离散数学命题公式与赋值
离散数学第一章命题逻辑知识点总结
数理逻辑部分第1章命题逻辑命题符号化及联结词命题: 判断结果惟一的陈述句命题的真值: 判断的结果真值的取值: 真与假真命题: 真值为真的命题假命题: 真值为假的命题注意: 感叹句、祈使句、疑问句都不是命题,陈述句中的悖论以及判断结果不惟一确定的也不是命题。
简单命题(原子命题):简单陈述句构成的命题复合命题:由简单命题与联结词按一定规则复合而成的命题简单命题符号化用小写英文字母p, q, r, … ,p i,q i,r i (i≥1)表示简单命题用“1”表示真,用“0”表示假例如,令p:是有理数,则p 的真值为 0q:2 + 5 = 7,则q 的真值为 1联结词与复合命题1.否定式与否定联结词“”定义设p为命题,复合命题“非p”(或“p的否定”)称为p的否定式,记作p. 符号称作否定联结词,并规定p为真当且仅当p为假.2.合取式与合取联结词“∧”定义设p,q为二命题,复合命题“p并且q”(或“p与q”)称为p与q 的合取式,记作p∧q. ∧称作合取联结词,并规定 p∧q为真当且仅当p 与q同时为真注意:描述合取式的灵活性与多样性分清简单命题与复合命题例将下列命题符号化.(1) 王晓既用功又聪明.(2) 王晓不仅聪明,而且用功.(3) 王晓虽然聪明,但不用功.(4) 张辉与王丽都是三好生.(5) 张辉与王丽是同学.解令p:王晓用功,q:王晓聪明,则(1) p∧q(2) p∧q(3) p∧q.令r : 张辉是三好学生,s :王丽是三好学生(4) r∧s.(5) 令t : 张辉与王丽是同学,t 是简单命题 .说明:(1)~(4)说明描述合取式的灵活性与多样性.(5) 中“与”联结的是两个名词,整个句子是一个简单命题.3.析取式与析取联结词“∨”定义设p,q为二命题,复合命题“p或q”称作p与q的析取式,记作p∨q. ∨称作析取联结词,并规定p∨q为假当且仅当p与q同时为假.例将下列命题符号化(1) 2或4是素数.(2) 2或3是素数.(3) 4或6是素数.(4) 小元元只能拿一个苹果或一个梨.(5) 王晓红生于1975年或1976年.解令p:2是素数, q:3是素数, r:4是素数, s:6是素数,则 (1), (2), (3) 均为相容或.分别符号化为: p∨r , p∨q, r∨s,它们的真值分别为 1, 1, 0.而 (4), (5) 为排斥或.令t :小元元拿一个苹果,u:小元元拿一个梨,则 (4) 符号化为 (t∧u) ∨(t∧u).令v :王晓红生于1975年,w:王晓红生于1976年,则 (5) 既可符号化为 (v∧w)∨(v∧w), 又可符号化为v∨w , 为什么?4.蕴涵式与蕴涵联结词“”定义设p,q为二命题,复合命题“如果p,则q” 称作p与q的蕴涵式,记作p q,并称p是蕴涵式的前件,q为蕴涵式的后件. 称作蕴涵联结词,并规定,p q为假当且仅当p 为真q 为假.p q 的逻辑关系:q 为p 的必要条件“如果p,则q ” 的不同表述法很多:若p,就q只要p,就qp 仅当q只有q 才p除非q, 才p 或除非q, 否则非p.当p 为假时,p q 为真常出现的错误:不分充分与必要条件5.等价式与等价联结词“”定义设p,q为二命题,复合命题“p当且仅当q”称作p与q的等价式,记作p q. 称作等价联结词.并规定p q为真当且仅当p与q同时为真或同时为假.说明:(1) p q 的逻辑关系:p与q互为充分必要条件(2) p q为真当且仅当p与q同真或同假联结词优先级:( ),, , , ,同级按从左到右的顺序进行以上给出了5个联结词:, , , , ,组成一个联结词集合{, , , , },联结词的优先顺序为:, , , , ; 如果出现的联结词同级,又无括号时,则按从左到右的顺序运算; 若遇有括号时,应该先进行括号中的运算.注意: 本书中使用的括号全为园括号.命题常项命题变项命题公式及分类命题变项与合式公式命题常项:简单命题命题变项:真值不确定的陈述句定义合式公式 (命题公式, 公式) 递归定义如下:(1) 单个命题常项或变项p,q,r,…,p i ,q i ,r i ,…,0,1是合式公式(2) 若A是合式公式,则 (A)也是合式公式(3) 若A, B是合式公式,则(A B), (A B), (A B), (A B)也是合式公式(4) 只有有限次地应用(1)~(3)形成的符号串才是合式公式说明: 元语言与对象语言, 外层括号可以省去合式公式的层次定义(1) 若公式A是单个的命题变项, 则称A为0层公式.(2) 称A是n+1(n≥0)层公式是指下面情况之一:(a) A=B, B是n层公式;(b) A=B C, 其中B,C分别为i层和j层公式,且n=max(i, j);(c) A=B C, 其中B,C的层次及n同(b);(d) A=B C, 其中B,C的层次及n同(b);(e) A=B C, 其中B,C的层次及n同(b).例如公式p 0层p 1层p q 2层(p q)r 3层((p q) r)(r s) 4层公式的赋值定义给公式A中的命题变项p1, p2, … , p n指定一组真值称为对A的一个赋值或解释成真赋值: 使公式为真的赋值成假赋值: 使公式为假的赋值说明:赋值=12…n之间不加标点符号,i=0或1.A中仅出现p1, p2, …, p n,给A赋值12…n是指p1=1, p2=2, …, p n=nA中仅出现p,q, r, …, 给A赋值123…是指p=1,q=2 , r= 3 …含n个变项的公式有2n个赋值.真值表真值表: 公式A在所有赋值下的取值情况列成的表例给出公式的真值表A= (q p) q p的真值表例 B = (p q) q的真值表例C= (p q) r的真值表命题的分类重言式矛盾式可满足式定义设A为一个命题公式(1) 若A无成假赋值,则称A为重言式(也称永真式)(2) 若A无成真赋值,则称A为矛盾式(也称永假式)(3) 若A不是矛盾式,则称A为可满足式注意:重言式是可满足式,但反之不真.上例中A为重言式,B为矛盾式,C为可满足式A= (q p)q p,B =(p q)q,C= (p q)r等值演算等值式定义若等价式A B是重言式,则称A与B等值,记作A B,并称A B是等值式说明:定义中,A,B,均为元语言符号, A或B中可能有哑元出现.例如,在 (p q) ((p q) (r r))中,r为左边公式的哑元.用真值表可验证两个公式是否等值请验证:p(q r) (p q) rp(q r) (p q) r基本等值式双重否定律 : A A等幂律:A A A, A A A交换律: A B B A, A B B A结合律: (A B)C A(B C)(A B)C A(B C)分配律: A(B C)(A B)(A C)A(B C) (A B)(A C)德·摩根律: (A B)A B(A B)A B吸收律: A(A B)A, A(A B)A零律: A11, A00同一律: A0A, A1A排中律: A A1矛盾律: A A0等值演算:由已知的等值式推演出新的等值式的过程置换规则:若A B, 则(B)(A)等值演算的基础:(1) 等值关系的性质:自反、对称、传递(2) 基本的等值式(3) 置换规则应用举例——证明两个公式等值例1 证明p(q r) (p q)r证p(q r)p(q r) (蕴涵等值式,置换规则)(p q)r(结合律,置换规则)(p q)r(德摩根律,置换规则)(p q) r(蕴涵等值式,置换规则)说明:也可以从右边开始演算(请做一遍)因为每一步都用置换规则,故可不写出熟练后,基本等值式也可以不写出应用举例——证明两个公式不等值例2 证明: p(q r) (p q) r用等值演算不能直接证明两个公式不等值,证明两个公式不等值的基本思想是找到一个赋值使一个成真,另一个成假.方法一真值表法(自己证)方法二观察赋值法. 容易看出000, 010等是左边的的成真赋值,是右边的成假赋值.方法三用等值演算先化简两个公式,再观察.应用举例——判断公式类型例3 用等值演算法判断下列公式的类型(1) q(p q)解q(p q)q(p q) (蕴涵等值式)q(p q) (德摩根律)p(q q) (交换律,结合律)p0 (矛盾律)0 (零律)由最后一步可知,该式为矛盾式.(2) (p q)(q p)解 (p q)(q p)(p q)(q p) (蕴涵等值式)(p q)(p q) (交换律)1由最后一步可知,该式为重言式.问:最后一步为什么等值于1?(3) ((p q)(p q))r)解 ((p q)(p q))r)(p(q q))r(分配律)p1r(排中律)p r(同一律)这不是矛盾式,也不是重言式,而是非重言式的可满足式.如101是它的成真赋值,000是它的成假赋值.总结:A为矛盾式当且仅当A0A为重言式当且仅当A1说明:演算步骤不惟一,应尽量使演算短些对偶与范式对偶式与对偶原理定义在仅含有联结词, ∧,∨的命题公式A中,将∨换成∧, ∧换成∨,若A中含有0或1,就将0换成1,1换成0,所得命题公式称为A的对偶式,记为A*.从定义不难看出,(A*)* 还原成A定理设A和A*互为对偶式,p1,p2,…,p n是出现在A和A*中的全部命题变项,将A和A*写成n元函数形式,则 (1) A(p1,p2,…,p n) A* (p1, p2,…, p n) (2) A(p1, p2,…, p n) A* (p1,p2,…,p n) 定理(对偶原理)设A,B为两个命题公式,若A B,则A* B*.析取范式与合取范式文字:命题变项及其否定的总称简单析取式:有限个文字构成的析取式如p, q, p q, p q r, …简单合取式:有限个文字构成的合取式如p, q, p q, p q r, …析取范式:由有限个简单合取式组成的析取式A 1A2Ar, 其中A1,A2,,A r是简单合取式合取范式:由有限个简单析取式组成的合取式A 1A2Ar, 其中A1,A2,,A r是简单析取式范式:析取范式与合取范式的总称公式A的析取范式: 与A等值的析取范式公式A的合取范式: 与A等值的合取范式说明:单个文字既是简单析取式,又是简单合取式p q r, p q r既是析取范式,又是合取范式(为什么?)命题公式的范式定理任何命题公式都存在着与之等值的析取范式与合取范式.求公式A的范式的步骤:(1) 消去A中的, (若存在)(2) 否定联结词的内移或消去(3) 使用分配律对分配(析取范式)对分配(合取范式)公式的范式存在,但不惟一求公式的范式举例例求下列公式的析取范式与合取范式(1) A=(p q)r解 (p q)r(p q)r(消去)p q r(结合律)这既是A的析取范式(由3个简单合取式组成的析取式),又是A的合取范式(由一个简单析取式组成的合取式)(2) B=(p q)r解 (p q)r(p q)r(消去第一个)(p q)r(消去第二个)(p q)r(否定号内移——德摩根律)这一步已为析取范式(两个简单合取式构成)继续: (p q)r(p r)(q r) (对分配律)这一步得到合取范式(由两个简单析取式构成)极小项与极大项定义在含有n个命题变项的简单合取式(简单析取式)中,若每个命题变项均以文字的形式在其中出现且仅出现一次,而且第i(1i n)个文字出现在左起第i位上,称这样的简单合取式(简单析取式)为极小项(极大项).说明:n个命题变项产生2n个极小项和2n个极大项2n个极小项(极大项)均互不等值用m i表示第i个极小项,其中i是该极小项成真赋值的十进制表示. 用M i 表示第i个极大项,其中i是该极大项成假赋值的十进制表示, m i(M i)称为极小项(极大项)的名称.m与M i的关系: m i M i , M i m ii主析取范式与主合取范式主析取范式: 由极小项构成的析取范式主合取范式: 由极大项构成的合取范式例如,n=3, 命题变项为p, q, r时,(p q r)(p q r) m1m3是主析取范式(p q r)(p q r) M1M5 是主合取范式A的主析取范式: 与A等值的主析取范式A的主合取范式: 与A等值的主合取范式.定理任何命题公式都存在着与之等值的主析取范式和主合取范式, 并且是惟一的.用等值演算法求公式的主范式的步骤:(1) 先求析取范式(合取范式)(2) 将不是极小项(极大项)的简单合取式(简单析取式)化成与之等值的若干个极小项的析取(极大项的合取),需要利用同一律(零律)、排中律(矛盾律)、分配律、幂等律等.(3) 极小项(极大项)用名称m i(M i)表示,并按角标从小到大顺序排序.求公式的主范式例求公式A=(p q)r的主析取范式与主合取范式.(1) 求主析取范式(p q)r(p q)r , (析取范式)①(p q)(p q)(r r)(p q r)(p q r)m 6m7,r(p p)(q q)r(p q r)(p q r)(p q r)(p q r)m 1m3m5m7③②, ③代入①并排序,得(p q)r m1m3m5m6m7(主析取范式)(2) 求A的主合取范式(p q)r(p r)(q r) , (合取范式)①p rp(q q)r(p q r)(p q r)M 0M2,②q r(p p)q r(p q r)(p q r)M 0M4③②, ③代入①并排序,得(p q)r M0M2M4 (主合取范式)主范式的用途——与真值表相同(1) 求公式的成真赋值和成假赋值例如 (p q)r m1m3m5m6m7,其成真赋值为001, 011, 101, 110, 111,其余的赋值 000, 010, 100为成假赋值.类似地,由主合取范式也可立即求出成假赋值和成真赋值.(2) 判断公式的类型设A含n个命题变项,则A为重言式A的主析取范式含2n个极小项A的主合取范式为1.A为矛盾式A的主析取范式为0A的主合取范式含2n个极大项A为非重言式的可满足式A的主析取范式中至少含一个且不含全部极小项A的主合取范式中至少含一个且不含全部极大项例某公司要从赵、钱、孙、李、周五名新毕业的大学生中选派一些人出国学习. 选派必须满足以下条件:(1)若赵去,钱也去;(2)李、周两人中至少有一人去;(3)钱、孙两人中有一人去且仅去一人;(4)孙、李两人同去或同不去;(5)若周去,则赵、钱也去.试用主析取范式法分析该公司如何选派他们出国?解此类问题的步骤为:①将简单命题符号化②写出各复合命题③写出由②中复合命题组成的合取式④求③中所得公式的主析取范式解①设p:派赵去,q:派钱去,r:派孙去,s:派李去,u:派周去.② (1) (p q)(2) (s u)(3) ((q r)(q r))(4) ((r s)(r s))(5) (u(p q))③ (1) ~ (5)构成的合取式为A=(p q)(s u)((q r)(q r))((r s)(r s))(u(p q))④ A (p q r s u)(p q r s u)结论:由④可知,A的成真赋值为00110与11001,因而派孙、李去(赵、钱、周不去)或派赵、钱、周去(孙、李不去).A的演算过程如下:A (p q)((q r)(q r))(s u)(u(p q)) ((r s)(r s)) (交换律) B1= (p q)((q r)(q r))((p q r)(p q r)(q r)) (分配律)B2= (s u)(u(p q))((s u)(p q s)(p q u)) (分配律)B 1B2(p q r s u)(p q r s u) (q r s u)(p q r s)(p q r u)再令B3 = ((r s)(r s))得A B1B2B3(p q r s u)(p q r s u)注意:在以上演算中多次用矛盾律要求:自己演算一遍推理理论推理的形式结构推理的形式结构—问题的引入推理举例:(1) 正项级数收敛当且仅当部分和有上界.(2) 若推理: 从前提出发推出结论的思维过程上面(1)是正确的推理,而(2)是错误的推理.证明: 描述推理正确的过程.判断推理是否正确的方法•真值表法•等值演算法判断推理是否正确•主析取范式法•构造证明法证明推理正确说明:当命题变项比较少时,用前3个方法比较方便, 此时采用形式结构“” . 而在构造证明时,采用“前提: , 结论: B”.推理定律与推理规则推理定律——重言蕴涵式构造证明——直接证明法例构造下面推理的证明:若明天是星期一或星期三,我就有课. 若有课,今天必备课. 我今天下午没备课. 所以,明天不是星期一和星期三.解设p:明天是星期一,q:明天是星期三,r:我有课,s:我备课推理的形式结构为例构造下面推理的证明:2是素数或合数. 若2是素数,则是无理数.若是无理数,则4不是素数. 所以,如果4是素数,则2是合数.用附加前提证明法构造证明解设p:2是素数,q:2是合数,r:是无理数,s:4是素数推理的形式结构前提:p∨q, p r, r s结论:s q证明① s附加前提引入②p r前提引入③r s前提引入④p s②③假言三段论⑤p①④拒取式⑥p∨q前提引入⑦q⑤⑥析取三段论请用直接证明法证明之。
命题公式及分类(离散数学)PPT
练习
P32: 1.6:(3)(4) 1.7:(7-10)
19
说 公式A与B具有相同的或不同的真值表,是指真值表的最后 明 一列是否对应相同,而8 不考虑构造真值表的中间过程。
例1 求下列公式的真值表,并求成真赋值和成假赋值。
(1) ┐ (p∧q)→┐r
(2)(p∧┐p)(q∧┐q)
(3)┐(p→q)∧q∧r
9
三、命题公式的分类 定义1.9(重言式、永真式、可满足式)
(5) ┐q∨p
(3) ┐(p∧┐q)
12
例3 下列公式中,哪些具有相同的真值表? (1)p→q (2)┐q∨r (3)(┐p∨q)∧((p∧r)→p) (4)(q→r)∧(p→p)
13
习题:求公式┐(p→(q∧r))的真值表。
p q r q∧r p→(q∧r) ┐(p→(q∧r))
00 0 0
例如 F:{0,1}2{0,1},且F(00)=F(01)=F(11)=0,
F(01)=1,则F为一个确定的2元真值函数.
15
命题公式与真值函数
对于任何一个含n个命题变项的命题公式A,都 存在惟一的一个n元真值函数F与A的真值表相同.
下表给出所有2元真值函数对应的真值表, 每一个 含2个命题变项的公式的真值表都可以在下表中找 到.
(A→B),(AB)也是合式公式。 (4)只有有限次地应用(1)~(3)形式的符号串才
是合式公式。 合式公式也称为命题公式或命题形式,并简称 为公式。
2
关于合式公式的说明
合式公式的定义方式称为归纳定义或递归定义方式。
定义中引进了A,B等符号,用它们表示任意的合式公式,而不 是某个具体的公式,这与p, p∧q, (p∧q)→r等具体的公式是有 所不同的。
《离散数学》复习提纲(2018)
《离散数学》期末复习大纲一、数理逻辑[复习知识点]1、命题与联结词(否定¬、析取∨、合取∧、蕴涵→、等价?),复合命题2、命题公式与赋值(成真、成假),真值表,公式类型(重言、矛盾、可满足),公式的基本等值式3、范式:析取范式、合取范式,极大(小)项,主析取范式、主合取范式4、公式类型的判别方法(真值表法、等值演算法、主析取/合取范式法)5、命题逻辑的推理理论6、谓词、量词、个体词(一阶逻辑3要素)、个体域、变元(约束出现与自由出现)7、命题符号化、谓词公式赋值与解释,谓词公式的类型(永真、永假、可满足)8、谓词公式的等值式(代换实例、消去量词、量词否定和量词辖域收与扩、量词分配)和置换规则(置换规则、换名规则)9、一阶逻辑前束范式(定义、求法)本章重点内容:命题与联结词、公式与解释、(主)析取范式与(主)合取范式、公式类型的判定、命题逻辑的推理、谓词与量词、命题符号化、谓词公式赋值与解释、求前束范式。
[复习要求]1、理解命题的概念;了解命题联结词的概念;理解用联结词产生复合命题的方法。
2、理解公式与赋值的概念;掌握求给定公式真值表的方法,用基本等值式化简其它公式,公式在解释下的真值。
3、了解析取(合取)范式的概念;理解极大(小)项的概念和主析取(合取)范式的概念;掌握用基本等值式或真值表将公式化为主析取(合取)范式的方法。
4、掌握利用真值表、等值演算法和主析取/合取范式的唯一性判别公式类型和公式等价方法。
5、掌握命题逻辑的推理理论。
6、理解谓词、量词、个体词、个体域、变元的概念;理解用谓词、量词、逻辑联结词描述一个简单命题;掌握命题的符号化。
7、理解公式与解释的概念;掌握在有限个体域下消去公式量词,求公式在给定解释下真值的方法;了解谓词公式的类型。
8、掌握求一阶逻辑前束范式的方法。
二、集合[复习知识点]1、集合、元素、集合的表示方法、子集、空集、全集、集合的包含、相等、幂集2、集合的交、并、差、补以及对称差等运算及有穷集的计数(文氏(Venn)图、包含排斥原理)3、集合恒等式(幂等律、交换律、结合律、分配律、吸收律、矛盾律、德摩根律等)及应用本章重点内容:集合的概念、集合的运算性质、集合恒等式的证明。
离散数学
10
基本等值式
双重否定律 AA 幂等律 AAA, AAA 交换律 ABBA, ABBA 结合律 (AB)CA(BC) (AB)CA(BC) 分配律 A(BC)(AB)(AC) A(BC) (AB)(AC) 德· 摩根律 (AB)AB (AB)AB
11. 余补律
12. 双重否定律 13. 补交转换律
=E,
A=A
E=
A-B= AB
27
基本集合恒等式(续)
14. 关于对称差的恒等式 (1) 交换律 AB=BA (2) 结合律 (AB)C=A(BC) (3) 对的分配律 A(BC)=(AB)(AC) (4) A=A, AE= ~ A (5) AA=, A ~ A= E
18
空集与全集
空集: 不含任何元素的集合 例如, {x | x2<0xR}= 定理1.1 空集是任何集合的子集 证 用归谬法. 假设不然, 则存在集合A, 使得 ⊈ A, 即存在x, x且xA, 矛盾. 推论 空集是惟一的. 证 假设存在1和2,则12 且21,因此1=2 全集E:限定所讨论的集合都是E的子集. 相对性
13
谓词与量词
个体域:被研究对象的全体, 如自然数集, 人类等. 个体词:个体域中的一个元素. 全称量词: 表示任意的, 所有的, 一切的等. 存在量词: 表示存在, 有的, 至少有一个等. 谓词: 表示个体词性质或相互之间关系的词
例如, 谓词P(x)表示x具有性质P x P(x) 表示个体域中所有的x具有性质P x P(x) 表示个体域中存在x具有性质P
7
p ¬ q的真值为 0
¬ p ¬ q的真值为 1
离散数学笔记总结
离散数学笔记总结一、命题逻辑。
1. 基本概念。
- 命题:能够判断真假的陈述句。
例如“2 + 3 = 5”是真命题,“1 > 2”是假命题。
- 命题变元:用字母表示命题,如p,q,r等。
2. 逻辑联结词。
- 否定¬:¬ p表示对命题p的否定,若p为真,则¬ p为假,反之亦然。
- 合取wedge:pwedge q表示p并且q,只有当p和q都为真时,pwedge q才为真。
- 析取vee:pvee q表示p或者q,当p和q至少有一个为真时,pvee q为真。
- 蕴含to:pto q表示若p则q,只有当p为真且q为假时,pto q为假。
- 等价↔:p↔ q表示p当且仅当q,当p和q同真同假时,p↔ q为真。
3. 命题公式。
- 定义:由命题变元、逻辑联结词和括号按照一定规则组成的符号串。
- 赋值:给命题变元赋予真假值,从而确定命题公式的真值。
- 分类:重言式(永真式)、矛盾式(永假式)、可满足式。
4. 逻辑等价与范式。
- 逻辑等价:若A↔ B是重言式,则称A与B逻辑等价,记作A≡ B。
例如¬(pwedge q)≡¬ pvee¬ q(德摩根律)。
- 范式:- 析取范式:由有限个简单合取式的析取组成的命题公式。
- 合取范式:由有限个简单析取式的合取组成的命题公式。
- 主析取范式:每个简单合取式都是极小项(包含所有命题变元的合取式,每个变元只出现一次)的析取范式。
- 主合取范式:每个简单析取式都是极大项(包含所有命题变元的析取式,每个变元只出现一次)的合取范式。
二、谓词逻辑。
1. 基本概念。
- 个体:可以独立存在的事物,如人、数等。
- 谓词:用来刻画个体性质或个体之间关系的词。
例如P(x)表示x具有性质P,R(x,y)表示x和y具有关系R。
- 量词:- 全称量词∀:∀ xP(x)表示对于所有的x,P(x)成立。
- 存在量词∃:∃ xP(x)表示存在某个x,使得P(x)成立。
离散数学知识点(可编辑修改word版)
1.内容及范围主要来自 ppt,标签对应书本2.可能有错,仅供参考离散数学知识点说明:定义:红色表示。
定理性质:橙色表示。
公式:蓝色表示。
算法: 绿色表示页码:灰色表示数理逻辑:1.命题公式:命题,联结词(⌝,∧,∨,→,↔),合式公式,子公式2.公式的真值:赋值,求值函数,真值表,等值式,重言式,矛盾式3.范式:析取范式,极小项,主析取范式,合取范式,极大项,主合取范式4.联结词的完备集:真值函数,异或,条件否定,与非,或非,联结词完备集5.推理理论:重言蕴含式,有效结论,P 规则,T 规则, CP 规则,推理6.谓词与量词:谓词,个体词,论域,全称量词,存在量词7.项与公式:项,原子公式,合式公式,自由变元,约束变元,辖域,换名,代入8.公式语义:解释,赋值,有效的,可满足的,不可满足的9.前束范式:前束范式10.推理理论:逻辑蕴含式,有效结论,∀-规则(US),∀+规则(UG),∃-规则(ES),∃+规则(EG), 推理集合论:1.集合: 集合, 外延性原理, ∈, ⊆, ⊂, 空集, 全集, 幂集, 文氏图, 交, 并, 差, 补, 对称差2.关系: 序偶, 笛卡尔积, 关系, domR, ranR, 关系图, 空关系, 全域关系, 恒等关系3.关系性质与闭包:自反的, 反自反的, 对称的, 反对称的, 传递的,自反闭包 r(R),对称闭包 s(R), 传递闭包 t(R)4.等价关系: 等价关系, 等价类, 商集, 划分5.偏序关系:偏序, 哈斯图, 全序(线序), 极大元/极小元, 最大元/最小元, 上界/下界6.函数: 函数, 常函数, 恒等函数, 满射,入射,双射,反函数, 复合函数7.集合基数:基数, 等势, 有限集/无限集, 可数集, 不可数集代数结构:1.运算及其性质:运算,封闭的,可交换的,可结合的,可分配的,吸收律, 幂等的,幺元,零元,逆元2.代数系统:代数系统,子代数,积代数,同态,同构。
离散数学课件 第一章
主讲教师 李红军 北京林业大学 理学院
BEIJING FOREST UNIVERSITY
教材及参考资料
教材:
1耿素云,屈婉玲,张立昂编著,离散数学,清华大学出版 社, 2008年3月(第4版) 2耿素云,屈婉玲编著.离散数学(修订版).高等教育出版社, 2004年
参考资料:
1 左孝凌编著,离散数学,上海科学技术出版社
1.1 命题与联结词 命题:能判断真假而不是可真可假的陈述句。 命题的真值:命题为真或者假的判断。 真命题:真值为真的命题。 假命题:真值为假的命题。 注:任何命题的真值都是惟一的;
用“1”表示真,用“0”表示假。
例 1.1 :判断下列句子哪些是命题.
(1)
3 是有理数。
(2) 2是素数。 (3) X+Y>10。
1 3
m z 1 r m 1
z m 1
1 2
1
3
比赛结束,三位观众各猜对了一半,并且没有并列名次.问:中 国、美国、日本的各排名第几? 设z1:中国第一;z2 :中国第三;r1:日本第一; m1:美国第一;m2:美国第二; m3:美国第三.
例1的参考答案 m1 z3 1 r1 m3 1 z1 m2 1
对偶原理
A和A*是互为对偶式,P1, P2 ,……Pn是出现在A和A*的原子变元,则 A(P1,…,Pn) A*( P1,…, Pn) A( P1,…, Pn) A*(P1,…,Pn)
即公式的否定等值于其变元否定的对偶式。 例:A为PQ,则A*为PQ, 则(PQ) PQ
真值表
将命题公式A在所有赋值下取值情况列成表
试考虑求公式A的真值表的步骤? 例1 求下列公式的真值表,并求出成真赋值和成假赋值. 1) p(¬ r∧q) 2) (p∨q)(¬ p q)
离散数学(高教)概念整理
数理逻辑命题逻辑命题p,q,r,s……非真即假的陈述句命题的真值0 1命题的陈述句所表达的判断结果原子命题(简单命题)不能被分解成更简单的命题简单命题通过联结词联结而成的命题,称为复合命题命题的符号化p:4是素数用小写英文字母(如p:4是素数)表示命题。
用小写英文字母(如p:4是素数)表示原子命题,用联结词联结原子命题表示复合命题。
联结词否定连接词¬否p为真当且仅当p为假合取联结词∧p合取q为真当且仅当p,q同时为真(复合命题“p并且q”称为p与q的合取式)析取联结词∨p析取q为假当且仅当p,q同时为假(复合命题“p或q”称为p与q的析取式)蕴含连接词→p蕴含q为假当且仅当p为真,q为假。
(复合命题“如果p,则q”(因为p所以q,除非q 才p)称为p与q的蕴含式,p是蕴含式的前件,q是蕴含式的后件)q是p的必要条件。
等价联结词↔p等价q当且仅当,同时为真或假。
(复合命题“p当且仅当q”称作p与q的等价式)真值表命题公式及其赋值命题常项原子命题(简单命题)的另一称呼,由于其真值确定命题变项真值可以变化的陈述句合式公式(命题公式)A,B……命题变项用联结词和圆括号用一定逻辑关系连接起来的符号串,简称公式赋值(解释)给公式A中的每个命题变项各指定一个真值。
这组值使A为1,则称为成真赋值。
含n个命题变项的公式有2的n次方个不同赋值。
含n个命题变项的公式有2的2的n次方个不同真值表情况。
重言式(永真式)命题公式A在各种赋值下取值均为真矛盾式(永假式)命题公式A在各种赋值下取值均为假可满足式命题公式A至少存在一个成真赋值哑元对公式A和B进行比较讨论,可知A和B共含有n个命题变项,其中A不含有的命题变项称为A的哑元,其取值不影响A的值命题逻辑等值演算等值式⇔如果命题A和B有相同的真值表,则有命题A↔B为重言式,这种情况下称A与B是等值的,记作A⇔B(重要)等值式模式常用的16条命题间的等值模式,书p18析取范式与合取范式文字命题变项及其否定的统称简单析取式,简单合取式由有限个文字构成的析取式,合取式析取范式,合取范式由有限个简单合取式的析取构成的命题公式,称为析取范式。
离散数学
一阶逻辑等值式与置换规则
设A, B是两个谓词公式, 如果AB是永真式, 则称A 与B等值, 记作AB, 并称AB是等值式 设A0是含命题 基本等值式 变项 p1, p2, …, 第一组 命题逻辑中16组基本等值式的代换实例 pn的命题公式, 例如,xF(x)xF(x), A1, A2, …, An xF(x)yG(y) xF(x)yG(y) 等 是n个谓词公式, 第二组 用Ai (1in) 处 (1) 消去量词等值式 处代替A0中的 设D ={a1, a2, … , an} pi,所得公式A ① xA(x) A(a1)A(a2)…A(an) 称为A0的代换 ② xA(x) A(a1)A(a2)…A(an) 实例. 27
9
在n个变元的简单合取式中,若每个变元及其否定 并不同时存在,且二者之一出现一次且仅出现一 次,则称此简单合取式为极小项。 在n个变元的基本析取式中,若每个变元与其否定, 并不同时存在,且二者之一出现一次且仅出现一 次,则称这种基本析取为极大项。
用mi表示第i个极小项,其中i是该极小项成真赋值的十进制 表示. 用Mi表示第i个极大项,其中i是该极大项成假赋值的 十进制表示. 主析取范式——由极小项构成的析取范式 主合取范式——由极大项构成的合取范式
13
求公式 A=(pq)r的主析取范式和主合取范式 解 (pq)r (pq)r (析取范式) ①
(pq) (pq)(rr) (pqr)(pqr) m6m7 ② r (pp)(qq)r (pqr)(pqr)(pqr)(pqr) m1m3m5m7 ③
19
ห้องสมุดไป่ตู้
推理规则
(10) 构造性二难推理规则 AB CD AC ∴BD
(12) 合取引入规则 A B ∴AC 直接证明法 附加前提证明法 归谬法 (反证法)
离散数学2
1/13/2020 5:08 AM
Discrete Math. , huang liujia
13
例1.5 将下列命题符号化,并指出各复合命题的真值。CHAPTER
(1) 如果3+3 = 6, 则雪是白色的。
ONE
(2) 如果3+3 ≠6, 则雪是白色的。
(3) 如果3+3 = 6, 则雪不是白色的。
(4) 如果3+3 ≠6, 则雪不是白色的。
(5) 只要 a 能被4整除,则 a 一定能被2整除。
(6) a 能被4整除,仅当 a 能被2整除。
(7) 除非 a 能被2整除,a 才能被4整除。
(8) 除非 a 能被2整除,否则 a 不能被4整除。
(9) 只有 a 能被2整除,a 才能被4整除。
(10) 只有 a 能被4整除,a 才能被2整除。(a 是一个给定的正整数)。
注:p↔q 可理解为“q与p互为充分必要条件”;
它与(p→q)∧(q→p)的逻辑关系完全一致。
1/13/2020 5:08 AM
Discrete Math. , huang liujia
15
例 1.6 将下列命题符号化,并讨论它们的真值。CHAPTER ONE
(1) √3 是无理数当且仅当加拿大位于亚洲。 (2) 2+3=5的充要条件是√3是无理数。 (3) 若两圆的面积相等, 则它们的半径相等, 反之亦然。 (4) 当王小红心情愉快时, 她就唱歌, 反之, 当她唱歌时, 一定心情愉快。 解:(1)令p:√3是无理数;q: 加拿大位于亚洲,则符号化为
2
CHAPTER ONE
逻辑学: 研究人的思维形式和规律的科学.由于研究的 对象和方法各有侧重而又分为形式逻辑、辩证逻辑和数理逻 辑.
离散数学之1—命题逻辑
28
蕴涵联结词的实例
我将去旅游,仅当我有时间。 p: 我去旅游 q: 我有时间 p→q p: 不下雨 q: 我骑自行车上班 只要不下雨,我就骑自行车上班 p→q 只有不下雨,我才骑自行车上班。 q→p
说谎者悖论 亚里士多德,古希腊人,是世界
古典形式逻辑
如果这个人说的是假话,既 在中世纪,形式逻辑作为一门独 “我没有说谎”,既他说的是 立的科学得到了发展。 真话,矛盾。
第一篇 数理逻辑
6
数理逻辑创始人
德国哲学家和数学家莱布 尼茨是德国最重要的自然 科学家、数学家、物理学 家和哲学家,一个举世罕 见的科学天才,和牛顿同 为微积分的创建人。 莱布尼茨是现在公认的数 理逻辑创始人,他的目的 是建立一种“表意的符号 语言”,其中把一切思维 推理都化归为计算。实际 上这正是数理逻辑的总纲 领。
29
蕴涵联结词的实例
除非你努力,否则你不能成功。 表示p q的常用词: 除非你努力,你才能成功。 p是q的充分条件 p: 你努力 q: 你成功 q是p的必要条件 p → q 或 q → p 如果(若)p,则q p 0 0 1 1 q 0 1 0 1 p 1 1 0 0
只要p,就q q qp pq 只有q 才p 1因为p所以 1 q 1 0p仅当q0 0 才p 1除非q, 1 1 p 0除非q,否则非 1 1
数理逻辑
“事实上,它们(程 序设计)或者就是 数理逻辑,或者是 用计算机语言书写 的数理逻辑,或者 是数理逻辑在计算 机上的应用。”
离散数学第三章 命题逻辑的推理理论
推理实例
例1 判断下面推理是否正确 (1) 若今天是 号,则明天是 号. 今天是 号. 所以 明天是 号. 若今天是1号 则明天是5号 今天是1号 所以, 明天是5号 (2) 若今天是 号,则明天是 号. 明天是 号. 所以 今天是 号. 若今天是1号 则明天是5号 明天是5号 所以, 今天是1号 解 设 p:今天是 号,q:明天是 号. :今天是1号 :明天是5号 → ∧ → (1) 推理的形式结构 (p→q)∧p→q 推理的形式结构: 用等值演算法 (p→q)∧p→q → ∧ → ⇔ ¬((¬p∨q)∧p)∨q ¬ ∨ ∧ ∨ ∨¬q∨ ⇔ ¬p∨¬ ∨q ⇔ 1 ∨¬ 由定理3.1可知推理正确 由定理 可知推理正确
19
练习1: 练习 :判断推理是否正确
1. 判断下面推理是否正确 判断下面推理是否正确: (1) 前提:¬p→q, ¬q 前提: → 结论: 结论:¬p ∧¬q→¬ 推理的形式结构: ¬ → ∧¬ →¬p 解 推理的形式结构 (¬p→q)∧¬ →¬ 方法一:等值演算法 方法一: (¬p→q)∧¬ →¬ ∧¬q→¬ ¬ → ∧¬ →¬p ∧¬q)∨¬ ⇔ ¬((p∨q)∧¬ ∨¬ ∨ ∧¬ ∨¬p ∧¬q)∨ ∨¬ ∨¬p ⇔ (¬p∧¬ ∨q∨¬ ¬ ∧¬ ∨¬p ⇔ ((¬p∨q)∧(¬q∨q))∨¬ ¬ ∨ ∧ ¬ ∨ ∨¬ ⇔ ¬p∨q ∨ 易知10是成假赋值,不是重言式,所以推理不正确 易知 是成假赋值,不是重言式,所以推理不正确. 是成假赋值
16
例4 前提:¬(p∧q)∨r, r→s, ¬s, p 前提: ∧ ∨ → 结论: 结论:¬q 证明 用归缪法 ①q 结论否定引入 ② r→s → 前提引入 ③ ¬s 前提引入 ②③拒取式 ④ ¬r ②③拒取式 ⑤ ¬(p∧q)∨r ∧ ∨ 前提引入 ④⑤析取三段论 ⑥ ¬(p∧q) ∧ ④⑤析取三段论 ∨¬q ⑦ ¬p∨¬ ∨¬ ⑥置换 ①⑦析取三段论 ⑧ ¬p ①⑦析取三段论 ⑨p 前提引入 ⑧⑨合取 ¬p∧p ∧ ⑧⑨合取
离散数学第二章命题逻辑等值演算
再如 ┑p ∨ q 既是p →q的析取范式又是它的的合取范式
如果公式的范式不唯一则对于将公式按等值进行分类的利用价值就不高
p q (p → q)∧(q→p) (p∧q)∨(┓p∧┓q)
00
1
1
01
0
0
10
0
0
11
1
1
(0,0)与(1,1)为公式的成真赋值。 (0,1)与(1,0)为公式的成假赋值
命题公式的分类(根据公式在赋值下的真值情况进行分类) 1)若命题公式在它的各种赋值下取值均为真,则称命题公式是重言
式或永真式。 2)若命题公式在它的各种赋值下取值均为假,则称命题公式是矛盾
2
如:┐Q∧(P→Q) → ┐P
4
分析1:若要得出:当设 A为真,B为
假的情况不会出现,
5
那么A →B 为永真式。
6
可证明:设前件为真
7
分析2: 还可以从设 B为假,推出A
为真的情况不会出现(A为假),
9
证明: 设后件为假
8
那么A →B 为永真式。
1 0
((P→Q)∧( Q→R)) →(P→R)
不同真值表的公式 1)当命题变元确定后,通过五个连接词及其命题变元可以构成 无数个不 同表现形式的命题公式。 问题:这些不同形式的命题公式的真值表是否都不相同? 先看变元仅有两个p,q 那么关于这两个变元的公式的赋值仅有4组
(┐p ∨ q)∧(┐q∨┐p∨r)∧┐q
是含三个简单析取式的合取范式.
2、性质:
1)一个析取范式是矛盾式当且仅当它的每个简单合取式都是矛盾式
2)一个合取范式是重言式当且仅当它的每个简单析取式都是重言式
┐p ∧ P ∨ ┐ q∧ q ⇔ 0 ∨ 0 ⇔ 0
离散数学第一章
第一部分数理逻辑先看著名物理学家爱因斯坦出过的一道题:一个土耳其商人想找一个十分聪明的助手协助他经商,有两人前来应聘,这个商人为了试试哪个更聪明些,就把两个人带进一间漆黑的屋子里,他打开灯后说:“这张桌子上有五顶帽子,两顶是红色的,三顶是黑色的,现在,我把灯关掉,而且把帽子摆的位置弄乱,然后我们三个人每人摸一顶帽子戴在自己头上,在我开灯后,请你们尽快说出自己头上戴的帽子是什么颜色的。
”说完后,商人将电灯关掉,然后三人都摸了一顶帽子戴在头上,同时商人将余下的两顶帽子藏了起来,接着把灯打开。
这时,那两个应试者看到商人头上戴的是一顶红帽子,其中一个人便喊道:“我戴的是黑帽子。
”请问这个人说得对吗?他是怎么推导出来的呢?要回答这样的问题,实际上就是看由一些诸如“商人戴的是红帽子”这样的前提能否推出“猜出答案的应试者戴的是黑帽子”这样的结论来。
这又需要经历如下过程:(1) 什么是前提?有哪些前提?(2) 结论是什么?(3) 根据什么进行推理?(4) 怎么进行推理?下面的第一章,第二章回答第一个问题。
第三章回答第二、三个问题。
下图给出了逻辑部分的知识体系。
1.1 命题与联结词一、命题的概念引言中的例子就是要对“我戴的是黑帽子”进行判断。
这样的陈述句称为命题。
作为命题的陈述句所表达的判断结果称为命题的真值,真值只取两个值:真或假。
真值为真的命题称为真命题,真值为假的命题称为假命题。
真命题表达的判断正确,假命题表达的判断错误。
任何命题的真值都是唯一的。
判断给定句子是否为命题,应该分两步:首先判定它是否为陈述句,其次判断它是否有唯一的真值。
例1.1 判断下列句子是否为命题。
(1) 4是素数。
(2) 是无理数。
(3) x大于y。
(4) 月球上有冰。
(5) 2100年元旦是晴天。
(6) π大于吗? (7) 请不要吸烟! (8)这朵花真美丽啊! (9) 我正在说假话。
解:本题的(9)个句子中,(6)是疑问句,(7)是祈使句,(8)是感叹句,因而这3个句子都不是命题。
离散数学部分概念和公式总结(考试专用)
命题:称能判断真假的陈述句为命题。
命题公式:若在复合命题中,p、q、r等不仅可以代表命题常项,还可以代表命题变项,这样的复合命题形式称为命题公式。
命题的赋值:设A为一命题公式,p ,p ,…,p 为出现在A中的所有命题变项。
给p ,p ,…,p 指定一组真值,称为对A的一个赋值或解释。
若指定的一组值使A的值为真,则称成真赋值。
真值表:含n(n≥1)个命题变项的命题公式,共有2^n组赋值。
将命题公式A在所有赋值下的取值情况列成表,称为A的真值表。
命题公式的类型:(1)若A在它的各种赋值下均取值为真,则称A为重言式或永真式。
(2)若A在它的赋值下取值均为假,则称A为矛盾式或永假式。
(3)若A至少存在一组赋值是成真赋值,则A是可满足式。
主析取范式:设命题公式A中含n个命题变项,如果A得析取范式中的简单合取式全是极小项,则称该析取范式为A的主析取范式。
主合取范式:设命题公式A中含n个命题变项,如果A得析取范式中的简单合析式全是极大项,则称该析取范式为A的主析取范式。
命题的等值式:设A、B为两命题公式,若等价式A↔B是重言式,则称A与B是等值的,记作A<=>B。
约束变元和自由变元:在合式公式∀x A和∃x A中,称x为指导变项,称A为相应量词的辖域,x称为约束变元,x的出现称为约束出现,A中其他出现称为自由出现(自由变元)。
一阶逻辑等值式:设A,B是一阶逻辑中任意的两公式,若A↔B为逻辑有效式,则称A与B是等值的,记作A<=>B,称A<=>B为等值式。
前束范式:设A为一谓词公式,若A具有如下形式Q1x1Q2x2Q k…x k B,称A为前束范式。
集合的基本运算:并、交、差、相对补和对称差运算。
笛卡尔积:设A和B为集合,用A中元素为第一元素,用B中元素为第二元素构成有序对组成的集合称为A和B的笛卡尔积,记为A×B。
二元关系:如果一个集合R为空集或者它的元素都是有序对,则称集合R是一个二元关系。
离散数学知识点整理(一)
离散数学知识点整理(⼀)离散数学数学语⾔与证明⽅法集合幂集运算交集并集相对补集绝对补集对称差集运算律交换律结合律分配律德摩根律恒等式证明⽅法直接证明归谬法分情况证明构造性证明数学归纳法命题逻辑命题简单命题p,q,r复合命题基本复合命题五种复杂复合命题真值真命题假命题命题符号化联结词否定联结词¬否定式合取联结词∧合取式析取联结词∨析取式相容或p∨q排斥或(¬p∧q)∨(p∧¬q)蕴含联结词蕴含式p->q真值p真q假,p->q为真其他全为真前件p后件q等价联结词等价式p<->q真值p,q真值相同,p<->q为真不同为假‘当且仅当’公式命题常项p,q,r为定值变项p,q,r为变量合式公式/命题公式A,B,C,D永真式重⾔式永假式⽭盾式可满⾜式赋值/解释成真赋值成假赋值等值演算A<->B,则A<=>B等价式为重⾔式常⽤等值公式蕴含等值式A→B⇔¬A∨B德摩根律 ¬(A∨B)⇔¬A∧¬B联结词集优先顺序扩展与⾮联结词p↑q⇔¬(p∧q)或⾮联结词p↓q⇔¬(p∨q)联结词完备集(1)S={¬,∧,∨}(2)S={↑}(3)S={↓}范式分类析取范式主析取范式极⼤项合取范式主合取范式极⼩项计算推理概念蕴含式为重⾔式⇒形式结构(A1∧A2∧...∧A k)⇒B前提结论证明推理规则前提引⼊结论引⼊置换规则等值置换A⇔B:A⇒B;B⇒A推理定律特殊证明⽅法附加前提证明法(A1∧A2∧...∧A k)⇒A→B(A1∧A2∧...∧A k∧A)⇒B归结证明法归结规则(L∨C1)∧(¬L∨C2)⇒C1∨C2基本思想归谬法证明步骤结论的否定引⼊前提把所有前提化成合取范式,并将简单析取式作为单个前提归结规则进⾏推理推出0则推理正确⼀阶逻辑表达个体与总体之间的内在联系与数量关系概念个体词个体常项a,b,c....个体变项个体域x,y,z....谓词谓词常项表⽰具体性质或关系⼦主题 2谓词变项表⽰抽象性质或关系F,G....0元谓词不带个体变项的谓词当谓词为谓词常项时为命题量词全称量词存在量词符号化不同个体域形式可能不同引⼊特性谓词公式分类原⼦公式合式公式/谓词公式闭式A中不含⾃由出现的个体变项概念x:指导变元A:辖域x在A中约束出现A中出现的除x所有其他个体变项都为⾃由出现解释/赋值定义封闭的公式在任何解释下都变成命题分类永真式/逻辑有效式A在任何解释和任何赋值下均为真永假式/⽭盾式A在任何解释和任何赋值下均为假可满⾜式⾄少存在⼀个解释和⼀个赋值使A为真代换实例重⾔式的代换实例都是重⾔式⽭盾式的代换实例都是⽭盾式等值演算命题逻辑的代换实例等值式消去量词等值式量词否定等值式量词辖域收缩与扩张等值式量词分配等值式规则置换规则换名规则前束范式存在但不唯⼀利⽤等值演算求前束范式Processing math: 100%。
离散数学第五版第一章(耿素云、屈婉玲、张立昂编著)
3) 我们只关心复合命题中命题之间的真值关系,而不关心命题 的内容。
22
命题与联结词
例 8 将下列命题符号化
① 设P表示“他有理论知识”, Q表示“他有实践经验”, 则“他 既有理论知识又有实践经验”可译为: 。
6
命题与联结词
一、命题 定义:能判断真假的陈述句,被称为命题。
说明:1) 命题的真值:作为命题所表达的判断只有两个结果:正确和
错误,此结果称为命题的真值。 命题是正确的,称此命题的真值为真;命题是错误的,称此 命题的真值为假。 真值为真的命题称为真命题 ;真值为假的命题称为假命题。 任何命题的真值都是唯一的。
1 0 1
1 1 0 1 1 1
0
0 1
0
0 1
1
1 1
29
等值式
二、16组重要的等值式 1. 双重否定 A A
2. 3. 4. 等幂律 交换率 结合律 (AB)C A(BC) (AB)C A(BC) 5. 分配律 (AB)C (AC)(BC) (AB)C (AC)(BC) A A A A A A AB B A AB B A
(pq)
0
0
(pq)(pq)
0
0
1 0
1 1
0
1
1
0
1
1
28
等值式
((pq)(pr))(p(qr))
p q r 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 ((pq)(pr)) 1 1 1 1 0 (p(qr)) 1 1 1 1 0 ((pq)(pr))(p(qr)) 1 1 1 1 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(AB)也是合式公式; (4) 只有有限次地应用(1)—(3)形成的符号串才
是合式公式。 说明: 最外层括号可以省去.
3
合式公式的层次
定义 (1) 若A是单个的命题变项或常项, 则称A为0层公式. (2) 称A是n+1(n≥0)层公式是指下面情况之一:
离散数学命题公式与赋值
命题变项与合式公式
命题常项:真值确定的简单命题. 命题变项:真值不确定的陈述句.
注意: 命题变项不是命题!
合式公式:将命题常项和命题变项用联结词和 圆括号按一定的逻辑关系联接起来的符号串.
2
定义 合式公式(命题公式, 公式)递归定义如下: (1) 单个命题常项或变项p, q, r, …, pi , qi , ri , …, 0,
(a) A=B, B是n层公式; (b) A=BC, 其中B,C分别为i层和j层公式,且
n=max(i, j); (c) A=BC, 其中B,C的层次及n同(b); (d) A=BC, 其中B,C的层次及n同(b); (e) A=BC, 其中B,C的层次及n同(b).
4
合式公式的层次 (续)
例如 公式
7
真值表
真值表:公式A在所有赋下的取值情况列成的表 构造真值表的步骤: 1)找出公式中所含的全部命题变项,列出所有可
能的赋值; 2)按从低到高的顺序写出各层次; 3)对应各赋值,计算公式各层次的值,直到最后
算出公式的值。
8
例1.8 求下列公式的真值表. (1) A= (qp) qp
pq
00 01 10
11
qp
1 0 1
1
(qp) q
0 0 0 1
(qp)qp
1 1 1 1
9
(2) B = (pq) q
p q p pq (pq) (pq) q
00 1 1
0
0
01 1 1
0
0
10 0 0
1
0
11 0 1
0
0
10
(3) C = (pq) r
p q r pq
000
0
001
0
010
1
011
1
100
C= (pq)r A为重言式,B为矛盾式,C为可满足式
12
作业: P35:6
13
谢谢!
1
101
1
110
1
111
1
r (pq)r
1
1
0
1
1
1
0
0
1
1
0
0
1
1
0
0
11
公式的类型
定义 设A为一个命题公式 (1)若A无成假赋值,则称A为重言式(也称永真式) (2)若A无成真赋值,则称A为矛盾式(也称永假式) (3)若A不是矛盾式,则称A为可满足式。
注意:
重言式是可满足式,但反之不真.
上例中 A= (qp)qp,B = (pq)q,
6
说明: 赋值=12…n之间不加标点符号,i=0或1. A中仅出现 p1, p2, …, pn,给A赋值12…n是 指 p1=1, p2=2, …, pn=n A中仅出现 p, q, r, …, 给A赋值123…是指 p=1, q=2 , r=3 … —— 字典顺序
含n个变项的公式有 ?2n个赋值.
p
0层
p
1层
pq
2层
(pq)r
3层
((pq) r)(rs)
4层
又如: ((p q) r)s
4层
((p q r )s(p q r) 5层
5
公式的赋值
定义 给公式A中的命题变项 p1, p2, … , pn 指定一组真值称为对A的一个赋值或解释。 成真赋值: 使公式为真的赋值. 成假赋值: 使公式为假的赋值.