考点分类练习题
2022年春北师大版九年级数学中考复习《特殊平行四边形》考点分类练习题(附答案)一.矩形的性质1.如图,已知点P是矩形ABCD内一点(不含边界),设∠P AD=θ1,∠PBA=θ2,∠PCB =θ3,∠PDC=θ4,若∠APB=80°,∠CPD=50°,则()A.(θ1+θ4)﹣(θ2+θ3)=30°B.(θ2+θ4)﹣(θ1+θ3)=40°C.(θ1+θ2)﹣(θ3+θ4)=70°D.(θ1+θ2)+(θ3+θ4)=180°2.如图,点E,点F分别在矩形ABCD的边AB,AD上,连接AC,CE,CF,若CE是△ABC的角平分线,CF是△ACD的中线,且∠BCE=∠FCD,则=.3.如图,在矩形ABCD中对角线AC,BD交于点O,DE平分∠ADC交AB于点E,连接OE,若AD=6,AB=8,则OE=.4.如图,矩形ABCD的对角线AC,BD相交于点O,作DE∥AC,CE∥BD,DE,CE相交于点E.(1)求证:四边形OCED是菱形.(2)若矩形ABCD的面积为50,sin∠EDC=,求点E到直线AB的距离.二.矩形的判定5.如图,在平行四边形ABCD中,E、F分别是AD、BC的中点,连接AF、BE交于点G,连接CE、DF交于点H.(1)求证:四边形EGFH为平行四边形;(2)当AB与BC满足什么条件时,四边形EGFH为矩形?并说明理由.6.如图,在平行四边形ABCD中,对角线AC、BD交于点O.(1)若DE⊥AC于点E,BF⊥AC于点F,求证:AE=CF;(2)若DO=AC,求证:四边形ABCD为矩形.三.菱形的性质7.如图,菱形ABCD中,∠A=60°,点E为边AD上一点,连接BE,CE,CE交对角线BD于点F.若AB=2,AE=DF,则AE=.8.如图,在菱形ABCD中,点G在边CD上,∠DAG=∠DBC,且DG:CG=2:3,则sin ∠ABC=.9.如图,在菱形ABCD中,对角线AC,BD相交于点O,AB=6,sin∠DBC=.(1)求对角线BD的长;(2)若E是BC的中点,连接AE,交BD于点F,求△BEF的面积.10.如图,在菱形ABCD中,BE⊥CD于点E,DF⊥BC于点F.(1)求证:BE=DF;(2)若∠A=45°,求的值.四.菱形的判定11.如图,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥BD,AC平分∠BAD.(1)给出下列四个条件:①AB=AD,②OB=OD,③∠ACB=∠ACD,④AD∥BC,上述四个条件中,选择一个合适的条件,使四边形ABCD是菱形,这个条件是(填写序号);(2)根据所选择的条件,证明四边形ABCD是菱形.12.如图,点E、F分别在▱ABCD的边AB、CD的延长线上,且BE=DF,连接AC、EF、AF、CE,AC与EF交于点O.(1)求证:AC、EF互相平分;(2)若EF平分∠AEC,求证:四边形AECF是菱形.五.正方形的性质13.如图,在正方形ABCD中,点E,F分别在边AD,CD上,且AE=DF,连接并延长AF,分别交BE于点G,BC延长线于点H.(1)请判断BE与AF的位置关系,并说明理由.(2)连接EH,若EB=EH,求证BG=2GE.14.如图,E,F是正方形ABCD的对角线AC上的两点,且AE=CF.(1)求证:四边形BEDF是菱形;(2)若正方形边长为2,AE=1,求菱形BEDF的面积.15.如图,在正方形ABCD中,AB=12,G是BC延长线上一点,AG交BD于点M,交CD 于点H,OG交CD于点N.(1)若BC=CG,①证明:△ADH≌△GCH;②求tan∠MAO;(2)若MN∥AC,求ON的长.16.如图,点P是正方形ABCD边AB上一点(不与点A,B重合),连接PD并将线段PD 绕点P顺时针方向旋转90°得到线段PE,PE交边BC于点F,连接BE,DF.(1)求证:∠ADP=∠EPB;(2)求∠CBE的度数;(3)当的值等于多少时,△PFD∽△BFP?并说明理由.17.如图,在正方形ABCD中,点E为对角线AC,BD交点,AF平分∠DAC交BD于点G,交DC于点F.(1)求证:△AEG∽△ADF.(2)判断△DGF的形状.(3)若AG=1,求GF的长.18.如图,正方形ABCD中,点E是边AB上一动点,点F在边AD的延长线上,且BE=DF.连接CE,CF,EF,AC,EF与AC交于点M.(1)求证:CE=CF.(2)若AM=AC,试求∠BCE的度数.(3)设EF的中点为P,连接DP.在点E的运动过程中,的值是否会发生变化?若不变,请求出它的值;若变化,请求出它的取值范围.19.如图,正方形ABCD中,点E在边AB上运动(不与点A,B重合),连结EC,过点E 作EF⊥EC,EF=EC,过点F作FP⊥直线AB,P为垂足,连结CF,与AD相交于点G.(1)求证:PF=BE;(2)当E是AB的中点时,求的值;(3)设x=,y=,求y关于x的函数关系式.六.正方形的判定20.下列说法正确的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线相等的四边形是矩形C.每一条对角线都平分一组对角的四边形是菱形D.对角线互相垂直且相等的四边形是正方形21.如图,在四边形ABCD中,∠A=∠B=90°,AB=BC=4,AD=3,E是边AB上一点,且∠DCE=45°,则DE的长度是()A.3.2B.3.4C.3.6D.4七.折叠专题22.如图是一张矩形纸片ABCD,点M是对角线AC的中点,点E在BC边上,把△DCE 沿直线DE折叠,使点C落在对角线AC上的点F处,连接DF,EF.若MF=AB,则∠DAF=度.23.如图是一张矩形纸片,点E在AB边上,把△BCE沿直线CE对折,使点B落在对角线AC上的点F处,连接DF.若点E,F,D在同一条直线上,AE=2,则DF=,BE=.24.如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的面积为4,△D′PH的面积为1,则矩形ABCD的面积等于.25.折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD=.26.如图,在矩形ABCD中,AB=2,点E在边CD上,把△ADE沿直线AE翻折,使点D 落在对角线AC上的点F处,联结BF.如果点E、F、B在同一条直线上,那么DE的长是.八.综合27.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC 交BE的延长线于点F.(1)证明:四边形ADCF是菱形;(2)若AC=3,AB=4,求菱形ADCF的面积.28.如图,在菱形ABCD中,点O是对角线AC的中点,过点O的直线EF与边AD、BC 交于点E、F,∠CAE=∠FEA,连接AF、CE.(1)求证:四边形AFCE是矩形;(2)若AB=5,AC=2,直接写出四边形AFCE的面积.29.在平行四边形ABCD中,∠BAD的平分线交直线BC于点E,交直线DC的延长线于点F,以EC、CF为邻边作平行四边形ECFG.(1)如图1,证明平行四边形ECFG为菱形;(2)如图2,若∠ABC=90°,M是EF的中点,求∠BDM的度数;(3)如图3,若∠ABC=120°,请直接写出∠BDG的度数.参考答案一.矩形的性质1.解:∵矩形ABCD,∴∠BAD=∠BCD=90°,∴∠BAP=90°﹣θ1,∠DCP=90°﹣θ3,∴△ABP中,90°﹣θ1+θ2+80°=180°,即θ2﹣θ1=10°,①△DCP中,90°﹣θ3+θ4+50°=180°,即θ4﹣θ3=40°,②由②﹣①,可得(θ4﹣θ3)﹣(θ2﹣θ1)=30°,即(θ1+θ4)﹣(θ2+θ3)=30°,故选:A.2.解:法一、如图,过点E作EG⊥AC于点G,设DF=a,DC=b,∵CF是△ACD的中线,∴AD=2DF=2a,∴BC=2a,∵∠BCE=∠FCD,∠B=∠D=90°,∴△BCE∽△DCF,∴,即,∴BE=,∵CE是△ABC的角平分线,∠B=90°,EG⊥AC∴EG=BE=,CG=BC=2a,∵AB∥CD,∴∠BAC=∠ACD,∵∠EGA=∠D=90°,∴△EAG∽△ACD,∴,即,解得AG=a,∴AC=AG+CG=3a,在Rt△ACD中,(3a)2=(2a)2+b2,解得,b=a,∴==.故答案为:.法二、如图,延长AD至点M,使DM=FD,设AF=FD=DM=a,MC=b,可得,∠MCD=∠FCD=∠ACE=∠BCE,∠MAC=∠ACB=∠MCF=2∠FCD,∴△MAC∽△MCF,∴,即,∴b=a,∴AB=CD==a,∴=.故答案为:.3.解:过点O作OM⊥AB于点M,∵四边形ABCD是矩形,∴∠ADC=∠DAB=90°,OA=OB=OC=OD,又∵DE平分∠ADC,∴∠ADE=45°,∴△DAE为等腰直角三角形,∴AE=DA,∵AD=6,AB=8,∴AE=6,BE=2,在Rt△DAB中,AC===10,∴OA=OB=5,∵OM⊥AB,∴AM=MB=4,∴OM===3,又∵ME=MB﹣EB=4﹣2=2,在Rt△OME中,OE===,故答案为:.4.解:(1)∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形.∵ABCD为矩形,∴AC=BD,OB=OD,AO=CO,∴OC=OD,∴四边形OCED是菱形.(2)连接EO并延长交CD于G交AB于F,∵四边形OCED是菱形,∴EO⊥CD,且EO=2EG,∠EDC=∠BDC,∵四边形ABCD为矩形,∴EF⊥AB,设EG=m,∵sin∠EDC=,∴DE=3EG=3m,DG=,∴CD=2DG=4m,∵EG=GO=OF,∴GF=2EG=2m,∴矩形ABCD的面积为CD•GF,即2m•4m=50,解得m=或m=﹣(舍).∴点E到AB的距离为3m=.解法二:依据菱形的性质得出sin∠EDC=sin角BDC=BC比BD,从而得出BC长度,再根据中位线定理得出OG,从而得出EF.二.矩形的判定5.(1)证明:连接EF,如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵点E、F分别是AD、BC的中点∴AE=ED=AD,BF=FC=BC,∴AE∥FC,AE=FC.∴四边形AECF是平行四边形.∴GF∥EH.同理可证:ED∥BF且ED=BF.∴四边形BFDE是平行四边形.∴GE∥FH.∴四边形EGFH是平行四边形.(2)解:当BC=2AB时,平行四边形EGFH是矩形.理由如下:由(1)同理易证四边形ABFE是平行四边形,当BC=2AB时,AB=BF,∴四边形ABFE是菱形,∴AF⊥BE,即∠EGF=90°,∴平行四边形EGFH是矩形.6.证明:(1)∵四边形ABCD是平行四边形,∴AD=CB,AD∥BC,∴∠DAE=∠BCF,∵DE⊥AC,BF⊥AC,∴∠DEA=∠BFC=90°,在△DEA与△BFC中,,∴△DEA≌△BFC(AAS),∴AE=CF;(2)∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∴OA=BD,∴OA=OC=OB=OD,∴AC=BD,∴平行四边形ABCD是矩形.三.菱形的性质7.解:∵四边形ABCD是菱形,∠A=60°∴AB=AD=CD=BC,∠A=∠BCD=60°,AD∥BC,∴△ABD和△CBD是等边三角形,∴AD=BD=AB=2,∵AD∥BC,∴△DEF∽△BCF,∴,∴,∴AE=3±,∵2﹣AE>0,∴AE=3﹣,故答案为:3﹣.8.解:设AG与BD交于点E,过G点作GF⊥AD交AD于点F,∵四边形ABCD为菱形,∴∠ABC=∠ADG,∴AB=AD=CD=BC,AB∥CD,AD∥BC,∴△ABE∽△GDE,∵,设DG=2x,∵DG:CG=2:3,∴CG=3x,∴AB=AD=CD=BC=5x,设AE=y,∵AD∥BC,∴∠ADB=∠DBC,∵∠DAG=∠DBC,∴∠ADB=∠DAG,∴AE=DE,∴DE=AE=y,∴,∴BE=y,GE=y,∴AG=y,∵四边形ABCD为菱形,∴BD平分∠ADG,∴∠ADG=2∠ADB,∵∠DEG=∠ADB+∠DAG=2∠ADB,∴∠ADG=∠DEG,∵∠AGD=∠DGE,∴△ADG∽△DEG,∴,∴,∴y,设AF=t,则DF=5x﹣t,∵FG2=AG2﹣AF2=DG2﹣DF2,∴(y)2﹣t2=(2x)2﹣(5x﹣t)2,∴t=,∴DF=5x﹣x=,∴FG==x,∴sin∠ABC=.解法二:过点A作AF⊥BC于F,设AG交BD于E,连接AC交BD于O.∵四边形ABCD是菱形,∴AB=BC=CD=AD,∠ADB=∠BDC=∠ABD=∠CBD,∵∠DAG=∠CBD,∴∠DAE=∠ADE,∴AE=ED,设AE=ED=x.菱形的边长为a,∵AB∥DG,DG:GC=2:3,CD=AB,∴==,∴BE=x,BD=x,∵∠EAD=∠EDA=∠CBD=∠CDB,∴△AED∽△BCD,∴=,∴=,∴a=x,∵OB=OD=x,∴OE=OD﹣DE=x,∴OA===x,∴AC=2AO=x,∵•AC•BO=•BC•AF,∴AF==x,∴sin∠ABC===.故答案为:.9.解:(1)∵四边形ABCD是菱形,AB=6,∴BC=AB=6,AC⊥BD,BO=DO,∵sin∠DBC==,∴CO=2,由勾股定理得:BO===4,∴BD=2BO=8;(2)过E作EM⊥BD于M,∵AC⊥BD,∴∠EMB=90°,EM∥AC,∵E为BC的中点,∴M为OB的中点,∴BM=OM=OB==2,ME=OC==1,∵ME∥AC,∴△EMF∽△AOF,∴=,∵AO=OC=2,∴=,解得:MF=,即BF=BM+MF=2+=,∴△BEF的面积是=×1=.10.证明:(1)∵四边形ABCD是菱形,∴BC=CD,在△BCE和△DCF中,,∴△BCE≌△DCF(AAS),∴BE=DF;(2)∵∠A=45°=∠C,BE⊥CD,∴∠C=∠EBC=45°,∴BE=EC,∴BC=EC=DC,∴DE=EC﹣EC,∴=﹣1.四.菱形的判定11.解:(1)这个条件是④;故答案为:④;(2)∵AC⊥BD,AC平分∠BAD,∴∠BAO=∠DAO,∠AOB=∠AOD=90°,∵AO=AO,∴△ABO≌△ADO,∴AB=AD,∵AD∥BC,∴∠ACB=∠DAC,∴∠BAC=∠ACB,∴AB=BC,∴AD=BC,∴四边形ABCD是菱形;12.证明:(1)∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC,又∵BE=DF,∴AB+BE=DC+DF,即AE=CF,∵AE=CF,AE∥CF,∴四边形AECF是平行四边形.∴AC、EF互相平分;(2)∵AB∥DC,∴∠AEO=∠CFO,∵EF平分∠AEC,∴∠AEO=∠CEO,∴∠CEO=∠CFO∴CE=CF,由(1)可知,四边形AECF是平行四边形,∴平行四边形AECF是菱形.五.正方形的性质13.解:(1)AF⊥BE,理由如下:∵四边形ABCD是正方形,∴AB=AD,∠BAE=∠ADF=90°,在△ABE和△DAF中,,∴△ABE≌△DAF(SAS),∴∠DAF=∠ABE,∵∠AEB+∠ABE=90°,∴∠DAF+∠AEB=90°,∴∠AGE=90°,∴BE⊥AF;(2)如图,过点E作EM⊥BC于M,∵EB=EH,EM⊥BC,∴BM=MH=BH,∵EM⊥BC,∠ABC=∠BAD=90°,∴四边形ABME是矩形,∴AE=BM,∴BH=2AE,∵AD∥BC,∴△AEG∽△HBG,∴,∴BG=2GE.14.(1)证明:连接BD,交AC于点O,∵四边形ABCD是正方形,∴AO=CO,BO=DO,AC⊥BD,又∵AE=CF,∴AO﹣AE=CO﹣CF,∴OE=OF,∵OB=OD,∴四边形BEDF是平行四边形,∵AC⊥BD,∴四边形BEDF是菱形;(2)解∵四边形ABCD是正方形,∴∠ABC=90°,AB=AC=2,∴AC=BD===4,∵AE=1,∴CF=AE=1,∴EF=AC﹣AE﹣CF=4﹣1﹣1=2,∴菱形BEDF的面积=×EF×BD=×2×4=4.15.解:(1)①∵AD=BC=CG,∠ADH=∠HCG=90°,∠AHD=∠CHG,∴△ADH≌△GCH;②∵AD∥BC,∴△AMD∽△GMB,∴==,设OM=x,∵AB=12,∴BO=OD==6,DM=6﹣x,BM=6+x,∴=,12﹣2x=6+x,得x=2,∵AO⊥OM,∴tan∠MAO===,故tan∠MAO=;(2)∵MN∥AC,∴∠OMN=∠AOM=90°,∵∠BDC=45°,∴DM=MN=DN,设OM=y,∴DM=6﹣y=MN,∴DN=(6﹣y)=12﹣y,∴CN=12﹣(12﹣y)=y,设CG=Z,作OP⊥BC于P,∴△OPG∽△NCG,∴=,∴=,3Z=y(6+Z),y=,∴AMD∽△GMB,∴=,=,整理得y=,∴=,Z+24=2(Z+6),得Z=12,∴CG=BC,∴OM=2,MN=DM=4,∴ON==2.16.(1)证明:∵四边形ABCD是正方形.∴∠A=∠PBC=90°,AB=AD,∴∠ADP+∠APD=90°,∵∠DPE=90°,∴∠APD+∠EPB=90°,∴∠ADP=∠EPB;(2)解:过点E作EQ⊥AB交AB的延长线于点Q,则∠EQP=∠A=90°,又∵∠ADP=∠EPB,PD=PE,∴△P AD≌△EQP,∴EQ=AP,AD=AB=PQ,∴AP=EQ=BQ,∴∠CBE=∠EBQ=45°;(3)解:=.理由:∵△PFD∽△BFP,∴=∵∠ADP=∠EPB,∠CBP=∠A∴△DAP∽△PBF∴=∴P A=PB∴当=时,△PFD∽△BFP.17.(1)证明:∵四边形ABCD是正方形,∴AC⊥BD,∠ADF=90°,∴∠AEG=∠ADF=90°,∵AF平分∠DAC,∴∠DAF=∠EAG,∴△AEG∽△ADF.(2)解:结论:△DFG是等腰三角形.理由:∵四边形ABCD是正方形,∴∠ADB=∠DAE=45°,∠ADF=90°,∵AF平分∠DAC,∴∠DAG=∠DAC=22.5°,∴∠DGF=∠ADG+∠DAG=67.5°,∠DFG=90°﹣22.5°=67.5°,∴∠DGF=∠DFG,∴DG=DF.∴△DFG是等腰三角形.(3)解:∵四边形ABCD是正方形,∴AC⊥BD,EA=ED,∴△AED是等腰直角三角形,∴AD=AE,∵△AEG∽△ADF,∴==,∵AG=1,∴AF=,∴GF=AF﹣AG=﹣1.18.(1)证明:∵四边形ABCD是正方形,∴∠CBE=∠CDF=90°,BC=DC,∵BE=DF,∴△CBE≌△CDF(SAS),∴CE=CF.(2)解:设EF交CD于T,设AE=a,BE=DF=b,则AD=AB=CD=a+b,∵AE∥CT,∴==,∴CT=2a,DT=a+b﹣2a=b﹣a,∵DT∥AE,∴=,∴=,整理得,2b2﹣2ba﹣a2=0,∴b=a(舍弃)或b=a,∴=,∴tan∠BCE===,∴∠BCE=30°.解法二:设AB=3a,AC=3根号2a,可以证明△CAE相似与△CEM,得出EC的长度,再利用角BCE余弦值得出∠BCE=30°.(3)解:结论:=.理由:连接PC,过点P作PH⊥AD于H.∵△CBE≌△CDF,∴∠BCE=∠DCF,∵CE=CF,PE=PF,∴PC⊥EF,∠CFE=45°,∴∠CPT=∠FDT=90°,∵∠CTP=∠DTF,∴△CPT∽△FDT,∴=,∴=,∵∠PTD=∠CTF,∴△PTD∽△CTF,∴∠PDT∠CFT=45°,∵∠ADC=90°,∴∠PDH=90°,∵PH⊥DH,∴PD=PH,∵PE=PF,AE∥PH,∴AH=HF,∴PH=AE,∴PD=×AE,∴=.解法二:连接P A,由P A=PC,DA=DC,推出DP垂直平分线段AC,推出∠ADP=∠CDP=45°,可得结论.19.解:(1)∵正方形ABCD,∴∠B=90°,∴∠BEC+∠BCE=90°,∵EF⊥EC,∴∠PEF=∠BCE,∵FP⊥AB,∴∠EPF=90°,∴∠EPF=∠B,∵EF=EC,∴△PEF≌△BCE(AAS),∴PF=BE;(2)如图1,过点F作FH⊥AD于H,设正方形ABCD的边长为a,∵E是AB的中点,∴AE=BE=AB=a,由(1)知△PEF≌△BCE,∴PF=BE=AB=a,PE=BC=a,∴P A=PE﹣AE=a﹣a=a,∵∠P AD=∠APF=∠AHF=90°,P A=PF,∴四边形APFH是正方形,∴AH=PF=a,FH=P A=a,∴DH=a,∵∠FHG=∠D=90°,∠FGH=∠CGD,∴△FGH∽△CGD,∴===,∴=,∴GD=DH=×a=a,∴AG=AD﹣DG=a,∴==2;(3)设BE=b,则AE=bx,AB=b+bx,∴PE=BC=CD=AB=b+bx,AP=BE=PF=AH=FH=b,∴DH=AE=bx,∵△FGH∽△CGD,∴===1+x,∴DG=(1+x)GH,∵GH+DG=DH,∴GH+(1+x)GH=bx,∴GH=,∴AG=AH+GH=b+=,DG=(1+x)GH=,∴y===,∴y关于x的函数关系式为y=.六.正方形的判定20.解:A、一组对边平行,另一组对边相等四边形可能是等腰梯形,故本选项不符合题意;B、对角线相等的平行四边形是矩形,故本选项不符合题意;C、∵在△ADB和△CDB中,∴△ADB≌△CDB(ASA),∴AD=CD,AB=CB,同理△ACD≌△ACB,∴AB=AD,BC=DC,即AB=BC=CD=AD,∴四边形ABCD是菱形,故本选项符合题意;D、对角线相等且垂直的平行四边形是正方形,故本选项不符合题意;故选:C.21.解:如图,过C作CG⊥AD于G,并延长DG至F,使GF=BE,∵∠A=∠B=∠CGA=90°,AB=BC,∴四边形ABCG为正方形,∴AG=BC=4,∠BCG=90°,BC=CG,∵AD=3,∴DG=4﹣3=1,∵BC=CG,∠B=∠CGF,BE=FG,∴△EBC≌△FGC(SAS),∴CE=CF,∠ECB=∠FCG,∵∠DCE=45°,∴∠BCE+∠DCG=∠DCG+∠FCG=45°,∴∠DCE=∠DCF,∵CE=CF,∠DCF=∠DCE,DC=DC,∴△ECD≌△FCD(SAS),∴ED=DF,设ED=x,则EB=FG=x﹣1,∴AE=4﹣(x﹣1)=5﹣x,Rt△AED中,AE2+AD2=DE2,∴(5﹣x)2+32=x2,解得:x=3.4,∴DE=3.4.故选:B.七.折叠专题22.解:连接DM,如图:∵四边形ABCD是矩形,∴∠ADC=90°.∵M是AC的中点,∴DM=AM=CM,∴∠F AD=∠MDA,∠MDC=∠MCD.∵DC,DF关于DE对称,∴DF=DC,∴∠DFC=∠DCF.∵MF=AB,AB=CD,DF=DC,∴MF=FD.∴∠FMD=∠FDM.∵∠DFC=∠FMD+∠FDM,∴∠DFC=2∠FMD.∵∠DMC=∠F AD+∠ADM,∴∠DMC=2∠F AD.设∠F AD=x°,则∠DFC=4x°,∴∠MCD=∠MDC=4x°.∵∠DMC+∠MCD+∠MDC=180°,∴2x+4x+4x=180.∴x=18.故答案为:18.23.解:∵四边形ABCD是矩形,∴AD=BC,∠ADC=∠B=∠DAE=90°,∵把△BCE沿直线CE对折,使点B落在对角线AC上的点F处,∴CF=BC,∠CFE=∠B=90°,EF=BE,∴CF=AD,∠CFD=90°,∴∠ADE+∠CDF=∠CDF+∠DCF=90°,∴∠ADF=∠DCF,∴△ADE≌△FCD(ASA),∴DF=AE=2;∵∠AFE=∠CFD=90°,∴∠AFE=∠DAE=90°,∵∠AEF=∠DEA,∴△AEF∽△DEA,∴,∴=,∴EF=﹣1(负值舍去),∴BE=EF=﹣1,方法二:∵AB∥CD,∴S△ACD=S△DCE,∴S△ACD﹣S△DCF=S△DCE﹣S△DCF,∴S△ADF=S△ECF,由题意知,BC=CF,S△ACD=S△ABC,S△ECF=S△BCE,∴S△ACD﹣S△ADF=S△ABC﹣S△CEF=S△ABC﹣S△BCE,∴S△DCF=S△ACE,∴×DF•CF=AE•BC,∵CF=BC,∴DF=AE=2,设BE=x,∵AE∥CD,∴△AEF∽△CDF,∴=,∴=,解得:x=﹣1(负值舍去),∴BE=﹣1.故答案为:2,﹣1.24.解:∵四边形ABCD是矩形,∴AB=CD,AD=BC,设AB=CD=x,由翻折可知:P A′=AB=x,PD′=CD=x,∵△A′EP的面积为4,△D′PH的面积为1,又∵△A′EP∽△D′PH,∴A′P:D′H=2,∵P A′=x,∴D x,∵•x•x=1,∴x=2(负根已经舍弃),∴AB=CD=2,PE==2,PH==,∴AD=4+2++1=5+3,∴矩形ABCD的面积=2(5+3)=10+6.故答案为10+625.解:设AD=x,则AB=x+2,∵把△ADE翻折,点A落在DC边上的点F处,∴DF=AD,EA=EF,∠DFE=∠A=90°,∴四边形AEFD为正方形,∴AE=AD=x,∵把△CDG翻折,点C落在直线AE上的点H处,折痕为DG,点G在BC边上,∴DH=DC=x+2,∵HE=1,当AH=AE﹣HE=x﹣1,在Rt△ADH中,∵AD2+AH2=DH2,∴x2+(x﹣1)2=(x+2)2,整理得x2﹣6x﹣3=0,解得x1=3+2,x2=3﹣2(舍去),即AD的长为3+2.故答案为:3+2.26.解:∵四边形ABCD是矩形,∴AB∥CD,AB=CD=2,∠D=90°,∴∠DEA=∠EAB,设DE=a,则CE=2﹣a,∵把△ADE沿直线AE翻折,使点D落在对角线AC上的点F处,∴DE=EF=a,∠DEA=∠FEA,∵∠EAB=∠FEA,∴AB=BE=2,∴BF=BE﹣EF=2﹣a,∵AB∥CD,∴△CEF∽△ABF,∴,∴,∴a=3+(舍去),a=3﹣,∴DE=3﹣,故答案为:3﹣八.综合27.(1)证明:∵E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,在△AEF和△DEB中,,∴△AEF≌△DEB(AAS);∴AF=DB,又∵AF∥BC,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=BC=CD,∴平行四边形ADCF是菱形;(2)解:∵D是BC的中点,∴△ACD的面积=△ABD的面积=△ABC的面积,∵四边形ADCF是菱形,∴菱形ADCF的面积=2△ACD的面积=△ABC的面积=AC×AB=×3×4=6.28.(1)证明:∵∠OAE=∠OEA,∴OA=OE,∵四边形ABCD是菱形,∴AD∥BC,∴∠OCF=∠OAE,∠OFC=∠OEA,∴∠OFC=∠OCF,∵OF=OC,∵O为AC的中点,∴OA=OC,∴OA=OC=OE=OF,∴四边形AFCE是平行四边形,AC=EF,∴四边形AFCE是矩形;(2)解:设CF=x,∵四边形ABCD是菱形,AB=5,∴BC=AB=5,∴BF=5﹣x,∵四边形AFCE是矩形,∴∠AFC=90°=∠AFB,在Rt△AFB和Rt△AFC中,由勾股定理得:AF2=AB2﹣BF2=AC2﹣CF2,即52﹣(5﹣x)2=(2)2﹣x2,解得:x=2,即CF=2,则AF===4,∴四边形AFCE的面积是AF×CF=2×4=8.29.解:(1)证明:∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠CFE,∴∠CEF=∠CFE,∴CE=CF,又∵四边形ECFG是平行四边形,∴四边形ECFG为菱形.(2)如图,连接BM,MC,∵∠ABC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形.∵∠BAF=∠DAF,∴BE=AB=DC,∵M为EF中点,∴∠CEM=∠ECM=45°,∴∠BEM=∠DCM=135°,在△BME和△DMC中,∵,∴△BME≌△DMC(SAS),∴MB=MD,∠DMC=∠BME.∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,∴△BMD是等腰直角三角形,∴∠BDM=45°;(3)∠BDG=60°,延长AB、FG交于H,连接HD.∵AD∥GF,AB∥DF,∴四边形AHFD为平行四边形,∵∠ABC=120°,AF平分∠BAD,∴∠DAF=30°,∠ADC=120°,∠DF A=30°,∴△DAF为等腰三角形,∴AD=DF,∴平行四边形AHFD为菱形,∴△ADH,△DHF为全等的等边三角形,∴DH=DF,∠BHD=∠GFD=60°,∵FG=CE,CE=CF,CF=BH,∴BH=GF,在△BHD与△GFD中,∵,∴△BHD≌△GFD(SAS),∴∠BDH=∠GDF∴∠BDG=∠BDH+∠HDG=∠GDF+∠HDG=60°.。
矩形的性质与判定 练习题
证明(三)┄┄矩形的性质与判定【知识要点:】1.矩形的定义:有一个角是直角的平行四边形是矩形(矩形是特殊的平行四边形)。
2.矩形的性质:矩形具有平行四边形的所有性质。
(1)角:四个角都是直角。
(2)对角线:互相平分且相等。
3.矩形的判定:(1)有一个角是直角的平行四边形。
(2)对角线相等的平行四边形。
(3)有三个角是直角的四边形。
4.矩形的对称性:矩形是中心对称图形,对角线的交点是它的对称中心;矩形是轴对称图形,对称轴有2条,是经过对角线的交点且垂直于矩形一边的直线。
5.矩形的周长和面积:矩形的周长=)(2b a + 矩形的面积=长⨯宽=ab (b a ,为矩形的长与宽) ★注意:(1)矩形被两条对角线分成的四个小三角形都是等腰三角形且面积相等。
(2)矩形是轴对称图形,两组对边的中垂线是它的对称轴。
【经典例题:】例1、如图,矩形ABCD 中,E 为AD 上一点,EF ⊥CE 交AB 于F ,若DE=2,矩形ABCD 的周长为16,且CE=EF ,求AE 的长.例2、已知:如图,平行四边形ABCD 的四个内角的平分线分别相交于点E ,F ,G ,H ,求证:四边形EFGH 是矩形。
四边形平行四边形矩形菱形梯形为一角90°邻一组边相等正方形平两组对边行只有一组对边平行一角为直角且一组邻边相等邻边相等一9角为0°等腰梯形两腰相等PH DCBA例3、已知:如图所示,矩形ABCD 中,E 是BC 上的一点,且AE=BC ,︒=∠15EDC .求证:AD=2AB .例4、已知:如图,四边形ABCD 是由两个全等的正三角形ABD 和BCD 组成的,M 、N•分别为BC 、AD 的中点.求证:四边形BMDN 是矩形.例5、如图,已知在四边形ABCD 中,AC DB ⊥交于O ,E 、F 、G 、H 分别是四边的中点, 求证:四边形EFGH 是矩形.例6、 如图, 在矩形ABCD 中, AP=DC, PH=PC, 求证: PB 平分∠CBH.【课堂练习题:】1.判断一个四边形是矩形,下列条件正确的是( )A .对角线相等B .对角线垂直C .对角线互相平分且相等D .对角线互相垂直且相等。
平行四边形、矩形的性质判定练习题
一、平行四边形性质判定练习题第一部分 平行四边形的性质练习题例题与练习例题1、平行四边形得周长为50cm ,两邻边之差为5cm,求各边长。
变题1.平行四边形ABCD 的周长为40cm,两邻边AB 、AC 之比为2:3,则AB=_______,BC=________. 变题2.四边形ABCD 是平行四边形,∠BAC=90°,AB=3,AC=4,求AD 的长。
例题2.平行四边形ABCD 中,∠A-∠B=20°,求平行四边形各内角的度数。
变题3.平行四边形ABCD 中,AE 平分∠DAB, ∠DEA=20°,则∠C=_________,∠B_________. 变题4.如图,在平行四边形ABCD 中,∠BAC=34°, ∠ACB=26°,求∠DAC 与∠D 的度数。
例题3.如图,在平行四边形ABCD 中,CE ⊥AD,CF ⊥BA 交BA 的延长线于F ,∠FBC=30°,CE=3cm,CF=5cm,求平行四边形ABCD 的周长。
变题5.如图,平行四边形ABCD 的周长为50,其中AB=15,∠ABC=60°,求平行四边形面积。
1、如图,四边形ABCD 是平行四边形,AB=6cm,BC=8cm ,∠B=70°, 则AD=________,CD=______,∠D=_______,∠A=______,∠C=_______.2、平行四边形ABCD 的周长为40cm,两邻边AB 、AC 之比为2:3, 则AB=_______,BC=________.3、平行四边形得周长为50cm ,两邻边之差为5cm,则长边是________ ,短边是__________.4、平行四边形ABCD 中,∠A-∠B=20°, 则∠A=_______ ∠B=________5、.平行四边形ABCD 中,AE 平分∠DAB, ∠DEA=20°,则∠C=____,∠B_____.6、平行四边形 ABCD 中,∠A+∠C=200°.则:∠A= _______,∠B= _________ .7、如图,平行四边形ABCD 的周长为50,其中AB=15,∠ABC=60°,求平行四边形面积。
3特殊的平行四边形-矩形多种类型题
特殊的平行四边形矩形矩形的性质【基础练习】一、矩形性质1.矩形具有而一般平行四边形不具有的性质是()A.对角线相等 B.对角相等 C.对边相等 D.对角线互相平分二、矩形边、对角线1.如果矩形的一边与对角线的夹角为50 ,则两条对角线相交所成的锐角的度数为( ) A.60° B.70° C.80° D.90°2.一个矩形的对角线等于长边的一半与短边的和,则短边与长边的比为。
3、2,则它的一条对角线的长是______.4.矩形ABCD的周长为56,对角线AC,BD交于点O,△ABO与△BCO的周长差为4,•则AB 的长是()A.12 B.22 C.16 D.265.矩形的三个顶点坐标分别是(-2,-3),(1,-3),(-2,-4),那么第四个顶点坐标是()A.(1,-4) B.(-8,-4) C.(1,-3) D.(3,-4)6.如图所示,矩形ABCD的两条对角线交于点O,则图中的全等三角形共有()A.2对 B.4对 C.6对 D.8对7.矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形的周长的和是86cm,对角线是13cm,那么矩形的周长是____________8.如图,把一个长方形纸片沿EF折叠后,点D、C分别在D′、C′位置,若∠EFB=65°,则∠AED′=_____.9.如图,矩形ABCD中,AC与BD交于O点,BE⊥AC于E,CF⊥BD于F.求证:BE=CF.AB CDE FO三、矩形与等腰三角形1.如图,在矩形ABCD中,对角线AC BD,交于点O,已知120 2.5AOD AB∠==o,,则AC的长为.2.矩形边长为10cm和15cm,其中一个内角的平分线分长边为两部分,则这两部分的长分别为 ( ) A.6cm和9cm B.5cm和10cm C.4cm和11cm D.7cm和8cm3.矩形的两条对角线的夹角为60°,一条对角线和短边的和为15,则短边的长是,对角线长是。
矩形的性质及判定知识点及典型例题
1.矩形的定义:有一个角是直角的平行四边形叫做矩形. 2.矩形的性质矩形是特殊的平行四边形,它具有平行四边形的所有性质,•还具有自己独特的性质: ① 边的性质:对边平行且相等. ② 角的性质:四个角都是直角. ③ 对角线性质:对角线互相平分且相等.④ 对称性:矩形是中心对称图形,也是轴对称图形.直角三角形斜边上的中线等于斜边的一半. 直角三角形中,30︒角所对的边等于斜边的一半.点评:这两条直角三角形的性质在教材上是应用矩形的对角线推得,用三角形知识也可推得. 3.矩形的判定判定①:有一个角是直角的平行四边形是矩形. 判定②:对角线相等的平行四边形是矩形. 判定③:有三个角是直角的四边形是矩形.一、矩形的判定【例1】 矩形具有而平行四边形不具有的性质为( )A .对角线相等B .对角相等C .对角线互相平分D .对边相等【例2】 如图,矩形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处,如果60BAF ∠=︒,则DAE ∠=FED CBA矩形的性质 及判定【例3】 在矩形ABCD 中,点H 为AD 的中点,P 为BC 上任意一点,PE HC ⊥交HC 于点E ,PF BH⊥交BH 于点F ,当AB BC ,满足条件 时,四边形PEHF 是矩形【例4】 如图,在四边形ABCD 中,90ABC BCD ∠=∠=︒,AC BD =,求证:四边形ABCD 是矩形.CDB A【例5】 如图,已知在四边形ABCD 中,AC DB ⊥交于O ,E 、F 、G 、H 分别是四边的中点,求证四边形EFGH 是矩形.HG OFEDCB A【例6】 如图,在平行四边形ABCD 中,M 是AD 的中点,且MB MC =,求证:四边形ABCD 是矩形.MCDB A【例7】 设凸四边形ABCD 的4个顶点满足条件:每一点到其他3点的距离之和都要相等.试判断这个四边形是什么四边形?请证明你的结论。
【例8】 如图,平行四边形ABCD 中,AQ 、BN 、CN 、DQ 分别是DAB ∠、ABC ∠、BCD ∠、CDA ∠的平分线,AQ 与BN 交于P ,CN 与DQ 交于M ,证明:四边形PQMN 是矩形.NMQPDCBA【例9】 如图,在ABC ∆中,D 是BC 边上的一点,E 是AD 的中点,过A 点作BC 的平行线交CE 的延长线于点F ,且AF BD =,连结BF . ⑴ 求证:BD CD =.⑵ 如果AB AC =,试判断四边形AFBD 的形状,并证明你的结论.FED CB A【例10】 如图,在ABC ∆中,点D 是AC 边上的一个动点,过点D 作直线MN BC ∥,若MN 交BCA ∠的平分线于点E ,交BCA ∠的外角平分线于点F (1)求证:DE DF =(2)当点D 运动到何处时,四边形AECF 为矩形?请说明理由!NMFEDCBA321FE D CB A【例11】 已知,如图,在ABC ∆中,AB AC =,AD 是BC 边上的高,AF 是BAC ∠的外角平分线,DE ∥AB交AF 于E ,试说明四边形ADCE 是矩形.【例12】 如图所示,在Rt ABC ∆中,90ABC ∠=︒,将Rt ABC ∆绕点C 顺时针方向旋转60︒得到DEC ∆点E在AC 上,再将Rt ABC ∆沿着AB 所在直线翻转180︒得到ABF ∆连接AD . ⑴ 求证:四边形AFCD 是菱形;⑵ 连接BE 并延长交AD 于G 连接CG ,请问:四边形ABCG 是什么特殊平行四边形?为什么?AB CDGEF【例13】 如图,在ABCD 中,AE BC ⊥于E ,AF CD ⊥于F ,AEF ∆的两条高相交于M ,20AC =,16EF =,求AM 的长.MF E DC BA【例14】 已知,如图矩形ABCD 中,延长CB 到E ,使CE AC =,F 是AE 中点.求证:BF DF ⊥.ABCE FD板块二、矩形的性质及应用【例15】 如图,在矩形ABCD 中,点E 是BC 上一点,AE AD =,DF AE ⊥,垂足为F .线段DF 与图中的哪一条线段相等?先将你猜想出的结论填写在下面的横线上,然后再加以证明。
特殊的平行四边形的性质与判定及答案
15.4 特殊的平行四边形的性质与判定一、选择题(共15小题;共75分)1. 矩形具有而平行四边形不一定具有的性质是 ( )A. 对角相等B. 对边相等C. 对角线相等D. 对角线互相平分2. 下列正方形的性质中,菱形(非正方形)不具有的性质是 ( )A. 四边相等B. 对角线相等C. 对角线平分一组对角D. 对角线互相平分且垂直3. 如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AM的长为1.2 km,则M,C两点间的距离为 ( )A. 0.5 kmB. 0.6 kmC. 0.9 kmD. 1.2 km4. 在正方形ABCD中,O是对角线的交点,AB=12,则△OAB的周长是 ( )A. 12+12√2B. 12+6√2C. 12+√3D. 24+5√25. 在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是 ( )A. 测量对角线是否相互平分B. 测量两组对边是否分别相等C. 测量一组对角是否都为直角D. 测量四边形的三个内角是否都为直角6. 如图,在Rt△ABC中,∠ACB=90∘,AB=10,CD是AB边上的中线,则CD的长是 ( )A. 20B. 10C. 5D. 527. 如图,将正方形OABC放在平面直角坐标系xOy中,O是原点,若点A的坐标为(1,√3),则点C的坐标为 ( )A. (√3,1)B. (−1,√3)C. (−√3,1)D. (−√3,−1)8. 在菱形ABCD中,对角线AC,BD交于点O,下列说法错误的是 ( )A. AB∥DCB. AC=BDC. AC⊥BDD. OA= OC9. 下列关于矩形的说法,正确的是 ( )A. 对角线相等的四边形是矩形B. 对角线互相平分的四边形是矩形C. 矩形的对角线互相垂直且平分D. 矩形的对角线相等且互相平分10. 不能判定四边形是正方形的是 ( )A. 对角线互相垂直且相等的四边形B. 对角线互相垂直的矩形C. 对角线相等的菱形D. 对角线互相垂直平分且相等的四边形11. 菱形不具有的性质是 ( )A. 对角线互相平分B. 对角线互相垂直C. 对角线相等D. 对角线平分每组对角12. 如图,在Rt△ABC中,∠ACB=90∘,CD为AB边上的高,若点A关于CD所在直线的对称点E恰好为AB的中点,则∠B的度数是 ( )A. 60∘B. 45∘C. 30∘D. 75∘13. 如图,已知菱形ABCD的对角线AC,BD的长分别为6 cm,8 cm,AE⊥BC于点E,则AE的长是 ( )A. 5√3 cmB. 2√5 cmC. 485 cm D. 245cm14. 若矩形的一条对角线与一边的夹角是40∘,则两条对角线相交所成的锐角是 ( )A. 20∘B. 40∘C. 80∘D. 100∘15. 如图,在△ABC中,∠ACB=90∘,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF.添加一个条件,仍不能证明四边形BECF为正方形的是 ( )A. BC=ACB. CF⊥BFC. BD=DFD. AC= BF二、填空题(共15小题;共75分)16. 要使一个菱形成为正方形,则需增加的条件是 (填上一个正确的条件即可).17. 如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为.18. 如图,在菱形ABCD中,AC、BD相交于点O,E为AB的中点,DE⊥AB,若AC=2√3,则DE的长为.19. 如图 1,将长为20 cm,宽为2 cm的长方形白纸条,折成图 2 所示的图形并在其一面着色,则着色部分的面积为cm2.20. 矩形、菱形、正方形都是特殊的四边形,它们具有很多共性,如: (填一条即可).21. 已知一个菱形的两条对角线的长度分别为6和8,那么这个菱形的周长是.22. 在△ABC中,AB=AC=8,AD是底边上的高,E为AC中点,则DE=.23. 如图,四边形ABCD为矩形,添加一个条件:,可使它成为正方形.24. 如果菱形的两条对角线长分别为6和8,那么该菱形的面积为.25. 工人师傅做铝合金窗框分下面三个步骤进行:(1)先截出两对符合规格的铝合金窗料(如图1),使AB=CD,EF=GH;(2)摆放成如图(2)的四边形,则这时窗框的形状是,根据的数学道理是;(3)将直角尺靠紧窗框的一个角(如图3)调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图4),说明窗框合格,这时窗框是,根据的数学道理是.26. 如图,在Rt△ABC中,∠ACB=90∘,若CA=8,BC=6,点E是AB的中点,则CE= .27. 如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90∘,BE⊥AD于点E,如果四边形ABCD的面积为8,那么BE的长为.28. 如图,分别以正方形ABCD的四条边为边,向其内部作等边三角形,得到△ABE、△BCF、△CDG、△DAH,连接EF、FG、GH、HE.若AB=2,则四边形EFGH的面积为.29. 如图,菱形ABCD的边长是2 cm,E是AB的中点,且DE⊥AB,则菱形ABCD的面积为cm2.30. 如图,已知在矩形ABCD中,E是AD上的一点,F是AB上的一点,EF⊥EC,且EF=EC,DE=4 cm,矩形ABCD的周长为32 cm,则AE的长为cm.三、解答题(共2小题;共26分)31. 已知:如图,在△ABC中,∠ACB=90∘,点E为AB的中点,过点E作ED⊥BC于D,F在DE的延长线上,且AF=CE,若AB=6,AC=2,求四边形ACEF的面积.32. 如图,已知平行四边形ABCD,E,F是对角线BD上的两点,且BE=DF.(1) 求证:四边形AECF是平行四边形;(2) 当AE垂直平分BC且四边形AECF为菱形时,直接写出AE:AB的值.答案第一部分1. C2. B3. D4. A5. D6. C7. C8. B9. D 10. A11. C 12. C 13. D 14. C 15. D第二部分16. 有一个角是直角或对角线相等17. 2018. √319. 3620. 对角线互相平分(答案不唯一)21. 2022. 423. AB=BC等(答案不唯一)24. 2425. (2)平行四边形;两组对边分别相等的四边形是平行四边形(3)矩形;有一个角是直角的平行四边形是矩形26. 527. 2√228. 8−4√329. 2√330. 6第三部分31. 过点E作EH⊥AC于H.∵∠ACB=90∘,AE=BE,∴AE=BE=CE.∴∠EAC=∠ECA.∵AF=CE,∴AE=AF,∴∠F=∠FEA.∵ED⊥BC,∴∠BDF=90∘,BD=DC.∴∠BDF=∠ACB=90∘.∴FD∥AC.∴∠FEA=∠EAC.∴∠F=∠ECA.∵AE=EA,∴△AEF≌△EAC.∴EF=AC,∴四边形FACE是平行四边形.∵EH⊥AC,∴∠EHA=90∘.∵∠BCA=90∘,∠EHA=∠BCA.∴BC=4√2,EH∥BC.∴AH=HC.BC=2√2.∴EH=12=AC⋅EH=2×2√2=4√2.∴S平行四边形ACEF32. (1) 如图,连接对角线AC交对角线BD于点O.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵点E,F是对角线BD上的两点,且BE=DF,∴OB−BE=OD−DF,即OE=OF.∴四边形AECF是平行四边形..(2) √33友情提示:部分文档来自网络整理,供您参考!文档可复制、编制,期待您的好评与关注!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特殊平行四边形矩形的性质及判定
特殊的平行四边形
一、矩形的性质与判定
1.矩形的性质:
(1)四个角都是直角;
(2)对角线相等且互相平分;
(3)面积=长×宽=2S△ABD=4S△AOB.(如图)
2.矩形的判定:
(1)定义法:有一个角是直角的平行四边形;(2)有三个角是直角;(3)对角线相等的平行四边形.二、菱形的性质与判定
1.菱形的性质:
(1)四边相等;(2)对角线互相垂直、平分,一条对角线平分一组对角;
(3)面积=底×高=对角线乘积的一半.
2.菱形的判定:
(1)定义法:有一组邻边相等的平行四边形;(2)对角线互相垂直的平行四边形;
(3)四条边都相等的四边形.
三、正方形的性质与判定
1.正方形的性质:
(1)四条边都相等,四个角都是直角;(2)对角线相等且互相垂直平分;
(3)面积=边长×边长=2S△ABD=4S△AOB.
2.正方形的判定:
(1)定义法:有一个角是直角,且有一组邻边相等的平行四边形;
(2)一组邻边相等的矩形;(3)一个角是直角的菱形;(4)对角线相等且互相垂直、平分.
四、联系
五、中点四边形
(1)任意四边形所得到的中点四边形一定是平行四边形.
(2)对角线相等的四边形所得到的中点四边形是矩形.
(3)对角线互相垂直的四边形所得到的中点四边形是菱形.
(4)对角线互相垂直且相等的四边形所得到的中点四边形是正方形.
考向一矩形的性质与判定
1.矩形除了具有平行四边形的一切性质外,还具有自己单独的性质,即:矩形的四个角都是直角;矩形的对角线相等.
2.利用矩形的性质可以推出直角三角形斜边中线的性质,即在直角三角形中,斜边上的中线等于斜边的一半.
3.矩形的判定:有三个角是直角的四边形是矩形;对角线相等的平行四边形是矩形.
典例1 如图,矩形ABCD的对角线交于点O,若∠BAO=55°,则∠AOD等于
A.105°B.110°C.115°D.120°
典例2 (2021株洲4分)如图所示,线段BC为等腰△ABC的底边,矩形ADBE的对角线AB与DE交于点O,若OD=2,则AC=.
练习
1.如图,四边形ABCD 的对角线互相平分,要使它成为矩形,那么需要添加的条件是
A .A
B =BC
B .A
C 垂直B
D C .∠A =∠C D .AC =BD
2、如图,在长方形ABCD 中,AB =3,BC =4,若沿折痕EF 折叠,使点C 与点A 重合,则折痕EF 的长为
A .
B .
C .
D .15
3、如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点A 作AE ⊥BD ,垂足为点E ,若∠EAC =2∠CAD ,则∠BAE =( )
A .60°
B .45°
C .30°
D .22.5°
4.如图,矩形ABCD 中,AB =7,BC =6,点F 是BC 的中点,点E 在AB 上,且AE =2,连接DF ,CE ,点G 、H 分别是DF ,CE 的中点,连接GH ,则线段GH 的长为( )
A .2
B .
C .
D .
15815415
2
5.如图,在矩形ABCD中,AB=4,AD=6,点P在AD上,点Q在BC上,且AP=CQ,连接CP,QD,则PC+QD的最小值为()
A.8B.10C.12D.20
6.如图,在矩形ABCD中,AB=3,AD=4,E为CD的中点,射线AE交BC的延长线于点F,P为BC 上一点,当∠P AE=∠DAE时,PF的长为()
A.4B.5C.D.
8.矩形ABCD与ECFG如图放置,点B,C,F共线,点C,E,D共线,连接AG,取AG的中点H,连接EH.若AB=CF=4,BC=CE=2,则EH=()
A.B.2C.D.
9、如图,点E是矩形ABCD边AD上一点,点F,G,H分别是BE,BC,CE的中点,AF=3,则GH的
长为.
10、如图,在Rt△ABC中,∠BAC=90°,AB=2,AC=3,点P为BC边上一动点,PE⊥AB于点E,PF⊥AC于点F,连接EF,点M为EF的中点,则AM的最小值为.
11如图,在矩形ABCD中,P为矩形ABCD的边BC上任一点,PE⊥AC于点E,PF⊥BD于点F.若AB =5,BC=12,PE+PF=.
12.如图,在△ABC中,AB=AC,点D是BC中点,点E是AD中点,延长BE至F,使EF=BE,连接AF,CF,BF与AC交于点G,连接DG.
(1)求证:四边形ADCF是矩形.
(2)若AB=5,BC=6,求线段DG的长.
13.如图,在▱ABCD中,对角线AC与BD相交于点O,点E、F分别为OB、OD的中点,延长AE至点G,使EG=AE,联结GC、CF.
(1)求证:AE∥CF;
(2)当AC=2AB时,求证:四边形EGCF是矩形.
14.已知:如图,在▱ABCD中,AF、BH、CH、DF分别是∠BAD、∠ABC、∠BCD、∠ADC的平分线.求证:四边形EFGH是矩形.
15.已知:如图,四边形ABCD的对角线AC、BD相交于点O,AO=BO=CO,∠BAC=∠ACD.(1)求证:四边形ABCD是矩形;
(2)如果点E在边AB上,DE平分∠ADB,BD=AB,求证:BD=AD+AE.
16 如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.
(1)判断OE与OF的大小关系?并说明理由;
(2)当点O运动到何处时,四边形AECF是矩形?并说出你的理由;
(3)在(2)的条件下,当△ABC满足什么条件时,四边形AECF是正方形.直接写出答案,不需说明理由.。