初中数学相交线与平行线真题汇编及答案
中考数学相交线与平行线专题训练50题含答案
中考数学相交线与平行线专题训练50题含答案(单选、填空、解答题)一、单选题1.已知P 是直线m 外一点,A 、B 、C 是直线m 上一点,且532PA PB PC ===,,,那么点P 到直线m 的距离为( )A .等于2B .大于2C .小于或等于2D .小于2 2.如图,1120∠=︒,要使//a b ,则2∠的大小是( )A .60︒B .80︒C .100︒D .120︒ 3.P 为直线外一点,点A 、B 、C 在直线l 上,若2cm, 2.3cm,5cm PA PB PC ===,则点P 到直线l 的距离是( )A .2cmB .小于2cmC .不大于2cmD .5cm 4.如图所示,一束光线垂直照射水平地面,在地面上放一个平面镜,欲使这束光线经平面镜反射后成水平光线,则平面镜与地面所成锐角的度数为( )A .45°B .60°C .75°D .80° 5.如图,AB//EF//CD ,点G 在AB 上,GE//BC ,GE 的延长线交DC 的延长线于点H ,则图中与AGE ∠相等的角(不含AGE ∠)共有( )A .7个B .6个C .5个D .4个 6.如图,直线m∥n ,直线AB 分别与直线m ,n 交于A ,B 两点,∥BAD 的平分线交直线n 于点C ,若∥1=56°,则∥2的度数是( )A .108°B .112°C .118°D .124° 7.下列命题中,属于假命题的是( )A .两直线平行,内错角相等B .平行于同一条直线的两条直线平行C .同位角相等,两直线平行D .一个角的补角一定不大于这个角 8.如图,下列条件中不能判定AB CD ∥的是( ).A .180A ADC ∠+∠=︒B .A ADE ∠=∠C .ABD BDC ∠=∠ D .ADB CBD ∠=∠9.如图,五边形ABCDE 中,//AE CD .若110A C ∠=∠=︒,则B ∠的度数为( )A .70︒B .110︒C .140︒D .150︒ 10.如图,直线a ∥b ,直角三角形ABC 的顶点B 在直线a 上,若∥C =90°,∥α=30°,则∥β的度数为( )A .30°B .45°C .60°D .75° 11.如图,已知BD AC ∥,165∠=︒,40A ∠=︒,则2∠的大小是( )A.55︒B.65︒C.75︒D.85︒12.下列说法正确的个数是()∥两点之间,直线最短=,则点B为线段AC的中点;∥若AB BC∥过一点有且只有一条直线与已知直线垂直;∥过直线外一点有且只有一条直线与已知直线平行A.4B.3C.2D.113.如图,DE∥CF,且∥D=120°,∥A=30°,则∥B的度数为()A.120°B.90°C.60°D.30°14.下列事实中,利用“垂线段最短”依据的是()A.把一根木条固定在墙上至少需要两个钉子B.把弯曲的公路改直,就能缩短路程C.体育课上,老师测量同学们脚后跟到起跑线的垂直距离作为跳远成绩D.火车运行的铁轨永远不会相交15.如图,直线AB∥CD,AF交CD于点E,∥CEF=135°,则∥A等于()A.65°B.55°C.45°D.135°16.下列命题是真命题的是()A.两直线平行,同旁内角相等B.直角三角形的两锐角互余C.三角形的外角大于任一内角D.所有边都相等的多边形是正多边形17.如图,OP 平分MON ∠,PA ON ⊥于点A ,点Q 是射线OM 上的一个动点.若4PA =,则PQ 的最小值为( )A .2B .3C .4D .518.下列说法:∥在同一平面内,两条直线的位置关系有相交和平行两种;∥过一点有且只有一条直线与这条直线平行;∥平行于同一条直线的两条直线平行;∥如果两条直线被第三条直线所截,那么内错角相等;∥直线外一点到这条直线的垂线段,叫做点到直线的距离.其中正确的有( )A .2个B .3个C .4个D .5个 19.如图,下列条件不能判定AB∥CD 的是( )A .12∠∠=B .2E ∠∠=C .B E 180∠∠+=D .BAF C ∠∠= 20.甲,乙两位同学用尺规作“过直线l 外一点C 作直线l 的垂线”时,第一步两位同学都以C 为圆心,适当长度为半径画弧,交直线l 于D ,E 两点(如图);第二步甲同学作∥DCE 的平分线所在的直线,乙同学作DE 的中垂线.则下列说法正确的是( )A .只有甲的画法正确B .只有乙的画法正确C .甲,乙的画法都正确D .甲,乙的画法都不正确二、填空题21.已知点A (3,4),B (3,1),C (﹣4,1),D (﹣4,3),则AB 与CD 的位置关系是_____.22.已知∥1与∥2是对顶角,∥1与∥3是邻补角,则∥2+∥3=_________. 23.如图,OC OD ⊥,150∠=︒,则2∠的度数是_______24.如图,点P 在AOB ∠的平分线上,过点P 作PC OA ⊥,交OA 于点C ,且5PC =,D 是OB 上一动点,则PD 的最小值为___________.25.如图,将矩形纸片ABCD 沿EF 折叠后,点D ,C 分别落在点D 1,C 1的位置,ED 1的延长线交BC 于点G ,若∥EFG =62°,则∥EGB 等于______.26.如图,两直线交于点O ,若∥1+∥2=76°,则∥1=________度.27.如图,过直线AB 上一点O 作射线OC ,30BOC ∠=︒,OD 平分AOC ∠,则DOC ∠的度数为__________.28.如图,a //b ,点B 在直线b 上,且AB ∥BC ,∥1=35°,那么∥2=______.29.如图,在直线a 的同侧有P 、Q 、R 三点,若PQ//a ,QR//a ,则P 、Q 、R 三点______(填“在”或“不在”)同一条直线上.30.把一张长方形纸条按图中折叠后,若∥EFB= 65º,则∥AED ’= _______度 .31.如图,BO 平分ABC ∠,OD BC ⊥于点D ,点E 为射线BA 上一动点,若6OD =,则OE 的最小值为______.32.如图,体育课上老师要测量学生的跳远成绩,其测量时主要依据是______.33.如图,AB 、CD 相交于O ,OE AB ⊥,35∠=︒DOE 则BOC ∠=______;34.如图,已知∥A=∥F=40°,∥C=∥D=70°,则∥ABD=____,∥CED=____.35.已知:如图,AB∥CD ,若∥ABE=130°,∥CDE=152°,则∥BED=__度.36.如图,点E 在射线AD 的延长线上,要使AB//CD ,只需要添加一个条件,这个条件可以是________.(填一个你认为正确的条件即可)37.如图∥是长方形纸带,∥CFE =55°,将纸带沿EF 折叠成图∥,再沿GE 折叠成图∥,则图∥中∥DEF 的度数是_________38.如图,AD BC BAD ∠∥,的平分线交CD 于点E ,交BC 的延长线于点F ,且CEF F ∠=∠,求证:180B BCD ∠+∠=︒.请你将下面的证明过程补充完整:证明:AD BC ∥∴__________F =∠,(理由:____________________)AF 平分BAD ∠∴__________=__________(角平分线的定义)BAF F ∴∠=∠(等量代换)CEF F ∠=∠(已知)BAF CEF ∴∠=∠(等量代换)∴__________∥__________(理由:____________________)180B BCD ∴∠+∠=︒,(理由:____________________)39.如图,ABC ∆中,50B ∠=︒,30C ∠=︒,点D 为边BC 上一点,将ADC ∆沿直线AD 折叠后,点C 落到点E 处,若DE AB ∥,则DAC ∠=____________.40.如图,直线l∥m∥n ,等边∥ABC 的顶点B ,C 分别在直线n 和m 上,边BC 与直线n 所夹的角为25°,则∥α的度数为_____度.三、解答题41.如图,直线MN 分别与直线AC 、DG 交于点B 、F ,且12∠=∠,ABF ∠的角平分线BE 交直线DG 于点E ,BFG ∠的角平分线FC 交直线AC 于点C .(1)求证://BE CF ;(2)若35C ∠=︒,求BED ∠的度数.42.已知:如图,A 、F 、C 、D 在同一直线上,AB ∥DE ,AB =DE ,AF =CD ,求证:(1)BC =EF ;(2)BC ∥EF .43.如图,两条射线AM ∥BN ,线段CD 的两个端点C 、D 分别在射线BN 、AM 上,且∥A =∥BCD =108°.E 是线段AD 上一点(不与点A 、D 重合),且BD 平分∥EBC . (1)求∥ABC 的度数.(2)请在图中找出与∥ABC 相等的角,并说明理由.(3)若平行移动CD ,且AD >CD ,则∥ADB 与∥AEB 的度数之比是否随着CD 位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值.44.如图,已知AB 是∥O 的直径,C 、D 是∥O 上的点,OC ∥BD ,交AD 于点E ,连结BC .(1)求证:AE =ED ;(2)若AB =10,∥CBD =36°,求扇形AOC 的面积. 45.如图,三角形ABC 中,点A ,B ,C 都在方格纸的格点(网格线的交点)上,每个小方格的边长为1个单位长度.将三角形ABC 向左平移2格,再向上平移2格,得到三角形111A B C ,点1A ,1B ,1C 的对应点分别是点A ,B ,C .(1)请在图中画出三角形111A B C .(2)画出点C 到直线AB 的垂线段CM ,并回答:点C 到直线AB 的距离等于_____个单位长度.46.如图,AD EF ∥,12180∠+∠=︒.(1)若150∠=︒,求BAD ∠的度数:(2)已知DG 平分ADC ∠,求证:AB DG ∥.47.如图,∥B=∥C=90°,E 是BC 的中点,AE 平分∥BAD ,求证:AE∥DE.48.如图,由点O 引出6条射线OA ,OB ,OC ,OD ,OE ,OF ,且∥AOB =90°,OF 平分∥BOC , OE 平分∥AOD . 若∥EOF =165°,求∥COD 的度数49.如图,GE 分别与AB ,CD 相交于E ,G 两点,过E 点的直线EH 与CD 相交于点F .若∥1=∥2=∥3=55°.(1)AB 与CD _______平行(填“一定”或“不一定”或“一定不”);(2)求∥4的度数.50.已知:如图,MON ∠.求作:BAD ∠,使BAD MON ∠=∠.下面是小明设计的尺规作图过程.作法:∥在OM 上取一点A ,以A 为圆心,OA 为半径画弧,交射线OA 于点B ;∥在射线ON上任取一点C,连接BC,分别以B,C为圆心,大于12BC为半径画弧,两弧交于点E,F,作直线EF,与BC交于点D;∥作射线AD,BAD∠即为所求.(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下列证明.证明:∥EF垂直平分BC,∥________DC=.∥AO AB=,∥AD OC∥()(填推理依据).∥BAD MON∠=∠.参考答案:1.C【分析】根据“直线外一点到直线上各点的所有线中,垂线段最短”进行解答.【详解】解:∥直线外一点与直线上各点连接的所有线段中,垂线段最短,∥点P到直线m的距离≤PC,即点P到直线m的距离小于或等于2.故选:C.【点睛】本题考查的是点到直线的距离,熟知直线外一点到直线的垂线段的长度,叫做点到直线的距离是解答此题的关键.2.D【分析】根据同位角相等,两直线平行即可求解.∠=∠=︒,那么//a b.【详解】解:如果21120所以要使//∠的大小是120︒.a b,则2故选D.【点睛】本题考查的是平行线的判定定理,掌握同位角相等,两直线平行是解题的关键.3.C【分析】从直线外一点到这条直线上各点所连的线段中,垂线段最短.【详解】解:∥P A=2cm,PB=2.3cm,PC=5cm,∥P A<PB<P C.∥∥当P A∥l时,点P到直线l的距离等于2cm;∥当P A与直线l不垂直时,点P到直线l的距离小于2cm;综上所述,则P到直线l的距离是不大于2cm.故选:C.【点睛】本题主要考查了垂线段最短的性质和点到直线的距离的概念.垂线的两条性质:∥从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.∥从直线外一点到这条直线上各点所连的线段中,垂线段最短.4.A【详解】试题分析:要求平面镜与地面所成锐角的度数,就要利用平行线的性质,和光的反射原理计算.解:∥入射光线垂直于水平光线,∥它们的夹角为90°,虚线为法线,∥1为入射角,∥∥1=0.5×90°=45°,∥∥3=90°﹣45°=45°;∥两水平光线平行,∥∥4=∥3=45°.故选A.【点评】本题用到的知识点为:入射光线与法线的夹角叫入射角;反射光线与法线的夹角叫反射角;入射角等于反射角;两直线平行,内错角相等.5.B【分析】根据平行线性质得出∥AGE=∥GEF=∥EHC=∥BCD=∥EPC=∥BPF=∥GBP,即可得出答案.【详解】∥AB∥EF, ∥∥AGE=∥GEF, ∥GBP=∥BPF∥EF∥CD, ∥∥GEF=∥EHC, ∥PCD=∥EPC=∥BPF,∥GE∥BC, ∥∥EHC=∥BCD,∥∥AGE =∥GEF=∥EHC=∥BCD=∥EPC=∥BPF=∥GBP.共6个角与∥AGE相等.故选:B【点睛】本题考查了平行线性质:两直线平行,同位角相等,内错角相等,以及等量代换等.主要考查学生的推理能力.6.C【分析】根据平行线的性质和角平分线的性质,可以求得∥1+∥3的度数,从而可以得到∥2的度数,本题得以解决.【详解】解:∥m∥n,∥∥1+∥3=∥2,∥∥1=56°,∥∥BAD=124°,∥AC平分∥DAB,∥∥3=62°,∥∥1+∥3=56°+62°=118°,∥∥2=118°,故选:C.【点睛】本题考查平行线的性质和角平分线的定义,熟练掌握基础知识是关键.7.D【分析】利用补角的性质、平行线的性质及判定等知识分别判断后即可确定答案.【详解】解:A、两直线平行,内错角相等,是真命题,不符合题意;B、平行于同一条直线的两条直线平行,是真命题,不符合题意;C、同位角相等,两直线平行,是真命题,不符合题意;D、一个角的补角不一定不大于这个角,原命题是假命题,符合题意;故选:D.【点睛】考查了命题与定理的知识,解题的关键是了解补角的性质、平行线的性质及判定等知识,难度不大.8.D【分析】根据同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,进行判断即可.【详解】解:A、当∥A+∥ADC=180°时,可得:AB∥CD,不合题意;B、当∥A=∥ADE时,可得:AB∥CD,不合题意;C、当∥ABD=∥BDC时,可得:AB∥CD,不合题意;D、当∥ADB=∥CBD时,可得:AD∥BC,符合题意.故选:D.【点睛】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.9.C-⨯︒=︒,结合两直线平行,同旁内角互补解【分析】根据五边形的内角和为(52)180540题.AE CD【详解】//+=180E D ∴∠∠︒五边形ABCDE 的内角和:++++=(5-2)180=540A B C D E ∠∠∠∠∠⨯︒︒又110A C ∠=∠=︒解得,140B ∠=︒故选:C【点睛】本题考查平行线的性质、多边形的内角和定理,是重要考点,难度较易,掌握相关知识是解题关键.10.C【分析】首先过点C 作CE∥a ,可得CE∥a∥b ,然后根据两直线平行,内错角相等,即可求得答案.【详解】解:过点C 作CE∥a ,∥a∥b ,∥CE∥a∥b ,∥∥BCE=∥α=30°,∥ACE=∥β,∥∥ACB=90°,∥∥β=∥ACE=∥ACB-∥BCE=60°.故选C .【点睛】此题考查了平行线的性质和判定,注意掌握辅助线的作法,两直线平行,内错角相等定理的应用是解题的关键.11.C【分析】先根据平行线的性质可得40ABD A ==︒∠∠,再根据平角的定义即可得.【详解】解:BD AC ∥,40A ∠=︒,40ABD A ∴∠=∠=︒,165︒∠=,2180175ABD ∴∠=︒-∠-∠=︒,故选:C .【点睛】本题主要考查了平行线的性质,熟练掌握平行线的性质是解题关键.12.D【分析】根据线段的性质,平行公理及推理,垂线的性质等知识点分析判断,即可求解.【详解】解:∥两点之间,线段最短,该说法错误;,则点B为线段AC的中点,该说法错误;∥当点B在线段AC上时,若AB BC∥在同一平面内,过一点有且只有一条直线与已知直线垂直,该说法错误;∥过直线外一点有且只有一条直线与已知直线平行,该说法正确;所以说法正确的有∥,共1个.故选:D【点睛】本题主要考查了平行公理及推论,线段的性质,两点间的距离以及垂线,熟记基础知识,掌握相关概念是解题的关键.13.B【分析】由平行线的性质得到∠ACF,利用三角形的一个外角等于与它不相邻的两个内角之和,即可求解.【详解】解:∵DE∥CF,∠D=120°,∴∠ACF=∠D=120°,∵∠ACF=∠A+∠B,∠A=30°,∴∠B=∠ACF﹣∠A=120°﹣30°=90°,故选:B.【点睛】此题主要考查了平行线的性质和三角形的外角性质,正确把握“两直线平行,同位角相等”和“三角形的一个外角等于与它不相邻的两个内角之和”是解题关键.14.C【分析】根据“垂线段最短”进行判定即可.【详解】解:A、用两个钉子就可以把木条固定在墙上,利用的是两点确定一条直线,故此选项不符合题意;B、把弯曲的公路改直,就能缩短路程,利用的是“两点之间,线段最短”,故此选项不符合题意;C、体育课上,老师测量同学们脚后跟到起跑线的垂直距离作为跳远成绩,利用的是“垂线段最短”,故此选项符合题意;D、火车运行的铁轨永远不会相交,利用的是两直线平行,没有交点,故此选项不符合题意;故选:C.【点睛】此题主要考查了点到直线的距离的定义,两点确定一条直线,“两点之间,线段最短”,正确把握定义及性质是解题关键.15.C【分析】先根据邻补角的定义得出∥CEA=45°,再根据两直线平行,内错角相等得出∥A=∥CEA,即可得出答案【详解】解:∥AB∥CD,∥∥A=∥CEA,∥∥CEF=135°,∥∥CEA=45°,∥∥A=45°.故选C.【点睛】本题考查了平行线的性质,是基础题,熟记性质并准确识图是解题的关键.16.B【分析】利用平行线的性质,直角三角形的两锐角性质,三角形的外角性质及正多边形的概念分别判断,即可确定正确的选项.【详解】A.两直线平行,同旁内角相等,说法错误,正确为:两直线平行,同旁内角互补,因此不符合题意;B.直角三角形的两锐角互余,说法正确,符合题意;C.三角形的外角大于任一内角,说法错误,正确为:三角形的外角大于任意一个与它不相邻的内角,因此不符合题意;D.所有边都相等的多边形是正多边形,说法错误,比如菱形四条边相等,却不是正多边形,因此不符合题意.故选:B.【点睛】此题考查了命题与定理的知识,解题关键是熟练掌握相关内容及会举出反例来判断一个命题是不是假命题.17.C⊥时,PQ的值最小,根据角平分线性质得出【分析】根据垂线段最短得出当PQ OM=,求出即可.PQ PA【详解】解:当PQ OM ⊥时,PQ 的值最小, OP 平分MON ∠,PA ON ⊥,4PA =,4PQ PA ∴==,故选:C .【点睛】本题考查了角平分线性质,垂线段最短的应用,解题的关键是能得出要使PQ 最小时Q 的位置.18.A【分析】根据平行线的判定与性质、平行线的定义、平行公理及推论、点到直线的距离求解判断即可.【详解】解:∥在同一平面内,两条直线的位置关系有:相交、平行,故此答案正确,符合题意;∥在同一平面内,过直线外一点有且只有一条直线与这条直线平行,故此答案错误,不符合题意;∥行于同一条直线的两条直线平行,故此答案正确,符合题意;∥如果两条平行线被第三条直线所截,那么内错角相等,故此答案错误,不符合题意; ∥直线外一点到这条直线的垂线段的长度,叫做这个点到直线的距离,故此答案错误,不符合题意,故选: A .【点睛】此题考查了平行线的判定与性质、平行线的定义、平行公理及推论、点到直线的距离等知识,解题的关键是熟记平行线的判定与性质、平行线的定义、平行公理及推论、点到直线的距离.19.B【分析】结合图形,根据平行线的判定方法对选项逐一进行分析即可得.【详解】A. ∥l=∥2,根据内错角相等,两直线平行,可得AB//CD ,故不符合题意;B. ∥2=∥E ,根据同位角相等,两直线平行,可得AD//BE ,故符合题意;C. ∥B+∥E= 180°,根据同旁内角互补,两直线平行,可得AB//CD ,故不符合题意;D. ∥BAF=∥C ,根据同位角相等,两直线平行,可得AB//CD ,故不符合题意, 故选B.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键. 20.C【分析】利用等腰三角形的三线合一可判断甲乙的画法都正确.【详解】∥CD=CE,∥∥DCE的平分线垂直DE,DE的垂直平分线过点C,∥甲,乙的画法都正确.故选C.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.21.平行.【分析】观察发现点A与点B的横坐标相同、点C与点D的横坐标相同,故AB与CD均垂直于x轴,从而可得AB与CD的位置关系.【详解】解:∥A(3,4),B(3,1),二者横坐标相同,∥AB∥x轴,∥C(﹣4,1),D(﹣4,3),二者横坐标相同,∥CD∥x轴,∥AB∥CD,故答案为:平行.【点睛】本题考查了平面直角坐标系中坐标与图形的性质,明确坐标特点与图形性质的关系是解题的关键.22.180°【详解】解:∥∥1与∥3是邻补角,∥∥1+∥3=180°.∥∥1与∥2是对顶角,∥∥1=∥2,∥∥2+∥3=180°(等量代换).故答案为180°.23.40︒##40度【分析】由垂直的定义得到∥COD=90°,再由平角的定义来求解.【详解】解:∥OC∥OD,∥∥COD=90°,∥∥1+∥2=180°-90°=90°,∥∥2=90°-∥1=90°-50°=40°.故答案为:40︒.【点睛】本题主要考查了垂直的定义,平角的定义,理解相关知识是解答关键.【分析】根据垂线段最短可知,当PD OB ⊥时最短,再根据角平分线上的点到角的两边的距离相等可得PD PC =,从而得解.【详解】解:如下图,作PD OB ⊥交OB 与点D ,垂线段最短,∴当PD OB ⊥时,PD 最短, OP 是AOB ∠的平分线,PC OA ⊥,PD PC ∴=,5PC =,5PD ∴=,即PD 长度最小为5,故答案为:5.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,垂线段最短的性质,确定出PD 最小时的位置是解题的关键.25.124°##124度【分析】在矩形ABCD 中,AD ∥BC ,则∥DEF =∥EFG =62°,∥EGB =∥DEG ,又由折叠可知,∥GEF =∥DEF ,可求出∥DEG 的度数,进而得到∥EGB 的度数.【详解】解:在矩形ABCD 中,AD ∥BC ,∥∥DEF =∥EFG =62°,∥EGB =∥DEG ,由折叠可知∥GEF =∥DEF =62°,∥∥DEG =124°,∥∥EGB =∥DEG =124°.故答案为:124°.【点睛】本题主要考查平行线的性质,折叠的性质等,掌握折叠前后角度之间的关系是解题的基础.【分析】直接利用对顶角的性质结合已知得出答案.【详解】解:∥两直线交于点O ,∥∥1=∥2,∥∥1+∥2=76°,∥∥1=38°.故答案为:38.【点睛】此题主要考查了对顶角,正确把握对顶角的定义是解题关键.27.75︒##75度【分析】先根据30BOC ∠=︒,求出150AOC ∠=︒,再根据OD 平分AOC ∠,即可得出答案.【详解】解:∥30BOC ∠=︒,∥180********AOC BOC ∠=︒-∠=︒-︒=︒,∥OD 平分AOC ∠, ∥111507522DOC AOC ∠=∠=⨯︒=︒. 故答案为:75︒.【点睛】本题主要考查了角平分线的有关计算,领补角的计算,解题的关键是根据邻补角求出150AOC ∠=︒.28.55°##55度【分析】先根据∥1=35°,由垂直的定义,可得到∥3的度数,再由a ∥b 即可求出∥2的度数.【详解】解:∥AB ∥BC ,∥∥3=90°﹣∥1=55°.∥a ∥b ,∥∥2=∥3=55°.故答案为55°.【点睛】本题考查的是平行线的性质、垂线的性质,熟练掌握垂线的性质和平行线的性质是解决问题的关键.29.在【分析】根据平行公理的内容进行解答即可.【详解】∥PQ//a ,QR//a ,∥P 、Q 、R 三点在同一条直线上,故答案为在.【点睛】本题考查了平行公理,熟知“过直线外一点有且只有一条直线与已知直线平行”是解题的关键.30.50︒【详解】试题分析:根据两直线平行内错角相等可得:∥DEF=∥EFB=65°,根据折叠图形的性质可得:∥D′EF=∥DEF=65°,根据补角的定义可知:∥AE D′=180°-65°×2=50°.点睛:本题主要考查的就是折叠图形的性质以及平行线的性质问题.在解决折叠问题时,我们首先必须要明白折叠之后有哪些线段和哪些角是相等的,然后根据平行线的性质定理得出未知角的度数.在解决折叠问题的时候,我们很多时候也需要转化为直角三角形的问题来求某一条线段的长度(特别是矩形或正方形的折叠).31.6【分析】过O 点作OH BA ⊥于H 点,如图,先根据角平分线的性质得到6OH OD ==,然后根据垂线段最短解决问题.【详解】解:过O 点作OH BA ⊥于H 点,如图, BO 平分ABC ∠,OD BC ⊥,OH BA ⊥,6OH OD ∴==,点E 为射线BA 上一动点,OE ∴的最小值为OH 的长,即OE 的最小值为6.故答案为:6.【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了垂线段最短.32.垂线段最短.【详解】试题分析:点到线上的任意点之间的长度中,垂线段最短.考点:点到线的距离.33.125︒【分析】根据余角和补角的关系计算即可;【详解】∥OE AB ⊥,∥90AOE BOE ∠=∠=︒,∥35∠=︒DOE ,∥903555BOD ∠=︒-︒=︒,又∥180BOC BOD ∠+∠=︒,∥18055125BOC ∠=︒-︒=︒.故答案是125︒.【点睛】本题主要考查了余角和补角的性质,准确计算是解题的关键.34. 70° 110°【详解】试题解析:∥∥A=∥F=40°,∥DF∥AC ,∥∥D=70°,∥∥D=∥ABD=70°,∥DF∥AC ,∥∥CED+∥C=180°,∥∥C=70°,∥∥CED=110°.点睛:平行线的性质有:∥两直线平行,同位角相等,∥两直线平行,内错角相等,∥两直线平行,同旁内角互补.35.78【详解】试题分析:首先做一条辅助线,平行于两直线,再利用平行线的性质即可求出. 解:过点E 作直线EF∥AB ,∥AB∥CD ,∥EF∥CD,∥AB∥EF,∥∥1=180°﹣∥ABE=180°﹣130°=50°;∥EF∥CD,∥∥2=180°﹣∥CDE=180°﹣152°=28°;∥∥BED=∥1+∥2=50°+28°=78°.故填78.点评:解答此题的关键是过点E作直线EF∥AB,利用平行线的性质可求∥BED的度数.36.∥l=∥2或∥A=∥CDE 或∥C+∥ABC= 180°等【分析】找到相等的同位角、内错角或互补的同旁内角即可.【详解】若∥1=∥2,则AB∥CD;若∥A=∥CDE,则AB∥CD;若∥C+∥ABC= 180°,则AB∥CD,故答案为∥l=∥2或∥A=∥CDE 或∥C+∥ABC= 180°(答案不唯一).【点睛】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.37.15 ##15度【分析】根据两条直线平行,内错角相等,则∥AEF=∥CFE=55°,根据平角定义,则图∥中的∥DEG=70°,进一步求得图∥中∥GEF=55°,进而求得图∥中的∥DEF的度数.【详解】解:∥AD∥BC,∥CFE=55°,∥∥AEF=∥CFE=55°,∥DEF=125°,∥图∥中的∥GEF=55°,∥DEG=180°-2×55°=70°,∥图∥中∥GEF=55°,∥DEF=70°-55°=15°.故答案为:15°【点睛】此题主要考查了平行线的性质,折叠的性质,解答的关键是结合图形分析清楚角与角之间的关系.38.见解析【分析】根据平行线的性质和角平分线的性质可得∥BAF =∥CEF ,因此AB ∥DC ,结论可证.【详解】证明:AD BC ∥DAF F ∴∠=∠,(理由:两直线平行,内错角相等) AF 平分BAD ∠BAF DAF ∴∠=∠(角平分线的定义)BAF F ∴∠=∠(等量代换)CEF F ∠=∠,(已知)BAF CEF ∴∠=∠(等量代换)AB DC ∴∥(理由:同位角相等,两直线平行)180B BCD ∴∠+∠=︒.(理由:两直线平行,同旁内角互补)【点睛】本题主要考查了平行线的性质和判定,熟练掌握平行线的性质和判定方法是解题的关键.39.35︒【分析】先根据三角形的内角和定理可得100BAC ∠=︒,再根据折叠的性质可得30,E C DAE DAC ∠=∠=︒∠=∠,然后根据平行线的性质可得30BAE E ∠=∠=︒,最后根据角的和差即可得.【详解】50,30C B ∠=︒=∠︒180100BAC B C ∴∠=︒-∠-∠=︒由折叠的性质可知,30,E C DAE DAC ∠=∠=︒∠=∠//DE AB30BAE E ∴∠=∠=︒又2BAC BAE DAE DAC BAE DAC ∠=∠+∠+∠=∠+∠100302DAC ∴︒=︒+∠解得35DAC ∠=︒故答案为:35︒.【点睛】本题考查了三角形的内角和定理、折叠的性质、平行线的性质等知识点,掌握折叠的性质是解题关键.40.35.【详解】试题分析:本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.先根据m∥n求出∥BCD的度数,再由∥ABC是等边三角形求出∥ACB的度数,根据l∥m即可得出结论.∥m∥n,边BC与直线n所夹的角为25°,∥∥BCD=25°.∥∥ABC 是等边三角形,∥∥ACB=60°,∥∥ACD=60°﹣25°=35°.∥l∥m,∥∥α=∥ACD=35°.故答案为35.考点:平行线的性质;等边三角形的性质.41.(1)见解析;(2)145°【分析】(1)求出∥1=∥BFG,根据平行线的判定得出AC∥DG,求出∥EBF=∥BFC,根据平行线的判定得出即可;(2)根据平行线的性质得出∥C=∥CFG=∥BEF=35°,再求出答案即可.【详解】解:(1)证明:∥∥1=∥2,∥2=∥BFG,∥∥1=∥BFG,∥AC∥DG,∥∥ABF=∥BFG,∥∥ABF的角平分线BE交直线DG于点E,∥BFG的角平分线FC交直线AC于点C,∥∥EBF=12∥ABF,∥CFB=12∥BFG,∥∥EBF=∥CFB,∥BE∥CF;(2)∥AC∥DG,BE∥CF,∥C=35°,∥∥C=∥CFG=35°,∥∥CFG=∥BEG=35°,∥∥BED=180°-∥BEG=145°.【点睛】本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键.42.(1)证明见解析(2)证明见解析【分析】(1)根据平行线的性质和全等三角形的判定和性质解答即可.(2)根据全等三角形的性质和平行线的判定解答即可.【详解】(1)证明:(1)//AB DE,A D∴∠∠=,AF CD =,AC DF ∴=,在ABC 与DEF 中AB DE A D AC DF =⎧⎪∠=∠⎨⎪=⎩,ABC DEF SAS ∴≅(), BC EF ∴=.(2)(2)ABC DEF ≅,BCA EFD ∴∠∠= ,//BC EF ∴ .【点睛】考查了全等三角形的判定与性质、平行线的判定与性质等知识,证明三角形全等是解决问题的关键.43.(1)∥ABC =72°;(2)与∥ABC 相等的角是∥ADC 、∥DCN ;(3)不发生变化.比值为12.【分析】(1)由平行线的性质可求得∥A +∥ABC =180°,即可求得答案;(2)利用平行线的性质可求得∥ADC =∥DCN ,∥ADC +∥BCD =180°,则可求得答案; (3)利用平行线的性质,可求得∥AEB =∥EBC ,∥ADB =∥DBC ,再结合角平分线的定义可求得答案.【详解】(1)∥AM ∥BN ,∥∥A +∥ABC =180°,∥∥ABC =180°﹣∥A =180°﹣108°=72°.(2)与∥ABC 相等的角是∥ADC 、∥DCN .∥AM ∥BN ,∥∥ADC =∥DCN ,∥ADC +∥BCD =180°,∥∥ADC =180°﹣∥BCD =180°﹣108°=72°,∥∥DCN =72°,∥∥ADC =∥DCN =∥ABC .(3)不发生变化.∥AM ∥BN ,∥∥AEB=∥EBC,∥ADB=∥DBC.∥BD平分∥EBC,∥∥DBC12=∥EBC,∥∥ADB12=∥AEB,∥12 ADBAEB∠∠=.【点睛】本题考查了平行线的性质,掌握平行线的性质是解题的关键.44.(1)见解析;(2)5π【分析】(1)利用垂径定理即可证明;(2)利用弧长公式,扇形的面积公式计算即可.【详解】(1)证明:∥AB是∥O的直径,∥∥ADB=90°,∥OC∥BD,∥∥AEO=∥ADB=90°,即OC∥AD,∥AE=ED(2)解:∥OC∥AD,∥AC CD=,∥∥ABC=∥CBD=36°,∥∥AOC=2∥ABC=2×36°=72°,∥AC=7252 180ππ⨯=,S=2725360π⋅=5π.【点睛】本题考查扇形的面积,弧长公式等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.45.(1)见解析(2)见解析;4【分析】(1)利用平移变换的性质分别作出A,B,C的对应点1A,1B,1C即可(2)根据垂线段的定义画出图形即可(1)如图,三角形111A B C 即为所求;(2)如(1)图,线段CM 即为所求,点C 到直线AB 的距离等于4个单位长度. 故答案为:4.【点睛】本题考查作图—平移交换,垂线段,解题的关键是掌握平移交换的性质. 46.(1)50︒;(2)见解析.【分析】(1)根据平行线的性质,求解即可;(2)由(1)可得到1BAD ∠=∠,利用三角形外角的性质,可得1ADC BAD ∠=∠+∠,从而得到BAD ADG ∠=∠,即可求证.(1)解:∥AD EF ∥∥2180BAD ∠+∠=︒又∥12180∠+∠=︒∥150BAD ∠=∠=︒;(2)由(1)得1BAD ∠=∠,利用三角形外角的性质,可得12ADC BAD BAD ∠=∠+∠=∠,∥DG 平分ADC ∠,∥2ADC ADG ∠=,∥BAD ADG ∠=∠,。
初一数学相交线与平行线28道典型题(含 答案和解析)
初一数学相交线与平行线28道典型题(含答案和解析及考点)1、若直线AB,CD相交于O,∠AOC与∠BOD的和为200°,则∠AOD的度数为.答案:80°.解析:∵∠AOC=∠BOD,∠AOC与∠BOD的和为200°.∴∠AOC=100°.∵∠AOD与∠AOC互补.∴∠AOD=80°.考点:几何初步——相交线与平行线——对顶角、邻补角.2、已知OA⊥OB,∠AOC∶∠AOB=2∶3,则∠BOC= .答案:30°或150°.解析:当OC在∠AOB内部时,∠BOC=30°;当OC在∠AOB外部时,∠BOC=150°.考点:几何初步——相交线与平行线——对顶角、邻补角——垂线.3、若直线a与直线b相交于点A,则直线b上到直线a距离等于2cm的点的个数是().A.0B.1C.2D.3答案:C.解析: 直线b的交点两侧各有一点到直线a的距离等于2cm.考点:几何初步——相交线与平行线——点到直线的距离.4、如图所示,在平面内,两条直线l1、l2相交于点O,对于平面内任意一点M,若p、q分别是点M到直线l1、l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有个.答案:4.解析:因为两条直线相交有四个角,因此每一个角内就有一个到直线l1、l2的距离分别是2、1,的点,即距离坐标是(2,1)的点,因而共有4个.考点:几何初步——相交线与平行线——点到直线的距离.5、若∠1和∠2是同旁内角,若∠1=50°,则∠2的度数为( ). A.45° B.135° C.45°或135° D. 不能确定 答案:D.解析:若∠1和∠2是同旁内角,若∠1=50°,则∠2的度数为不能确定. 考点:几何初步——相交线与平行线——三线八角.6、平面上n 条直线最少能将平面分为__________部分,最多能将平面分为__________部分. A. 最少能将平面分成n+1部分;最多分为n2+n+22.B. 最少能将平面分成n+2部分;最多分为n2+n−22.C. 最少能将平面分成n+1部分;最多分为n2+n−22. D. 最少能将平面分成n+2部分;最多分为n2−n+22.答案:A.解析:1条直线将平面分成2部分.2条直线最少将平面分成3部分,最多将平面分成4部分,其中4=1+1+2. 3条直线最少将平面分成4部分,最多将平面分成7部分,其中7=1+1+2+3. 4条直线最少将平面分成5部分,最多将平面分成11部分,其中11=1+1+2+3+4. ……n 条直线最少将平面分成n+1部分,最多将平面分成n2+n+22部分,其中n2+n+22=1+1+2+3+…+n .综上,n 条直线最少能将平面分成n+1部分,对多能将平面分成n2+n+22部分.考点:几何初步——相交线与平行线——相交线.7、如图,已知∠1=∠2,要使∠3=∠4,则需( ).A. ∠1=∠2B. ∠2=∠4C. ∠1=∠4D. AB ∥CD答案:D.解析:假设∠3=∠4,即∠BEF=∠CFE.由内错角相等,两直线平行,可得AB∥CD.故已知∠1=∠2,要使∠3=∠4,只要AB∥CD.考点:几何初步——相交线与平行线——平行线公理及推论.8、如图①是长方形纸带,将纸带沿EF折叠成图②,再沿BF折叠成图③.(1)若图①中的∠DEF=20°,则图②中的∠CFE度数是.(2)若图①中的∠DEF=α,则图③中的∠CFE度数是.(用含有α的式子表示)答案:(1)160°.(2)180°-3α.解析:(1)在图①中:∵AD∥BC.∴∠BFE=∠DEF=20°.∴∠CFE=160°.在图②中,根据折叠性质,∠CFE大小不变.∴∠CFE=160°.(2)在图①中,∠CFE=180°-∠BFE=180°-α.在图②中,∠CFB=∠CFE-∠BFE=180°-α.根据折叠性质,图③中∠CFB与图②中∠CFB相等.在图③中,∠CFE=∠CFB-∠BFE=180°-3α.∴图③中的∠CFE度数是180°-3α.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的性质.几何变换——图形的对称——翻折变换(折叠问题)——轴对称基础——轴对称的性质.9、已知:如图,∠D=110°,∠EFD=70°,∠1=∠2.求证:∠3=∠B.证明:∵∠D=110°,∠EFD=70°,(已知).∴∠D+∠EFD=180°.∴_____∥ _____.().又∵∠1=∠2,(已知).∴_____∥ _____.().∴_____∥ _____.().∴∠3=∠B.().答案:答案见解析.解析:∵∠D=110°,∠EFD=70°,(已知).∴∠D+∠EFD=180°.∴AD∥EF.(同旁内角互补,两直线平行).又∵∠1=∠2,(已知).∴AD∥BC.(内错角相等,两直线平行).∴EF∥BC.(平行于同一直线的两直线平行).∴∠3=∠B.(两直线平行,同位角相等).考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.10、车库的电动门栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD的大小是().A.150°B.180°C.270°D.360°答案:C.解析:过B作CD的平行线BF,则CD∥BF∥AE.∴∠DCB+∠CBF=180°,∠ABF=90°.∴∠ABC+∠BCD=∠DCB+∠CBD+∠ABF=180°+90°=270°.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的性质.11、如图,一条公路修到湖边时,需拐弯绕湖而过;如果第一次拐角∠A是120°,第二次拐角∠B是150°,第三次拐角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是.答案:150°.解析:如图,作BE∥AD.∴∠1=∠A=120°.∴∠2=∠ABC=∠1=150°-120°=30°.∵AD∥CF.∴BE∥CF.∴∠C+∠2=180°.∴∠C=180°-30°=150°.考点:几何初步——相交线与平行线——平行线公理及推论——平行线的性质.12、如图所示,若AB∥CD,则角α,β,γ的关系为().A.α+β+γ=360°B.α-β+γ=180°C.α+β+γ=180°D.α+β-γ=180°答案:D.解析:过β角的顶点为E,作EF∥AB,α+β-γ=180°.考点:几何初步——相交线与平行线平行线的判定——平行线的性质——平行有关的几何模型.13、如图AB∥CD∥EF,CG平分∠ACE,∠A=140°,∠E=110°,则∠DCG=().A.13°B.14°C.15°D.16°答案:C.解析:∵EF∥CD,∴∠ECD=180°-∠E=70°.同理∠ACD=40°.∴∠ACE=110°.∵CG平分∠ACE.∴∠ECG=55°.∴∠DCG=∠ECD-∠ECG=70°-55°=15°.考点:几何初步——相交线与平行线——平行线——平行线的性质——平行有关的几何模型.14、如图,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,求∠GEF的度数.A.15°B.20°C.25°D.30°答案:D.解析:由AB∥EF∥CD,可知∠BED=∠B+∠D.已知∠B+∠BED+∠D=192°.∴2∠B+2∠D=192°,∠B+∠D=96°.又∠B-∠D=24°,于是可得关于∠B、∠D的方程组:{∠B+∠D=96°∠B−∠D=24°.解得∠B=60°.由AB∥EF知∠BEF=∠B=60°.因为EG平分∠BEF,所以∠GEF=12∠BEF=30°.考点:几何初步——相交线与平行线——平行线——平行有关的几何模型.15、把命题“在同一平面内,垂直于同一直线的两直线互相平行”改写成“如果……,那么……”的形式:.答案:“在同一平面内,如果两条直线都垂直于同一直线,那么这两直线互相平行”.解析:略.考点:命题与证明——命题与定理.16、下列命题中,假命题是().A. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行.B. 两条直线被第三条直线所截,同旁内角互补.C. 两直线平行,内错角相等.D. 在同一平面内,过一点有且只有一条直线与已知直线垂直.答案:B.解析:两条直线被第三条直线所截,同旁内角不一定互补,只有两直线平行时,同旁内角互补.考点:命题与证明——命题与定理.17、已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD.(2)求∠C的度数.答案:(1)证明见解析.(2)∠C=25°.解析:(1)∵AE⊥BC,FG⊥BC.∴AE∥FG.∴∠2=∠A.∵∠1=∠2.∴∠1=∠A.∴AB∥CD.(2)∵AB∥CD.∴∠C=∠3.∵∠D=∠3+60°,∠CBD=70°,∠C+∠D+∠CBD=180°.∴∠C+∠C+60°+70°=180°.∴∠C=25°.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.18、已知:如图,在△ABC中,BD⊥AC于点D,E为BC上一点,过E点作EF⊥AC,垂足为F,过点D作DH∥BC交AB于点H.(1)请你补全图形.(2)求证:∠BDH=∠CEF.答案:(1)画图见解析.(2)证明见解析.解析:(1)补全图形.(2)∵BD⊥AC,EF⊥AC.∴BD∥EF.∴∠CEF=∠CBD.∵DH∥BC.∴∠BDH=∠CBD.∴∠BDH=∠CEF.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.尺规作图——过一点作已知直线的垂线——过一点作已知直线的平行线.19、已知,如图,AB∥CD,∠1=∠B,∠2=∠D.求证:BE⊥DE.答案:证明见解析.解析:过E点作EF∥AB,则∠B=∠3.又∵∠1=∠B.∴∠1=∠3.∵AB∥EF,AD∥CD.∴EF∥CD.∴∠A=∠D.又∵∠2=∠D.∴∠2=∠4.∵∠1+∠2+∠3+∠4=180°.∴∠3+∠4=90°,即∠BED=90°.∴BE⊥ED.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的判定——平行线的性质.20、如图,已知CD∥EF,∠1+∠2=∠ABC.求证:AB∥GF.答案:证明见解析.解析:延长CD、GF交于点H,∠1=∠H.故∠2+∠H=∠ABC.易得AB∥GF.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.21、如图,已知点A,E,B在同一条直线上,设∠CED=x,∠C+∠D=y.(1)若AB∥CD,试用含x的式子表示y,并写出x的取值范围.(2)若x=90°,且∠AEC与∠D互余,求证:AB∥CD.答案:(1)y=180°-x,其中x的取值范围是(0<x<180).(2)证明见解析.解析:(1)∵AB∥CD.∴∠AEC=∠C,∠BED=∠D.∵∠C+∠D=y.∴∠AEC+∠BED=y.∵∠CED=x,∠AEC+∠CED+∠BED=180°.∴x+y=180°.∴y=180°-x,其中x的取值范围是(0<x<180).(2)∵x=90°,即∠CED=90°.∴∠AEC+∠BED=90°.∵∠AEC与∠D互余.∴∠AEC+∠D=90°.∴∠BED=∠D.∴AB∥CD.考点:函数——函数基础知识——函数自变量的取值范围.几何初步——角——余角和补角——角的计算与证明.相交线与平行线——平行线的判定——平行线的性质.22、阅读材料:材料1:如图(a)所示,科学实验证明:平面镜反射光线的规律是:射到平面镜上的光线和反射出的光线与平面镜所夹的角相等.即∠1=∠2.材料2:如图(b)所示,已知△ABC,过点A作AD∥BC,则∠DAC=∠C,又∵AD∥BC,∴∠DAC+∠BAC+∠B=180°,∴∠BAC+∠B+∠C=180°.即三角形内角和为180°.根据上述结论,解决下列问题:(1)如图(c)所示,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b镜反射,若b反射出的光线n平行于m,且∠1=50°,则∠2= ,∠3= .(2)在(1)中,若∠1=40°,则∠3= ,若∠1=55°,则∠3= .(3)由(1)(2)请你猜想:当∠3= 时,任何射到平面镜a上的光线m经过平面镜a和b的两次反射后,入射光线m与反射光线n总是平行,请说明理由.答案:(1)1.100°.2.90°.(2)1.90°.2.90°.(3)90°.解析:(1)∵∠1=50°.∴∠4=∠1=50°.∴∠6=180°-50°-50°=80°.∵m∥n.∴∠2+∠6=180°.∴∠2=100°.∴∠5=∠7=40°.∴∠3=180°-50°-40°=90°.故答案为:100°,90°.(2)∵∠1=40°.∴∠4=∠1=40°.∴∠6=180°-40°-40°=100°.∵m∥n.∴∠2+∠6=180°.∴∠2=80°.∴∠5=∠7=50°.∴∠3=180°-50°-40°=90°.∵∠1=55°.∴∠4=∠1=55°.∴∠6=180°-55°-55°=70°.∵m∥n.∴∠2+∠6=180°.∴∠2=110°.∴∠5=∠7=35°.∴∠3=180°-55°-35°=90°.(3)当∠3=90°时,m∥n.理由是:∵∠3=90°.∴∠4+∠5=180°-90°=90°.∵∠4=∠1,∠7=∠5.∴∠1+∠7+∠4+∠5=2×90°=180°.∴∠2+∠6=180°-(∠1+∠4)+180°-(∠5+∠7)=180°.∴m∥n.故答案为:90°.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.23、如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角)(1)如图1,当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD.,(2)如图2,当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?(请画出图形并直接回答成立或不成立)(3)如图3,当动点P落在第③部分时,探究∠PAC,∠APB,∠PBD之间的关系,请画出图形并直接写出相应的结论.答案:(1)证明见解析.(2)不成立.(3)证明见解析.解析:(1)过点P作直线AC的平行线,易知∠1=∠PAC,∠2=∠PBD.又∵∠APB=∠1+∠2,∴∠APB=∠PAC+∠PBD.(2)不成立.(3)①当动点P在射线BA的右侧时(如图4).结论是∠PBD =∠PAC+∠APB.②当动点P在射线BA上(如图5).结论是∠PBD =∠PAC+∠APB或∠PAC =∠PBD +∠APB或∠APB=0°,∠PAC=∠PBD.③当动点P在射线BA的左侧时(如图6).结论是∠PAC =∠PBD +∠APB.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质——平行有关的几何模型.24、如图所示,在下列条件中:①∠1=∠2;②∠BAD=∠BCD;③∠3=∠4且∠ABC=∠ADC;④∠BAD+∠ABC=180°;⑤∠ABD=∠ACD;⑥∠ABC+∠BCD=180°.能判定AB∥CD的共有()个.A.2B.3C.4D.5答案:A.解析:由平行的判定知③⑥可以判定AB∥CD.考点:几何初步——相交线与平行线——平行线的判定.25、有下列四个命题:①如果两条直线都与第三条直线平行,那么这两条直线也互相平行.②两条直线被第三条直线所截,同旁内角互补.③在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相垂直.④在同一平面内,过一点有且只有一条直线与已知直线垂直.其中所有正确的命题是().A. ①②B. ①④C. ②③D. ③④答案:B.解析:①④正确;②两条直线被第三条直线所截,同旁内角不一定互补,需要两条直线平行;③在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行. 考点:几何初步——相交线与平行线——平行线公理及推论——平行线的判定——平行线的性质.26、如图,DB ∥FG ∥EC ,∠ABD=60°,∠ACE=30°,AP 平分∠BAC ,求∠PAG 的度数.A.11°B.12°C.13°D.14°答案:B.解析:由DB ∥FG ∥EC.可得∠BAC=∠BAG+∠CAG=∠DBA+∠ACE=60°+36°=96°.由AP 平分∠BAC 得∠CAP=12∠BAC=12×96°=48°. 由FG ∥EC 得∠GAC=∠ACE=36°.∴∠PAG=48°-36°=12°.考点:几何初步——相交线与平行线——平行线——平行有关的几何模型.27、如图,AB ∥CD ,且∠BAP=60°-α,∠APC=45°+α,∠PCD=30°-α,则α=( ).A.10°B.15°C.20°D.30°答案:B.解析:得∠APC=∠BAP+∠DCP .∴45°+α=60°-α+30°-α.解得:α=15°.考点:几何初步——相交线与平行线——平行线的性质.28、已知,如图,AB∥CD,直线α交AB、CD分别于点E、F,点M在线段EF点上,P是直线CD 上的一个动点,(点P不与F重合).(1)当点P在射线FC上移动时,∠FMP、∠FPM和∠AEF之间的数量关系是:.(2)当点P在射线FD上移动时,∠FMP、∠FPM和∠AEF之间的数量关系是:. 答案:(1)∠FMP+∠FPM=∠AEF.(2)∠FMP+∠FPM+∠AEF=180°.解析:(1)当点P在射线FC上移动时.∵AB∥CD.∴∠AEF+∠CFE=180°.又∵∠FMP+∠FPM+∠CFE=180°.∴∠FMP+∠FPM=∠AEF.(2)当点P在射线FD上移动时.∵AB∥CD.∴∠AEF=∠MFD.又∵∠FMP+∠FPM+∠CFE=180°.∴∠FMP+∠FPM+∠AEF=180°.考点:几何初步——相交线与平行线——平行线的性质.。
初中数学专项练习《相交线与平行线》100道计算题包含答案(专项练习)(综合题)
初中数学专项练习《相交线与平行线》100道计算题包含答案(专项练习)一、解答题(共100题)1、如图,在▱ABCD中,E,F分别为边AD,BC的中点,对角线AC分别交BE,DF于点G,H.求证:AG=CH.2、完成下面的证明:已知,如图,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD,求证:∠EGF=90°.3、如图,已知直线AB、CD被直线EF所截,如果∠BMN=∠DNF,∠1=∠2,判断MQ与NP关系,并说明理由.4、已知,AC⊥AB,EF⊥BC,AD⊥BC,∠1=∠2,请问AC⊥DG吗?请写出推理过程.5、如图,∠B=42°,∠A+10°=∠1,∠ACD=64°,说明AB∥CD6、将一副直角三角尺如图放置,已知AE∥BC,求∠AFD的度数.7、如图,已知,点在的右侧,的平分线相交于点.探索与之间的等量关系,并说明理由。
8、已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.9、如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.请说明理由10、某校要在一块三角形空地上种植花草,如图所示,AC=13米、AB=14米、BC=15米,若线段CD是一条引水渠,且点D在边AB上.已知水渠的造价每米150元.问:点D与点C距离多远时,水渠的造价最低?最低造价是多少元?11、如图,点E,C,F,B在同一条直线上,EC=BF,AC∥DF,∠A=∠D.求证:AB=DE.12、如图,∠C=∠1,∠2与∠D互余,BE⊥DF,垂足为G.求证:AB∥CD.13、如图,已知∠1=∠2,DE⊥BC,AB⊥BC,求证:∠A=∠3.证明:∵DE⊥BC,AB⊥BC(已知)∴∠DEC=∠ABC=90°________∴DE∥AB________∴∠2=________,________∠1=________,________又∵∠1=∠2________∴∠A=∠3________14、如图,在△ABC中,AC⊥BC,CD⊥AB于点D,试说明:∠ACD=∠B.(提示:三角形内角和为180 )15、如图,在△ABC中,∠ABC=36°,∠C=64°,AD平分∠BAC,交BC于D,BE⊥AC,交AD、AC于H、E,且DF∥BE.求∠FDC和∠AHB的度数.16、如图,AB∥CD,直线EF分别交AB,CD于点E,F,∠BEF的平分线与∠DFE 的平分线相交于点P,试说明△EPF为直角三角形.17、小明在学习三角形知识时,发现如下三个有趣的结论:在Rt△ABC中,∠A=90°,BD平分∠ABC,M为直线AC上一点,ME⊥BC,垂足为E,∠AME的平分线交直线AB于点F.(1)如图①,M为边AC上一点,则BD、MF的位置关系是;如图②,M为边AC反向延长线上一点,则BD、MF的位置关系是;如图③,M为边AC延长线上一点,则BD、MF的位置关系是;(2)请就图①、图②、或图③中的一种情况,给出证明.我选图来证明.18、如图,直线AD与AE相交于点A,直线BC分别交AD、AE于点B、C,直线DE分别交AD、AE于点D、E,分别写出图中的两对同位角、两对内错角、两对同旁内角.19、已知:如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B.求证:ABC≌CDE.20、如图,已知∠1=∠2,∠5=140°,求∠3的度数。
中考数学相交线与平行线专题训练50题-含答案
中考数学相交线与平行线专题训练50题含答案(单选、填空、解答题)一、单选题1.一副直角三角板如图所示摆放,它们的直角顶点重合于点O,//CO AB,则∠=()BODA.30︒B.45︒C.60︒D.90︒2.∠1与∠2是一组平行线被第三条直线所截的同旁内角,若∠1=50°,则()A.∠2=50°B.∠2=130°C.∠2=50°或∠2=130°D.∠2的大小不一定3.如图,AB//CD,如果∠B=30°,那么∠C为()A.40°B.30°C.50°D.60°4.如图,已知∠1=50°,要使a∠b,那么∠2等于()A.40°B.130°C.50°D.120°5.在同一平面内不重合的三条直线的交点个数()A.可能是0个,1个,2个B.可能是0个,1个,3个C.可能是0个,1个,2个,3个D.可能是0个,2个,3个6.在下图中,1∠是同位角的是()∠和2A .(1)、(2)B .(1)、(3)C .(2)、(3)D .(2)、(4) 7.在平面直角坐标系中,点A (﹣3,2),B (3,5),C (x ,y ),若AC ∥x 轴,则线段BC 的最小值及此时点C 的坐标分别为( )A .6,(﹣3,5)B .6,(3,2)C .3,(3,0)D .3,(3,2) 8.下面四个图形中,1∠与2∠是同位角的是( )A .B .C .D .9.如图,直线l ∠m ,将Rt △ABC (∠ABC =45°)的直角顶点C 放在直线m 上,若∠2=24°,则∠1 的度数为( )A .23︒B .22︒C .21︒D .24︒ 10.如图,已知1130∠=︒,250∠=︒,3115∠=︒,则4∠的度数为( )A .65︒B .60︒C .55︒D .50︒11.如图,直线AB ,CD 被直线EF 所截,则∠AGE 的同位角是( )A .∠BGEB .∠BGFC .∠CHED .∠CHF 12.下列四个选项中不是命题的是( )A .对顶角相等B .过直线外一点作直线的平行线C .三角形任意两边之和大于第三边D .如果a b a c ==,,那么b c =13.如图,直线AB 、直线CD 交于点E ,EF AB ⊥,则CEF ∠与BED ∠的关系是( )A .互余B .相等C .对顶角D .互补 14.下列命题是真命题的是()A .过一点有且只有一条直线与已知直线垂直B .经过一点有且只有一条直线与已知直线平行C .同旁内角互补,两直线平行D .同位角相等15.如图,已知AB =DC ,AD =BC ,E ,F 在DB 上两点且BF =DE ,若∠AEB =120°,∠ADB =30°,则∠BCF = ( )A .150°B .40°C .80°D .90° 16.如图,直线a //b ,∠1=85°,∠2=35°,则∠3的度数为( )A .40°B .45°C .50°D .55° 17.如图,AB CD ∥,直线EF 分别交AB ,CD 于点M ,N ,将一个含有45°角的直角三角尺按如图所示的方式摆放,若80EMB ∠=︒,则PNM ∠等于( )A .15°B .25°C .35°D .45° 18.如图,∠1=∠2=22°,∠C=130°,则∠DAC = ( )A .28°B .25°C .23°D .22° 19.如图,∠ADB =∠ACB =90°,AC 与BD 相交于点O ,且OA =OB ,下列结论:∠AD =BC ;∠AC =BD ;∠∠CDA =∠DCB ;∠CD ∠AB ,其中正确的有( )A .1个B .2个C .3个D .4个 20.一辆汽车在笔直的公路上行驶,两次拐弯后,在与原方向相反的方向上平行行驶,则这两次拐弯的角度应为( )A .第一次向右拐38°,第二次向左拐142°B .第一次向左拐38°,第二次向右拐38°C .第一次向左拐38°,第二次向左拐142°D.第一次向右拐38°,第二次向右拐40°二、填空题a b∠=︒,则∠2=_________.21.如图,已知直线//,17022.如图,AB∠CD,CE∠GF,若∠1=60°,则∠2=_____°.23.如图,直线AC和FD相交于点B,下列判断:∠∠GBD和∠HCE是同位角;∠∠ABD和∠ACH是同位角;∠∠FBC和∠ACE是内错角;∠∠FBC和∠HCE是内错角;∠∠GBC和∠BCE是同旁内角.其中正确的是____.(填序号)24.如图,直线a,b交于点O,若138∠=︒,则2∠=__°.25.如图,四边形ABCD,点E是AB的延长线上的一点.请你添加一个条件,能判定∥.这个条件是______.AD BC26.如图,AB 、BC 是∠O 的弦,OM ∥BC 交AB 于点M ,若∠AOC =100°,则∠AMO =___.27.检验直线与平面平行的方法:(1)______________只能检验直线与水平面是否平行;(2)______________可以检验一般的直线与平面是否垂直;28.如图,AB//CD ,点E 在线段BC 上,若140∠=,230∠=,则3∠的度数是______.29.命题:“两个角的和等于平角时,这两个角互为邻补角”是_____命题(填“真”或“假”)30.如图,AB∠CD .EF∠AB 于E ,EF 交CD 于F ,已知∠1=58°12',则∠2=______.31.如图,直线AB 、CD 相交于点O ,∠AOC=80°,∠1=30°,求∠2的度数解:因为∠DOB=∠______ ( )_________=80° (已知)所以,∠DOB=____°(等量代换)又因为∠1=30°( )所以∠2=∠____- ∠_____ = _____ - _____=_____ °32.把一张宽度相等的纸条按如图所示的方式折叠.图中∠1=100°,则∠2=____°.33.已知,如图,在△ABC 中,BO 和CO 分别平分△ABC 和△ACB ,过O 作DE△BC ,分别交AB 、AC 于点D 、E ,若BD+CE=5,则线段DE 的长为________.34.如图,在四边形ABCD 中,AB ∠CD ,连接AC ,BD .若∠ACB =90°,AC =BC ,AB =BD ,AD =AE 则∠ADC =_____°.35.如图,BE 平分ABC ∠,DE BC ∥,若1=25∠.,则2∠的度数为______.36.在四边形ABCD 中,AD BC ∥,AD BC <,90A ∠=︒,4AB =,3BC =,点E 为BCD ∠的平分线上一点,连接BE ,且3BE =,连接DE ,则CDE 的面积为________.37.如图,将矩形纸片ABCD 沿EF 折叠后,点C 、D 分别落在点C ′、D ′处,若∠AFE=65°,则∠C ′EB =________度.38.已知 ∠1 的两边分别平行于 ∠2 的两边,若 ∠1 = 40°,则 ∠2 的度数为__. 39.如图,在∠ABC 中,∠ABC 和∠ACB 的平分线交于点D ,过点D 作EF∠BC 交AB 于E ,交AC 于F.若BE=2,CF=3,则线段EF 的长为________.40.如图,在t R ABC ∆中,90︒∠=C ,6AC =,8BC =,点F 在边AC 上,并且2CF =,点E 为边BC 上的动点,将CEF ∆沿直线EF 翻折,点C 落在点P 处,则点P 到边AB 距离的最小值是________.三、解答题41.如图,∠A=∠1,∠1=∠2,CD 平分∠ADE ,试说明∠C=∠ADC .42.如图.BA DE ∥,30B ∠=︒,40D ∠=︒,求∠C 的度数.43.如图所示,已知12180,3,B DE ∠+∠=︒∠=∠和BC 平行吗?如果平行,请说明理由.44.如图,点E 、F 分别在AB 、CD 上,AF ∠CE 于点O ,∠1=∠B ,∠A +∠2=90°,求证∠AB ∥CD .请填空.证明∠∠AF ∠CE (已知),∠∠AOE =90°(___)又∠∠1=∠B (已知)∠CE ∥BF (_____),∠∠AFB =∠AOE (___)∠∠AFB =90°(_)又∠∠AFC +∠AFB +∠2=180°(平角的定义)∠∠AFC +∠2=(________)又∠∠A +∠2=90°(已知)∠∠A =∠AFC (_____)∠AB ∥CD (_____)45.如图,在∠ABC 中,AB =BC ,点D 、E 分别在边AB 、BC 上,且DE ∠AC ,AD =DE ,点F 在边AC 上,且CE =CF ,连接FD .(1)求证:四边形DECF是菱形;(2)如果∠A=30°,CE=4,求四边形DECF的面积.46.已知:如图,B、D分别在AC、CE上,AD是∠CAE的平分线,BD∠AE,AB=BC.求证:AC=AE.47.如图,直线AB与CD交于点F,锐角∠CDE=α,∠AFC+α=180°.(1)求证:AB∠DE;(2)若G为直线AB(不与点F重合)上一点,∠FDG与∠DGB的角平分线所在的直线交于点P.∠如图2,α=50°,G为FB上一点,请补齐图形并求∠DPG的度数;∠直接写出∠DPG的度数为(结果用含α的式子表示).48.完成下面的证明.已知:如图,BC∠DE,BE、DF分别是∠ABC、∠ADE的平分线.求证:∠1=∠2.证明:∠BC∠DE,∠∠ABC=∠ADE().∠BE、DF分别是∠ABC、∠ADE的平分线.∠∠3=12∠ABC,∠4=12∠ADE.∠∠3=∠4.∠∠().∠∠1=∠2().49.如图所示,∠ABC∠∠DEF,试说明AB∠DE,BC∠EF.50.(1)填空:如图∠,AB∠CD,猜想∠BPD与∠B,∠D的关系,并说明理由.解:过点P作EF∠AB,如图所示∠∠B+∠BPE=180°(______________________________).∠AB∠CD,AB∠EF∠EF∠CD(如果两条直线都和第三条直线平行,那么(_____________________).∠∠EPD+∠D=180°∠∠B+∠BPE+∠EPD+∠D=________,即∠BPD+∠B+∠D=360°(2)仿照上面的解题方法,观查图∠,已知AB∠CD,猜想图中∠BPD与∠B,∠D的关系,并说明理由.(3)观查图∠和∠,已知AB∠CD,猜想图中∠BPD与∠B,∠D的关系,不需要说明理由.参考答案:1.C【分析】由AB //CO 得出∠BAO =∠AOC ,即可得出∠BOD .【详解】解://AB CO ,60OAB AOC ∴∠=∠=︒6090150BOC ∴∠=︒+︒=︒90AOC DOA DOA BOD ∠+∠=∠+∠=︒60AOC BOD ∴∠=∠=︒故选:C .【点睛】本题考查两直线平行内错角相等的知识点,掌握这一点才能正确解题. 2.B【分析】根据两直线平行,同旁内角互补即可得.【详解】根据题意有:∠1+∠2=180°,∠∠1=50°,∠∠2=130°,故选:B .【点睛】本题主要考查了平行线的性质的知识,掌握两直线平行,同旁内角互补是解答本题的关键.3.B【分析】根据两直线平行内错角相等即可解决.【详解】解://30AB CD B ∠=︒,,30C ∴∠=︒, 故选:B .【点睛】本题主要考查平行线的性质,平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;题目较简单,能正确识别角的类型是解题的关键.4.C【分析】先假设a ∠b ,由平行线的性质即可得出∠2的值.【详解】解:假设a ∠b ,∠∠1=∠2,∠∠1=50°,∠∠2=50°.故选:C.【点睛】本题考查的是平行线的判定定理,即同位角相等,两直线平行.5.C【分析】在同一平面内,两条直线的位置关系有两种,平行和相交,三条直线互相平行无交点,两条直线平行,第三条直线与它相交,有2个交点,三条直线两两相交,最多有3个交点,最少有1个交点.【详解】解:由题意画出图形,如图所示:故选C.【点睛】本题考查了直线的交点个数问题,此类题没有明确平面上三条不重合直线的相交情况,需要运用分类讨论思想,解答时要分各种情况解答,要考虑到可能出现的所有情形,不要遗漏,否则讨论的结果就不全面.6.B【分析】根据同位角的特征:两条直线被第三条直线所截形成的角中,两个角都在两条被截直线的同侧,并且在第三条直线(截线)的同旁,由此判断即可.【详解】解:∠∠1和∠2是同位角;∠∠1的两边所在的直线没有任何一条和∠2的两边所在的直线公共,∠1和∠2不是同位角;∠∠1和∠2是同位角;∠∠1的两边所在的直线没有任何一条和∠2的两边所在的直线公共,∠1和∠2不是同位角.故选:B.【点睛】本题考查三线八角中的某两个角是不是同位角,同位角完全由两个角在图形中的相对位置决定.在复杂的图形中判别同位角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F “形.7.D【分析】由AC x ∥轴,A (-3,2),根据坐标的定义可求得y 值,根据线段BC 最小,确定BC ∠AC ,垂足为点C ,进一步求得BC 的最小值和点C 的坐标.【详解】解:∠AC x ∥轴,A (-3,2),(),C x y ,()3,5B ,∠y =2,当BC ∠AC 于点C 时, 点B 到AC 的距离最短,即:BC 的最小值为:5−2=3, ∠此时点C 的坐标为(3,2),故D 正确.故选:D .【点睛】本题主要考查平面直角坐标系中的点的坐标,根据题意,画出图形,掌握“直线外一点与直线上各个点的连线中,垂线段最短”,是解题的关键.8.D【分析】根据同位角的定义和图形逐个判断即可.【详解】A 、不是同位角,故本选项错误;B 、不是同位角,故本选项错误;C 、不是同位角,故本选项错误;D 、是同位角,故本选项正确;故选:D .【点睛】本题考查了同位角的应用,注意:两条直线被第三条直线所截,如果有两个角在第三条直线的同旁,并且在两条直线的同侧,那么这两个角叫同位角.9.C【分析】过点B 作直线b∠l ,再由直线m∠l 可知m∠l∠b ,得出∠3=∠1,∠2=∠4,由此可得出结论.【详解】解:过点B 作直线b∠l ,如图所示:∠直线m∠l ,∠m∠l∠b ,∠∠3=∠1,∠2=∠4.∠∠2=24°,∠∠4=24°,∠∠3=45°-24°=21°,∠∠1=∠3=21°;故选择:C.【点睛】本题考查的是平行线的性质;熟练掌握平行线的性质,并能进行推理论证与计算是解决问题的关键.10.A【分析】如图,由题意易得a ∠b ,则有∠3+∠5=180°,∠4=∠5,然后问题可求解.【详解】解:如图,∠1130∠=︒,250∠=︒,∠12180∠+∠=︒,∠a ∠b ,∠∠3+∠5=180°,∠3115∠=︒,∠4565∠=∠=︒;故选A .【点睛】本题主要考查平行线的性质与判定,熟练掌握平行线的性质与判定是解题的关键.11.C【分析】根据同位角的定义进行分析解答即可,两个角都在截线的同旁,又分别处在被截的两条直线同侧,具有这样位置关系的一对角叫做同位角.【详解】解:∠直线AB 、CD 被直线EF 所截,∠只有∠CHE 与∠AGE 在截线EF 的同侧,且在AB 和CD 的同旁,即∠AGE 的同位角是∠CHE .故选:C .【点睛】本题考查同位角概念,解题的关键在于运用同位角的定义正确地进行分析. 12.B【分析】判断一件事情的语句,叫做命题.根据定义判断即可.【详解】解:由题意可知,A 、对顶角相等,故选项是命题;B 、过直线外一点作直线的平行线,是一个动作,故选项不是命题;C 、三角形任意两边之和大于第三边,故选项是命题;D 、如果a b a c ==,,那么b c =,故选项是命题;故选:B .【点睛】本题考查了命题与定理:判断一件事情的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.注意:疑问句与作图语句都不是命题.13.A【分析】根据邻补角的定义由90BEF ∠=︒得到90FEA ∠=︒,即90CEA AEF ∠+∠=︒,再根据对顶角相等得到CEA BED ∠=∠,所以90CEF BED ∠+∠=︒.【详解】解:90BEF ∠=︒,90FEA ∴∠=︒,即90CEA CEF ∠+∠=︒,CEA BED ∠=∠,90CEF BED ∴∠+∠=︒,即CEF ∠与BED ∠互余.故选:A .【点睛】本题考查了对顶角、邻补角:解题的关键是:知道有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角;只有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.14.C【分析】根据两直线的位置关系、平行线的性质与判定分别进行判断即可.【详解】A:同一平面内,过一点有且只有一条直线与已知直线垂直,错误;B:过直线外一点有且只有一条直线与已知直线平行,错误;C:平行线的判定:同旁内角互补,两直线平行,正确;D:平行线的性质:两直线平行,同位角相等,错误.故答案选:C【点睛】本题考查两直线的位置关系以及平行线的性质与判定,掌握两直线的位置关系以及平行线的性质与判定是解题关键.15.D【详解】解:∠AB=DC,AD=BC,∠四边形ABCD为平行四边形,∠∠ADE=∠CBF,∠BF=DE,∠∠ADE∠∠CBF,∠∠BCF=∠DAE,∠∠DAE+∠ADB=∠AEB∠∠BCF=∠DAE=∠AEB-∠ADB=90°故选D.16.C【分析】根据平行线的性质可得同位角相等,再根据三角形的外角性质可求出∠3,即可求出结果.a b【详解】解://∴∠=∠︒14=85∠=∠∠,由三角形外角性质知,42+3∠=︒又235∴∠=∠-∠=︒-︒=︒,342853550故选:C.【点睛】本题考查平行线的性质、三角形的外角等知识,是重要考点,难度较易,掌握相关知识是解题关键.17.C【分析】根据平行线的性质得到∠DNM=∠BME=80°,由等腰直角三角形的性质得到∠PND=45°,即可得到结论.【详解】解:∠AB∠CD,∠∠DNM=∠BME=80°,∠∠PND=45°,∠∠PNM=∠DNM-∠DNP=35°,故选:C.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.18.A【详解】因为∠1=∠2=22°,所以AB//CD,所以∠DAC+∠CAB=180°.由于∠C=130°,则︒-︒-︒=︒.故选A.∠DAC=180130222819.D【分析】由△ABC∠∠BAD(AAS),推出AD=BC,AC=BD,故∠∠正确,再证明CO=OD,可得∠CDA=∠DCB,故∠正确,由∠CDO=∠OAB,可得CD∠AB,故∠正确;【详解】解:∠OA=OB,∠∠DAB=∠CBA,∠∠ACB=∠BDA=90°,AB=BA,∠∠ABC∠△BAD(AAS),∠AD=BC,AC=BD,故∠∠正确,∠BC=AD,BO=AO,∠CO=OD,∠∠CDA=∠DCB,故∠正确,∠∠COD=∠AOB,∠∠CDO=∠OAB,∠CD∠AB,故∠正确,故选:D.【点睛】本题考查全等三角形的判定和性质、等腰三角形的判定和性质、平行线的判定等知识,解题的关键是灵活的选择判定方法证明三角形全等.20.B【详解】A. 如图:∠∠1=38°,∠2=142°,∠∠3=180°−∠2=38°,∠∠4=∠1+∠3=76°≠∠1,∠AB与CD不平行;故本选项错误;B. 如图:∠∠1=∠2=38°,∠AB∠CD,且方向相同;故本选项正确;C. 如图:∠∠2=142°,∠∠3=180°−∠2=38°,∠∠1=38°,∠∠1=∠2,∠AB∠CD,但方向相反;故本选项错误;D. 如图:∠∠2=40°,∠∠3=180°−∠2=140°≠∠1,∠AB与CD不平行,故本选项错误.故选:B.21.110°【详解】解:根据a∠b得∠1=∠3=70°,∠∠2+∠3=180°,∠∠2=180°-70°=110°.故答案为110°.22.60【分析】根据AB∠CD得出:∠1=∠CEF,又CE∠GF得出:∠2=∠CEF,根据等量代换∠=∠=︒.即可得出:1260【详解】解:∠AB∠CD,∠∠1=∠CEF,∠CE∠GF,∠∠2=∠CEF,∠∠2=∠1,∠∠1=60°,∠∠2=60°,故答案为:60.【点睛】本题考查平行线的性质,注意两直线平行,内错角相等、同位角相等. 23.∠∠∠【分析】根据同位角、内错角、同旁内角的定义判断即可.【详解】∠中∠GBD 和∠HCE 没有任何关系,故∠错;∠中∠ABD 和∠ACH 是直线FD 与直线CH 被直线AC 所截形成的同位角,故∠对; ∠中∠FBC 和∠ACE 是直线FD 与直线CE 被直线AC 所截形成的内错角,故∠对; ∠中∠FBC 和∠HCE 没有任何关系,故∠错;∠中∠GBC 和∠BCE 是直线BG 与直线CE 被直线AC 所截形成的同旁内角,故∠对; 综上正确的有:∠∠∠.【点睛】本题主要考查同位角、内错角、同旁内角的定义,解题的关键是能够熟练地掌握同位角、内错角、同旁内角的定义即可.24.38【分析】根据对顶角相等进行解答即可.【详解】解:∠图中1∠和2∠是对顶角,138∠=︒,∠2138∠=∠=︒.故答案为:38.【点睛】本题主要考查了对顶角的性质,熟练掌握对顶角相等,是解题的关键. 25.A CBE ∠=∠(答案不唯一)【分析】根据平行线的判定方法结合图形进行补充条件即可.【详解】解:补充:,A CBE由同位角相等,两直线平行可得,AD BC ∥补充:180,A ABC根据同旁内角互补,两直线平行可得,AD BC ∥故答案为:A CBE ∠=∠或180A ABC ∠+∠=︒(任写一个即可)【点睛】本题考查的是平行线的判定,掌握“同位角相等,两直线平行或同旁内角互补,两直线平行”是解本题的关键.26.50°##50度【分析】先由圆周角定理求出∠B 的度数,再根据平行线的性质即可求出∠AMO 的度数【详解】∠∠AOC =2∠B ,∠AOC =100°,∠∠B =50°,∠OM ∥BC ,∠∠AMO =∠B =50°,故答案为50°.【点睛】本题考查了圆周角定理,平行线的性质,熟练掌握圆周角定理,并找到∠AMO 与∠B 的关系,已知角与∠B 的关系,从而求出角的度数.27. 铅垂线 合页型折纸【分析】根据平行线的判定,以及“铅垂线”、“合页型折纸法”、“长方形纸片法”的方法分析判断即可得解.【详解】(1)根据重力学原理,铅垂线垂直于水平面,与铅垂线垂直的直线则与平面平行,故填:铅垂线;(2)合页型折纸其折痕与纸被折断的一边垂直,即折痕与被折断的两线段垂直,把折断的两边放到水平面上,可判断折痕与水平面垂直,故填:合页型折纸.【点睛】本题考查了平行线的判定与垂线,利用物理力学原理是最好的检验方法. 28.70【分析】先根据平行线的性质求出C ∠的度数,再由三角形外角的性质即可得出结论.【详解】解:AB//CD ,140∠=,230∠=,C 40∠∴=,3∠是CDE 的外角,3C 2403070∠∠∠∴=+=+=.故答案为70.【点睛】本题考查了平行线的性质,三角形外角的性质,用到的知识点为:两直线平行,内错角相等.29.假.【分析】根据邻补角的定义来分析:既要其和是个平角(或180°),也要满足位置关系.【详解】解:根据邻补角的定义可知,两个角的度数和是180度,且有一条公共边称这两个角互为邻补角,∴如果两个角的和是平角时,那么这两个角不一定是邻补角.故答案为:假.【点睛】本题主要考查了邻补角的概念,比较简单.30.31°48′【分析】先由平行线的性质求出∠3的度数,再由∠AEF=90°,即可求出∠2.【详解】∠AB ∠ CD,∠1=58°12',∠∠3=∠1=58°12',∠EF∠AB,∠∠AEF=90°,∠∠2=90°-∠3=90°-58°12'=31°48′,故答案为31°48′.【点睛】本题考查了平行线的性质、垂线的定义,熟练掌握相关内容是解题的关键. 31.∠AOC,对顶角相等,∠AOC, 80°,已知BOD,1,80°,30°,50【详解】解:因为∠DOB=∠AOC (对顶角相等),∠AOC=80° (已知),所以,∠DOB=80°(等量代换),又因为∠1=30°(已知),所以∠2=∠BOD- ∠1 = 80°-50°=30°,故答案为:∠AOC,对顶角相等,∠AOC,80°,已知,BOD,1,80°,30°,50. 32.50.【详解】试题解析:如图:∠FED,根据折叠得出∠2=∠DEM=12∠是一张宽度相等的纸条,∠AE∠BM,∠1=100°,∠∠FED=∠1=100°,∠∠2=50°考点:1.平行线的性质;2.翻折变换(折叠问题).33.5【详解】∠在△ABC 中,BO 和CO 分别平分∠ABC 和∠ACB , ∠∠DBO=∠OBC ,∠ECO=∠OCB ,∠DE∠BC ,∠∠DOB=∠OBC=∠DBO ,∠EOC=∠OCB=∠ECO ,∠DB=DO ,OE=EC ,∠DE=DO+OE ,∠DE=BD+CE=5.故答案为5.34.105【分析】先根据90,ACB AC BC ∠=︒=判断出ACB ∆是等腰直角三角形,再根据AB BD =,AD DE =利用等腰三角形两底角相等的性质求算.【详解】∠90,ACB AC BC ∠=︒=∠45CAB ∠=︒又∠,AB BD AD AE ==∠,ADE AED BAD BDA ∠=∠∠=∠设=ADE AED x ∠=∠︒∠1802DAE x DAB ADB x ∠=︒-︒∠=∠=︒,∠180245x x ︒-︒+︒=︒∠75x =︒∠75DAB x ∠=︒=︒又∠//AB CD∠18075105ADC ∠=︒-︒=︒故答案为:105【点睛】本题考查平行线、等腰三角形、等腰直角三角形的性质,转化相关的角度是解题关键.35.50.【分析】先由角平分线的定义即可得出∠ABC 的度数,再根据平行线的性质求出∠1的度数.【详解】∠BE 平分∠ABC ,∠∠ABC=2∠1=50°.∠DE∠BC,∠∠ABC=∠2=50°.故答案为50°.【点睛】本题考查的是平行线的性质,解题时注意:两直线平行,同位角相等.36.6【分析】过点D作DF∠BC,连接BD,根据平行线的判定和性质得出DF=AB=4,再由等边对等角确定∠BEC=∠BCE,利用各角之间的关系及平行线的判定及性质得出BE∠DC,∆CED与∆CDB的边CD上的高相等,结合图形求解即可.【详解】解:过点D作DF∠BC,连接BD,如图所示,∠AD∠BC,∠A=90,∠∠ABC=90,∠DF∠BC,∠∠DFB=90,∠DF∠AB,∠四边形ABFD为平行四边形,∠DF=AB=4,∠BE=BC=3,∠∠BEC=∠BCE,∠CE平分∠BCD,∠∠DCE=∠BEC,∠BE∠DC,∠∆CED与∆CDB的边CD上的高相等,∠1·62CDE BCDS S BC DF===,故答案为:6.【点睛】题目主要考查平行四边形的判定和性质,平行线的判定,角平分线的计算,等边对等角等,理解题意,综合运用这些知识点是解题关键.37.50【详解】试题解析:∠AD∠BC∠∠FEC=∠AFE=65°又∠沿EF折叠∠∠C′EF=∠FEC=65°,∠∠C'EB=180°-65°-65°=50°.【点睛】本题考查了翻折变换的知识,解答本题关键是掌握折叠前后图形的对应边和对应角相等,另外要熟练运用平行线的性质,难度一般.38.40°或140°【分析】如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补. 根据题意, ∠1=∠2或∠1和∠2互补.【详解】解:根据题意,得∠1=∠2=40°或∠2=180°-∠1=180°-40°=140°故答案为40°或140°.【点睛】本题考查了平行线的性质,如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.39.5【分析】利用角平分线和平行可证得∠EBD=∠EDB,∠FDC=∠FCD,可得到DE=BE,DF=FC,可得到EF=BE+FC.【详解】∠BD平分∠ABC,∠∠EBD=∠DBC,∠EF∠BC,∠∠EDB=∠DBC,∠∠EBD=∠EDB,∠DE=BE=2,同理DF=3,∠EF=DE+DF=2+3=5.【点睛】此题主要考查学生对等腰三角形的判定与性质和平行线性质的理解和掌握,解答此题的关键是熟练掌握等腰三角形的两角相等或两边相等.40.1.2【分析】过点F 作FG ∠AB ,垂足为G ,过点P 作PD ∠AB ,垂足为D ,根据垂线段最短,得当PD 与FG 重合时PD 最小,利用相似求解即可.【详解】∠90︒∠=C ,6AC =,8BC =,∠AB =10,∠2CF =,将CEF ∆沿直线EF 翻折,点C 落在点P 处,∠CF =PF =2,AF =AC -CF =6-2=4,过点F 作FG ∠AB ,垂足为G ,过点P 作PD ∠AB ,垂足为D ,根据垂线段最短,得当PD 与FG 重合时PD 最小,∠∠A =∠A ,∠AGF =∠ACB ,∠△AGF ∠△ACB , ∠AF GF AB CB =, ∠4108GF =, ∠FG =3.2,∠PD =FG -PF =3.2-2=1.2,故答案为:1.2.【点睛】本题考查了勾股定理,折叠的性质,三角形相似,垂线段最短,准确找到最短位置,并利用相似求解是解题的关键.41.见解析.【分析】根据平行线的判定可得AD∠BE ,然后求出∠2=∠E ,结合已知条件可证明AC∠DE ,进而得到∠C=∠CDE ,再根据角平分线的定义求出∠ADC=∠CDE ,等量代换即可证明结论.【详解】证明:∠∠A=∠1,∠AD∠BE ,∠∠2=∠E ,∠∠1=∠2,∠∠1=∠E ,∠AC∠DE ,∠∠C=∠CDE ,∠CD 平分∠ADE ,∠∠ADC=∠CDE ,∠∠C=∠ADC.【点睛】本题考查了角平分线的定义以及平行线的判定和性质,灵活运用平行线的判定定理和性质定理是解题的关键.42.70°【分析】过点C 作//CF BA ,根据平行线的性质及可求解;【详解】解:过点C 作//CF BA ,∠30BCF B ∠=∠=︒,∠//BA DE ,∠//CF DE ,∠40FCD D ∠=∠=︒,∠70BCD BCF FCD ∠=∠+∠=︒.【点睛】本题主要考查平行线的性质,掌握平行线的性质是解题的关键.43.DE ∠BC ,理由见解析【分析】由条件可得到∠2+∠DFH =180°,可证得AB//EH ,可得到∠3+∠BDE=180°,结合条件可证明DE//BC【详解】DE ∠BC ,理由如下:∠∠1+∠2=180°,∠1=∠DFH ,∠∠2+∠DFH =180°,∠AB ∠EH ,∠∠3+∠BDE =180°,∠∠B =∠3,∠∠B +∠BDE =180°,∠DE ∠B C .【点睛】本题主要考查平行线的判定,用到的知识点为:同旁内角互补,两直线平行. 44.垂直的定义;内错角相等,两直线平行;两直线平行,同位角相等;等量代换;90°;同角的余角相等;内错角相等,两直线平行.【分析】根据垂直的定义,平行线的判定与性质即可得.【详解】证明∠∠AF ∠CE (已知),∠∠AOE =90°(垂直的定义),又∠∠1=∠B (已知),∠CE BF ∥ (内错角相等,两直线平行),∠∠AFB =∠AOE (两直线平行,同位角相等),∠∠AFB =90°(等量代换),又∠∠AFC +∠AFB +∠2=180°(平角的定义),∠∠AFC +∠2=(90°),又∠∠A +∠2=90°(已知),∠∠A =∠AFC (同角的余角相等),∠AB CD ∥ (内错角相等,两直线平行),故答案为:垂直的定义;内错角相等,两直线平行;两直线平行,同位角相等;等量代换;90°;同角的余角相等;内错角相等,两直线平行.【点睛】本题考查了垂直的定义,平行线的判定与性质,解题的关键是掌握这些知识点. 45.(1)证明见解析;(2)四边形DECF 的面积=8【分析】(1)根据等腰三角形的性质和平行线的性质得到BDE BED ∠=∠,求得BD BE =,推出四边形DECF 是平行四边形,于是得到结论;(2)过点F 作FG BC ⊥交BC 于G ,根据菱形的性质得到4CF =,根据等腰三角形的性质得到A C ∠=∠,根据直角三角形的性质得到122FG FC ==,于是得到结论.【详解】(1)解:AB BC =,A C ∴∠=∠,//DE AC ,BDE A ∴∠=∠,BED C ∠=∠,BDE BED ∴∠=∠,BD BE ∴=,BA BD BC BE ∴-=-,AD CE ∴=,AD DE =,DE EC ∴=,CE CF =,DE CF ∴=,//DE FC ,∴四边形DECF 是平行四边形,CE CF =,∴四边形DECF 是菱形;(2)解:过点F 作FG BC ⊥交BC 于G ,四边形DECF 是菱形,4CE =,4CF ∴=,AB BC =,A C ∴∠=∠,30A ∠=︒,30C ∴∠=︒,90FGC ∠=︒,30C ∠=︒,122FG FC ∴==, ∴四边形DECF 的面积428EC FG ==⨯=.【点睛】本题考查了菱形的判定和性质,平行四边形的判定和性质,等腰三角形的性质,直角三角形的性质,解题的关键是正确的识别图形.46.见解析【分析】根据角平分线和平行线的性质以及等腰三角形的判定解答即可.【详解】证明:∠AD 是∠CAE 的平分线,∠∠BAD =∠DAE ,∠BD ∠AE ,∠∠BDA =∠DAE ,∠∠BAD =∠BDA ,∠AB =BD ,∠AB =BC ,∠BC =BD ,∠∠C =∠CDB ,∠BD ∠AE ,∠∠E =∠CDB ,∠∠C =∠E ,∠AC =AE .【点睛】此题考查等腰三角形的性质与判定,关键是根据角平分线和平行线的性质得出BC=BD .47.(1)见解析;(2)∠见解析,∠DPG =65°;∠(90°﹣12a )或(90°+12a ) 【分析】(1)利用邻补角的意义,得出∠D =∠AFD ,根据内错角相等,两直线平行即可得结论;(2)∠根据题意画出图形结合(1)即可求出∠DPG 的度数;∠结合∠即可写出∠DPG 的度数.【详解】(1)证明:∠∠AFC +∠AFD =180°,∠AFC +α=180°,∠∠AFD =α=∠CDE ,∠AB∠DE;(2)解:∠如图即为补齐的图形,∠∠FDG与∠DGB的角平分线所在的直线交于点P,∠∠FDG=2∠FDP=2∠GDP,∠DGB=2∠DGQ=2∠BGQ,由(1)知AB∠DE,∠∠DFB=180°﹣α=180°﹣50°=130°,∠∠DGB=∠FDG+∠DFG,∠2∠DGQ=2∠GDP+130°,∠∠DGQ=∠GDP+65°,∠∠DGQ=∠GDP+∠DPG,∠∠DPG=65°;∠由∠知∠DPG=12∠DFB=12(180°﹣α)=90°﹣12a.当点G在AF上时,∠DPG=180°﹣(∠GDP+∠DGP)=180°﹣12(∠GDC+∠DGB)=180°﹣12∠DFB=180°﹣12(180°﹣α)=90°+12 a.故答案为:(90°﹣12a)或(90°+12a).【点晴】考查了平行线的判定与性质,解题关键是灵活运用其性质.48.两直线平行,同位角相等;DF;BE;同位角相等,两直线平行;两直线平行,内错角相等.【分析】根据平行线的性质得出∠ABC=∠ADE,根据角平分线定义得出∠3=12∠ABC,∠4=12∠ADE,求出∠3=∠4,根据平行线的判定得出DF∠BE,根据平行线的性质得出即可.【详解】证明:∠BC∠DE,∠∠ABC=∠ADE(两直线平行,同位角相等).∠BE、DF分别是∠ABC、∠ADE的平分线.∠∠3=12∠ABC,∠4=12∠ADE.∠∠3=∠4,∠DF∠BE(同位角相等,两直线平行),∠∠1=∠2(两直线平行,内错角相等),故答案是:两直线平行,同位角相等;DF;BE;同位角相等,两直线平行;两直线平行,内错角相等.【点睛】本题考查了平行线的性质和判定,角平分线定义的应用,能综合运用平行线的性质和判定进行推理是解此题的关键.49.见解析.【分析】根据∠ABC∠∠DEF,得到∠A=∠D,∠1=∠2,根据内错角相等,两直线平行即可判定.【详解】解:证明:∠∠ABC∠∠DEF∠∠A=∠D,∠AB//DE;∠∠ABC∠∠DEF,∠∠1=∠2,∠BC//EF.【点睛】考查全等三角形的性质以及平行线的判定,掌握全等三角形的性质是解题的关键.50.(1)两直线平行,同旁内角互补;这两条直线互相平行;360°(2)∠BPD=∠B+∠D;理由见解析(3)图∠:∠D=∠B+∠BPD;图∠:∠B=∠BPD+∠D【分析】(1)利用平行线的性质解答;(2)作平行线,根据内错角相等可证∠BPD=∠B+∠D;(3)同样作平行线,根据内错角相等可证∠B=∠BPD+∠D.【详解】(1)过点P作EF∥AB,如图所示:∠∠B+∠BPE=180°(两直线平行,同旁内角互补),∠AB∥CD,EF∥AB,∠CD∥EF(如果两条直线都和第三条直线平行,那么这两条直线也互相平行),∠∠EPD+∠D=180°,∠∠B+∠BPE+∠EPD+∠D=360°,∠∠B+∠BPD+∠D=360°.故答案为:两直线平行,同旁内角互补;这两条直线互相平行;360°.(2)猜想∠BPD=∠B+∠D;理由:过点P作EP∥AB,如图所示:∠EP∥AB,∠∠B=∠BPE(两直线平行,内错角相等),∠AB∥CD,EP∥AB,∠CD∥EP(如果两条直线都和第三条直线平行,那么这两条直线也互相平行),∠∠EPD=∠D,∠∠BPD=∠B+∠D.(3)图∠结论:∠D=∠BPD+∠B,。
初中数学相交线与平行线专题训练50题含答案
初中数学相交线与平行线专题训练50题含答案(单选、填空、解答题)一、单选题1.如图,直线AB ,CD 交于点O ,射线OM 平分AOC ∠,如果104AOD ∠=︒,那么MOC ∠等于( )A .38°B .37°C .36°D .52° 2.如图,在直线l 外一点P 与直线上各点的连线中,P A =5,PO =4,PB =4.3,OC =3,则点P 到直线l 的距离为( )A .3B .4C .4.3D .5 3.如图网格中,每个小方格都是边长为1的小正方形,点A 、B 是方格纸中的两个格点(网格线的交点称格点),在这个7×7的方格纸中,找出格点C ,使△ABC 的面积为3,则满足条件的格点C 的个数是( )A .2 个B .4个C .5个D .6个 4.如图,直线a ,b 穿过正五边形ABCDE ,且//a b ,则αβ∠-∠=( )A .95°B .84°C .72°D .60° 5.如图,某沿湖公路有三次拐弯,如果第一次的拐角120A ∠=︒,第二次的拐角155B ∠=︒,第三次的拐角为C ∠,这时的道路恰好和第一次拐弯之前的道路平行,则C ∠的度数是( )A .130︒B .140︒C .145︒D .150︒ 6.如图,下列条件:①①C =①CAF ,①①C =①EDB ,①①BAC +①C =180°,①①GDE +①B =180°,①①CDG =①B .其中能判断AB //CD 的是( )A .①①①①B .①①①C .①①①D .①①① 7.如图,与①α构成同旁内角的角有( )A .1个B .2个C .5个D .4个 8.如图,下列说法中错误的是( )A .①1与①A 是同旁内角B .①3与①A 是同位角C .①2与①3是同位角D .①3与①B 是内错角9.如图,为判断一段纸带的两边a ,b 是否平行,小明在纸带两边a ,b 上分别取点A ,B ,并连接AB .下列条件中,能得到a b ∥的是( )A .12∠=∠B .13∠=∠C .14180∠+∠=︒D .13180∠+∠=︒ 10.如图,//DE BC BE ,平分ABC ∠,若170=︒∠,则AEB ∠的度数为( )A .20︒B .35︒C .55︒D .70︒ 11.用“垂线段最短”来解释的现象是( )A .B .C .D .12.如图,直线AB ,CD 相交于点O ,OE 平分①AOC ,若①BOD =70°,则①DOE 的度数是( )A .70°B .35°C .120°D .145° 13.下列说法错误的是( )A .同旁内角相等,两直线平行B .旋转不改变图形的形状和大小C .对角线相等的平行四边形是矩形D .菱形的对角线互相垂直14.(1)如果直线a b ,b c ,那么a c ;(2)相等的角是对顶角;(3)两条直线被第三条直线所截,同位角相等;(4)在同一平面内如果直线a b ⊥,c b ,那么a c ; (5)两条直线平行,同旁内角相等;(6)两条直线相交,所成的四个角中,一定有一个是锐角.其中真命题有( )A .1个B .2个C .3个D .4个 15.以下四个命题:①在同一平面内,过一点有且只有一条直线与已知直线垂直;①若a>b ,则-2a>-2b ;①如果三条直线a 、b 、c 满足:a①b ,b①c ,那么直线a 与直线c 必定平行;①对顶角相等,其中真命题有( )个.A .1B .2C .3D .416.在统一平面内有三条直线a 、b 、c ,下列说法:①若//a b ,//b c ,则//a c ;①若a b ⊥,b c ⊥,则a c ⊥,其中正确的是( )A .只有①B .只有①C .①①都正确D .①①都不正确 17.如图,在Rt ABC ∆中,90C ∠=︒,3AC =,6BC =,分别以点B 和点C 为圆心,大于12BC 的长为半径作弧,两弧相交于两点,过这两点作直线与AB 相交于点D ,则AD 的长是( )A .3B .1.5CD .18.如图,直线AB 与直线CD 相交于点O.若①AOD =50°,则①BOC 的度数是( )A .40°B .50°C .90°D .130° 19.将一块直角三角板ABC 按如图方式放置,其中①ABC =30°,A 、B 两点分别落在直线m 、n 上,①1=20°,添加下列哪一个条件可使直线m①n( )A .①2=20°B .①2=30°C .①2=45°D .①2=50° 20.如图,在正方形ABCD 中,BPC △是等边三角形,BP 、CP 的延长线分别交AD 于点E 、F ,连结BD ,DP ,BD 与CF 相交于点H .给出下列结论:①~BDE DPE ,①35FP PH =,①2DP PH PB =⋅,①tan 2DBE ∠=序号是( )A .①①B .①①①C .①①①D .①①二、填空题21.如图,直线AB 、CD 相交于点O ,EO AB ⊥于点O ,50EOD ∠=︒,则AOC ∠的度数为______.22.如图,直线,则的度数为=______.23.如图所示,A ,B 之间有一座山,一条笔直的铁路要通过A ,B 两地,在A 地测得铁路的走向是北偏东68°20',如果A ,B 两地同时开工,那么在B 地按____方向施工才能使铁路在山中准确接通.24.如图,直线AB ,CD 相交于点O ,若①AOC =20°,则①BOD 的大小为___________(度).25.下列三个日常现象:其中,可以用“两点之间线段最短”来解释的是 _____ (填序号).26.如图,直线AB 与直线CD 交于点O ,OE 平分AOC ∠,已知①100AOD =︒,那么EOB ∠=__度.27.如图,直线AB 与CD 相交于点O ,OE AB ⊥于O ,140∠=︒,则2∠=______.28.如图,已知平行线AB ,CD 被直线AE 所截,AE 交CD 于点F ,连接CE ,若20E ∠=︒,CF EF =,则A ∠的度数为______.29.如图,直线a①直线b ,且被直线c 所截,若①1=(3x+70)度,①2=(2x+10)度,则x 的值为________.30.如图,六边形ABCDEF 是正六边形,若l 1①l 2,则①1﹣①2=_____.31.如图,直线a ①b ,在Rt①ABC 中,点C 在直线a 上,若①1=56°,①2=29°,则①A 的度数为______度.32.如图,梯形ABCD 中,AB CD ∥,对角线AC 、BD 相交于点O ,如果ABD △的面积是BCD △面积的2倍,那么DOC △与BOC 的面积之比是______.33.如图,在Rt①ABC 中,AC =6,BC =8,点P 是AC 边的中点,点D 和E 分别是边BC 和AB 上的任意一点,则PD+DE 的最小值为_____.34.如图,AC BC ⊥,90CDA ∠=︒,4,3,5AC BC AB ===,点C 到AB 的距离是______.与ACD ∠相等的角是_________.35.如图,直线a ,b ,c 两两相交于A ,B ,C 三点,则图中有________对对顶角;有________对同位角;有________对内错角;有________对同旁内角.36.如图,在长方形ABCD 中,点E 、F 分别在AD 、BC 边上,沿直线EF 折叠后,C 、D 两点分别落在平面内的C '和D 处,若①1=70°,则①2=______.37.如图,将一张长方形纸片ABCD 沿EF 折叠后,点A ,B 分别落在点A ',B '的位置.若155∠=︒,则2∠的度数是__________.38.如图,在①ABC 中,①ABC 与①ACB 的平分线交于点D ,EF 经过点D ,分别交AB ,AC 于点E ,F ,BE =DE ,DF =5,点D 到BC 的距离为4,则①DFC 的面积为_____39.如图,已知AB①CD ,垂足为点O ,直线EF 经过O 点,若①1=55°,则①COE 的度数为______度.40.如图,在ABCD 中,105ABC ∠=︒,对角线,AC BD 交于点,30,4O DAC AC ∠=︒=,点P 从点B 出发,沿着边BC CD 、运动到点D 停止,在点P运动过程中,若OPC 是直角三角形,则CP 的长是___________.三、解答题41.如图,点B ,F ,C ,E 在同一条直线上,BF EC =,AB DE =,DE AB ∥.求证:A D ∠=∠.42.如图,已知AM ①CN ,且①1=①2,那么AB ①CD 吗?为什么? 解:因为AM ①CN ( 已知 )所以①EAM =①ECN又因为①1=①2所以①EAM +①1=①ECN +①2即① =①所以 .43.如图,在ABC 中,ABC ∠的平分线交AC 于点D ,过点D 作DE BC ∥交AB 于点E ,若80A ∠=︒,40C ∠=︒,求BDE ∠的度数.44.按要求画图:已知点P 、Q 分别在AOB ∠的边OA ,OB 上(如图所示):(1)①画线段PQ ;①过点P 作OB 的垂线PE ,垂足为E ;①过点Q 作OA 的平行线MN (M 在上,N 在下).(2)在(1)的情况下,若40MQB ∠=︒,求OPE ∠.(不使用三角形的内角和为180°) 45.如图,在ΔABC 中,CD 是高,点E 、F 、G 分别在BC 、AB 、AC 上且EF①AB ,DG①BC ,试判断①1与①2的大小关系,并说明理由.46.(1)如图1,在①ABC 中,BD 是①ABC 的角平分线,点D 在AC 上,DE①BC ,交AB 于点E ,①A =50°,①ADB =110°,求①BDE 各内角的度数;(2)完成下列推理过程.已知:如图2,AD ①BC ,EF ①BC ,①1=①2,求证:DG ①AB .推理过程:因为AD ①BC ,EF ①BC (已知),所以①EFB =①ADB =90°(________).所以EF①AD (同位角相等,两直线平行).所以①1=①BAD (________).因为①1=①2(已知),所以________=________(等量代换).所以DG①AB (内错角相等,两直线平行).47.如图,点A 为直线外一点,点B 是直线l 上一定点,点P 是直线l 上一动点,连接AB ,AP ,若要使2PA PB 1+的值最小,确定点P 的位置,并说明理由.48.如图,在三角形ABC 中,点D ,F 在边BC 上,点E 在边AB 上,点G 在边AC 上,EF 与GD 的延长线交于点H ,1B ∠=∠,23180∠+∠=︒.(1)判断EH 与AD 的位置关系,并说明理由(2)若58DGC ∠=°,且410H ∠=∠+︒,求H ∠的度数.49.已知:直线AB 与直线PQ 交于点E ,直线CD 与直线PQ 交于点F ,∠PEB +∠QFD =180°.(1)如图1,求证:AB ∥CD ;(2)如图2,点G 为直线PQ 上一点,过点G 作射线GH ∥AB ,在∠EFD 内过点F 作射线FM,∠FGH内过点G作射线GN,∠MFD=∠NGH,求证:FM∥GN;(3)如图3,在(2)的条件下,点R为射线FM上一点,点S为射线GN上一点,分别连接RG、RS、RE,射线RT平分∠ERS,∠SGR=∠SRG,TK∥RG,若∠KTR+∠ERF=108°,∠ERT=2∠TRF,∠BER=40°,求∠NGH的度数.50.如图,四边形ABCD与四边形CEFH均为正方形,点B、C、E在同一直线上,连接BD,DF,BF.(1)观察图形,直接写出与线段CH平行的线段.(2)图中与线段CH垂直的线段共有_______条.(3)点B到点F的最短距离为线段____的长,点B到线段EF的的最短距离为线段____的长.(4)若正方形ABCD的边长为a, 正方形CEFH的边长为2,则线段HD=___,线段BE=___,此时请你求出三角形DBF的面积,你有什么发现?参考答案:1.A【分析】先根据已知条件求出①AOC 的度数,再根据OM 平分①AOC ,即可得到①MOC 的值【详解】解:①104AOD ∠=︒①①AOC =180°−104°=76°①OM 平分①AOC ①①MOC=12AOC ∠ 1762=⨯︒ =38°故选:A【点睛】本题主要考查了领补角及角平分线的定义,熟练掌握定义是解题的关键 2.B【分析】点到直线的距离:直线外一点到直线的垂线段的长度,叫做点到直线的距离.【详解】解:由于OP ①直线l ,根据题意知:点P 到直线l 的距离等于PO 的长,即点P 到直线l 的距离PO =4,故选:B .【点睛】本题考查了对点到直线的距离的应用,注意:点到直线的距离是指该点到直线的垂线段的长.3.D【分析】利用格点的性质和三角形的面积公式即可得.【详解】由格点的性质和三角形的面积公式得,总共有6个满足条件的格点C ,如图所示:(格点C 均在平行于AB 的直线上)其中,由点12345,,,,C C C C C 与点,A B 分别构成的5个三角形的面积显然是36ABC 的面积为3663AC C BDC ABDC S S S --直角梯形1114633(36)1222=⨯⨯-⨯⨯-⨯+⨯ 991222=--故选:D .【点睛】本题考查了平行线的实际应用,理解题意,结合格点的性质是解题关键. 4.C【分析】延长EA 与直线b 交于点F ,由平行线的性质得①AFG =∠β,再由多边形的内角和定理求出108EAB ∠=︒,进一步得出72GAF ∠=︒,最后由三角形的外角关系可得结论.【详解】解:延长EA 与直线b 交于点F ,如图,①//a b①AFG β∠=∠①五边形ABCDE 是正五边形, ①(52)1801085EAB -⨯︒∠==︒ ①180********GAF EAB ∠=︒-∠=︒-︒=︒又=72AFG GAF αβ∠∠+∠=∠+︒①72αβ∠-∠=︒故选:C【点睛】本题考查的是多边形内角与外角,正五边形的性质,三角形外角的性质,利用数形结合求解是解答此题的关键.【分析】过点B作BH①AM,则BH①CD,利用平行线的性质求解即可.【详解】解:如图,过点B作BH①AM,①AM①CD,①BH①CD,①①ABH=①A=120°,①HBC+①C=180°,①①HBC=①ABC-①ABH=35°,①①C=180°-①HBC=145°,故选:C.【点睛】本题考查平行线的判定与性质,添加平行线是解答的关键.6.A【分析】根据平行线的判定定理逐一排除得出即可.【详解】解:①①C=①CAF,①AB//CD;故①符合题意;∠=∠C EDB//∴AC BD故①不符合题意;①①BAC+①C=180°,①AB//CD;故①符合题意;①①GDE+①B=180°,①GDE+①EDB=180°,①①EDB=①B,①AB//CD;故①符合题意;①①CDG=①B,①AB//CD,故①符合题意;符合题意的有:①①①①故选:A .【点睛】本题考查了平行线的判定,掌握平行线的判定是解题的关键.7.C【详解】试题分析:根据题意可知与①α构成同旁内角的角有如图5个.考点:三线八角点评:本题难度较低,主要考查学生对三线八角的掌握.分析这类题型是,主要抓住已知角两边与第三边相交的构成三线基础,为解题关键.8.B【分析】根据同位角、内错角、同旁内角的定义,可得答案.【详解】A. ①1与①A 是同旁内角,故A 正确;B. ①3与①A 不是同位角,故B 错误;C. ①2与①3是同位角,故C 正确;D. ①3与①B 是内错角,故D 正确;故选B.【点睛】此题考查同位角、内错角、同旁内角,解题关键在于掌握其性质9.D【分析】根据平行线的判定定理进行判断即可.【详解】解:A 、12∠=∠,1∠和2∠邻补角,不能证明a b ∥;B 、13∠=∠,1∠和3∠是同旁内角,同旁内角相等不能证明a b ∥;C 、14180∠+∠=︒,1∠和4∠属于内错角,内错角互补不能证明a b ∥;D 、①13180∠+∠=︒,①a b ∥(同旁内角互补两直线平行);故选:D .【点睛】本题考查了平行线的判定定理,熟知:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;是解本题的关键.10.B【分析】先根据平行线的性质求得①ABC=70°,①CBE=①AEB,再运用角平分线即可求得①AEB的度数.【详解】解:①//DE BC,①170ABC∠=∠=︒,CBE AEB∠=∠,①BE平分①ABC,①1352CBE AEB ABC∠=∠=∠=︒.故选:B.【点睛】本题考查了平行线的性质和角平分线,灵活应用相关性质定理是解答本题的关键.11.A【分析】根据点到直线的距离,直线的性质,线段的性质,可得答案.【详解】解:A.体育课上,老师测量某个同学的跳远成绩,利用了垂线段最短,故A符合题意;B.木板上弹墨线,利用了两点确定一条直线,故B不符合题意;C.用两根钉子就可以把一根木条固定在墙上,利用了两点确定一条直线,故C不符合题意;D.把弯曲的公路改直,就能够缩短路程,利用“两点之间线段最短”,故D不符合题意.故选:A.【点睛】本题主要考查了线段的性质,熟记性质并能灵活过应用是解题关键.12.D【分析】根据对顶角相等求出①AOC,根据角平分线的定义计算,得到答案.【详解】解:①①BOD=70°,①①AOC=①BOD=70°,①OE平分①AOC,①①COE=12①AOC=12×70°=35°,①DOE=①COD-①COE=145°故选:D.【点睛】本题考查的是对顶角、角平分线的定义、平角定义,掌握对顶角相等、角平分线的定义是解题的关键.13.A【分析】依次分析各选项即可得出说法错误的选项.【详解】解:因为同旁内角互补,两直线平行,因此A选项错误;根据旋转的性质,旋转不改变图形的形状和大小,因此B选项内容正确;根据矩形的判定,C选项内容正确;根据菱形的性质,D选项内容正确.故选:A.【点睛】本题综合考查了平行线的判定、旋转的性质、矩形的判定、菱形的性质等内容,解决本题的关键是理解并能灵活运用相关概念,本题考查的是概念基础题,因此侧重考查学生对教材基础知识的理解与掌握等.14.A【分析】分别利用平行线的性质,以及对顶角的定义等分析得出答案.【详解】解:(1)如果直线a b,b c,那么a c,正确,是真命题,(2)相等的角是对顶角,错误,不是真命题;(3)两条直线被第三条直线所截,同位角不一定相等,错误,不是真命题;(4)在同一平面内如果直线a①b,c b,那么a c,错误,不是真命题;(5)两条直线平行,同旁内角互补,错误,不是真命题;(6)两条直线相交,所成的四个角中,一定有一个是锐角,错误,不是真命题;故选:A.【点睛】此题主要考查了命题与定理,正确把握平行线的性质是解题关键.15.C【详解】试题分析:根据基本的数学概念依次分析各小题即可作出判断.解:①在同一平面内,过一点有且只有一条直线与已知直线垂直,①如果三条直线a、b、c 满足:a①b,b①c,那么直线a与直线c必定平行,①对顶角相等,均正确;①若,则,错误;故选C.考点:真假命题点评:本题属于基础应用题,只需学生熟练掌握基本的数学概念,即可完成.16.A【分析】根据如果两条直线都与第三条直线平行,那么这两条直线也互相平行可得①正确;根据应为同一平面内,垂直于同一条直线的两直线平行可得①错误.【详解】解:①若a①b,b①c,则a①c,说法正确;①若a①b,b①c,则a①c,说法错误,应为同一平面内,若a①b,b①c,则a①c;故选:A.【点睛】此题主要考查了平行公理和垂线,关键是注意同一平面内,垂直于同一条直线的两直线平行.17.C【分析】利用勾股定理求出AB,证明BD=AD即可解决问题.【详解】解:在Rt①ABC中,AC=3,BC=6,①AB=由作图可知,直线DE垂直平分线段BC,①①BED=①C=90°,①DE①AC,①BE=EC,DE①AC,①BD=AD,故选:C.【点睛】本题考查作图−基本作图,勾股定理,平行线等分线段定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18.B【分析】根据对顶角相等,可得答案.【详解】解;①①BOC与①AOD是对顶角,①①BOC=①AOD=50°,故选B.【点睛】本题考查了对顶角与邻补角,对顶角相等是解题关键.19.D【分析】根据平行线的性质即可得到①2=①ABC+①1,即可得出结论.【详解】①直线EF①GH ,①①2=①ABC+①1=30°+20°=50°,故选D .【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.20.C【分析】根据等边三角形的性质和正方形的性质,得到30PCD ∠=︒,于是得到75CPD CDP ∠=∠=︒,证得15EDP PBD ∠=∠=︒,于是得到BDE DPE ∆∆,故①正确;由于FDP PBD ∠=∠,60DFP BPC ∠=∠=︒,推出DFP BPH ∆∆,得到PF DF DF PH PB CD ===①错误;由于30PDH PCD ∠=∠=︒,DPH DPC ∠=∠,推出DPH CPD ∆∆,得到PD PH CD PD=,PB CD =,等量代换得到2PD PH PB =⋅,故①正确;过P 作PM CD ⊥,PN BC ⊥,求得30PCD ∠=︒,根据三角函数的定义得到CM PN ==2PM =,由平行线的性质得到EDP DPM ∠=∠,等量代换得到DBE DPM ∠=∠,于是求得tan 2DBE ∠=①正确.【详解】解:①BPC ∆是等边三角形,BP PC BC ∴==,60PBC PCB BPC ∠=∠=∠=︒,在正方形ABCD 中,①AB BC CD ==,A ADC BCD 90∠=∠=∠=︒30ABE DCF ∴∠=∠=︒,75CPD CDP ∴∠=∠=︒,15PDE ∴∠=︒,①604515PBD PBC HBC ∠=∠-∠=︒-=︒︒,EBD EDP ∴∠=∠,①DEP DEB ∠=∠,BDE DPE ∴∆∆;故①正确;①=PC CD ,=30PCD ∠︒=75PDC ∴∠︒15FDP ∴∠=︒①45DBA ∠=︒60PBD BPC ∴∠=∠=︒①DFP BPH ∆∆PF DF DF PH PB CD ∴===①错误; ①30PDH PCD ∠=∠=︒,DPH DPC ∠=∠,①DPHCPD ∆∆, ∴PD PH CD PD=, 2PD PH CD ∴=•,①PB CD =,2PD PH PB =∴⋅,故①正确;如图,过P 作PM CD ⊥,PN BC ⊥,设正方形ABCD 的边长是4,BPC △为正三角形,60PBC PCB ︒∴∠=∠=,4PB PC BC CD ====,30PCD ∴∠=︒sin 604CM PN PB ︒∴==⋅==,sin302PM PC =︒⋅=, ①//DE PM ,EDP DPM ∴∠=∠,DBE DPM ∴∠=∠,tan tan 2DM DBE DPM PM ∴∠=∠===①正确;故选:C.【点睛】本题考查的正方形的性质,相似三角形的判定和性质,平行线的性质,三角函数定义,等积变换,解答此题的关键是作出辅助线,利用锐角三角函数的定义求出PM及PN的长.21.40︒∠的度数,根据对顶角相等可得解.【分析】由余角的定义可得BOD⊥【详解】解:EO AB90∴∠=BOE︒∴∠=∠-∠=-=905040BOD BOE EOD︒︒︒∴∠=∠=AOC BOD︒40故答案为:40︒【点睛】本题考查了对顶角,熟练掌握对顶角的性质是解题的关键.22.120°.【详解】试题分析:①①①1=50°①①=70°+①1=120°.考点: 1.平等线的性质;2.对顶角.23.南偏西68°20'【分析】根据平行线的性质:两条直线平行,内错角相等进行解答.【详解】如图所示:由于是相向开工.故角度相等,方向相反.而①1与①2为内错角,所以对B来说是南偏西68°20′.故答案是:68°20′.【点睛】考查了平行线的性质和方向角,注意此类题的结论:角度不变,方向相反.24.20【分析】直接利用“对顶角相等”即可解答.【详解】解:①①AOC 和①BOD 是对顶角①①BOD=①AOC=20°.故答案为20.【点睛】本题考查了对顶角的定义和性质,正确识别对顶角是解答本题的关键. 25.①.【分析】利用线段的性质进行解答即可.【详解】解:图①利用垂线段最短;图①利用两点之间线段最短;图①利用两点确定一条直线;故答案为:①.【点睛】本题主要考查了线段的性质,熟悉相关性质是解题的关键.26.140【分析】根据角平分线的定义和对顶角的性质解答即可.【详解】解:①100AOD ∠=︒,①18010080AOC ∠=︒-︒=︒,①OE 平分AOC ∠, ①1402COE AOC ∠=∠=︒, ①100BOC AOD ∠=∠=︒,①10040140EOB BOC COE ∠=∠+∠=︒+︒=︒.故答案为:140.【点睛】本题主要考查了角平分线的定义和对顶角的性质,熟练掌握相关的定义和性质是解答本题的关键.27.50°【分析】先根据垂直的定义、角的和差求出BOD ∠的度数,再根据对顶角相等即可得.【详解】OE AB ⊥90BOE1904050BOE BOD ∠∠=∴=∠-︒-︒=︒由对顶角相等得:520BOD ∠=∠=︒故答案为:50︒.【点睛】本题考查了垂直的定义、对顶角相等等知识点,熟记对顶角的性质是解题关键. 28.40°【分析】根据等腰三角形性质,得到20C E ∠=∠=︒,再根据三角形外交定理求得40DFE C E ∠=∠+∠=︒,最后根据平行线的性质求出①A 的度数.【详解】:CF EF =,20E ∠=︒,20C E ∴∠=∠=︒,40DFE C E ∴∠=∠+∠=︒.//AB CD ,40A DFE ∴∠=∠=︒.故答案为40°.【点睛】本题主要考查了平行线的性质、等腰三角形和三角形外角等有关知识,属于常考基础题型.29.20【分析】因为两直线平行,所以①2与①1的补角互为内错角,通过两直线平行内错角相等,建立一个关于x 的方程,解方程即可.【详解】①直线a①直线①21801∠=︒-∠即210180(370)x x +=-+解得20x故答案为20【点睛】本题主要考查平行线的性质,掌握平行线的性质并利用方程的思想列出方程是解题的关键.30.60°【分析】首先根据多边形内角和180°•(n -2)可以计算出①F AB =120°,再过A 作l ①l 1,进而得到l ①l 2,再根据平行线的性质可得①4=①2,①1+①3=180°,进而可以得出结果.【详解】解:如图,过A 作l ①l 1,则①4=①2,①六边形ABCDEF是正六边形,①①F AB=120°,即①4+①3=120°,①①2+①3=120°,即①3=120°﹣①2,①l1①l2,①l①l2,①①1+①3=180°,①①1+120°﹣①2=180°,①①1﹣①2=180°﹣120°=60°,故答案为60°.【点睛】此题主要考查了正多边形和平行线的性质,关键是掌握两直线平行、内错角相等,同旁内角互补.31.27【分析】如图,①3=①1,由①3=①2+①A计算求解即可.【详解】解:如图①a①b,①1=56°①①3=①1=56°①①3=①2+①A,①2=29°①①A=①3﹣①2=56°﹣29°=27°故答案为:27.【点睛】本题考查了平行线性质中的同位角,三角形的外角等知识.解题的关键在于正确的表示角的数量关系.32.1:2【分析】先根据∥DC BA 得到BN DM =,根据=2ABD BCD S S 得到1=2DO BO ,再根据12DOC S DO CH =,12BOC S BO CH =可得到1==2DOCBOC S DO BO S . 【详解】解:过点D 作DM AB ⊥,垂足为M ,过点B 作BN DC ⊥,交DC 的延长线于点N ,过点C 作CH DB ⊥与点H ,①∥DC BA ,①BN DM =,①=2ABD BCD SS , ①11=222AC DM DC BN ⨯⨯⨯, ①2AB DC =,①∥DC BA ,①==CDO OBA DCO OAB ∠∠∠∠,, ①DCO AOB ∽,①1==2DC DO AB BO , ①12DOC SDO CH =,12BOC S BO CH =, ①1==2DOCBOC SDO BO S , 故答案为:1:2.【点睛】本题考查了平行线间的距离,相似三角形的判定与性质,梯形,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.33.365【分析】作点P 关于BC 的对称点F ,过F 作FE①AB 于E 交BC 于D ,则此时,PD+DE 的值最小,且PD+DE 的最小值=EF ,求得AF =9,根据勾股定理得到AB =10,根据相似三角形的性质得到EF =365,于是得到结论. 【详解】解:作点P 关于BC 的对称点F ,过F作FE①AB 于E 交BC 于D ,则此时,PD+DE 的值最小,且PD+DE 的最小值=EF ,①CF =CP ,①点P 是AC 边的中点,①AP =PC =3,①AF =9,①在Rt △ABC 中,AC =6,BC =8,①AB =10,①①AEF =①ACB =90°,①①A+①B =①A+①F ,①①B =①F ,①①ABC①①AFE , ①AF AB =EF BC , ①910=8EF , ①EF =365, ①PD+DE 的最小值为365, 答案为:365.【点睛】本题考查了轴对称-最短路线问题,勾股定理,相似三角形的判定和性质,正确的作出图形是解题的关键.34. 125B ∠ 【分析】根据等面积法求得线段CD 的长度,即可求得点C 到AB 的距离,再根据三角形内角和定理即可求得与ACD ∠相等的角.【详解】解:①90CDA ∠=︒,①CD AB ⊥.点C 到AB 的距离为线段CD 的长度. 由题意可得:1122ABC SAC BC AB CD =⨯=⨯ ①125AC BC CD AB ⨯==, ①AC BC ⊥,①90ACB ∠=︒,①90180DCB B CDB DCB B ∠+∠+∠=∠+∠+︒=︒,①90ACD DCB DCB B ∠+∠=︒=∠+∠,①ACD B ∠=∠. 故答案为:125,B ∠. 【点睛】此题考查了点到直线的距离,三角形内角和的性质,以及等面积法求三角形的高,解题的关键是掌握相关基础知识.35.6;12;6;6【详解】每两条直线的交点处有两对对顶角,共有对顶角有6对.①两条直线被第三条直线所截,可得到4对同位角,2对内错角,2对同旁内角, ①三条直线两两相交于三点,可分解成三个“三线八角”的基本图形,则同位角共有12对,内错角有6对,同旁内角有6对.36.125︒【分析】根据矩形的性质可得AD ①BC ,再利用平行线的性质可得①BFC ′=70°,从而利用平角定义求出①CFC ′=110°,然后根据折叠的性质可求出①CFE 的度数,最后利用平行线的性质,即可解答.【详解】解:①由题意可知:AD ①BC ,①①1=①BFC ′=70°,①①CFC ′=180°-①BFC ′=110°,由折叠得:①CFE =①C ′FE =12①CFC ′=55°,①AD ①BC ,①①2=180°-①CFE =125°,故答案为:125°【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.37.70°【分析】首先根据折叠可得①1=①EF B'=55°,再求出①B'FC的度数,然后根据平行线的性质可得①2=①B'FC=70°.【详解】解:根据折叠可得①1=①EF B',①①1=55°,①①EF B'=55°,①①B'FC=180°-55°-55°=70°,①AD//BC,①①2=①B'FC=70°,故答案为:70°.【点睛】本题主要考查了平行线的性质以及折叠的性质,关键是掌握两直线平行,同位角相等.38.10【分析】过点D作DG①BC于G,DH①AC于H,根据等腰三角形的性质得到①EBD=①EDB,根据角平分线的定义得到①EBD=①DBC,进而得到①DBC=①EDB,证明EF BC,求出DF=FC,根据角平分线的性质求出DH,根据三角形的面积公式计算,即可求出结果.【详解】解:如图,过点D作DG①BC于G,DH①AC于H,①BE=DE,①①EBD=①EDB,①BD平分①ABC,①①EBD=①DBC,①①DBC=①EDB,①EF BC,①①FDC=①DCB,①CD平分①ACB,①①FCD=①DCB,①①FDC=①FCD,①FC=DF=5,①CD平分①ACB,DG①BC,DH①AC,①DH=DG=4,①①DFC的面积=12FC·DH=12×5×4=10.故答案为:10.【点睛】本题考查的是角平分线的性质、平行线的性质、三角形的面积计算,掌握角的平分线上的点到角的两边的距离相等是解题的关键.39.125【分析】根据邻补角的和是180°,结合已知条件可求①COE的度数.【详解】①①1=55°,①①COE=180°-55°=125°.故答案为125.【点睛】此题考查了垂线以及邻补角定义,关键熟悉邻补角的和是180°这一要点.40【分析】在平行四边形ABCD中,①ABC=105°,①DAC=①ACB=30°,故①BAC=①ACD=45°,OA=OC=2,P点一共有三种情况,①当①OP1C=90°时,①当①OP2C=90°时,①当①P3OC=90°时,根据三角函数的值即可求得CP的长度.【详解】解:如图所示,P点可以有以下三种情况,在平行四边形ABCD中,①ABC=105°,①DAC=①ACB=30°,故①BAC=①ACD=45°,OA=OC=2,①当①OP 1C=90°时,①ACB=30°,OC=2,①1P C=OC cos30=2⋅︒①当①OP 2C=90°时,①ACD=45°,OC=2,①2P C=OC cos45=2⋅︒①当①P 3OC=90°时,①ACB=30°,OC=2,①3OC P C==2cos30︒【点睛】本题主要考查了平行四边形的动点问题、平行线的性质、三角形内角和为180°、三角函数,解题的关键在于进行分类讨论,并用三角函数求出最后的答案.41.见解析【分析】先根据平行线的性质证得E B ∠=∠,再根据线段和求得EF BC =,然后SAS 证明EDF BAC △△≌,即可由全等三角形的性质得出结论.【详解】证明:①DE AB ∥,①E B ∠=∠①BF EC =,①BF CF EC CF +=+①EF BC =在EDF 与BAC 中,ED BA E B EF BC =⎧⎪∠=∠⎨⎪=⎩①()SAS EDF BAC ≌①A D ∠=∠【点睛】本题考查三角形全等的判定和性质,平行线的性质,熟练掌握全等三角形的判定和性质是解题的关键.42.两直线平行,同位角相等;已知;等式性质;BAE ;DCE ;AB ①CD .【分析】利用两直线平行,同位角相等即可得到一对同位角相等,利用等式的性质得到另一对同位角相等,最后利用同位角相等,两直线平行即可得证.【详解】解:因为AM //CN (已知),所以①EAM =①ECN (两直线平行,同位角相等),又因为①1=①2(已知),所以①EAM +①1=①ECN +①2(等式性质),即①BAE =①DCE ,所以AB //CD .故答案为:两直线平行,同位角相等;已知;等式性质;BAE ;DCE ;AB //CD .【点睛】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.43.30°##30度【分析】由三角形内角和可得60ABC ∠=︒,然后根据角平分线的定义可得1302ABD CBD ABC ∠=∠=∠=︒,进而根据平行线的性质可求解. 【详解】解:①80A ∠=︒,40C ∠=︒,①60ABC ∠=︒,①ABC ∠的角平分线交AC 于点D , ①1302ABD CBD ABC ∠=∠=∠=︒, ①DE BC ∥,①30EDB CBD ∠=∠=︒,故BDE ∠的度数为30°. 【点睛】本题主要考查角平分线的定义、三角形内角和及平行线的性质,熟练掌握三角形内角和是解题的关键.44.(1)①见解析;①见解析;①见解析(2)50°【分析】(1)①连接PQ即可;①利用直角三角板画垂线即可;①利用直尺和直角三角板画OA的平行线MN即可;∥,根据平行线的性质求出①APF=①AOE=①MQB=40°,(2)过点P作PF OB①FPE=①PEO=90°,然后根据平角定义即可求解.(1)解:①连接PQ,如图,线段PQ即为所求.①如图,直线段PE即为所求.①如图,直线MN即为所求.(2)∥解:①MN OA①①AOE=①MQB,又①MQB=40°,①①AOE=40°,∥,如图,过点P作PF OB①①APF=①AOE=40°,①FPE=①PEO,又PE①OB,①①PEO=①FPE=90°,①①OPE=180°-①APF-①FPE=180°-40°-90°=50°.【点睛】本题考查了基本作图,平行线的性质等,添加辅助线PF是解第2问的关键.45.见解析【分析】由DG①BC,根据“两直线平行,内错角相等”得到①1=①DCE,由CD是高,EF①AB,得到①CDB=①EFB=90°,根据平行线的判定得到CD①EF,由平行线的性质:两直线平行,同位角相等,得到①DCE=①2,即可得到①1=①2.【详解】解:相等,理由如下:①CD 是高,①CD ①AB ,①①CDB=90°① EF①AB, ①①EFB=90°①①CDB=①EFB ,①EF①CD①①2= ①DCB① DG①BC ①①1= ①DCB①①1=①2【点睛】本题考查了平行线的判定与性质以及垂直的定义,熟练掌握相关的定理和定义是解题的关键.46.(1)①ABD =20︒,BDE ∠=20º,BED ∠=140º;(2)垂直的定义;两直线平行,同位角相等;BAD ∠,2∠【分析】(1)由①BDC-①A 求出①ABD 的度数,由BD 为角平分线得到①DBC 的度数,再由DE 与BC 平行,利用两直线平行内错角相等求出①BDE 的度数,利用三角形的内角和定理即可求出①BED 的度数;(2)由AD 垂直于BC ,EF 垂直于BC ,利用垂直的定义得到一对直角相等,利用同位角相等两直线平行得到EF 与AD 平行,利用两直线平行同位角相等得到一对角相等,再由已知一对角相等,利用等量代换得到一对内错角相等,利用内错角相等两直线平行即可得证.【详解】(1)因为50A ∠=︒,70BDC ∠=︒,所以20ABD BDC A ∠=∠-∠=︒,因为BD 是ABC ∆的角平分线,所以20DBC ABD ∠=∠=︒.因为//DE BC ,所以20BDE DBC ∠=∠=︒(两直线平行,内错角相等),所以180140BED EBD EDB ∠=︒-∠-∠=︒(三角形内角和定理);(2)因为AD ①BC ,EF ①BC (已知),所以①EFB =①ADB =90°(垂直的定义).所以EF①AD (同位角相等,两直线平行).所以①1=①BAD (两直线平行,同位角相等).因为①1=①2(已知),所以BAD ∠=2∠(等量代换).。
2024-2025学年人教版数学七年级下学期《第5章相交线与平行线》测试卷及答案解析
A.3.5
B.4
10.如图,下列说法错误的是( )
C.5.5
第 2 页 共 38 页
D.6.5
A.∠A 与∠B 是同旁内角
B.∠1 与∠3 是同位角
C.∠2 与∠A 是同位角
D.∠2 与∠3 是内错角
11.下列所示的四个图形中,∠1 和∠2 是同位角的是( )
A.①②
B.②③
12.如图,∠BAC 和∠BCA 是( )
A.A 点
B.B 点
C.C 点
8.下列图形中,线段 MN 的长度表示点 M 到直线 l 的距离的是(
D.D 点 )
A.
B.
C.
D.
9.如图,A 是直线 l 外一点,过点 A 作 AB⊥l 于点 B,在直线 l 上取一点 C,连结 AC,使
AC=2ABLeabharlann P 在线段 BC 上连结 AP.若 AB=3,则线段 AP 的长不可能是( )
循反射定律发生反射,当光线 PQ 经过 n 次反射后与边 OA 或 OB 平行时,称角为定角α
的 n 阶平行逃逸角,特别地,当光线 PQ 直接与 OA 平行时,称角β为定角α的零阶平行
逃逸角.
(1)已知∠AOB=α=20°,
①如图 1,若 PQ∥OA,则∠BPQ=
°,即该角为α的零阶平行逃逸角;
第 5 页 共 38 页
25.已知,如图,∠1=∠ABC=∠ADC,∠3=∠5,∠2=∠4,∠ABC+∠BCD=180°,
C.110°
D.100°
3.如图,若 AB,CD 相交于点 O,∠AOE=90°,则下列结论不正确的是( )
A.∠EOC 与∠BOC 互为余角
B.∠EOC 与∠AOD 互为余角
七年级数学(下)《相交线与平行线》复习测试题 含答案
七年级数学(下)《相交线与平行线》复习测试题一、选择题(每小题3分,共30分)1.如图,直线AB、CD相交于点O,所形成的∠1,∠2,∠3,∠4中,属于对顶角的是( )A.∠1和∠2B.∠2和∠3C.∠3和∠4D.∠2和∠42.如图,直线AB、CD被直线EF所截,则∠3的同旁内角是( )A.∠1B.∠2C.∠4D.∠53.如图,已知AB⊥CD,垂足为点O,图中∠1与∠2的关系是( )A.∠1+∠2=180°B.∠1+∠2=90°C.∠1=∠2D.无法确定4.如图,梯子的各条横档互相平行,若∠1=80°,则∠2的度数是( )A.80°B.100°C.110°D.120°5.在下列图形中,哪组图形中的右图是由左图平移得到的?( )6.命题:①对顶角相等;②过一点有且只有一条直线与已知直线平行;③相等的角是对顶角;④同位角相等.其中假命题有( )A.1个B.2个C.3个D.4个7.平面内三条直线的交点个数可能有( )A.1个或3个B.2个或3个C.1个或2个或3个D.0个或1个或2个或3个8.下列图形中,由AB∥CD,能得到∠1=∠2的是( )9.如图,直线a∥b,直线c分别与a、b相交于点A、B.已知∠1=35°,则∠2的度数为( )A.165°B.155°C.145°D.135°10.如图,点E在CD的延长线上,下列条件中不能判定AB∥CD的是( )A.∠1=∠2B.∠3=∠4C.∠5=∠BD.∠B+∠BDC=180°二、填空题(每小题4分,共20分)11.将命题“两直线平行,同位角相等”写成“如果……那么……”的形式是____________________.12.两条平行线被第三条直线所截,同旁内角的度数之比是2∶7,那么这两个角的度数分别是__________.13.如图,AB,CD相交于点O,AC⊥CD于点C,若∠BOD=38°,则∠A等于__________.14.如图,BC⊥AE,垂足为点C,过C作CD∥AB.若∠ECD=48°,则∠B=__________.15.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=__________度.三、解答题(共50分)16.(7分)如图,已知AB⊥BC,BC⊥CD,∠1=∠2.试判断BE与CF的位置关系,并说明你的理由.解:BE∥CF.理由:∵AB⊥BC,BC⊥CD(已知),∴∠__________=∠__________=90°(垂直的定义).∵∠1=∠2(已知),∴∠ABC-∠1=∠BCD-∠2,即∠EBC=∠BCF.∴BE∥CF(____________________).17.(9分)如图,直线AB、CD相交于点O,P是CD上一点.(1)过点P画AB的垂线段PE;(2)过点P画CD的垂线,与AB相交于F点;(3)说明线段PE、PO、FO三者的大小关系,其依据是什么?18.(10分)如图,O是直线AB上一点,OD平分∠AOC.(1)若∠AOC=60°,请求出∠AOD和∠BOC的度数;(2)若∠AOD和∠DOE互余,且∠AOD=13∠AOE,请求出∠AOD和∠COE的度数.19.(12分)如图,∠1+∠2=180°,∠A=∠C,DA平分∠BDF.(1)AE与FC平行吗?说明理由;(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么?20.(12分)如图,已知AB∥CD,分别探究下面四个图形中∠APC和∠PAB、∠PCD的关系,请从你所得四个关系中选出任意一个,说明你探究的结论的正确性.结论:(1)____________________;(2)____________________;(3)____________________;(4)____________________.选择结论:____________________,说明理由.参考答案变式练习1.C2.∵∠AOC=70°,∴∠BOD=∠AOC=70°.∵∠BOE∶∠EOD=2∶3,∴∠BOE=223×70°=28°.∴∠AOE=180°-28°=152°.3.C4.121°5.C6.8 复习测试1.D2.B3.B4.B5.C6.C7.D8.B9.C 10.A11.如果两直线平行,那么同位角相等12.40°,140°13.52°14.42°15.8016.ABC BCD 内错角相等,两直线平行17.(1)(2)图略;(3)PE<PO<FO,依据是垂线段最短.18.(1)∵OD平分∠AOC,∠AOC=60°,∴∠AOD=12×∠AOC=30°,∠BOC=180°-∠AOC=120°.(2)∵∠AOD和∠DOE互余,∴∠AOE=∠AOD+∠DOE=90°.∵∠AOD=13∠AOE,∴∠AOD=13×90°=30°.∴∠AOC=2∠AOD=60°.∴∠COE=90°-∠AOC=30°.19.(1)AE∥FC.理由:∵∠1+∠2=180°,∠2+∠CDB=180°, ∴∠1=∠CDB.∴AE∥FC.(2)AD∥BC.理由:∵AE∥CF,∴∠C=∠CBE.又∠A=∠C,∴∠A=∠CBE.∴AD∥BC.(3)BC平分∠DBE.理由:∵DA平分∠BDF,∴∠FDA=∠ADB.∵AE∥CF,AD∥BC,∴∠FDA=∠A=∠CBE,∠ADB=∠CBD.∴∠CBE=∠CBD.∴BC平分∠DBE.20.(1)∠PAB+∠APC+∠PCD=360°(2)∠APC=∠PAB+∠PCD(3)∠APC=∠PCD-∠PAB(4)∠APC=∠PAB-∠PCD(1)过P点作EF∥AB,∴EF∥CD,∠PAB+∠APF=180°.∴∠PCD+∠CPF=180°.∴∠PAB+∠APC+∠PCD=360°.。
中考数学相交线与平行线专题训练50题含参考答案
中考数学相交线与平行线专题训练50题含答案(单选、填空、解答题)一、单选题1.如图,与1∠是同位角的是( )A .2∠B .3∠C .4∠D .5∠2.如图,结合图形作出了如下判断或推理:①如图甲,如果CD AB ⊥,D 为垂足,那么点C 到AB 的距离等于C ,D 两点间的距离;①如图乙,如果AB CD ∥,那么B D ∠=∠;①如图丙,如果ACD CAB ∠=∠,AD BC =,那么B D ∠=∠; ①如图丁,如果12∠=∠,120D ∠=︒,那么60BCD ∠=︒. 其中正确的有( ) A .1个B .2个C .3个D .4个3.如图,在ABC 中,8AB =,点M 是BC 的中点,AD 是BAC ∠的平分线,作MF AD ∥交AC 于F ,已知CF 10=,则AC 的长为( )A .12B .11C .10D .94.如图,下列判断中正确的是( )A .如果① 1+① 5=180°,那么AB∥CDB .如果① 1=① 5,那么AB∥CDC .如果① 3+① 4=180°,那么AB∥CDD .如果① 2=① 4,那么AB∥CD5.如图,12356∠=∠=∠=︒,则4∠的度数是( )A .56°B .114°C .124°D .146°6.如图:P 为直线l 外一点,点A ,B ,C 在直线l 上,且PB ①l ,垂足为B ,①APC =90°,则下列语句错误( )A .线段PB 的长叫做点P 到直线l 的距离 B .线段AC 的长叫做点C 到直线AP 的距离C .P A 、PB 、PC 三条线段中, PB 是最短的D .线段P A 的长叫做点A 到直线PC 的距离7.将一副三角板按如图放置,则下列结论正确的有( )①如果2∠与E ∠互余,则BC DA ∥; ①180BAE CAD ∠+∠=︒; ①如果BC AD ∥,则有245∠=︒; ①如果150CAD ∠=︒,必有4C ∠=∠.A .①①①B .①①①C .①①①D .①①①①8.如图,直线,AB CD 相交于点,O OE AB ⊥于点,O OF 平分12530'AOE ∠∠=︒,,则下列结论中不正确的是( )A .13∠=∠B .245∠=︒C .AOD ∠与1∠互为补角D .3∠的余角等于6530'︒9.如图,两直线被第三直线所截,下列说法中不正确的是( )A .1∠和2∠是对顶角B .2∠和3∠是内错角C .2∠和4∠是同位角D .1∠和4∠是同旁内角10.如图,AB 是O 的弦,OC AB ⊥,垂足为C ,OD AB ∥,12OC OD =,则ODB∠的度数为( )A .65︒B .70︒C .75︒D .80︒11.如图,AB ①CD ,点E 在线段BC 上,CD =CE ,若①ABC =30°,则①D 的度数为( )A .85°B .75°C .65°D .30°12.如图,三角板的直角顶点放在直线b 上,已知a b ,128∠=︒,则2∠的度数为( )A .28︒B .56︒C .62︒D .152︒13.如图,ACE ∠是ABC ∆的外角,ACD A ∠=∠,50B ∠=︒,则BCD ∠的度数为( )A .130︒B .120︒C .110︒D .100︒14.如图所示,直线l 1∥l 2,①1=120°,则①2的度数为( )A .60°B .80°C .100°D .120°15.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,……,那么7条直线最多有: A .28个交点B .24个交点C .21个交点D .15个交点16.如图,图中的同位角的对数是( )A .4B .6C .8D .1217.如图,平行线m ,n 间的距离为5,直线l 与m ,n 分别交于点A ,B ,45α=︒,在m 上取点P (不与点A 重合),作点P 关于l 的对称点Q .若3PA =,则点Q 到n 的距离为( )A .2B .3C .2或8D .3或818.已知1∠与2∠互为对顶角,2∠与3∠互余,若345∠=︒,则1∠的度数是( ) A .45B .90C .80D .7019.如图,一公路修到汤逊湖边时,需拐弯绕过湖通过,如果第一次拐的角①A 是110°,第二次拐的角①B 是160°,第三次拐的角是①C ,这时的道路与第一条路平行,则①C 的度数( )A .120°B .130°C .140°D .150°20.如图,从①12∠=∠,①C D ∠=∠,①DF AC ∥三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为( )A .0B .1C .2D .3二、填空题21.如图,在四边形ABCD 中,AD ①BC ,AB 与CD 不平行,AC 、BD 相交于点O ,写出图中一对面积相等的三角形,它们可以是__________________________(只需写出一对).22.如图,Rt ABC △中,90C ∠=︒,13AB =,5BC =,利用尺规在AC ,AB 上分别截取AD ,AE ,使AD AE =,分别以D ,E 为圆心,以大于12DE 为长的半径作弧,两弧在BAC ∠内交于点F ,作射线AF 交边BC 于点G ,点P 为边AB 上的一动点,则GP 的最小值为______.23.如图,按角的位置关系填空:①A 与①2是_____.24.如图,AB ①CD ,①PCD =75°,①P =30°,则①BAP =___.25.如图,已知点A 在反比例函数4(0)y x x=>的图象上,过点A 作x 轴的平行线交反比例函数10(0)y x x=>的图象于点B ,连结OA ,过点B 作//BC OA 交y 轴于点C ,连结AC ,则AOC 的面积为________.26.如图是一把剪刀的示意图,我们可想象成一个相交线模型,若①AOB +①COD =72°,则①AOB =_______.27.平面内有八条直线,两两相交最多有m 个交点,最少有n 个交点,则m n +=______.28.如图,在平行四边形ABCD 中,AE ①CD ,若∥B =60°,则∥DAE 的度数是______度.29.如图,已知AB //CD ,AF 交CD 于点E ,且BE ①AF ,①BED =40°,则①A 的度数是_____.30.如图,AC //BD ,EP 、FP 分别平分AEF ∠、EFB ∠,若,A m B n ∠=︒∠=︒,则P ∠=________°.(用含m ,n 的代数式表示)31.如图,①ABC 中,AB AC =,AD 为BC 上的高线,E 为AB 边上一点,EF BC ⊥于点F ,交CA 的延长线于点G ,已知23EF EG ==,,则AD 的长为_______.32.如图,直线//a b ,一块含60°角()60B ∠=︒的直角三角板如图放置,若113∠=︒,则2∠=______33.如图,已知m n ∕∕,1105∠=︒,2140∠=︒则a ∠=________.34.如图,已知//DE FG ,则12A ∠+∠-∠=________________35.如图,Rt ABC 中,①ACB =90°,AB =10,BC =6,点D 是斜边上任意一点,将点D 绕点C 逆时针旋转60°得到点E ,则线段DE 长度的最小值是_____.36.如图,当风车的一片叶子AB 所在的直线旋转到与地面MN 平行时,叶子CD 所在的直线与地面MN________,理由是________________________________.37.如图,AB ①CD ,EG 平分AEN ∠,若EFD ∠=108°,则GEN ∠的度数为_________________.38.如图,在ABC 中,90BAC ∠=︒,AB AC =,过点C 作CD BC ⊥,连接,DA DB ,过点A 作AE BD ⊥于点E ,若2EAD ADC ∠=∠,ADC △的面积为6,则BC 的长为____________.39.将一张长方形纸片折叠成如图所示的图形.若29ABC ∠=︒,则ACD ∠=______.40.如图1所示为一条足够长的长方形纸带,其中PN ①QM ,点A 、B 分别在PN 、QM 上,记①ABM =α(0<α<90°);如图2,将纸带第一次沿BR 1折叠成图2,使BM 与BA 重合;如图3,将纸条展开后第二次再折叠,使BM 与BR 1重合,第三次沿AR 2折叠成图4,第四次沿BR 2折叠成图5,按此操作,最后一次折叠后恰好完全盖住①AR 2B ,整个过程共折叠了9次,则α=_______°.三、解答题41.如图,在四边形ABCD 中,//AB CD E ,是边CD 上的一点,连接AE AC BE AC 、、,与BE 相交于点O ,且OA OC =.求证:AE BC =.42.如图,l 1①l 2,①α是①β的2倍,求①α的度数.43.完成下面的证明:如图:已知AD BC ⊥于点D ,DE AB ∥,13∠=∠,求证:FG BC ⊥.证明:①DE AB ∥(已知), ①12∠=∠(______), 又①13∠=∠(已知), ①23∠∠=(等量代换), ①______(______), ①BGF ∠=______(______), ①AD BC ⊥(已知),①90∠=︒(______),BDA①______(等量代换),⊥(垂直定义).①FG BC44.如图,①CME+①ABF=180°,MA平分①CMN.若①MNA=62°,求①A的度数.根据提示将解题过程补充完整.解:因为①ABM+①ABF=180°,又因为①CME+①ABF=180°(已知),所以①ABM=①CME所以AB①CD,理由:()所以①CMN+()=180°,理由:(__________________________)因为①MNA=62°,所以①CMN=()因为MA平分①CMN,①CMN=().(角平分线的定义)所以①AMC=12因为AB①CD,所以①A=①AMC=()理由:(__________________________________)45.已知,①ABC、①DCE均为等边三角形,且B、C、E三点在一条直线上,BD与AE相交于O点.(1)求证:①BCD①①ACE;(2)求①DOE的度数;(3)连接MN,求证:MN①BE;46.观察下列图形,并阅读相关文字.2条直线相交,3条直线相交,4条直线相交,5条直线相交;有2对对顶角,有6对对顶角,有12对对顶角,有20对对顶角;通过阅读分析上面的材料,计算后得出规律,当n条直线相交于一点时,有多少对对顶角出现(n为大于2的整数).47.如图,六边形ABCDEF的内角都相等,①1=①2=60°,AB与DE有怎样的位置关系?AD与BC有怎样的位置关系?为什么?48.如图,直线AB与CD相较于点O,OE①AB与点O,OB平分①DOF,①DOE=62°.求①AOC、①EOF、①COF的度数.49.如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.试说明:(1)ABC DEF△△;≅∠=∠.(2)A EGC50.在ABC中,ACB ABC∠>∠,点D和点E分别是边BC和BC延长线上的点,连接AD、AE,CAE B∠=∠.(1)如图1,若60ADE ∠=︒,40CAE ∠=︒,求BAD ∠的大小;(2)如图2,若DAE ADE ∠=∠.①试证明:AD 平分BAC ∠;①若点F 为射线AD 上一点(不与点D 重合),过点F 作FG BC ⊥,垂足为点G .若B α∠=,ACB β∠=,求AFG ∠的大小(用含α、β的代数式表示).参考答案:1.A【分析】根据同位角的定义进行求解即可:两条直线被第三条直线所截,在截线的同旁,被截两条直线的同一侧的两个角在同位角.【详解】解:由图可知,①1的同位角是①2,故选A.【点睛】本题主要考查了同位角的定义,熟知同位角的定义是解题的关键.2.B【分析】根据点到直线的距离及两点间的距离的定义可判断①;根据平行线的性质及三角形的外角的性质可判断①;根据平行线的判定可判断①;根据平行线的判定与性质可判断①.【详解】解:①由于直线外一点到直线的垂线段的长度,叫做这点到这条直线的距离,故正确;①设AB与DE相交于点O.①AB①CD,①①AOE=①D.又①①AOE>①B,①①D>①B,故错误;①①①ACD=①CAB,①AB①CD,∴∠=∠,故错误;BAC ACD①①①1=①2,①AD①BC,①①D+①BCD=180°,又①①D=120°,①①BCD=60°,故正确.故选:B.【点睛】本题主要考查了点到直线的距离的定义,平行线的判定与性质,三角形的外角的性质,正确理解相关概念和性质是解本题的关键.3.A【分析】可通过作辅助线,即延长FM 到N ,使MN MF =,连接BN ,延长MF 交BA 延长线于E ,从而利用角之间的关系转化为线段之间的关系,进而最终可得出结论.【详解】解:如图,延长FM 到N ,使MN MF =,连接BN ,延长MF 交BA 延长线于E ,M 是BC 中点,BM CM ∴=,在BMN 和CMF 中,BM CM BMN CMF MN MF =⎧⎪∠=∠⎨⎪=⎩,(SAS)BMN CMF ∴△≌△,BN CF ∴=,N MFC ∠=∠,又BAD CAD ∠=∠,MF AD ∥,E BAD CAD CFM AFE N ∴∠=∠=∠=∠=∠=∠,AE AF ∴=,BN BE =,2AB AC AB AF FC AB AE FC BE FC BN FC FC ∴+=++=++=+=+=,8AB =,CF 10=,220812AC FC AB ∴=-=-=.故选:A .【点睛】本题主要考查了全等三角形的判定及性质以及角、线段之间的转化问题,解决本题的关键是熟练掌握全等三角形的判定.4.B【分析】根据两直线平行的条件:同旁内角互补、同位角相等、内错角相等,即可判断.【详解】解:A:如果① 1+① 5=180°,不能判定AB∥CD,故错误,不符合题意;B:如果① 1=① 5,那么AB∥CD,故正确,符合题意;C:如果① 3+① 4=180°,不能判定AB∥CD,故错误,不符合题意;D:如果① 2=① 4,不能判定AB∥CD,故错误,不符合题意;故选:B.【点睛】本题考查根据两直线平行的条件:同旁内角互补、同位角相等、内错角相等,熟记两直线平行的条件是解题关键.5.C【分析】根据平行线的判定得出l1//l2,根据平行线的性质解答即可.【详解】解:①①1=①2=①3=56°,①①1=①5,①①5=①2,①l1//l2,①①6=①3,①①4=180°-①6=180°-56°=124°,故选C.【点睛】此题考查平行线的判定和性质,关键是根据平行线的判定得出l1//l2解答.6.B【分析】根据点到直线的距离的定义以及垂线段最短,可得答案.【详解】解:A、线段PB的长度叫做点P到直线l的距离,故A选项正确;B、线段PC的长度叫做点C到直线AP的距离,故B选项错误;C、P A、PB、PC三条线段中,PB最短,故C选项正确;D、线段P A的长叫做点A到直线PC的距离,故D选项正确;故选:B.【点睛】本题考查了点到直线的距离以及垂线段最短,利用点到直线的距离是解题关键.7.C【分析】根据平行线的性质与判定,余角的性质,等逐项分析并选择正确的选项即可.【详解】解:如图将ED 与AB 的交点即为F ,①2∠与E ∠互余,①90AFE ∠=︒,①445∠=︒,且30D ∠=︒,①4D ∠∠≠,从而BC 与DA 不平行,故①错误;①1290∠∠+=︒,2390∠∠+=︒,12229090180BAE CAD ∠∠∠∠∠∠+=+++=︒+︒=︒,故①正确;①①BC AD ,①123180C ∠∠∠∠+++=︒,又①45C ∠=︒,1290∠∠+=︒,①345∠=︒,①2904545∠=︒-︒=︒,故①正确;①160∠=︒,①60E ∠=︒,①1E ∠∠=,①AC DE ,①4C ∠∠=,故①正确;故选:C .【点睛】本题考查三角板中的角度计算,平行线的性质与判定,能够掌握数形结合思想是解决本题的关键.8.D【分析】根据垂线的性质,角平分线的定义及对顶角、邻补角的性质,逐一判断.【详解】A 、①AB 、CD 相交于O 点,①13∠=∠正确,符合题意;B 、①OE ①AB 于点O ,OF 平分①AOE ,①245∠=︒正确,符合题意;C 、①OD 过直线AB 上一点O ,①AOD ∠与1∠互为补角,正确,符合题意;D 、3∠的余角等于9025306430''︒-︒=︒,原说法错误,不合题意,故选:D .【点睛】本题考查对顶角的性质以及邻补角的定义,角平分线的定义,垂线的性质.是需要熟记的内容.9.D【分析】同位角:两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.内错角:两个角分别在截线的两侧,且在两条被截直线之间,具有这样位置关系的一对角叫做内错角.同旁内角:两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角.【详解】A.1∠和2∠是对顶角,正确;B.2∠和3∠是内错角,正确;C.2∠和4∠是同位角,正确;D.1∠和4∠不是同旁内角,本选项错误.【点睛】理解同位角,内错角和同旁内角的定义是关键.10.C【分析】如图所示(见详解),连接OB ,得Rt OBC △,且OB OD r ==,12OC OD =,OD AB ∥,由此即可求出30OBC BOD ∠=∠=︒,再根据等腰三角形的性质即可求解.【详解】解:如图所示,连接OB ,①OB OD r ==,①OC AB ⊥,垂足为C ,OD AB ∥,12OC OD =, ①在Rt OBC △中,12OC OB =, ①30OBC BOD ∠=∠=︒,①OB OD r ==,①BOD 是等腰三角形, ①1(18030)752OBD ODB ∠=∠=⨯︒-︒=︒, 故选:C .【点睛】本题主要考查圆与含30︒角的直角三角形,等腰三角形性质的综合运用,掌握圆的知识,含30︒角的直角三角形的性质,等腰三角形性质是解题的关键.11.B【分析】根据AB ①CD ,可得①C =①ABC =30°,再由等腰三角形的性质,即可求解.【详解】解:①AB ①CD ,①①C =①ABC =30°,又①CD =CE ,①①D =①CED ,①①C +①D +①CED =180°,即30°+2①D =180°,①①D =75°.故选:B【点睛】本题主要考查了平行线的性质,等腰三角形的性质,熟练掌握等腰三角形中,等边对等角是解题的关键.12.C【分析】根据平行线的性质,可得:①3=①1=28°,结合①4=90°,即可求解.【详解】①三角板的直角顶点放在直线b 上,a b ,①①3=①1=28°,①①4=90°,①①5=180°-90°-28°=62°,①①2=①5=62°.故选C .【点睛】本题主要考查平行线的性质定理,掌握两直线平行,同位角相等,是解题的关键.13.A【分析】根据①ACD=①A,得出AB与CD平行,进而利用平行线的性质解答即可.【详解】解:①①ACD=①A,①AB①CD,①①B+①BCD=180°,①①BCD=180°-50°=130°,故选:A.【点睛】本题考查了平行线的判定和性质,关键是根据①ACD=①A,得出AB与CD平行解答.14.D【分析】两直线平行,同位角相等;对顶角相等.此题根据这两条性质即可解答.【详解】①直线l1∥l2,,①1=120°,①①1的同位角是120°,①①2=①1的同位角=120°.故选D.【点睛】本题用到的知识点为:两直线平行,同位角相等;对顶角相等.比较简单.15.C【分析】由已知,在同一平面内,三条直线两两相交,最多有3个交点;4条直线两两相交,最多有6个交点;由此得出:在同一平面内,n条直线两两相交,则有(1)2n n-个交点,代入即可求解.【详解】解:由已知总结出在同一平面内,n条直线两两相交,则有(1)2n n-个交点,所以5条直线两两相交,交点的个数为7(71)2⨯-=21. 故选:C . 【点睛】本题考查的知识点是相交线,关键是此题在相交线的基础上,着重培养学生的观察、实验和猜想、归纳的能力,以及掌握从特殊到一般的思想方法.16.D【详解】试题分析:根据同位角的定义可以得出图中有12对同位角.考点:同位角的定义17.C【分析】根据题意,分两种情况:当点P 在点A 左侧时,当点P 在点A 右侧时.作点P 关于l 的对称点Q ,连接AQ .由轴对称,得3QA PA ==,290PAQ α∠==︒,分别计算即可求得答案.【详解】解:当点P 在点A 左侧时,如图,作点P 关于l 的对称点Q ,连接AQ .由轴对称的性质,得:3QA PA ==,290PAQ α∠==︒,①点Q 到n 的距离为532-=;当点P 在点A 右侧时,如图,作点P 关于l 的对称点Q ,连接AQ .由轴对称的性质,得:3QA PA ==,290PAQ α∠==︒,点Q 到n 的距离为538+=.故选:C . 【点睛】本题主要考查了点到直线的距离、轴对称的性质,解题的关键是利用分类讨论和数形结合思想解题.18.A【分析】根据对顶角的性质以及互余的定义即可求出答案.【详解】由题意可知:①1=①2,①①2+①3=90°,①①2=45°,①①1=45°,故选:A.【点睛】此题考查对顶角与互余,解题的关键是正确理解对顶角的性质以及互余的定义,本题属于基础题型.19.B【分析】首先过点B作BE①AD,由AD①CF,可得BE①AD①CF,然后根据平行线的性质即可求得①C的度数.【详解】解:过点B作BE①AD,①AD①CF,①BE①AD①CF,①①ABE=①A=110°,①EBC+①C=180°,①①ABC=160°,①ABE+①EBC=①ABC,①①EBC=50°,①①C=130°.故选:B.【点睛】本题主要考查了平行线的性质,熟练掌握平行线的性质,正确作出辅助线是解题的关键.20.D【分析】分别任选其中两个条件作为已知,然后结合平行线的判定与性质,证明剩余一个条件是否成立即可.【详解】解:如图所示:(1)当①①1=①2,则①3=①2,故DB∥EC,则①D=①4;当①①C=①D,故①4=①C,则DF∥AC,可得:①A=①F,即①①可证得①;(2)当①①1=①2,则①3=①2,故DB①EC,则①D=①4,当①①A=①F,故DF∥AC,则①4=①C,故可得:①C=①D,即①①可证得①;(3)当①①A=①F,故DF∥AC,则①4=①C,当①①C=①D,则①4=①D,故DB∥EC,则①2=①3,可得:①1=①2,即①①可证得①.故正确的有3个.故选:D.【点睛】本题主要考查了平行线的判定和性质,正确掌握并熟练运用平行线的判定与性质是解题关键.21.△ABC和△DBC(答案不唯一)【分析】利用同底等高的两个三角形面积相等即可求解.【详解】解:①AD①BC,①AD与BC之间的距离相等,①△ABC和△DBC面积相等.故答案为:△ABC和△DBC.(答案不唯一)【点睛】本题考查了三角形的面积,平行线间的距离,掌握平行线之间的距离处处相等是解题的关键.22.12 5【分析】根据勾股定理求得AC的长,设G到AB的距离为h,则GP h,根据题意可知AG 是CAB ∠的角平分线,根据角平分线的性质得出h 即为GP 的最小值,根据等面积法计算即可求解.【详解】解:①Rt ABC △中,90C ∠=︒,13AB =,5BC =,①12AC ==,设G 到AB 的距离为h ,则GP h ≥根据题意可知AG 是CAB ∠的角平分线,①CG h =, ①111222ABC S AC BC CG AC AB h =⨯=⨯+⨯ ()12h AC AB =+ ①51260121213255AC BC h AC AB ⨯⨯====++, ①GP 的最小值为125, 故答案为:125. 【点睛】本题考查了勾股定理,角平分线的性质,作角平分线,垂线段最短,掌握角平分线的性质是解题的关键.23.同旁内角【详解】解:根据图形,①A 与①2是同旁内角.故答案为同旁内角.24.45°【分析】根据平行线的性质得①1=PCD =75°,根据三角形外角的性质得①1=①P +①BAP ,即可得①BAP 的度数.【详解】解:①AB ①CD ,①①1=PCD =75°,①①1=①P +①BAP ,①①BAP =①1-①P =75°-30°=45°.故答案为:45°.【点睛】此题主要考查了平行线的性质的应用,要熟练掌握,解答此题的关键是熟练掌握平行线的性质,利用三角形外角的性质求解.25.3【分析】设A (4m ,m ),B (10m ,m ),则AB =10m −4m =6m ,连接OB ,由平行线间的距离处处相等,得①AOC 的面积和①AOB 的面积相等,再由三角形的面积公式求得①AOB 的面积便可.【详解】解:设A (4m ,m ),B (10m ,m ),则AB =10m −4m =6m , 连接OB ,①BC①OA ,①S △AOC =S △AOB =12AB•m =12×6m•m =3, 故答案为:3.【点睛】本题主要考查了反比例函数的图象和性质,三角形的面积计算,平行线间的距离处处相等,解答本题的关键是正确作辅助线,转化三角形的面积计算.26.36°##36度【分析】根据对顶角相等即可求解.【详解】由题意得,,AOB COD ∠∠为对顶角,,72AOB COD AOB COD ∠=∠∠+∠=︒,36AOB COD ∴∠=∠=︒,故答案为:36︒.【点睛】本题考查了对顶角的定义及性质,即两个角有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角,且对顶角相等,熟练掌握知识点是解题的关键.27.29【分析】由题意可得八条直线相交于一点时交点最少,任意两直线相交都产生一个交点时交点最多,由此可得出m ,n 的值,从而得出答案..【详解】解:根据题意可得:10条直线相交于一点时交点最少,此时交点为1个,即n=1;任意两直线相交都产生一个交点时,交点最多,①此时交点为:8×(8-1)÷2=28,即m=28;则m+n=28+1=29.故答案为29.【点睛】本题考查直线的交点问题,掌握直线相交于一点时交点最少,任意n 条直线两两相交时交点最多为12n (n-1)个是关键. 28.30【分析】利用平行四边形对角相等求出①D =①B =60°,由垂直的定义得到①AED =90°,再利用三角形内角和定理求得①DAE 的度数即可.【详解】解:①四边形ABCD 是平行四边形,①①D =①B =60°,① AE ①CD ,①①AED =90°,①①DAE =180°-①D -①AED =30°.故答案为:30【点睛】此题主要主要考查了平行四边形的性质、三角形内角和定理、垂直的定义等知识,熟练掌握平行四边形的性质是解题的关键.29.50︒##50度【分析】由两直线平行内错角相等解得40B ∠=︒,再根据三角形内角和180°解题.【详解】解:AB //CD ,BED B ∴∠=∠40BED ∠=︒40B ∴∠=︒BE AF ⊥90AEB ∴∠=︒904050A ∴∠=︒-︒=︒故答案为:50︒.【点睛】本题考查平行线的性质、三角形内角和定理等知识,是重要考点,掌握相关知识是解题关键.30.1()902m n +-【分析】分别作EM 、FN 、PQ 平行于AC ,根据两直线平行同旁内角互补和两直线平行内错角相等可得(180)FEP PEM m ∠=∠+︒-︒,(180)EFP PFN n ∠=∠+︒-︒,再根据两直线平行同旁内角互补列等式180MEF NFE ∠+∠=︒,利用PEM PFN QPE QPF P ∠+∠=∠+∠=∠即可求出①P .【详解】分别作EM 、FN 、PQ 平行于AC ,如图,①AC EM PQ ∥∥,A m ∠=︒,①180AEM m ∠=︒-︒,①EP 分别平分AEF ∠,①FEP PEA ∠=∠,①(180)FEP PEM m ∠=∠+︒-︒,同理,①BD FN PQ ∥∥,B n ∠=︒, FP 分别平分EFB ∠,①(180)EFP PFN n ∠=∠+︒-︒,①180MEF NFE ∠+∠=︒,①180FEP PEM EFP PFN ∠+∠+∠+∠=︒,①(180)(180)180PEM m PEM PFN n PFN ∠+︒-︒+∠+∠+︒-︒+∠=︒,即:2()180PEM PFN m n ∠+∠=︒+︒-︒,①QPE PEM ∠=∠,QPF PFN ∠=∠,P QPM QPF ∠=∠+∠,①2180P m n ∠=︒+︒-︒, ①()11(180)()9022P m n m n ∠=+-=+-︒ 故答案为:1()902m n +-.【点睛】本题考查了平行线的性质,熟练运用平行线的性质进行角度的代换是解题的关键.31.3.5【分析】先根据等腰三角形的性质得出BAD CAD ∠=∠,再证明AD EF ,根据平行线的性质得出AEG BAD G CAD ∠=∠∠=∠,,等量代换得出AEG G ∠=∠,那么AG AE =.作AH EG ⊥于H ,根据等腰三角形的性质得出 1322EH HG EG ===, 然后证明四边形ADFH 是矩形,即可求出72AD FH EF EH ==+=. 【详解】解:AB AC =,AD 为BC 边上的高线, BAD CAD ∴∠=∠,AD BC EF BC ⊥⊥,,AD EF ∴∥,AEG BAD G CAD ∴∠=∠∠=∠,,AEG G ∴∠=∠,AG AE ∴=,如图,作AH EG ⊥于H ,则 1 1.52EH HG EG ===,90AHF HFD ADF ∠=∠=∠=︒,①四边形ADFH 是矩形,2 1.5 3.5AD FH EF EH ∴==+=+=.故答案为: 3.5【点睛】此题考查了矩形的判定与性质,熟记矩形的判定与性质是解题的关键. 32.47︒【分析】由平行线的性质,已知113∠=︒求得13ABD ∠=︒,再根据角的和差,平行公理推论,平行线的性质解得2∠度数,进而得出答案.【详解】解:过点B 作//BD a ,如图所示://,////,a b BD a b ∴3ABD ∴∠=∠,又113∠=︒,313ABD ∴∠=∠=︒,ABC ABD DBC ∠=∠+∠,60ABC ∠=︒,601347DBC ∴∠=︒-︒=︒,//BD a ,247DBC ∴∠=∠=︒.故答案为:47︒.【点睛】本题考查了平行线的性质,平行公理的推论,角的和差,对顶角的性质,等量代换等相关知识点,解题的关键是掌握平行线的性质,同时需要作已知直线的平行线. 33.65°【分析】根据两直线平行,同旁内角互补求出①3,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】①m①n,①1=105°,①①3=180°−①1=180°−105°=75°①①α=①2−①3=140°−75°=65°故答案为65°.【点睛】此题考查平行线的性质,解题关键在于利用同旁内角互补求出①3.34.180【分析】根据平行线的性质,得到2AHF ∠=∠,根据平角的性质得到180AHF AHC ∠+∠=︒,1180ACH ∠+∠=︒,然后根据三角形内角和定理即可求解.【详解】①//DE FG①2AHF ∠=∠①180AHF AHC ∠+∠=︒,1180ACH ∠+∠=︒又①180AHC ACH A ∠+∠+∠=︒①180********A ︒-∠+︒-∠+∠=︒①12180A ∠+∠-∠=︒故答案为180.【点睛】本题考查了平行线的性质—两直线平行同位角相等,三角形的内角和,解题过程中注意等量代换是本题的关键.35.245【分析】由旋转的性质可证①CDE 为等边三角形,当DE 最短时CD 最短,即:当CD ①AB 时CD 最短,最后运用直角三角形等面积法求解即可.【详解】解:由旋转的性质得,CD =CE ,①DCE =60°,①①CDE 为等边三角形,①CD =CE =DE ,当DE 最短时CD 最短,即:当CD ①AB 时CD 最短,此时S △ABC =1122AC BC ⋅=AB •CD ,即AC •BC =AB •CD , 在Rt ①ABC 中,①ACB =90°,AB =10,BC =6,由勾股定理得,AC 8,①6×8=10CD ,①CD =245, ①线段DE 长度的最小值是245. 故填245. 【点睛】本题主要考查了旋转的性质、勾股定理、垂线段最短以及等面积法,把求DE 的最小值转化为求CD 的最小值是解答本题的关键.36. 相交 经过直线外一点,有且只有一条直线与这条直线平行【分析】根据AB①MN 来判定CD 与MN 的关系.【详解】叶子CD 所在直线与地面MN 相交.理由如下:AB 与CD 相交于点O ,即AB 经过点O ,CD 也经过点O ,AB 与CD 有夹角,在同一平面内,过直线外一点,有且只有一条直线与已知直线平行,故AB 旋转到与地面MN 平行的位置时,叶子CD 所在直线与地面MN 相交.故答案为:相交;经过直线外一点,有且只有一条直线与这条直线平行【点睛】本题考查了平行与相交线.注意与“在同一平面内,垂直于同一条直线的两条直线互相平行”的区别.37.36°【分析】由平行线的性质,得AEN CFE ∠=∠,再由角平分线的定义,即可求出答案.【详解】解:①EFD ∠=108°,①18010872CFE ∠=︒-︒=︒,①AB ①CD ,①72AEN CFE ∠=∠=︒,①EG 平分AEN ∠, ①172362GEN ∠=⨯︒=︒; 故答案为:36°.【点睛】本题考查了平行线的性质,角平分线的定义,以及邻补角的定义,解题的关键是熟练掌握所学的性质定理进行解题.38.【分析】过点A 作AH①DC 交DC 的延长线于点H ,作AF①BC 于点F ,通过等腰直角三角形的性质和2EAD ADC ∠=∠关系得出ABE BAD ∠=∠,从而有AD BD = ,然后证明四边形AFCH 是正方形,则有12CH AH CF BC ===,进而通过勾股定理得出12CD BC =,然后利用ADC △的面积为6即可求出BC 的长度.【详解】过点A 作AH①DC 交DC 的延长线于点H ,作AF①BC 于点F①90BAC ∠=︒,AB AC =,AF①BC1,452AF CF BC BAF CAF ∴==∠=∠=︒ ①AF①BC ,CD BC ⊥90AFC FCD ∴∠=∠=︒//AF CD ∴FAD ADC ∴∠=∠①2EAD ADC ∠=∠EAF FAD DAC ∴∠=∠=∠BAE CAD ∴∠=∠90,90BAE ABE CAD BAD ∠+∠=︒∠+∠=︒ABE BAD ∴∠=∠AD BD ∴=①AF①BC ,CD BC ⊥,AH①DC ,AF CF =①四边形AFCH 是正方形12CH AH CF BC ∴=== 22222222,,AD HD AH BD BC CD AD BD =+=+=222211()()22CD BC BC CD BC ∴++=+ 12CD BC ∴= 111162222S ADC CD AH BC BC ∴==⨯⨯=BC ∴=故答案为:【点睛】本题主要考查等腰直角三角形的性质,正方形的性质,勾股定理和平行线的性质,掌握等腰直角三角形的性质,正方形的性质,勾股定理和平行线的性质是解题的关键,难点在于如何找到BC 与CD 之间的关系.39.122︒##122度【分析】如图,先根据长方形纸片对边平行,利用平行线的性质求得29MCB ABC ∠=∠=︒,再根据折叠的性质得出29MCB ACB ∠=∠=︒,即可由平角定义求解.【详解】解:如图,点M 在DC 的延长线上,①AB ∥DM ,29ABC ∠=︒,29MCB ABC ∴∠=∠=︒,根据折叠的性质得到,29MCB ACB ∠=∠=︒,180ACD ACB MCB ∠+∠+∠=︒,1802929122ACD ∴∠=︒-︒-︒=︒,故答案为:122︒.【点睛】本题考查平行线的性质,折叠的性质,熟练掌握平行线的性质和折叠的性质是解题的关键.40.80°##80度【分析】根据题意,可知第9次折叠时,2R N 刚好与21R R 重合,根据折叠的性质,则有平角2AR N ∠被平分成了9个角,则220AR B ∠=,再根据折叠的性质,即可求解.【详解】根据题意,可知第9次折叠时,2R N 刚好与21R R 重合,作图如下:根据折叠的性质,则有平角2AR N ∠被平分成了(9-1+1)个角, ①2180209AR B ∠==, ①PN QM ∥,①2220R BM AR B ∠=∠=,①根据折叠的性质有212R BR R BM ∠=∠,11ABR R BM ∠=∠,①21220R BR R BM ∠=∠=,①1121240ABR R BM R BR R BM ∠=∠=∠+∠=,①1180ABM ABR R BM α=∠=∠+∠=,故答案为:80°.【点睛】本题主要考查了折叠的性质,理解最后一次折叠后恰好完全盖住2AR B ∠即是指2R N 刚好与21R R 重合,是解答本题的关键.41.证明见解析【分析】通过证明()≌∆∆OCE OAB ASA 得出AB EC =,根据一组对边平行且相等的四边形是平行四边形得出四边形ABCE 是平行四边形,进而得证.【详解】证明://AB CD ,OCE OAB ∴∠=∠,在OCE ∆和OAB ∆中,EOC BOA OC OA OCE OAB ∠=∠⎧⎪=⎨⎪∠=∠⎩,()≌∴∆∆OCE OAB ASA ,AB EC ∴=,又//AB EC ,∴四边形ABCE 是平行四边形,AE BC ∴=.【点睛】本题考查平行线的性质,全等三角形的判定与性质,平行四边形的判定与性质,熟练掌握全等三角形与平行四边形的判定与性质是解题的关键.42.①α=120°.【分析】根据平行线的性质得到①1+①α=180°,即①α+①β=180°,根据①α=2①β,求解得到①β的度数,进而得到①α的度数.【详解】解:如图①l 1①l 2,①①1+①α=180°(两直线平行,同旁内角互补),①①1=①β(对顶角相等),①①α+①β=180°(等量代换),①①α=2①β,①2①β+①β=180°,①①β=60°,①①α=2①β=120°.【点睛】本题主要考查平行线的性质,对顶角相等,两角互补等知识点,解此题的关键在于熟练掌握其知识点.43.两直线平行,内错角相等;FG AD ∥;同位角相等,两直线平行;BDA ∠;两直线平行,同位角相等;垂直的定义;90BGF ∠=︒.【分析】由平行线的性质得到①1=①2,等量代换得到①2=①3,即可判定 FG ①AD ,根据平行线的性质得到①BGF=①BDA,再根据垂直的定义即可得解.【详解】证明:①DE①AB(已知),①①1=①2(两直线平行,内错角相等),又①①1=①3(已知),①①2=①3(等量代换),①FG①AD(同位角相等,两直线平行),①①BGF=①BDA(两直线平行,同位角相等),①AD①BC(已知),①①BDA=90°(垂直的定义),①①BGF=90°(等量代换),①FG①BC(垂直定义).【点睛】此题考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解题的关键.44.同位角相等,两直线平行;①MNA;两直线平行,同旁内角互补;118°;59°;59°;两直线平行,内错角相等【分析】根据同角的补角相等可得出①ABM=①CME,利用“同位角相等,两直线平行”可得出AB①CD,由“两直线平行,同旁内角互补”及①MNA =62°可求出①CMN =118°,结合角平分线的定义可求出①AMC的度数,再利用“两直线平行,内错角相等”即可求出①A的度数.【详解】解:因为①ABM+①ABF=180°,又因为①CME+①ABF=180°(已知),所以①ABM=①CME所以AB①CD,(同位角相等,两直线平行)所以①CMN+①MNA=180°,(两直线平行,同旁内角互补)因为①MNA=62°,所以①CMN=118°,因为MA平分①CMN,①CMN =59°.(角平分线的定义)所以①AMC=12因为AB①CD,。
(完整版)相交线与平行线常考题目及答案(绝对经典)
一.选择题(共3小题)
1.在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是( )
A.平行B.垂直C.平行或垂直D.无法确定
2.如图,直线AB、CD相交于O,OE⊥AB,OF⊥CD,则与∠1互为余角的有( )
26.几何推理,看图填空:
(1)∵∠3=∠4(已知)
∴∥()
(2)∵∠DBE=∠CAB(已知)
∴∥()
(3)∵∠ADF+=180°(已知)
∴AD∥BF()
27.如图,直线AB、CD相交于点O,OE平分∠BOD.
(1)若∠AOC=68°,∠DOF=90°,求∠EOF的度数.
(2)若OF平分∠COE,∠BOF=30°,求∠AOC的度数.
7.将一副学生用三角板按如图所示的方式放置.若AE∥BC,则∠AFD的度数是.
评卷人
得分
三.解答题(共43小题)
8.已知:直线EF分别与直线AB,CD相交于点F,E,EM平∠FED,AB∥CD,H,P分别为直线AB和线段EF上的点.
(1)如图1,HM平分∠BHP,若HP⊥EF,求∠M的度数.
(2)如图2,EN平分∠HEF交AB于点N,NQ⊥EM于点Q,当H在直线AB上运动(不与点F重合)时,探究∠FHE与∠ENQ的关系,并证明你的结论.
(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明.
15.如图,已知AB∥PN∥CD.
(1)试探索∠ABC,∠BCP和∠CPN之间的数量关系,并说明理由;
(2)若∠ABC=42°,∠CPN=155°,求∠BCP的度数.
16.如图,AD∥BC,∠EAD=∠C,∠FEC=∠BAE,∠EFC=50°
(专题精选)初中数学相交线与平行线分类汇编及答案
(专题精选)初中数学相交线与平行线分类汇编及答案一、选择题1.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是( )A .2个B .3个C .4个D .5个【答案】B【解析】【分析】根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数, 进行判断即可.【详解】①正确;②在两直线平行的条件下,内错角相等,②错误;③正确;④反例:两个无理数π和-π,和是0,④错误;⑤坐标平面内的点与有序数对是一一对应的,正确;故选:B .【点睛】本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.2.如图,点,D E 分别在BAC ∠的边,AB AC 上,点F 在BAC ∠的内部,若1,250F ︒∠=∠∠=,则A ∠的度数是( )A .50︒B .40︒C .45︒D .130︒【答案】A【解析】【分析】 利用平行线定理即可解答.【详解】解:根据∠1=∠F,可得AB//EF,故∠2=∠A=50°.故选A.【点睛】本题考查平行线定理:内错角相等,两直线平行.3.如图,已知正五边形ABCDE,AF∥CD,交DB的延长线于点F,则∠DFA的度数是()A.28°B.30°C.38°D.36°【答案】D【解析】【分析】根据两直线平行,内错角相等,得到∠DFA=∠CDB,根据三角形的内角和求出∠CDB的度数从而得到∠DFA的度数.【详解】解:∠C=(52)1801085︒-⨯=,且CD=CB,∴∠CDB=∠CBD∵由三角形的内角和∠C+∠CDB+∠CBD=180°∴∠CDB+∠CBD=180°-∠C =180°-108°=72°∴∠CDB==∠CBD=7236 2︒︒=又∵AF∥CD∴∠DFA=∠CDB=36°(两直线平行,内错角相等)故选D【点睛】本题主要考查多边形的基本概念和三角形的基本概念,正n边形的内角读数为(2)180n n-⨯.4.如图,AB ∥CD ,AE 平分∠CAB 交CD 于点E ,若∠C=50°,则∠AED=( )A .65°B .115°C .125°D .130°【答案】B【解析】 试题分析:∵AB ∥CD ,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=180°﹣50°=130°,∵AE 平分∠CAB ,∴∠EAB=65°,∵AB ∥CD ,∴∠EAB+∠AED=180°,∴∠AED=180°﹣65°=115°,故选B .考点:平行线的性质.5.如图,直线a ∥b ,直线c 与直线a ,b 相交,若∠1=56°,则∠2等于( )A .24°B .34°C .56°D .124°【答案】C【解析】【分析】【详解】 试题分析:根据对顶角相等可得∠3=∠1=56°,根据平行线的性质得出∠2=∠3=56°.故答案选C.考点:平行线的性质.6.如图AD ∥BC ,∠B =30o ,DB 平分∠ADE ,则∠DEC 的度数为 ( )A.30o B.60o C.90o D.120o【答案】B【解析】∵AD∥BC,∴∠ADB=∠DBC,∵DB平分∠ADE,∴∠ADB=∠ADE,∵∠B=30°,∴∠ADB=∠BDE=30°,则∠DEC=∠B+∠BDE=60°.故选B.【点睛】此题主要考查了平行线的性质,正确得出∠ADB的度数是解题关键.7.如图,在平面内,两条直线l1,l2相交于点O,对于平面内任意一点M,若p,q分别是点M到直线l1,l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有()个.A.1个B.2个C.3个D.4个【答案】D【解析】【分析】到l1距离为2的直线有2条,到l2距离为1的直线有2条,这4条直线有4个交点,这4个交点就是“距离坐标”是(2,1)的点.【详解】因为两条直线相交有四个角,因此每一个角内就有一个到直线l1,l2的距离分别是2,1的点,即距离坐标是(2,1)的点,因而共有4个.故选:D.【点睛】本题主要考查了点到直线的距离,解题时注意:到一条已知直线距离为定值的直线有两条.8.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐弯处的∠A是72°,第二次拐弯处的角是∠B,第三次拐弯处的∠C是153°,这时道路恰好和第一次拐弯之前的道路平行,则∠B 等于( )A .81°B .99°C .108°D .120°【答案】B【解析】 试题解析:过B 作BD ∥AE ,∵AE ∥CF ,∴BD ∥CF ,∴72,180A ABD DBC C ∠=∠=∠+∠=o o,∵153C ∠=o ,∴27DBC ∠=o ,则99.ABC ABD DBC ∠=∠+∠=o 故选B.9.如图,11∥l 2,∠1=100°,∠2=135°,则∠3的度数为( )A .50°B .55°C .65°D .70°【答案】B【解析】【分析】 如图,延长l 2,交∠1的边于一点,由平行线的性质,求得∠4的度数,再根据三角形外角性质,即可求得∠3的度数.【详解】如图,延长l 2,交∠1的边于一点,∵11∥l 2,∴∠4=180°﹣∠1=180°﹣100°=80°,由三角形外角性质,可得∠2=∠3+∠4,∴∠3=∠2﹣∠4=135°﹣80°=55°,故选B .【点睛】本题考查了平行线的性质及三角形外角的性质,熟练运用平行线的性质是解决问题的关键.10.如图,直线 a ∥b ∥c ,直角三角板的直角顶点落在直线 b 上,若∠1=30°,则∠2 等于( )A .40°B .60°C .50°D .70° 【答案】B【解析】【分析】根据两直线平行内错角相等得1324==∠∠,∠∠,再根据直角三角板的性质得341290+=+=︒∠∠∠∠,即可求出∠2的度数.【详解】∵a ∥b ∥c∴1324==∠∠,∠∠∵直角三角板的直角顶点落在直线 b 上∴341290+=+=︒∠∠∠∠∵∠1=30°∴290160=︒-=︒∠∠故答案为:B .【点睛】本题考查了平行线和三角板的角度问题,掌握平行线的性质、三角板的性质是解题的关键.11.如图,DE ∥BC ,BE 平分∠ABC ,若∠1=70°,则∠CBE 的度数为( )A .20°B .35°C .55°D .70°【答案】B【解析】【分析】 根据平行线的性质可得∠1=∠ABC=70°,再根据角平分线的定义可得答案.【详解】∵DE ∥BC ,∴∠1=∠ABC=70°,∵BE 平分∠ABC , ∴1352CBE ABC ∠=∠=︒, 故选:B .【点睛】此题主要考查了平行线的性质,以及角平分线的定义,解题的关键是掌握两直线平行,内错角相等.12.如图,直线AD BC ∥,30C ∠=︒,:1:3ADB BDC ∠∠=,则DBC ∠的度数是( )A .35°B .37.5°C .45°D .40° 【答案】B【解析】【分析】根据两直线平行,同旁内角互补,可得出18030015ADC ∠=︒-︒=︒,再结合:1:3ADB BDC ∠∠=即可得出ADB ∠的度数,最后,根据两直线平行,内错角相等即可得出答案.【详解】解:∵//AD BC ,30C ∠=︒∴18030015ADC ∠=︒-︒=︒∵:1:3ADB BDC ∠∠=∴115037.513ADB ∠=︒⨯=︒+ ∴37.5DBC ADB ∠=∠=︒故选:B .【点睛】本题考查的知识点是平行线的性质,难度不大,熟记平行线性质的内容是解此题的关键.13.把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是( )A .45°B .60°C .75°D .82.5°【答案】C【解析】【分析】直接利用平行线的性质结合已知角得出答案.【详解】如图,作直线l 平行于直角三角板的斜边,可得:∠3=∠2=45°,∠4=∠5=30°,故∠1的度数是:45°+30°=75°,故选C .【点睛】本题主要考查了平行线的性质,正确作出辅助线是解题关键.14.如图,等边ABC V 边长为a ,点O 是ABC V 的内心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①ODE V 形状不变;②ODE V 的面积最小不会小于四边形ODBE 的面积的四分之一;③四边形ODBE 的面积始终不变;④BDE V 周长的最小值为1.5a .上述结论中正确的个数是( )A .4B .3C .2D .1【答案】A【解析】【分析】连接OB 、OC ,利用SAS 证出△ODB ≌△OEC ,从而得出△ODE 是顶角为120°的等腰三角形,即可判断①;过点O 作OH ⊥DE ,则DH=EH ,利用锐角三角函数可得OH=12OE 和OE ,然后三角形的面积公式可得S △ODE2,从而得出OE 最小时,S △ODE 最小,根据垂线段最短即可求出S △ODE 的最小值,然后证出S 四边形ODBE =S △OBC2即可判断②和③;求出BDE V 的周长=a +DE ,求出DE 的最小值即可判断④.【详解】解:连接OB 、OC∵ABC V 是等边三角形,点O 是ABC V 的内心,∴∠ABC=∠ACB=60°,BO=CO ,BO 、CO 平分∠ABC 和∠ACB ∴∠OBA=∠OBC=12∠ABC=30°,∠OCA=∠OCB=12∠ACB=30° ∴∠OBA=∠OCB ,∠BOC=180°-∠OBC -∠OCB=120° ∵120FOG ∠=︒∴∠=FOG ∠BOC∴∠FOG -∠BOE=∠BOC -∠BOE∴∠BOD=∠COE在△ODB 和△OEC 中BOD COE BO COOBD OCE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ODB ≌△OEC∴OD=OE∴△ODE 是顶角为120°的等腰三角形,∴ODE V 形状不变,故①正确;过点O 作OH ⊥DE ,则DH=EH∵△ODE 是顶角为120°的等腰三角形∴∠ODE=∠OED=12(180°-120°)=30° ∴OH=OE·sin ∠OED=12OE ,EH= OE·cos ∠∴∴S △ODE =12DE·OH=4OE 2 ∴OE 最小时,S △ODE 最小,过点O 作OE′⊥BC 于E′,根据垂线段最短,OE′即为OE 的最小值∴BE ′=12BC=12a 在Rt △OBE ′中 OE′=BE′·tan ∠OBE ′=12a 33 ∴S △ODE 3223 ∵△ODB ≌△OEC∴S 四边形ODBE =S △ODB +S △OBE = S △OEC +S △OBE =S △OBC =1223 23=1423 ∴S △ODE ≤14S 四边形ODBE 即ODE V 的面积最小不会小于四边形ODBE 的面积的四分之一,故②正确; ∵S 四边形ODBE 23 ∴四边形ODBE 的面积始终不变,故③正确; ∵△ODB ≌△OEC∴DB=EC∴BDE V 的周长=DB +BE +DE= EC +BE +DE=BC +DE=a +DE ∴DE 最小时BDE V 的周长最小∵3OE∴OE 最小时,DE 最小而OE 的最小值为OE′=36a ∴DE 336a =12a ∴BDE V 的周长的最小值为a +12a =1.5a ,故④正确; 综上:4个结论都正确,故选A .【点睛】此题考查的是等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短的应用,掌握等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短是解决此题的关键.15.如图,下列判断:①若12A C ∠=∠∠=∠,,则B D ∠=∠;②若12B D ∠=∠∠=∠,,则A C ∠=∠:③若,A C B D ∠=∠∠=∠,则12∠=∠.其中,正确的个数是( ).A .0B .1C .2D .3【答案】D【解析】【分析】 ①根据12A C ∠=∠∠=∠,证明四边形DEBF 是平行四边形即可判断;②根据12B D ∠=∠∠=∠,证明DC ∥AB 即可判断;③根据,A C B D ∠=∠∠=∠证明DC ∥AB 即可判断.【详解】解:如图,标出∠3,①∵A C ∠=∠,∴DC ∥AB (内错角相等,两直线平行),∵2,3∠∠是对顶角,∴23∠∠=,∴13∠=∠(等量替换),∴DE ∥FB (同位角相等,两直线平行),∴四边形DEBF 是平行四边形(两组对边分别平行),∴B D ∠=∠,②∵2,3∠∠是对顶角,∴23∠∠=,∴13∠=∠(等量替换),∴DE ∥FB (同位角相等,两直线平行),∴∠B+∠DEB=180°,又∵B D ∠=∠,∴∠D+∠DEB=180°,∴DC ∥AB (同旁内角互补,两直线平行),∴A C ∠=∠(两直线平行,内错角相等);故②正确;③∵A C ∠=∠,∴DC ∥AB (内错角相等,两直线平行),∴B CFB ∠=∠(两直线平行,内错角相等),又∵B D ∠=∠,∴D CFB ∠=∠,∴DE ∥FB (同位角相等,两直线平行),∴13∠=∠(两直线平行,同位角相等),∵2,3∠∠是对顶角,∴23∠∠=,∴12∠=∠(等量替换),故③正确.故D 为答案.【点睛】本题主要考查了直线平行的判定(同位角相等、内错角相等、同旁内角互补,两直线平行)、直线平行的性质、等量替换的相关知识点,掌握直线平行的判定和性质是解题的关键.16.如图//,AB CD EG EH FH ,、、分别平分,,,CEF DEF EFB ∠∠∠则图中与BFH ∠相等的角(不含它本身)的个数是( )A .5B .6C .7D .8【解析】【分析】先根据平行线的性质得到CEF EFB ∠=∠,CEG EGB ∠=∠,再利用把角平分线的性质得到CEG FEG EFH BFH ∠=∠=∠=∠,最后对顶角相等和等量替换得到答案.【详解】解:如图,做如下标记,∵//AB CD ,∴,CEF EFB ∠=∠CEG EGB ∠=∠(两直线平行,内错角相等),又∵EG 、FH 分别平分,,CEF EFB ∠∠∴CEG FEG EFH BFH ∠=∠=∠=∠,又∵CEG NEG ∠=∠,FEG MEN ∠=∠,EGB AGP ∠=∠(对顶角相等),∴BFH ∠=CEG FEG EFH MEN NED EGF AGP ∠=∠=∠=∠=∠=∠=∠(等量替换)故与BFH ∠相等的角有7个,故C 为答案.【点睛】本题主要考查直线平行的性质、对顶角的性质(对顶角相等)、角平分线的性质(角平分线把角分为两个大小相等的角)还有等量替换,把所学知识灵活运用是解题的关键.17.如图,直线,AB CD 相交于点,50,O AOC OE AB ︒∠=⊥,则DOE ∠的大小是( )A .40︒B .50︒C .70︒D .90︒【答案】A【解析】【分析】 根据对顶角的性质,把BOD ∠的度数计算出来,再结合OE AB ⊥,即可得到答案.【详解】解:∵50AOC ∠=︒,∴50BOD ∠=︒(对顶角相等),又∵OE AB ⊥,∴90EOB ∠=︒,∴905040DOE BOE DOB ∠=∠-∠=︒-︒=︒,故A 为答案.【点睛】本题主要考查了对顶角的性质(对顶角相等),判断,BOD AOC ∠∠是对顶角是解题的关键.18.如图,1B ∠=∠,2C ∠=∠,则下列结论正确的个数有( )①//AD BC ;②B D ∠=∠;③//AB CD ;④2180B ∠+∠=︒A .4个B .3个C .2个D .1个【答案】A【解析】【分析】根据∠1=∠B 可判断AD ∥BC ,再结合∠2=∠C 可判断AB ∥CD ,其余选项也可判断.【详解】∵∠1=∠B∴AD ∥BC ,①正确;∴∠2+∠B=180°,④正确;∵∠2=∠C∴∠C+∠B=180°∴AB ∥CD ,③正确∴∠1=∠D ,∴∠D=∠B ,②正确故选:A【点睛】本题考查平行的证明和性质,解题关键是利用AD ∥BC 推导出∠B+∠2=180°,为证AB ∥DC 作准备.19.如图,已知AB ∥CD ,直线AB ,CD 被BC 所截,E 点在BC 上,若∠1=45°,∠2=35°,则∠3=( )A.65°B.70°C.75°D.80°【答案】D【解析】【分析】由平行线的性质可求得∠C,在△CDE中利用三角形外的性质可求得∠3.【详解】解:∵AB∥CD,∴∠C=∠1=45°,∵∠3是△CDE的一个外角,∴∠3=∠C+∠2=45°+35°=80°,故选:D.【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b ∥c⇒a∥c.20.下列结论中:①若a=b a b;②在同一平面内,若a⊥b,b//c,则a⊥c;③直线外一点到直线的垂线段叫点到直线的距离;33( ) A.1个B.2个C.3个D.4个【答案】B【解析】【分析】【详解】a b解:①若a=b0②在同一平面内,若a⊥b,b//c,则a⊥c,正确③直线外一点到直线的垂线段的长度叫点到直线的距离33正确的个数有②④两个故选B。
新初中数学相交线与平行线真题汇编及答案
新初中数学相交线与平行线真题汇编及答案一、选择题1.如图,下列说法一定正确的是( )A .∠1和∠4是内错角B .∠1和∠3是同位角C .∠3和∠4是同旁内角D .∠1和∠C 是同位角【答案】D【解析】【分析】 根据内错角、同位角以及同旁内角的定义进行判断即可.【详解】解:A 、∠2和∠4是内错角,故本选项错误;B 、∠1和∠C 是同位角,故本选项错误;C 、∠3和∠4是邻补角,故本选项错误;D 、∠1和∠C 是同位角,故本选项正确;故选:D .【点睛】本题考查了同位角、内错角、同旁内角.解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.2.如图,点,D E 分别在BAC ∠的边,AB AC 上,点F 在BAC ∠的内部,若1,250F ︒∠=∠∠=,则A ∠的度数是( )A .50︒B .40︒C .45︒D .130︒【答案】A【解析】【分析】 利用平行线定理即可解答.【详解】解:根据∠1=∠F,可得AB//EF,故∠2=∠A=50°.故选A.【点睛】本题考查平行线定理:内错角相等,两直线平行.3.一把直尺和一块三角板ABC(含30°,60°角)的摆放位置如图,直尺一边与三角板的两直角边分别交于点D、点E,另一边与三角板的两直角边分别交于点F、点A,且∠CED=50°,那么∠BAF=()A.10°B.50°C.45°D.40°【答案】A【解析】【分析】先根据∠CED=50°,DE∥AF,即可得到∠CAF=50°,最后根据∠BAC=60°,即可得出∠BAF的大小.【详解】∵DE∥AF,∠CED=50°,∴∠CAF=∠CED=50°,∵∠BAC=60°,∴∠BAF=60°﹣50°=10°,故选:A.【点睛】此题考查平行线的性质,几何图形中角的和差关系,掌握平行线的性质是解题的关键.4.如图,直线AC∥BD,AO、BO分别是∠BAC、∠ABD的平分线,那么下列结论错误的是()A.∠BAO与∠CAO相等B.∠BAC与∠ABD互补C.∠BAO与∠ABO互余D.∠ABO与∠DBO不等【答案】D【解析】【分析】【详解】解:已知AC//BD,根据平行线的的性质可得∠BAC+∠ABD=180°,选项B正确;因AO、BO分别是∠BAC、∠ABD的平分线,根据角平分线的定义可得∠BAO=∠CAO, ∠ABO=∠DBO,选项A正确,选项D不正确;由∠BAC+∠ABD=180°,∠BAO=∠CAO, ∠ABO=∠DBO即可得∠BAO+∠ABO=90°,选项A正确,故选D.5.如图,直线a∥b,直角三角开的直角顶点在直线b上,一条直角边与直线a所形成的∠1=55°,则另外一条直角边与直线b所形成的∠2的度数为()A.25°B.30°C.35°D.40°【答案】C【解析】如图所示:∵直线a∥b,∴∠3=∠1=55°,∵∠4=90°,∠2+∠3+∠4=180°,∴∠2=180°-55°-90°=35°.故选C.6.如图,AB∥EF,设∠C=90°,那么x、y和z的关系是()A .y =x+zB .x+y ﹣z =90°C .x+y+z =180°D .y+z ﹣x =90°【答案】B【解析】【分析】 过C 作CM ∥AB ,延长CD 交EF 于N ,根据三角形外角性质求出∠CNE =y ﹣z ,根据平行线性质得出∠1=x ,∠2=∠CNE ,代入求出即可.【详解】解:过C 作CM ∥AB ,延长CD 交EF 于N ,则∠CDE =∠E+∠CNE ,即∠CNE =y ﹣z∵CM ∥AB ,AB ∥EF ,∴CM ∥AB ∥EF ,∴∠ABC =x =∠1,∠2=∠CNE ,∵∠BCD =90°,∴∠1+∠2=90°,∴x+y ﹣z =90°.故选:B .【点睛】本题考查了平行线的性质和三角形外角性质的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.7.如图,四边形ABCD 中,//,,AB CD AD CD E F =、分别是AB BC 、的中点,若140,∠=︒则D ∠=( )A .40︒B .100︒C .80︒D .110︒【答案】B【解析】【分析】 利用E 、F 分别是线段BC 、BA 的中点得到EF 是△BAC 的中位线,得出∠CAB 的大小,再利用CD ∥AB 得到∠DCA 的大小,最后在等腰△DCA 中推导得到∠D.【详解】∵点E 、F 分别是线段CB 、AB 的中点,∴EF 是△BAC 的中位线∴EF ∥AC∵∠1=40°,∴∠CAB=40°∵CD ∥BA∴∠DCA=∠CAB=40°∵CD=DA∴∠DAC=∠DCA=40°∴在△DCA 中,∠D=100°故选:B【点睛】本题考查中位线的性质和平行线的性质,解题关键是推导得出EF 是△ABC 的中位线.8.如图,一副三角板按如图所示的位置摆放,其中//AB CD ,45A ∠=︒,60C ∠=°,90AEB CED ∠=∠=︒,则AEC ∠的度数为( )A .75°B .90°C .105°D .120°【答案】C【解析】【分析】 延长CE 交AB 于点F ,根据两直线平行,内错角相等可得∠AFE =∠C ,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:如图,延长CE 交AB 于点F ,∵AB ∥CD ,∴∠AFE =∠C =60°,在△AEF 中,由三角形的外角性质得,∠AEC =∠A +∠AFE =45°+60°=105°.故选:C .【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记相关性质并作出正确的辅助线是解题的关键.9.如图,在ABC ∆中,90,2,4C AC BC ∠=︒==,将ABC ∆绕点A 逆时针旋转90︒,使点C 落在点E 处,点B 落在点D 处,则B E 、两点间的距离为( )A 10B .2C .3D .25【答案】B【解析】【分析】 延长BE 和CA 交于点F ,根据旋转的性质可知∠CAE=90︒,证明∠BAE=∠ABC ,即可证得AE ∥BC ,得出2142EF AF AE FB FC BC ====,即可求出BE . 【详解】延长BE 和CA 交于点F∵ABC ∆绕点A 逆时针旋转90︒得到△AED∴∠CAE=90︒∴∠CAB+∠BAE=90︒又∵∠CAB+∠ABC=90︒∴∠BAE=∠ABC∴AE ∥BC ∴2142EF AF AE FB FC BC ==== ∴AF=AC=2,FC=4 ∴BF=42∴BE=EF=12BF=22故选:B【点睛】本题考查了旋转的性质,平行线的判定和性质.10.给出下列说法,其中正确的是( )A.两条直线被第三条直线所截,同位角相等;B.平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;C.相等的两个角是对顶角;D.从直线外一点到这条直线的垂线段,叫做这点到直线的距离.【答案】B【解析】【分析】正确理解对顶角、同位角、相交线、平行线、点到直线的距离的概念,逐一判断.【详解】A选项:同位角只是一种位置关系,只有两条直线平行时,同位角相等,错误;B选项:强调了在平面内,正确;C选项:不符合对顶角的定义,错误;D选项:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,不是指点到直线的垂线段的本身,而是指垂线段的长度.故选:B.【点睛】对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义,要善于区分不同概念之间的联系和区别.11.下列图形中线段PQ的长度表示点P到直线a的距离的是()A.B.C.D.【答案】C【解析】【分析】根据点到直线的距离的定义,可得答案.【详解】由题意得PQ⊥a,P到a的距离是PQ垂线段的长,故选C.【点睛】本题考查了点到直线的距离,点到直线的距离是解题关键.12.把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是()A.45°B.60°C.75°D.82.5°【答案】C【解析】【分析】直接利用平行线的性质结合已知角得出答案.【详解】如图,作直线l平行于直角三角板的斜边,可得:∠3=∠2=45°,∠4=∠5=30°,故∠1的度数是:45°+30°=75°,故选C.【点睛】本题主要考查了平行线的性质,正确作出辅助线是解题关键.13.如图所示,某同学的家在P处,他想尽快赶到附近公路边搭公交车,他选择P→C路线,用几何知识解释其道理正确的是()A.两点确定一条直线B.垂直线段最短C.两点之间线段最短D.三角形两边之和大于第三边【答案】B【解析】【分析】根据垂线段的定义判断即可.【详解】解:Q直线外一点与直线上各点连接的所有线段中,垂线段最短,选:B.【点睛】直线外任意一点到这条直线的垂线段的长度,叫做点到这条直线的距离.直线外一点与直线上各点连接的所有线段中,垂线段最短.简称“垂线段最短”.14.如图,OB⊥CD于点O,∠1=∠2,则∠2与∠3的关系是( )A.∠2=∠3 B.∠2与∠3互补C.∠2与∠3互余D.不能确定【答案】C【解析】【分析】根据垂线定义可得∠1+∠3=90°,再根据等量代换可得∠2+∠3=90°.【详解】∵OB⊥CD,∴∠1+∠3=90°,∵∠1=∠2,∴∠2+∠3=90°,∴∠2与∠3互余,故选:C.【点睛】本题考查了垂线和余角,关键是掌握垂线的定义当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线.15.若∠A 与∠B 是对顶角且互补,则它们两边所在的直线( )A .互相垂直B .互相平行C .既不垂直也不平行D .不能确定【答案】A【解析】∵∠A 与∠B 是对顶角,∴∠A=∠B ,又∵∠A 与∠B 互补,∴∠A+∠B=180°,可求∠A=90°.故选A .16.如图,//AB CD ,点E 在CD 上,点F 在AB 上,如果:6:7CEF BEF ∠∠=,50ABE ∠=︒,那么AFE ∠的度数为( )A .110︒B .120︒C .130︒D .140︒【答案】B【解析】【分析】 由//AB CD 可得∠ABE+∠CEB=180°,∠BED=50ABE ∠=︒,即∠CEB=130°,由:6:7CEF BEF ∠∠=可得=67CEF BEF ∠∠,设=67CEF BEF ∠∠=k,则∠CEF=6k,∠FEB=7k,可得∠FEB=70°,可得∠DEF=∠FEB+∠BED=120°;又由//AB CD 可得AFE ∠=∠DEF 即可解答.【详解】解:∵//AB CD∴∠ABE+∠CEB=180°,∠BED=50ABE ∠=︒∴∠CEB=130°∵:6:7CEF BEF ∠∠= ∴=67CEF BEF ∠∠ 设=67CEF BEF ∠∠=k ,则∠CEF=6k,∠FEB=7k, ∴6k+7k=130°∴∠FEB=7k=70°∴∠DEF=∠FEB+∠BED=120°∵//AB CD∴AFE ∠=∠DEF=120°故答案为B .【点睛】本题考查的是平行线的性质以及比例的应用,.熟练掌握平行线的性质是解答本题的关键.17.如图//,AB CD EG EH FH ,、、分别平分,,,CEF DEF EFB ∠∠∠则图中与BFH ∠相等的角(不含它本身)的个数是( )A .5B .6C .7D .8【答案】C【解析】【分析】 先根据平行线的性质得到CEF EFB ∠=∠,CEG EGB ∠=∠,再利用把角平分线的性质得到CEG FEG EFH BFH ∠=∠=∠=∠,最后对顶角相等和等量替换得到答案.【详解】解:如图,做如下标记,∵//AB CD ,∴,CEF EFB ∠=∠CEG EGB ∠=∠(两直线平行,内错角相等),又∵EG 、FH 分别平分,,CEF EFB ∠∠∴CEG FEG EFH BFH ∠=∠=∠=∠,又∵CEG NEG ∠=∠,FEG MEN ∠=∠,EGB AGP ∠=∠(对顶角相等),∴BFH ∠=CEG FEG EFH MEN NED EGF AGP ∠=∠=∠=∠=∠=∠=∠(等量替换)故与BFH ∠相等的角有7个,故C 为答案.【点睛】本题主要考查直线平行的性质、对顶角的性质(对顶角相等)、角平分线的性质(角平分线把角分为两个大小相等的角)还有等量替换,把所学知识灵活运用是解题的关键.18.如图,直线,a b 被直线,c d 所截,1110,270,360︒︒︒∠=∠=∠=,则4∠的大小是( )A .60︒B .70︒C .110︒D .120︒【答案】A【解析】【分析】 先根据对顶角相等得到15∠=∠,再根据平行线的判定得到a ∥b ,再根据平行线的性质得到34∠=∠即可得到答案.【详解】解:5∠标记为如下图所示,∵1,5∠∠是对顶角,∴15∠=∠(对顶角相等),又∵1110,270︒︒∠=∠=,∴1251107800︒︒+∠=∠=+︒,∴a ∥b (同旁内角互补,两直线平行),∴34∠=∠(两直线平行,内错角相等),∴4360∠=∠=︒,故A 为答案.【点睛】本题主要考查了对顶角的性质(对顶角相等)、直线平行的判定(同旁内角互补,两直线平行)、直线平行的性质(两直线平行,内错角相等),能灵活运用所学知识是解题的关键..19.下列说法中错误的个数是( )(1)过一点有且只有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)不相交的两条直线叫做平行线;(4)有公共顶点且有一条公共边的两个互补的角互为邻补角.A.1个B.2个C.3个D.4个【答案】C【解析】(1)应强调过直线外一点,故错误;(2)正确;(3)不相交的两条直线叫做平行线,没有说明是否是在同一平面内,所以错误;(4)有公共顶点且有一条公共边的两个角不一定互为邻补角,角平分线的两个角也满足,但可以不是,故错误.错误的有3个,故选C.20.已知直线m∥n,将一块含30°角的直角三角板按如图所示方式放置(∠ABC=30°),并且顶点A,C分别落在直线m,n上,若∠1=38°,则∠2的度数是()A.20°B.22°C.28°D.38°【答案】B【解析】【分析】过C作CD∥直线m,根据平行线的性质即可求出∠2的度数.【详解】解:过C作CD∥直线m,∵∠ABC=30°,∠BAC=90°,∴∠ACB=60°,∵直线m∥n,∴CD∥直线m∥直线n,∴∠1=∠ACD,∠2=∠BCD,∵∠1=38°,∴∠ACD=38°,∴∠2=∠BCD=60°﹣38°=22°,故选:B.【点睛】本题考查了平行线的计算问题,掌握平行线的性质是解题的关键.。
相交线与平行线(优选真题60道)(2021-2023年)中考数学真题(全国通用)(解析版)
三年(2021-2023)中考数学真题分项汇编(全国通用)相交线与平行线(优选真题60道)一.选择题(共40小题)1.(2023•日照)在数学活动课上,小明同学将含30°角的直角三角板的一个顶点按如图方式放置在直尺上,测得∠1=23°,则∠2的度数是()A.23°B.53°C.60°D.67°【分析】利用平行线的性质即可求解.【解答】解:如图,三角板EFG与直尺ABCD分别交AB于点F、H.∵AB∥CD,∴∠2=∠FHG.又∵∠1+∠E=∠FHG,∴∠2=∠1+∠E=23°+30°=53°.故选:B.【点评】本题考查平行线的性质,比较简单.2.(2023•鄂州)如图,直线AB∥CD,GE⊥EF于点E.若∠BGE=60°,则∠EFD的度数是()A.60°B.30°C.40°D.70°【分析】过点E作AB的平行线,利用平行线的性质即可求解.【解答】解:过点E作直线HI∥AB.∵AB∥CD,AB∥HI,∴CD∥HI.∴∠BGE=∠GEH=60°,∴∠HEF=∠GEF﹣∠GEH=90°﹣60°=30°.∴∠EFD=∠HEF=30°.故选:B.【点评】本题考查了垂线及平行线的性质,正确作出辅助线是解决本题的关键.3.(2023•长沙)如图,直线m∥直线n,点A在直线n上,点B在直线m上,连接AB,过点A作AC⊥AB,交直线m于点C.若∠1=40°,则∠2的度数为()A.30°B.40°C.50°D.60°【分析】根据两直线平行,同旁内角互补得出∠1+∠BAC+∠2=180°,结合已知条件即可求出∠2的度数.【解答】解:∵直线m∥直线n,∴∠1+∠BAC+∠2=180°,∵AC⊥AB,∴∠BAC=90°,∵∠1=40°,∴40°+90°+∠2=180°,∴∠2=50°,故选:C.【点评】本题考查了平行线的性质和垂线的定义,熟知:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.4.(2023•大连)如图,直线AB∥CD,∠ABE=45°,∠D=20°,则∠E的度数为()A.20°B.25°C.30°D.35°【分析】由平行线的性质可得∠ABE=∠BCD,从而求出∠DCE,再根据三角形的内角和即可求解.【解答】解:∵AB∥CD,∴∠ABE=∠BCD=45°,∴∠DCE=135°,由三角形的内角和可得∠E=180°﹣135°﹣20°=25°.故选:B.【点评】本题考查平行线的性质和三角形的内角和定理,熟练掌握性质是解题关键.5.(2023•贵州)如图,AB∥CD,AC与BD相交于点E.若∠C=40°,则∠A的度数是()A.39°B.40°C.41°D.42°【分析】根据两直线平行,内错角相等即可求出∠A的度数.【解答】解:∵AB∥CD,∴∠A=∠C,∵∠C=40°,∴∠A=40°,故选:B.【点评】本题考查了平行线的性质,熟知:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.6.(2023•深圳)如图为商场某品牌椅子的侧面图,∠DEF=120°,DE与地面平行,∠ABD=50°,则∠ACB=()A.70°B.65°C.60°D.50°【分析】由平行线的性质可得∠D=∠ABD=50°,再利用三角形的外角性质可求得∠DCE的度数,结合对顶角相等即可求∠ACB的度数.【解答】解:∵DE∥AB,∠ABD=50°,∴∠D=∠ABD=50°,∵∠DEF=120°,且∠DEF是△DCE的外角,∴∠DCE=∠DEF﹣∠D=70°,∴∠ACB=∠DCE=70°.故选:A.【点评】三角形的外角性质,解答的关键是熟记平行线的性质并灵活运用.7.(2023•辽宁)如图,直线CD,EF被射线OA,OB所截,CD∥EF,若∠1=108°,则∠2的度数为()A.52°B.62°C.72°D.82°【分析】根据两直线平行,同旁内角互补,得出∠2+∠3=180°,由∠1=∠3,得出∠1+∠3=180°,即可得答案.【解答】解:如图:∵CD∥EF,∴∠2+∠3=180°,∵∠1=∠3,∴∠1+∠2=180°,∵∠1=108°,∴∠2=72°,故选:C.【点评】本题考查的是平行线的性质,熟知两直线平行,同旁内角互补,是解答此题的关键.8.(2023•张家界)如图,已知直线AB∥CD,EG平分∠BEF,∠1=40°,则∠2的度数是()A.70°B.50°C.40°D.140°【分析】由平角的定义可得∠BEF=140°,由角平分线的定义可得∠BEG=∠FEG=70°,再利用两直线平行,内错角相等即可求解.【解答】解:∵∠1=40°,∴∠BEF=180°﹣∠1=180°﹣40°=140°,∵EG平分∠BEF,∴∠BEG=∠FEG=70°,∵AB∥CD,∴∠2=∠BEG=70°.故选:A.【点评】本题主要考查平角的定义、角平分线的定义、平行线的性质,熟练掌握角平分线的定义和平行线的性质是解题关键.9.(2023•东营)如图,AB∥CD,点E在线段BC上(不与点B,C重合),连接DE.若∠D=40°,∠BED =60°,则∠B=()A.10°B.20°C.40°D.60°【分析】利用平行线的性质及外角计算即可.【解答】解:∵∠C+∠D=∠BED=60°,∴∠C=60°﹣∠D=60°﹣40°=20°.又∵AB∥CD,∴∠B=∠C=20°.故选:B.【点评】本题简单地考查了平行线的性质,知识点比较基础,一定要掌握.10.(2023•菏泽)一把直尺和一个含30°角的直角三角板按如图方式放置,若∠1=20°,则∠2=()A.30°B.40°C.50°D.60°【分析】由平行线的性质可得∠3=∠1=20°,从而可求∠2.【解答】解:如图,由题意得:∠CAD=60°,∵AB∥DE,∠1=20°,∴∠3=∠1=20°,∴∠2=∠CAD﹣∠3=40°.故选:B.【点评】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,内错角相等.11.(2023•齐齐哈尔)如图,直线l1∥l2,分别与直线l交于点A,B,把一块含30°角的三角尺按如图所示的位置摆放,若∠1=45°,则∠2的度数是()A.135°B.105°C.95°D.75°【分析】依据l1∥l2,即可得到∠1=∠3=45°,再根据∠4=30°,即可得出从∠2=180°﹣∠3﹣∠4=105°.【解答】解:如图,∵l1∥l2,∴∠1=∠3=45°,又∵∠4=30°,∴∠2=180°﹣∠3﹣∠4=180°﹣45°﹣30°=105°,故选:B.【点评】此题主要考查了平行线的性质,三角板的特征,角度的计算,解本题的关键是利用平行线的性质.12.(2023•绥化)将一副三角板按如图所示摆放在一组平行线内,∠1=25°,∠2=30°,则∠3的度数为()A.55°B.65°C.70°D.75°【分析】由题意可求得∠BAC=115°,再由平行线的性质可求得∠ACD的度数,结合平角的定义即可求∠3.【解答】解:如图,由题意可得:∠CAE=90°,∠ACF=45°,∵∠1=25°,∴∠BAC=∠1+∠CAE=115°,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠ACD=180°﹣∠BAC=65°,∴∠3=180°﹣∠ACD﹣∠ACF=70°.故选:C.【点评】本题主要考查平行线的性质,解答的关键是熟记平行线的性质并灵活运用.13.(2023•河南)如图,直线AB,CD相交于点O,若∠1=80°,∠2=30°,则∠AOE的度数为()A.30°B.50°C.60°D.80°【分析】由对顶角的性质得到∠AOD=∠1=80°,即可求出∠AOE的度数.【解答】解:∵∠AOD=∠1=80°,∴∠AOE=∠AOD﹣∠2=80°﹣30°=50°.故选:B.【点评】本题考查对顶角,关键是掌握对顶角的性质:对顶角相等.14.(2023•济宁)如图,a,b是直尺的两边,a∥b,把三角板的直角顶点放在直尺的b边上,若∠1=35°,则∠2的度数是()A.65°B.55°C.45°D.35°【分析】利用平角的定义及角的和差关系,先求出∠3,再利用平行线的性质求出∠2.【解答】解:∵∠BEF=90°,∠CED是平角,∠1=35°,∵a∥b,∴∠1=∠3=35°.∵∠BEC=180°﹣∠E﹣∠3=180°﹣90°﹣35°=55°故选:B.【点评】本题主要考查了平行线的性质,根据平角的定义求出∠3的度数是解决本题的关键.15.(2023•兰州)如图,直线AB与CD相交于点O,则∠BOD=()A.40°B.50°C.55°D.60°【分析】利用对顶角相等可得∠BOD=∠AOC,由量角器度量的方法可得结论.【解答】解:∵直线AB与CD相交于点O,∴∠BOD=∠AOC,∵∠AOC=50°,∴∠BOD=50故选:B.【点评】本题考查了对顶角相等和量角器的度量的方法,掌握这些知识点是解题的关键.16.(2023•广西)如图,一条公路两次转弯后又回到与原来相同的方向,∠A=130°,那么∠B的度数是()A.160°B.150°C.140°D.130°【分析】由平行线的性质,即可得到∠B=∠A=130°.【解答】解:∵公路两次转弯后又回到与原来相同的方向,∴AC∥BD,∴∠B=∠A=130°.故选:D.【点评】本题考查平行线的性质,关键是由题意得到AC∥BD.17.(2023•广东)如图,街道AB与CD平行,拐角∠ABC=137°,则拐角∠BCD=()A.43°B.53°C.107°D.137°【解答】解:∵AB∥CD,∴∠ABC=∠BCD=137°,故选:D.【点评】本题考查平行线的性质,熟练掌握性质解解题关键.18.(2023•岳阳)已知AB∥CD,点E在直线AB上,点F,G在直线CD上,EG⊥EF于点E,∠AEF=40°,则∠EGF的度数是()A.40°B.45°C.50°D.60°【分析】由平角的定义可求得∠BEG=50°,再由平行线的性质即可求解.【解答】解:∵EG⊥EF,∴∠FEG=90°,∵∠AEF+∠FEG+∠BEG=180°,∠AEF=40°,∴∠BEF=180°﹣∠AEF﹣∠FEG=50°,∵AB∥CD,∴∠EGF=∠BEG=50°.故选:C.【点评】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,内错角相等.19.(2023•荆州)如图所示的“箭头”图形中,AB∥CD,∠B=∠D=80°,∠E=∠F=47°,则图中∠G 的度数是()A.80°B.76°C.66°D.56°【分析】延长AB交EG于M,延长CD交FG于N,过G作GK∥AB,得到GK∥CD,推出∠KGM=∠EMB,∠KGN=∠DNF,得到∠EGF=∠EMB+∠DNF,由三角形外角的性质得到∠EMB=33°,∠DNF =33°,即可求出∠EGF的度数.【解答】解:延长AB交EG于,延长CD交FG于N,过G作GK∥AB,∵AB∥CD,∴GK∥CD,∴∠KGM=∠EMB,∠KGN=∠DNF,∴∠KGM+∠KGN=∠EMB+∠DNF,∴∠EGF=∠EMB+∠DNF,∵∠ABE=80°,∠E=47°,∴∠EMB=∠ABE﹣∠E=33°,同理:∠DNF=33°,∴∠EGF=∠EMB+∠DNF=33°+33°=66°.故选:C.【点评】本题考查平行线的性质,三角形外角的性质,关键是通过作辅助线,由平行线的性质,得到∠EGF =∠EMB+∠DNF,由三角形外角的性质求出∠EMB、∠DNF的度数,即可解决问题.20.(2023•陕西)如图,l∥AB,∠A=2∠B.若∠1=108°,则∠2的度数为()A.36°B.46°C.72°D.82°【分析】由对顶角相等可得∠3=∠1=108°,再由平行线的性质可求得∠A=72°,∠B=∠2,结合已知条件可求得∠B,即可求解.【解答】解:如图,∵∠1=108°,∴∠3=∠1=108°,∵l∥AB,∴∠3+∠A=180°,∠2=∠B,∴∠A=180°﹣∠3=72°,∵∠A=2∠B,∴∠B=36°,∴∠2=36°.故选:A.【点评】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,内错角相等;两直线平行,同旁内角互补.21.(2023•随州)如图,直线l1∥l2,直线l与l1,l2相交,若图中∠1=60°,则∠2为()A.30°B.60°C.120°D.150°【分析】直接根据平行线的性质即可得出结论.【解答】解:∵直线l1∥l2,∠1=60°,∴∠2=180°﹣∠1=180°﹣60°=120°.故选:C.【点评】本题考查的是平行线的性质,熟知两直线平行,同旁内角互补是解题的关键.22.(2023•邵阳)如图,直线a,b被直线c所截,已知a∥b,∠1=50°,则∠2的大小为()A.40°B.50°C.70°D.130°【分析】根据对顶角相等,可得∠1=∠3,又由平行线的性质,求得∠2的度数.【解答】解:如图所示:∵a∥b,∴∠2=∠3,∵∠1=∠3,∠1=50°,∴∠1=∠2=50°.故选:B.【点评】此题考查了平行线的性质与对顶角的性质,注意掌握两直线平行,同位角相等是解此题的关键.23.(2023•金华)如图,已知∠1=∠2=∠3=50°,则∠4的度数是()A.120°B.125°C.130°D.135°【分析】由同位角相等两直线平行得到a与b平行,再由两直线平行同旁内角互补,求出∠5的度数,根据对顶角相等即可求出∠4的度数.【解答】解:∵∠1=∠3=50°,∴a∥b,∴∠5+∠2=180°,∵∠2=50°,∴∠5=130°,∴∠4=∠5=130°.故选:C.【点评】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.24.(2023•湖北)如图,Rt△ABC的直角顶点A在直线a上,斜边BC在直线b上,若a∥b,∠1=55°,则∠2=()A.55°B.45°C.35°D.25°【分析】由平行线的性质可得∠ABC=∠1=55°,再由三角形的内角和即可求∠2.【解答】解:∵a∥b,∠1=55°,∴∠ABC=∠1=55°,∵∠BAC=90°,∴∠2=180°﹣∠ABC﹣∠BAC=35°.故选:C.【点评】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,内错角相等.25.(2023•枣庄)如图,一束太阳光线平行照射在放置于地面的正六边形上,若∠1=44°,则∠2的度数为()A.14°B.16°C.24°D.26°【分析】由多边形的外角和可求得∠BCD=60°,∠ABC=120°,再由平行线的性质可得∠BDC=∠1=44°,由三角形的外角性质可求得∠3的度数,即可求∠2的度数.【解答】解:如图,∵太阳光线平行照射在放置于地面的正六边形上,∴∠BCD=360°÷6=60°,EF∥BD,∠ABC=120°,∴∠BDC=∠1=44°,∵∠3是△BCD的外角,∴∠3=∠BDC+∠BCD=104°,∴∠2=∠ABC﹣∠3=16°.故选:B.【点评】本题主要考查平行线的性质,解答的关键熟记平行线的性质:两直线平行,同位角相等.26.(2023•宜昌)如图,小颖按如下方式操作直尺和含30°角的三角尺,依次画出了直线a,b,c.如果∠1=70°,则∠2的度数为()A.110°B.70°C.40°D.30°【分析】根据平行线的性质得到∠3=∠1=70°,三角形的外角的性质得到∠3=∠4+∠5=70°,由∠2=∠5即可解答.【解答】解:如图,由题意得,∠4=30°,a∥b,∴∠3=∠1=70°,∵∠3=∠4+∠5=70°,∴∠5=40°,∴∠2=∠5=40°,故选:C.【点评】本题考查了平行线的性质,对顶角的性质,三角形外角定理,掌握平行线的性质是解题关键.27.(2023•山西)如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心O的光线相交于点P,点F为焦点.若∠1=155°,∠2=30°,则∠3的度数为()A.45°B.50°C.55°D.60°【分析】由平行线的性质求出∠OFB=25°,由对顶角的性质得到∠POF=∠2=30°,由三角形外角的性质即可求出∠3的度数.【解答】解:∵AB∥OF,∴∠1+∠OFB=180°,∵∠1=155°,∴∠OFB=25°,∵∠POF=∠2=30°,∴∠3=∠POF+∠OFB=30°+25°=55°.故选:C.【点评】本题考查平行线的性质,三角形外角的性质,对顶角的性质,关键是由平行线的性质求出∠OFB 的度数,由对顶角的性质得到∠POF的度数,由三角形外角的性质即可解决问题.28.(2023•苏州)如图,在正方形网格内,线段PQ的两个端点都在格点上,网格内另有A,B,C,D四个格点,下面四个结论中,正确的是()A.连接AB,则AB∥PQ B.连接BC,则BC∥PQC.连接BD,则BD⊥PQ D.连接AD,则AD⊥PQ【分析】根据平行的本质是平移,将线段AB、线段BC平移至线段PQ上,若重合则平行,若不重合则不平行.延长线段DB、线段DA与线段PQ相交,观察所成的角是否为直角判定是否垂直.【解答】解:连接AB,将点A平移到点P,即为向上平移3个单位,将点B向上平移3个单位后,点B 不在PQ直线上,∴AB与PQ不平行,选项A错误,连接BC,将点B平移到点P,即为向上平移4个单位,再向右平移1个单位,将点C按点B方式平移后,点C在PQ直线上,∴BC∥PQ,选项B正确,连接BD、AD,并延长与直线PQ相交,根据垂直的意义,BD、AD与PQ不垂直,选项C、D错误.故选:B.【点评】本题考查了学生在网格中的数形结合的能力,明确平行的本质是平移,将线段平移后观察是否重合从而判定是否平行是解决本题的关键.29.(2022•陕西)如图,AB∥CD,BC∥EF.若∠1=58°,则∠2的大小为()A.120°B.122°C.132°D.148°【分析】根据两直线平行,内错角相等分别求出∠C、∠CGF,再根据平角的概念计算即可.【解答】解:∵AB∥CD,∠1=58°,∴∠C=∠1=58°,∵BC∥EF,∴∠CGF=∠C=58°,∴∠2=180°﹣∠CGF=180°﹣58°=122°,故选:B.30.(2022•兰州)如图,直线a∥b,直线c与直线a,b分别相交于点A,B,AC⊥b,垂足为C.若∠1=52°,则∠2=()A.52°B.45°C.38°D.26°【分析】根据平行线的性质可得∠ABC=52°,根据垂直定义可得∠ACB=90°,然后利用直角三角形的两个锐角互余,进行计算即可解答.【解答】解:∵a∥b,∴∠1=∠ABC=52°,∵AC⊥b,∴∠ACB=90°,∴∠2=90°﹣∠ABC=38°,故选:C.【点评】本题考查了平行线的性质,垂线,熟练掌握平行线的性质是解题的关键.31.(2022•河南)如图,直线AB,CD相交于点O,EO⊥CD,垂足为O.若∠1=54°,则∠2的度数为()A.26°B.36°C.44°D.54°【分析】首先利用垂直的定义得到∠COE=90°,然后利用平角的定义即可求解.【解答】解:∵EO⊥CD,∴∠COE=90°,∵∠1+∠COE+∠2=180°,∴∠2=180°﹣∠1﹣∠COE=180°﹣54°﹣90°=36°.故选:B.【点评】本题主要考查了垂直的定义和平角的性质计算,要注意领会由垂直得直角这一要点.32.(2022•辽宁)如图,直线m∥n,AC⊥BC于点C,∠1=30°,则∠2的度数为()A.140°B.130°C.120°D.110°【分析】根据垂线的性质可得∠ACB=90°,进而得出∠ABC与∠1互余,再根据平行线的性质可得答案.【解答】解:∵AC⊥BC于点C,∴∠ACB=90°,∴∠ABC+∠1=90°,∴∠ABC=90°﹣30°=60°,∵m∥n,∴∠2=180°﹣∠ABC=120°.故选:C.【点评】本题主要考查平行线的性质,掌握两直线平行,同旁内角互补是解题的关键.33.(2022•常州)如图,斑马线的作用是为了引导行人安全地通过马路.小丽觉得行人沿垂直马路的方向走过斑马线更为合理,这一想法体现的数学依据是()A.垂线段最短B.两点确定一条直线C.过一点有且只有一条直线与已知直线垂直D.过直线外一点有且只有一条直线与已知直线平行【分析】根据生活经验结合数学原理解答即可.【解答】解:小丽觉得行人沿垂直马路的方向走过斑马线更为合理,这一想法体现的数学依据是垂线段最短,故选:A.【点评】本题主要考查了垂线段最短的性质,熟练掌握数学和生活密不可分的关系是解答本题的关键.34.(2022•潍坊)如图是小亮绘制的潜望镜原理示意图,两个平面镜的镜面AB与CD平行,入射光线l与出射光线m平行.若入射光线l与镜面AB的夹角∠1=40°10',则∠6的度数为()A.100°40'B.99°80'C.99°40'D.99°20'【分析】先根据反射角等于入射角求出∠2的度数,再求出∠5的度数,最后根据平行线的性质得出即可.【解答】解:∵入射角等于反射角,∠1=40°10',∴∠2=∠1=40°10',∵∠1+∠2+∠5=180°,∴∠5=180°﹣40°10'﹣40°10'=99°40',∵入射光线l与出射光线m平行,∴∠6=∠5=99°40'.故选:C.【点评】本题考查了平行线的性质,能灵活运用平行线的性质定理推理是解此题的关键.35.(2022•襄阳)已知直线m∥n,将一块含30°角的直角三角板ABC(∠ABC=30°,∠BAC=60°)按如图方式放置,点A,B分别落在直线m,n上.若∠1=70°.则∠2的度数为()A.30°B.40°C.60°D.70°【分析】根据平行线的性质求得∠ABD,再根据角的和差关系求得结果.【解答】解:∵m∥n,∠1=70°,∴∠1=∠ABD=70°,∵∠ABC=30°,∴∠2=∠ABD﹣∠ABC=40°,故选:B.【点评】本题主要考查了平行线的性质,关键是熟练掌握平行线的性质.36.(2021•安徽)两个直角三角板如图摆放,其中∠BAC=∠EDF=90°,∠E=45°,∠C=30°,AB与DF交于点M.若BC∥EF,则∠BMD的大小为()A.60°B.67.5°C.75°D.82.5°【分析】首先根据直角三角形两锐角互余可算出∠F和∠B的度数,再由“两直线平行,内错角相等”,可求出∠MDB的度数,在△BMD中,利用三角形内角和可求出∠BMD的度数.【解答】解:如图,在△ABC和△DEF中,∠BAC=∠EDF=90°,∠E=45°,∠C=30°,∴∠B=90°﹣∠C=60°,∠F=90°﹣∠E=45°,∵BC∥EF,∴∠MDB=∠F=45°,在△BMD中,∠BMD=180°﹣∠B﹣∠MDB=75°.故选:C.法二、∵BC∥EF,∴∠EAC=∠C=30°,则∠MAE=120°,在四边形AMDE中,∠AMD =360°﹣120°﹣90°﹣45,∴∠BMD=180﹣∠AMD=75°.故选:C.【点评】本题主要考查三角形内角和,平行线的性质等内容,根据图形,结合定理求出每个角的度数是解题关键.37.(2021•宜昌)如图,将一副三角尺按图中所示位置摆放,点F在AC上,其中∠ACB=90°,∠ABC=60°,∠EFD=90°,∠DEF=45°,AB∥DE,则∠AFD的度数是()A.15°B.30°C.45°D.60°【分析】利用三角板的度数可得∠A=30°,∠D=45°,由平行线的性质定理可得∠1=∠D=45°,利用三角形外角的性质可得结果.【解答】解:如图,∵∠ACB=90°,∠ABC=60°,∴∠A=180°﹣∠ACB﹣∠ABC=180°﹣90°﹣60°=30°,∵∠EFD=90°,∠DEF=45°,∴∠D=180°﹣∠EFD﹣∠DEF=180°﹣90°﹣45°=45°,∵AB∥DE,∴∠1=∠D=45°,∴∠AFD=∠1﹣∠A=45°﹣30°=15°,故选:A.【点评】本题主要考查了平行线的性质定理和外角的性质,求出∠A,∠D的度数是解本题的关键.38.(2021•娄底)如图,AB∥CD,点E、F在AC边上,已知∠CED=70°,∠BFC=130°,则∠B+∠D 的度数为()A.40°B.50°C.60°D.70°【分析】先由平行线的性质得出∠A+∠C=180°,再由三角形的内角和为180°,将△ABF和△CDE的内角和加起来即可得∠B+∠D的度数.【解答】解:∵∠BFC=130°,∴∠BF A=50°,又∵AB∥CD,∴∠A+∠C=180°,∵∠B+∠A+∠BF A+∠D+∠C+∠CED=360°,∴∠B+∠D=60°,故选:C.【点评】本题主要考查平行线的性质和三角形的内角和,这两个知识点中考基本都是放在一起考的,平行线的性质与判定要熟记于心.39.(2021•包头)如图,直线l1∥l2,直线l3交l1于点A,交l2于点B,过点B的直线l4交l1于点C.若∠3=50°,∠1+∠2+∠3=240°,则∠4等于()A.80°B.70°C.60°D.50°【分析】由题意得,∠2=60°,由平角的定义可得∠5=70°,再根据平行线的性质即可求解.【解答】解:如图,∵l1∥l2,∴∠1+∠3=180°,∵∠1+∠2+∠3=240°,∴∠2=240°﹣(∠1+∠3)=60°,∵∠3+∠2+∠5=180°,∠3=50°,∴∠5=180°﹣∠2﹣∠3=70°,∵l1∥l2,∴∠4=∠5=70°,故选:B.【点评】此题考查了平行线的性质,熟记平行线的性质定理及平角的定义是解题的关键.需要注意的是,在有平行线的前提下,若要计算或求证的角与已知角不是两平行线被三条直线所截得的角,那么就需要借助一个中间量,将两者联系起来.本题就是先求的∠4的同位角,进而求出∠4的.40.(2021•营口)如图,EF与AB,BC,CD分别交于点E,G,F,且∠1=∠2=30°,EF⊥AB,则下列结论错误的是()A.AB∥CD B.∠3=60°C.FG=12FC D.GF⊥CD【分析】先根据平行线的判定可得AB∥CD,根据直角三角形的性质可得∠3,根据含30°的直角三角形的性质可得FG=12GC,再由平行线的性质得到GF⊥CD,即可得出结论.【解答】解:∵∠1=∠2=30°,∴AB∥CD,故A不符合题意;∵EF⊥AB,∴∠BEG=90°,∴∠3=90°﹣30°=60°,故B不符合题意;∵∠2=30°,∴FG=12GC,故C符合题意;∵AB∥CD,EF⊥AB,∴GF⊥CD,故D不符合题意.故选:C.【点评】本题考查的是垂线,平行线的判定,用到的知识点为:内错角相等,两直线平行.二.填空题(共20小题)41.(2023•通辽)将一副三角尺如图所示放置,其中AB∥DE,则∠CDF=度.【分析】利用平行线的性质和三角尺各角的度数进行计算即可.【解答】解:∵AB∥DE,∴∠BDE=∠B=30°.∴∠CDF=180°﹣∠EDF﹣∠BDE=180°﹣45°﹣30°=105°.故答案为:105.【点评】本题主要考查平行线的性质的简单运用.另外,一定要把一副三角尺各角的度数作为常识牢记于心.42.(2023•永州)如图,AB∥CD,BC∥ED,∠B=80,则∠D=度.【分析】首先由AB∥CD得出∠BCD=∠B=80°,再由BC∥ED得出∠D+∠BCD=180°,据此可得出此题的答案.【解答】解:∵AB∥CD,∠B=80,∴∠BCD=∠B=80°,∵BC∥ED,∴∠D+∠BCD=180°,∴∠D=100°.故答案为:100.【点评】此题主要考查了平行线的判定和性质,解答此题的关键是准确识图,熟练掌握平行线的判定及性质:两直线平行,同位角相等,两直线平行,内错角相等,两直线平行,同旁内角互补.43.(2023•杭州)如图,点D,E分别在△ABC的边AB,AC上,且DE∥BC,点F在线段BC的延长线上.若∠ADE=28°,∠ACF=118°,则∠A=.【分析】由平行线的性质得到∠B=∠ADE=28°,由三角形外角的性质得到∠A=∠ACF﹣∠B=118°﹣28°=90°.【解答】解:∵DE∥BC,∴∠B=∠ADE=28°,∵∠ACF=∠A+∠B,∴∠A=∠ACF﹣∠B=118°﹣28°=90°.故答案为:90°.【点评】本题考查平行线的性质,三角形外角的性质,关键是由平行线的性质求出∠B的度数,由三角形外角的性质即可求出∠A的度数.44.(2023•台州)用一张等宽的纸条折成如图所示的图案,若∠1=20°,则∠2的度数为.【分析】利用平行线的性质和各角之间的关系即可求解.【解答】解:如图,标注三角形的三个顶点A、B、C.∠2=∠BAC=180°﹣∠ABC﹣∠ACB.∵图案是由一张等宽的纸条折成的,∴AB=AC,∴∠ABC=∠ACB.又∵纸条的长边平行,∴∠ABC=∠1=20°,∴∠2=∠BAC=180°﹣2∠ABC=180°﹣2∠1=180°﹣2×20°=140°.故答案为:140°.【点评】本题比较简单,主要考查了平行线的性质的运用.45.(2023•威海)某些灯具的设计原理与抛物线有关.如图,从点O照射到抛物线上的光线OA,OB等反射后都沿着与POQ平行的方向射出.若∠AOB=150°,∠OBD=90°,则∠OAC=°.【分析】根据两直线平行,内错角相等可得∠POB=∠OBD=90°,那么∠AOP=∠AOB﹣∠POB=60°,再根据两直线平行,内错角相等可得∠OAC=∠AOP=60°.【解答】解:∵BD∥PQ,∴∠POB=∠OBD=90°,∵∠AOB=150°,∴∠AOP=∠AOB﹣∠POB=150°﹣90°=60°,∵AC∥PQ,∴∠OAC=∠AOP=60°.故答案为:60.【点评】本题考查了平行线的性质,是基础题,熟记性质是解题的关键.46.(2023•烟台)一杆古秤在称物时的状态如图所示,已知∠1=102°,则∠2的度数为.【分析】根据两直线平行,内错角相等得到∠2=∠BCD,由∠1的度数求出∠BCD的度数,即可得到∠2的度数.【解答】解:如图,由题意得:AB∥CD,∴∠2=∠BCD,∵∠1=102°,∴∠BCD=78°,∴∠2=78°,故答案为:78°.【点评】本题考查了平行线的性质,熟知:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.47.(2022•镇江)一副三角板如图放置,∠A=45°,∠E=30°,DE∥AC,则∠1=°.【分析】利用平行和对顶角相等求出∠DOA,根据三角形内角和求出∠D,根据外角性质求出∠1.【解答】解:如图,设DE交AB于O点,∵DE∥AC,∴∠A=∠BOE=45°,∴∠DOA=∠BOE=45°,∠D=90°﹣∠E=90°﹣30°=60°,∠1=∠D+∠DOA=60°+45°=105°.故答案为:105.【点评】本题考查平行线的性质、对顶角和三角形内角和定理,熟练运用平行线的性质是关键.48.(2022•扬州)将一副直角三角板如图放置,已知∠E=60°,∠C=45°,EF∥BC,则∠BND=°.【分析】由直角三角形的性质得出∠F=30°,∠B=45°,由平行线的性质得出∠NDB=∠F=30°,再由三角形内角和定理即可求出∠BND的度数.【解答】解:已知∠E=60°,∠C=45°,∠F=30°,∠B=45°,∵EF∥BC,∴∠NDB=∠F=30°,∴∠BND=180°﹣∠B﹣∠NDB=180°﹣45°﹣30°=105°,故答案为:105.【点评】本题考查了平行线的性质,熟练掌握平行线的性质,直角三角形的性质,三角形内角和定理是解决问题的关键.49.(2022•阜新)一副三角板如图摆放,直线AB∥CD,则∠α的度数是.【分析】根据题意可得:∠EBD=90°,∠BDE=45°,∠EDC=30°,然后利用平行线的性质可得∠ABD+∠BDC=180°,从而进行计算即可解答.【解答】解:如图:由题意得:∠EFD=90°,∠FDE=45°,∠EDC=30°,∵AB∥CD,∴∠AFD+∠FDC=180°,∴∠α=180°﹣∠EFD﹣∠FDE﹣∠EDC=180°﹣90°﹣45°﹣30°=15°,故答案为:15°.【点评】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.50.(2022•湖北)如图,直线a∥b,直线c与直线a,b相交,若∠1=54°,则∠3=度.【分析】根据两直线平行,同位角相等和邻补角的定义解答即可.【解答】解:∵a ∥b ,∴∠4=∠1=54°,∴∠3=180°﹣∠4=180°﹣54°=126°,故答案为:126.【点评】本题主要考查了平行线的性质以及邻补角互补的运用,解决问题的关键是掌握:两直线平行,同位角相等.51.(2022•西藏)如图,依下列步骤尺规作图,并保留作图痕迹:(1)分别以点A ,B 为圆心,大于12AB 的长为半径作弧,两弧相交于E ,F 两点,作直线EF ; (2)以点A 为圆心,适当长为半径画弧,分别交AB ,AC 于点G ,H ,再分别以点G ,H 为圆心,大于12GH 的长为半径画弧,两弧在∠BAC 的内部相交于点O ,画射线AO ,交直线EF 于点M .已知线段AB =6,∠BAC =60°,则点M 到射线AC 的距离为 .【分析】根据线段的垂直平分线和角平分线的作法可知:EF 是线段AB 的垂直平分线,AO 是∠AOB 的平分线,利用线段的垂直平分线的性质和角平分线的性质的求解即可.【解答】解:如图所示:根据题意可知:EF 是线段AB 的垂直平分线,AO 是∠BAC 的平分线,∵AB =6,∠BAC =60°,∴∠BAO =∠CAO =12∠BAC =30°,AD =12AB =3,∴AM=2MD,在Rt△ADM中,(2MD)2=MD2+AD2,即4MD2=MD2+32,∴MD=√3,∵AM是∠AOB的平分线,MD⊥AB,∴点M到射线AC的距离为√3.故答案为:√3.【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质,角平分线的性质等知识,解题的关键是理解题意灵活运用基本作图的知识解决问题.52.(2022•乐山)如图,已知直线a∥b,∠BAC=90°,∠1=50°.则∠2=.【分析】根据直角三角形的两锐角互余求出∠ACB,再根据平行线的性质解答即可.【解答】解:在Rt△ABC中,∠BAC=90°,∠1=50°,则∠ACB=90°﹣50°=40°,∵a∥b,∴∠2=∠ACB=40°,故答案为:40°.【点评】本题考查的是平行线的性质、直角三角形的性质,掌握两直线平行、同位角相等是解题的关键.53.(2022•绵阳)两个三角形如图摆放,其中∠BAC=90°,∠EDF=100°,∠B=60°,∠F=40°,DE 与AC交于点M,若BC∥EF,则∠DMC的大小为.【分析】延长ED交CB的延长线于点G,利用三角形内角和定理可得求出∠E,∠C的度数,再利用平行线的性质可求出∠G的度数,然后利用三角形内角和定理进行计算即可解答.【解答】解:延长ED交CB的延长线于点G,∵∠BAC=90°,∠ABC=60°,∴∠C=90°﹣∠ABC=30°,∵∠EDF=100°,∠F=40°,∴∠E=180°﹣∠F﹣∠EDF=40°,∵EF∥BC,∴∠E=∠G=40°,∴∠DMC=180°﹣∠C﹣∠G=110°,故答案为:110°.【点评】本题考查了平行线的性质,三角形内角和定理,熟练掌握平行线的性质,以及三角形内角和定理是解题的关键.54.(2022•枣庄)光线在不同介质中传播速度不同,从一种介质射向另一种介质时会发生折射.如图,水面AB与水杯下沿CD平行,光线EF从水中射向空气时发生折射,光线变成FH,点G在射线EF上,已知∠HFB=20°,∠FED=45°,则∠GFH的度数为.【分析】根据平行线的性质知∠GFB=∠FED=45°,结合图形求得∠GFH的度数.【解答】解:∵AB∥CD,∴∠GFB=∠FED=45°.∵∠HFB=20°,∴∠GFH=∠GFB﹣∠HFB=45°﹣20°=25°.故答案为:25°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.55.(2022•济宁)如图,直线l1,l2,l3被直线l4所截,若l1∥l2,l2∥l3,∠1=126°32',则∠2的度数是.【分析】由平行线性质即可解答.【解答】解:如图:∵l1∥l2,l2∥l3,∴l1∥l3,∴∠1=∠3=126°32',∴∠2=180°﹣∠3=180°﹣126°32'=53°28';故答案为:53°28'.【点评】本题考查平行线的性质及应用,解题的关键是掌握平行的传递性和平行线的性质.56.(2022•宜昌)如图,C岛在A50°方向,C岛在B岛的北偏西35°方向,则∠ACB的大小是.【分析】过点C作CF∥AD,根据平行线的性质,求得∠ACF与∠BCF,再由角的和差可得答案.【解答】解:过点C作CF∥AD,如图,∵AD ∥BE ,∴AD ∥CF ∥BE ,∴∠ACF =∠DAC ,∠BCF =∠EBC ,∴∠ACB =∠ACF +∠BCF =∠DAC +∠EBC ,由C 岛在A 岛的北偏东50°方向,C 岛在B 岛的北偏西35°方向,得∠DAC =50°,∠CBE =35°.∴∠ACB =50°+35°=85°,故答案为:85°.【点评】本题考查了方向角,平行线的性质,利用平行线的性质得出得出∠ACF =50°,∠BCF =35°是解题关键.57.(2021•大庆)如图,3条直线两两相交最多有3个交点,4条直线两两相交最多有6个交点,按照这样的规律,则20条直线两两相交最多有 个交点.【分析】由所给条件可得n 条直线相交最多有n(n−1)2个交点,令n =20即可求解. 【解答】解:2条直线相交有1个交点,3条直线相交最多有1+2=3个交点,4条直线相交最多有1+2+3=6个交点,……n 条直线相交最多有n(n−1)2个交点,∴20条直线相交最多有190个交点.故答案为190.【点评】本题考查相交线交点个数问题,直线两两相交时去掉重复交点是解题的关键.58.(2021•长春)将一副三角板按如图所示的方式摆放,点D在边AC上,BC∥EF,则∠ADE的大小为度.【分析】由“两直线平行,同位角性质”得到∠1=∠E=45°,再根据三角形的外角定理求解即可.【解答】解:如图,∠C=30°,∠E=45°,∵BC∥EF,∴∠1=∠E=45°,∴∠ADE=∠1+∠C=45°+30°=75°,故答案为:75.【点评】此题考查了平行线的性质,熟记平行线的性质定理及三角形的外角定理是解题的关键.59.(2021•益阳)如图,AB与CD相交于点O,OE是∠AOC的平分线,且OC恰好平分∠EOB,则∠AOD =度.【分析】根据角平分线的定义得出∠AOE=∠COE,∠COE=∠BOC,求出∠AOE=∠COE=∠BOC,根据∠AOE+∠COE+∠BOC=180°求出∠BOC,再根据对顶角相等求出答案即可.【解答】解:∵OE是∠AOC的平分线,OC恰好平分∠EOB,∴∠AOE=∠COE,∠COE=∠BOC,∴∠AOE=∠COE=∠BOC,∵∠AOE+∠COE+∠BOC=180°,∴∠BOC=60°,。
初中数学相交线与平行线难题汇编及答案
初中数学相交线与平行线难题汇编及答案一、选择题1.给出下列说法,其中正确的是( )A.两条直线被第三条直线所截,同位角相等;B.平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;C.相等的两个角是对顶角;D.从直线外一点到这条直线的垂线段,叫做这点到直线的距离.【答案】B【解析】【分析】正确理解对顶角、同位角、相交线、平行线、点到直线的距离的概念,逐一判断.【详解】A选项:同位角只是一种位置关系,只有两条直线平行时,同位角相等,错误;B选项:强调了在平面内,正确;C选项:不符合对顶角的定义,错误;D选项:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,不是指点到直线的垂线段的本身,而是指垂线段的长度.故选:B.【点睛】对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义,要善于区分不同概念之间的联系和区别.2.下列说法中,正确的是()A.过一点有且只有一条直线与已知直线垂直B.过直线外一点有且只有一条直线与已知直线平行C.垂于同一条直线的两条直线平行D.如果两个角的两边分别平行,那么这两个角一定相等【答案】B【解析】【分析】根据平行线的性质和判定,平行线公理及推论逐个判断即可.【详解】A、在同一平面内,过一点有且只有一条直线与已知直线垂直,故本选项不符合题意;B、过直线外一点有且只有一条直线与已知直线平行,故本选项符合题意;C、在同一平面内,垂直于同一条直线的两直线平行,故本选项不符合题意;D、如果两个角的两边分别平行,那么这两个角相等或互补,故本选项不符合题意;故选:B.【点睛】此题考查平行线的性质和判定,平行线公理及推论,能熟记知识点的内容是解题的关键.3.如图,能判定EB ∥AC 的条件是( )A .∠C =∠ABEB .∠A =∠EBDC .∠C =∠ABCD .∠A =∠ABE 【答案】D【解析】【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A 、∠C =∠ABE 不能判断出EB ∥AC ,故A 选项不符合题意;B 、∠A =∠EBD 不能判断出EB ∥AC ,故B 选项不符合题意;C 、∠C =∠ABC 只能判断出AB =AC ,不能判断出EB ∥AC ,故C 选项不符合题意;D 、∠A =∠ABE ,根据内错角相等,两直线平行,可以得出EB ∥AC ,故D 选项符合题意. 故选:D .【点睛】此题考查平行线的性质,正确识别“三线八角”中的同位角、内错角、同旁内角是解题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.4.如图,下列能判定AB ∥CD 的条件有几个( )(1)12∠=∠ (2)34∠=∠(3)5B ∠=∠ (4)180B BCD ∠+∠=︒.A .4B .3C .2D .1【答案】B【解析】【分析】 根据平行线的判定逐一判定即可.【详解】因为12∠=∠,所有AD ∥BC ,故(1)错误.因为34∠=∠,所以AB ∥CD ,故(2)正确.因为5B ∠=∠,所以AB ∥CD ,故(3)正确.因为180B BCD ∠+∠=︒,所以AB ∥CD ,故(4)正确.所以共有3个正确条件.故选B【点睛】本题考查的是平行线的判定,找准两个角是哪两条直线被哪条直线所截形成的同位角、同旁内角、内错角是关键.5.如图,直线AC∥BD,AO、BO分别是∠BAC、∠ABD的平分线,那么下列结论错误的是()A.∠BAO与∠CAO相等B.∠BAC与∠ABD互补C.∠BAO与∠ABO互余D.∠ABO与∠DBO不等【答案】D【解析】【分析】【详解】解:已知AC//BD,根据平行线的的性质可得∠BAC+∠ABD=180°,选项B正确;因AO、BO分别是∠BAC、∠ABD的平分线,根据角平分线的定义可得∠BAO=∠CAO, ∠ABO=∠DBO,选项A正确,选项D不正确;由∠BAC+∠ABD=180°,∠BAO=∠CAO, ∠ABO=∠DBO即可得∠BAO+∠ABO=90°,选项A正确,故选D.6.如图,已知AB∥DC,BF平分∠ABE,且BF∥DE,则∠ABE与∠CDE的关系是()A.∠ABE=2∠CDE B.∠ABE=3∠CDEC.∠ABE=∠CDE+90°D.∠ABE+∠CDE=180°【答案】A【解析】【分析】延长BF与CD相交于M,根据两直线平行,同位角相等可得∠M=∠CDE,再根据两直线平行,内错角相等可得∠M=∠ABF,从而求出∠CDE=∠ABF,再根据角平分线的定义解答.【详解】解:延长BF与CD相交于M,∵BF∥DE,∴∠M=∠CDE,∵AB∥CD,∴∠M=∠ABF,∴∠CDE=∠ABF,∵BF平分∠ABE,∴∠ABE=2∠ABF,∴∠ABE=2∠CDE.故选:A.【点睛】本题考查了平行线的性质和角平分线的定义,作辅助线,是利用平行线的性质的关键,也是本题的难点.7.如图所示,∠AOB的两边.OA、OB均为平面反光镜,∠AOB=35°,在OB上有一点E,从E点射出一束光线经OA上的点D反射后,反射光线DC恰好与OB平行,则∠DEB的度数是()A.35°B.70°C.110°D.120°【答案】B【解析】【分析】【详解】解:过点D作DF⊥AO交OB于点F.∵入射角等于反射角,∴∠1=∠3,∵CD∥OB,∴∠1=∠2(两直线平行,内错角相等);∴∠2=∠3(等量代换);在Rt △DOF 中,∠ODF=90°,∠AOB=35°,∴∠2=55°;∴在△DEF 中,∠DEB=180°-2∠2=70°.故选B .8.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐弯处的∠A 是72°,第二次拐弯处的角是∠B ,第三次拐弯处的∠C 是153°,这时道路恰好和第一次拐弯之前的道路平行,则∠B 等于( )A .81°B .99°C .108°D .120°【答案】B【解析】 试题解析:过B 作BD ∥AE ,∵AE ∥CF ,∴BD ∥CF ,∴72,180A ABD DBC C ∠=∠=∠+∠=,∵153C ∠=,∴27DBC ∠=,则99.ABC ABD DBC ∠=∠+∠=故选B.9.如图,在ABC ∆中,90,2,4C AC BC ∠=︒==,将ABC ∆绕点A 逆时针旋转90︒,使点C 落在点E 处,点B 落在点D 处,则B E 、两点间的距离为( )A .10B .22C .3D .25【答案】B【解析】【分析】 延长BE 和CA 交于点F ,根据旋转的性质可知∠CAE=90︒,证明∠BAE=∠ABC ,即可证得AE ∥BC ,得出2142EF AF AE FB FC BC ====,即可求出BE . 【详解】延长BE 和CA 交于点F∵ABC ∆绕点A 逆时针旋转90︒得到△AED∴∠CAE=90︒∴∠CAB+∠BAE=90︒又∵∠CAB+∠ABC=90︒∴∠BAE=∠ABC∴AE ∥BC∴2142EF AF AE FB FC BC ====∴AF=AC=2,FC=4∴BF=42∴BE=EF=12BF=22故选:B【点睛】本题考查了旋转的性质,平行线的判定和性质.10.如图,12180∠+∠=︒,3100∠=︒,则4∠=( )A.60︒B.70︒C.80︒D.100︒【答案】C【解析】【分析】首先证明a∥b,再根据两直线平行同位角相等可得∠3=∠6,再根据对顶角相等可得∠4.【详解】解:∵∠1+∠5=180°,∠1+∠2=180°,∴∠2=∠5,a∥b,∴∠3=∠6=100°,∴∠4=180°-100°=80°.故选:C.【点睛】此题考查平行线的判定与性质,解题关键是掌握两直线平行同位角相等.11.在下图中,∠1,∠2是对顶角的图形是()A.B.C.D.【答案】B【解析】略12.下列说法中,正确的是()A.不相交的两条直线是平行线B.过一点有且只有一条直线与已知直线平行C .从直线外一点作这条直线的垂线段叫做点到这条直线的距离D .在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直.【答案】D【解析】【分析】运用平行线,垂线的定义,点到直线的距离及平行公理及推论判定即可.【详解】A 、不相交的两条直线是平行线,要在同一平面内的前提条件下,故A 选项错误;B 、过直线外一点有且只有一条直线与已知直线平行,故B 选项错误;C 、从直线外一点作这条直线的垂线段叫做点到这条直线的距离,应为垂线段的长度,故C 选项错误;D 、在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直,故D 选项正确.故选:D .【点睛】本题主要考查了平行线,垂线的定义,点到直线的距离及平行公理及推论,解题的关键是熟记定义与性质.13.已知α∠的两边与β∠的两边分别平行,且α∠=20°,则∠β的度数为( ) A .20°B .160°C .20°或160°D .70°【答案】C【解析】【分析】分两种情况,画出图形,结合平行线的性质求解即可.【详解】如图1,∵a ∥b ;∴∠1=α∠=20°,∵c ∥d∴∠β=∠1=20°;如图2,∵a ∥b ;∴∠1=α∠=20°,∵c ∥d∴∠β=180°-∠1=160°;故选C.【点睛】本题考查了平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.本题也考查了分类讨论的数学思想.14.如图,直线//,175a b ︒∠=,则2∠的大小是( )A .75︒B .85︒C .95︒D .105︒【答案】D【解析】【分析】 把2∠的对顶角标记为3∠,根据对顶角的性质得到2∠与3∠得关系,再根据直线平行的性质得到1∠与3∠得关系,最后由等量替换得到2∠得度数.【详解】解:如图,把2∠的对顶角标记为3∠,∵2∠与3∠互为对顶角,∴23∠∠=,又∵//a b ,175︒∠=,∴13180∠+∠=︒(两直线平行,同旁内角互补),∴12180∠+∠=︒(等量替换),∴2180118075105∠=︒-∠=︒-︒=︒故D 为答案.【点睛】本题主要考查了对顶角的性质(对顶角相等)、直线平行的性质(两直线平行,同旁内角互补),学会运用等量替换原则是解题的关键.15.如图,1B ∠=∠,2C ∠=∠,则下列结论正确的个数有( )①//AD BC ;②B D ∠=∠;③//AB CD ;④2180B ∠+∠=︒A .4个B .3个C .2个D .1个【答案】A【解析】【分析】根据∠1=∠B 可判断AD ∥BC ,再结合∠2=∠C 可判断AB ∥CD ,其余选项也可判断.【详解】∵∠1=∠B∴AD ∥BC ,①正确;∴∠2+∠B=180°,④正确;∵∠2=∠C∴∠C+∠B=180°∴AB ∥CD ,③正确∴∠1=∠D ,∴∠D=∠B ,②正确故选:A【点睛】本题考查平行的证明和性质,解题关键是利用AD ∥BC 推导出∠B+∠2=180°,为证AB ∥DC 作准备.16.把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为( )A .115°B .120°C .145°D .135° 【答案】D【解析】【分析】由三角形的内角和等于180°,即可求得∠3的度数,又由邻补角定义,求得∠4的度数,然后由两直线平行,同位角相等,即可求得∠2的度数.【详解】在Rt△ABC中,∠A=90°,∵∠1=45°(已知),∴∠3=90°-∠1=45°(三角形的内角和定理),∴∠4=180°-∠3=135°(平角定义),∵EF∥MN(已知),∴∠2=∠4=135°(两直线平行,同位角相等).故选D.【点睛】此题考查了三角形的内角和定理与平行线的性质.注意两直线平行,同位角相等与数形结合思想的应用.17.如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为()A.20°B.35°C.55°D.70°【答案】B【解析】【分析】根据平行线的性质可得∠1=∠ABC=70°,再根据角平分线的定义可得答案.【详解】∵DE∥BC,∴∠1=∠ABC=70°,∵BE平分∠ABC,∴1352CBE ABC∠=∠=︒,故选:B.【点睛】此题主要考查了平行线的性质,以及角平分线的定义,解题的关键是掌握两直线平行,内错角相等.18.下列说法中错误的个数是( )(1)过一点有且只有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)不相交的两条直线叫做平行线;(4)有公共顶点且有一条公共边的两个互补的角互为邻补角.A.1个B.2个C.3个D.4个【答案】C【解析】(1)应强调过直线外一点,故错误;(2)正确;(3)不相交的两条直线叫做平行线,没有说明是否是在同一平面内,所以错误;(4)有公共顶点且有一条公共边的两个角不一定互为邻补角,角平分线的两个角也满足,但可以不是,故错误.错误的有3个,故选C.19.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.56°C.66°D.54°【答案】B【解析】试题分析:∵AB∥CD,∴∠D=∠1=34°,∵DE⊥CE,∴∠DEC=90°,∴∠DCE=180°﹣90°﹣34°=56°.故选B.考点:平行线的性质.20.如图,下列推理错误的是( )A.因为∠1=∠2,所以c∥d B.因为∠3=∠4,所以c∥dC.因为∠1=∠3,所以a∥b D.因为∠1=∠4,所以a∥b【答案】C【解析】分析:由平行线的判定方法得出A、B、C正确,D错误;即可得出结论.详解:根据内错角相等,两直线平行,可知因为∠1=∠2,所以c∥d,故正确;根据同位角相等,两直线平行,可知因为∠3=∠4,所以c∥d,故正确;因为∠1和∠3的位置不符合平行线的判定,故不正确;根据内错角相等,两直线平行,可知因为∠1=∠4,所以a∥b,故正确.故选:C.点睛:本题考查了平行线的判定方法;熟练掌握平行线的判定方法,并能进行推理论证是解决问题的关键.。
【必刷题】2024八年级数学下册平行线与相交线专项专题训练(含答案)
【必刷题】2024八年级数学下册平行线与相交线专项专题训练(含答案)试题部分一、选择题:1. 在同一平面内,下列说法正确的是()A. 两条平行线可以相交B. 两条相交线一定不平行C. 两条平行线的斜率相等D. 两条相交线的斜率一定相等2. 若两条直线平行,则它们的倾斜角()A. 相等B. 互补C. 互余D. 无法确定3. 下列图形中,不是由平行线与相交线构成的是()A. 矩形B. 正方形C. 梯形D. 圆4. 在平行四边形ABCD中,若AB=4cm,AD=6cm,则对角线AC的长度可能是()A. 2cmB. 5cmC. 7cmD. 10cm5. 下列关于平行线的性质,错误的是()A. 同位角相等B. 内错角相等C. 同旁内角互补D. 同旁内角相等6. 下列关于相交线的性质,正确的是()A. 对顶角相等B. 邻补角相等C. 内错角相等D. 同旁内角相等7. 若直线AB平行于直线CD,直线EF与直线AB、CD相交,则下列结论正确的是()A. ∠AEF + ∠CFD = 180°B. ∠BEF + ∠DEF = 180°C. ∠AEF = ∠CFDD. ∠BEF = ∠DEF8. 在三角形ABC中,若AB=AC,直线DE平行于BC,则下列结论正确的是()A. ∠BAC = ∠ABCB. ∠BAC = ∠ACBC. ∠BAC = ∠DCED. ∠ABC = ∠ACB9. 下列关于平行线的说法,错误的是()A. 平行线之间的距离处处相等B. 平行线上的任意一点到另一条平行线的距离相等C. 平行线的斜率相等D. 平行线一定在同一平面内10. 若两条直线垂直相交,则它们的斜率之积为()A. 0B. 1C. 1D. 无法确定二、判断题:1. 两条平行线的同旁内角互补。
()2. 两条相交线的对顶角相等。
()3. 平行四边形的对角线互相平分。
()4. 两条平行线的斜率相等。
()5. 在三角形中,若两边平行,则这两边所对的角相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学相交线与平行线真题汇编及答案一、选择题1.如图,已知AB ∥DC ,BF 平分∠ABE ,且BF ∥DE ,则∠ABE 与∠CDE 的关系是( )A .∠ABE =2∠CDEB .∠ABE =3∠CDEC .∠ABE =∠CDE +90°D .∠ABE +∠CDE =180°【答案】A【解析】【分析】 延长BF 与CD 相交于M ,根据两直线平行,同位角相等可得∠M =∠CDE ,再根据两直线平行,内错角相等可得∠M =∠ABF ,从而求出∠CDE =∠ABF ,再根据角平分线的定义解答.【详解】解:延长BF 与CD 相交于M ,∵BF ∥DE ,∴∠M =∠CDE ,∵AB ∥CD ,∴∠M =∠ABF ,∴∠CDE =∠ABF ,∵BF 平分∠ABE ,∴∠ABE =2∠ABF ,∴∠ABE =2∠CDE .故选:A .【点睛】本题考查了平行线的性质和角平分线的定义,作辅助线,是利用平行线的性质的关键,也是本题的难点.2.如图,不能判断12//l l 的条件是( )A .13∠=∠B .24180∠+∠=︒C .45∠=∠D .23∠∠=【答案】D【解析】【分析】 根据题意,结合图形对选项一一分析,排除错误答案.【详解】A 、∠1=∠3正确,内错角相等两直线平行;B 、∠2+∠4=180°正确,同旁内角互补两直线平行;C 、∠4=∠5正确,同位角相等两直线平行;D 、∠2=∠3错误,它们不是同位角、内错角、同旁内角,故不能推断两直线平行. 故选:D .【点睛】此题考查同位角、内错角、同旁内角,解题关键在于掌握各性质定义.3.如图,下列能判定AB CD ∥的条件有( )个.(1)180B BCD ∠+∠=︒; (2)12∠=∠;(3)34∠=∠; (4)5B ∠=∠.A .1B .2C .3D .4【答案】C【解析】【分析】根据平行线的判定定理依次判断即可.【详解】∵180B BCD ∠+∠=︒,∴AB ∥CD ,故(1)正确;∵12∠=∠,∴AD ∥BC ,故(2)不符合题意;∵34∠=∠,∴AB ∥CD ,故(3)正确;∵5B ∠=∠,∴AB ∥CD ,故(4)正确;故选:C.【点睛】此题考查平行线的判定定理,熟记定理及两个角之间的位置关系是解题的关键.4.如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是()A.50°B.70°C.80°D.110°【答案】C【解析】【分析】根据平行线的性质可得∠BAD=∠1,再根据AD是∠BAC的平分线,进而可得∠BAC的度数,再根据补角定义可得答案.【详解】因为a∥b,所以∠1=∠BAD=50°,因为AD是∠BAC的平分线,所以∠BAC=2∠BAD=100°,所以∠2=180°-∠BAC=180°-100°=80°.故本题正确答案为C.【点睛】本题考查的知识点是平行线的性质,解题关键是掌握两直线平行,内错角相等.5.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是()A.40°B.50°C.60°D.70°【答案】D【解析】【分析】根据折叠的知识和直线平行判定即可解答.【详解】解:如图可知折叠后的图案∠ABC=∠EBC ,又因为矩形对边平行,根据直线平行内错角相等可得∠2=∠DBC ,又因为∠2+∠ABC=180°,所以∠EBC+∠2=180°,即∠DBC+∠2=2∠2=180°-∠1=140°.可求出∠2=70°.【点睛】掌握折叠图形的过程中有些角度是对称相等的是解答本题的关键.6.如图,下列能判定AB ∥CD 的条件有几个( )(1)12∠=∠ (2)34∠=∠(3)5B ∠=∠ (4)180B BCD ∠+∠=︒.A .4B .3C .2D .1【答案】B【解析】【分析】 根据平行线的判定逐一判定即可.【详解】因为12∠=∠,所有AD ∥BC ,故(1)错误.因为34∠=∠,所以AB ∥CD ,故(2)正确.因为5B ∠=∠,所以AB ∥CD ,故(3)正确.因为180B BCD ∠+∠=︒,所以AB ∥CD ,故(4)正确.所以共有3个正确条件.故选B【点睛】本题考查的是平行线的判定,找准两个角是哪两条直线被哪条直线所截形成的同位角、同旁内角、内错角是关键.7.如图,直线AB∥CD,直线EF分别交AB、CD于E、F两点,EG平分∠AEF,如果∠1=32°,那么∠2的度数是()A.64°B.68°C.58°D.60°【答案】A【解析】【分析】首先根据平行线性质得出∠1=∠AEG,再进一步利用角平分线性质可得∠AEF的度数,最后再利用平行线性质进一步求解即可.【详解】∵AB∥CD,∴∠1=∠AEG.∵EG平分∠AEF,∴∠AEF=2∠AEG,∴∠AEF=2∠1=64°,∵AB∥CD,∴∠2=64°.故选:A.【点睛】本题主要考查了角平分线性质以及平行线的性质,熟练掌握相关概念是解题关键.8.如图,点D在AC上,点F、G分别在AC、BC的延长线上,CE平分∠ACB交BD于点O,且∠EOD+∠OBF=180°,∠F=∠G,则图中与∠ECB相等的角有( )A.6个B.5个C.4个D.3个【答案】B【解析】【分析】由对顶角关系可得∠EOD=∠COB ,则由∠COB+∠OBF=180°可知EC ∥BF ,再结合CE 是角平分线即可判断.【详解】解:由∠EOD+∠OBF=∠COB+∠OBF=180°可知EC ∥BF ,结合CE 是角平分线可得∠ECB=∠ACE=∠CBF ,再由EC ∥BF 可得∠ACE=∠F=∠G ,则由三角形内角和定理可得∠GDC=∠CBF.综上所得,∠ECB=∠ACE=∠CBF=∠F=∠G=∠GDC ,共有5个与∠ECB 相等的角, 故选择B.【点睛】本题综合考查了平行线的判定及性质.9.如图,已知ABC ∆,若AC BC ⊥,CD AB ⊥,12∠=∠,下列结论:①//AC DE ;②3A ∠=∠;③3EDB ∠=∠;④2∠与3∠互补;⑤1B ∠=∠,其中正确的有( )A .2个B .3个C .4个D .5个【答案】C【解析】【分析】 根据平行线的判定得出AC ∥DE ,根据垂直定义得出∠ACB=∠CDB=∠CDA=90°,再根据三角形内角和定理求出即可.【详解】∵∠1=∠2,∴AC ∥DE ,故①正确;∵AC ⊥BC ,CD ⊥AB ,∴∠ACB=∠CDB=90°,∴∠A+∠B=90°,∠3+∠B=90°,∴∠A=∠3,故②正确;∵AC ∥DE ,AC ⊥BC ,∴DE ⊥BC ,∴∠DEC=∠CDB=90°,∴∠3+∠2=90°(∠2和∠3互余),∠2+∠EDB=90°,∴∠3=∠EDB ,故③正确,④错误;∵AC ⊥BC ,CD ⊥AB ,∴∠ACB=∠CDA=90°,∴∠A+∠B=90°,∠1+∠A=90°,∴∠1=∠B ,故⑤正确;即正确的个数是4个,故选:C.【点睛】此题考查平行线的判定和性质,三角形内角和定理,垂直定义,能综合运用知识点进行推理是解题的关键.10.如图所示,点E在AC的延长线上,下列条件中不能判断BD∥AE的是()A.∠D=∠DCE B.∠D+∠ACD=180° C.∠1=∠2 D.∠3=∠4【答案】C【解析】【分析】根据平行线的判定方法逐项进行分析即可得.【详解】A.由∠D=∠DCE,根据内错角相等,两直线平行可得BD//AE,故不符合题意;B. 由∠D+∠ACD=180°,根据同旁内角互补,两直线平行可得BD//AE,故不符合题意;C.由∠1=∠2可判定AB//CD,不能得到BD//AE,故符合题意;D.由∠3=∠4,根据内错角相等,两直线平行可得BD//AE,故不符合题意,故选C.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.11.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.56°C.66°D.54°【答案】B【解析】试题分析:∵AB∥CD,∴∠D=∠1=34°,∵DE⊥CE,∴∠DEC=90°,∴∠DCE=180°﹣90°﹣34°=56°.故选B.考点:平行线的性质.12.如图,直线a ∥b ,直线c 与直线a ,b 相交,若∠1=56°,则∠2等于( )A .24°B .34°C .56°D .124°【答案】C【解析】【分析】【详解】 试题分析:根据对顶角相等可得∠3=∠1=56°,根据平行线的性质得出∠2=∠3=56°.故答案选C.考点:平行线的性质.13.如图,点P 是直线a 外一点,PB ⊥a ,点A ,B ,C ,D 都在直线a 上,下列线段中最短的是( )A .PAB .PBC .PCD .PD【答案】B【解析】 如图,PB 是点P 到a 的垂线段,∴线段中最短的是PB .故选B.14.如图,□ABCD 的对角线AC ,BD 相交于点O(AD>AB).下列说法:①AB=CD;②AOB AOD S S ∆∆=;③∠ABD=∠CBD;④对边AB,CD 之间的距离相等且等于BC 的长。
其中正确的结论有( )个A .1B .2C .3D .4【答案】B【解析】【分析】 根据平行四边形的性质、三角形的面积公式、平行线的性质、等腰三角形的性质、直线之间的距离逐个判断即可得.【详解】Q 四边形ABCD 是平行四边形//,//,,AB CD AD BC AB CD OB OD ∴==,则①正确AOB ∆Q 边OB 上的高与AOD ∆边OD 上的高是同一条高,且OB OD =AOB AOD S S ∆∆∴=,则②正确//AD BC QADB CBD ∴∠=∠若ABD CBD ∠=∠,则ABD ADB ∠=∠AD AB ∴=,这与已知条件AD AB >矛盾,则③错误如图,过点A 作AE CD ⊥于点E//AB CD Q∴对边,AB CD 之间的距离相等,且等于AE 的长BC Q 不一定垂直于CDBC ∴不一定等于AE ,则④错误综上,结论正确的个数为2个故选:B .【点睛】本题考查了平行四边形的性质、平行线的性质、等腰三角形的性质等知识点,熟练掌握并灵活运用各性质是解题关键.15.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有( )A.1个B.2个C.3个D.4个【答案】C【解析】【分析】根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.【详解】解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选C.【点睛】本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.如图所示,下列条件中,能判定直线a∥b的是()A.∠1=∠4 B.∠4=∠5 C.∠3+∠5=180°D.∠2=∠4【答案】B【解析】【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A、∠1=∠4,错误,因为∠1、∠4不是直线a、b被其它直线所截形成的同旁内角或内错角;B、∵∠4=∠5,∴a∥b(同位角相等,两直线平行).C、∠3+∠5=180°,错误,因为∠3与∠5不是直线a、b被其它直线所截形成的同旁内角;D、∠2=∠4,错误,因为∠2、∠4不是直线a、b被其它直线所截形成的同位角.故选:B.【点睛】本题考查平行线的性质,解题关键是区分同位角、内错角和同旁内角17.如图,直线//a b ,将一块含45︒角的直角三角尺(90︒∠=C )按所示摆放.若180︒∠=,则2∠的大小是( )A .80︒B .75︒C .55︒D .35︒【答案】C【解析】【分析】 先根据//a b 得到31∠=∠,再通过对顶角的性质得到34,25∠=∠∠=∠,最后利用三角形的内角和即可求出答案.【详解】解:给图中各角标上序号,如图所示:∵//a b∴3180︒∠=∠=(两直线平行,同位角相等),又∵34,25∠=∠∠=∠(对顶角相等),∴251804180804555A ∠=∠=︒-∠-∠=︒-︒-︒=︒.故C 为答案.【点睛】本题主要考查了直线平行的性质(两直线平行,同位角相等)、对顶角的性质(对顶角相等),熟练掌握直线平行的性质是解题的关键.18.如图,直线,AB CD 相交于点,50,O AOC OE AB ︒∠=⊥,则DOE ∠的大小是( )A .40︒B .50︒C .70︒D .90︒【答案】A【解析】【分析】 根据对顶角的性质,把BOD ∠的度数计算出来,再结合OE AB ⊥,即可得到答案.【详解】解:∵50AOC ∠=︒,∴50BOD ∠=︒(对顶角相等),又∵OE AB ⊥,∴90EOB ∠=︒,∴905040DOE BOE DOB ∠=∠-∠=︒-︒=︒,故A 为答案.【点睛】本题主要考查了对顶角的性质(对顶角相等),判断,BOD AOC ∠∠是对顶角是解题的关键.19.如图,直线,a b 被直线,c d 所截,1110,270,360︒︒︒∠=∠=∠=,则4∠的大小是( )A .60︒B .70︒C .110︒D .120︒【答案】A【解析】【分析】 先根据对顶角相等得到15∠=∠,再根据平行线的判定得到a ∥b ,再根据平行线的性质得到34∠=∠即可得到答案.【详解】解:5∠标记为如下图所示,∵1,5∠∠是对顶角,∴15∠=∠(对顶角相等),又∵1110,270︒︒∠=∠=,∴1251107800︒︒+∠=∠=+︒,∴a ∥b (同旁内角互补,两直线平行),∴34∠=∠(两直线平行,内错角相等),∴4360∠=∠=︒,故A 为答案.【点睛】本题主要考查了对顶角的性质(对顶角相等)、直线平行的判定(同旁内角互补,两直线平行)、直线平行的性质(两直线平行,内错角相等),能灵活运用所学知识是解题的关键..20.一把直尺和一块三角板ABC (含30°,60°角)的摆放位置如图,直尺一边与三角板的两直角边分别交于点D 、点E ,另一边与三角板的两直角边分别交于点F 、点A ,且∠CED =50°,那么∠BAF =( )A .10°B .50°C .45°D .40°【答案】A【解析】【分析】 先根据∠CED =50°,DE ∥AF ,即可得到∠CAF =50°,最后根据∠BAC =60°,即可得出∠BAF 的大小.【详解】∵DE ∥AF ,∠CED =50°,∴∠CAF =∠CED =50°,∵∠BAC =60°,∴∠BAF =60°﹣50°=10°,故选:A .【点睛】此题考查平行线的性质,几何图形中角的和差关系,掌握平行线的性质是解题的关键.。